Stroll: a build system that doesn’t require a plan

Andrey Mokhov

Jane Street
London, United Kingdom

ABSTRACT

This paper presents Stroll — a build system that doesn’t require
the user to specify inputs and outputs of individual build tasks,
or provide a build plan in any other way. This makes Stroll very
convenient to use, but comes at the cost of slowing down the very
first build where Stroll needs to infer the build plan on its own. The
inference works by tracking file accesses of individual build tasks
and restarting the tasks as needed to ensure the correctness of the
final build result.

The paper describes key ideas behind the implementation of
Stroll, and positions it in the landscape of existing build systems.
We also quantify the cost of inferring the build plan during the
initial build.

CCS CONCEPTS

« Software and its engineering; - Mathematics of computing;

KEYWORDS
build systems, functional programming, algorithms

ACM Reference Format:

Andrey Mokhov. 2021. Stroll: a build system that doesn’t require a plan. In
Proceedings of ACM Conference (Conference’17). ACM, New York, NY, USA,
2 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Most build systems require the user to specify both build tasks as
well as dependencies between the tasks. The latter essentially pro-
vides the build system with a “plan”: by building the tasks in an
order that respects the dependencies, the build system can guaran-
tee that no task is executed more than once [Mokhov et al. 2020].

Describing dependencies between tasks can be problematic for
two reasons:

e Providing an accurate description of dependencies, and then
keeping the description up to date as build tasks evolve,
is difficult and is often a source of frustration and subtle
correctness and performance bugs [Spall et al. 2020].

e To describe dependencies, one needs a suitable domain-
specific language, and indeed (almost) every build system
comes with its own: Make [Feldman 1979] uses makefiles,
Bazel [Google 2016] uses a Python-inspired language called

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

Conference’17, July 2017, Washington, DC, USA

© 2021 Association for Computing Machinery.

ACM ISBN 978-x-xxxx-xxxx-x/YY/MM...$15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Starlark [Bazel Team 2018], Shake [Mitchell 2012] uses a
Haskell EDSL, Dune [Jane Street 2018] uses a combination
of OCaml and a higher-level S-expression based configura-
tion language, etc. While learning a new task description
language is not a big deal, migrating an existing build system

to a new language may take years'.

Stroll takes a radically different approach. Given a collection of
build tasks, it treats them as black boxes and discovers dependencies
between them by executing the tasks and tracking their file accesses.
This approach is not optimal in the sense that a task may fail because
one of its dependencies has not yet been built. A task may therefore
need to be restarted multiple times until all of its dependencies
have been discovered and brought up to date. In the end, Stroll will
learn the complete and accurate dependency graph and will store
it to speed up future builds.

At the first glance, this approach may seem hopelessly slow. As
we show in this paper, in the worst case, the number of restarts that
Stroll’s algorithm needs to perform is linear with respect to the size
of the dependency graph. Furthermore, the restarts are not on the
critical path, which means one can recover performance by giving
Stroll a sufficient number of parallel workers. We also show that a
simpler version of the problem requires at most 2x work compared
to the optimum.

Stroll was inspired by Fabricate [Hoyt et al. 2009] that also tracks
file accesses to automatically compute accurate dependencies. Fab-
ricate itself was preceded by Memoize [McCloskey 2008] and suc-
ceeded by Rattle [Spall et al. 2020]. Unlike Stroll, all these build
systems require the user to provide a build plan by listing the tasks
in a topological order. Stroll takes the idea of file access tracking
to the limit and doesn’t require any plan, thus occupying a unique
point in the design space of build systems.

Note for IFL 2021 reviewers

This is a last-minute submission that only describes two key al-
gorithms used in Stroll, to make it possible for the reviewers to
evaluate the performance claims. If this submission is accepted for
a presentation at IFL 2021, the presentation will include a high-
level Haskell model of Stroll, building on the modelling framework
from [Mokhov et al. 2020]. The final version of the paper will in-
clude: (i) a Stroll model, elaborated further to highlight interesting
aspects of Stroll’s implementation (Stroll is written in Haskell);
(ii) illustrated examples taken from the original blog post about
Stroll [Mokhov 2019], clarifying how Stroll discovers the full de-
pendency graph by executing and restarting “black box” tasks; and
(iii) proofs of correctness and efficiency of Stroll’s build algorithms.

The author was involved in two such migrations and both are still under way after
investing multiple man-years; the first one — migrating GHC’s build system from Make
to Shake [Mokhov et al. 2016] - started in 2014!

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Conference’17, July 2017, Washington, DC, USA

2 STROLL’S MAIN ALGORITHM

Stroll uses a (slightly optimised and therefore less obviously correct)
version of the following algorithm.

e For each previously executed task x, store a trace Ty and a
status Sx. The trace lists all inputs and outputs of the task
recorded during its last execution. The status is either success
or failure, depending on the last exit code.

o A task x is complete if Sy = success and all inputs in Ty are
complete. If one of the inputs in Ty is not complete, the task
is blocked (on the corresponding input).

e Execute tasks in parallel rounds. In each round, execute all
tasks that are not complete and not blocked. (Note that in
the first round all tasks are executed in parallel.)

e Terminate as soon as the build target requested by the user
has been produced, and the task that produced it is complete.

e Report an error if the current execution round is empty: the
target cannot be built (e.g., due to a cyclic dependency).

Claim: For a dependency graph with n tasks and m dependency
edges, there will be at most n rounds and at most m task restarts.

Proof sketch: Our first observation is that if a task gets executed
in a round R and does not become complete, then it will need to be
restarted at some later round R’ > R, when the dependency that
currently blocks it becomes complete. A restart therefore requires
at least one dependency edge switching from blocked to complete,
and since there are m edges overall, there will be at most m restarts.
The second observation is that for an edge to switch from blocked to
complete, at least one task must become complete. Therefore, there
cannot be more than n rounds, since every round is non-empty,
which requires at least one task to become complete. In fact, this
bound can be strengthened: there will be as many rounds as the
number of tasks in the longest dependency chain.

3 BUILDING TASKS WITH KNOWN OUTPUTS

While Stroll doesn’t require any information about tasks, providing

some information may help to significantly speed up the first build.

For example, if there is a mapping from outputs to the correspond-

ing tasks, then it is possible to bound the number of restarts by

just n for a build graph with n tasks and m dependencies.
Consider the following algorithm.

o Execute the task x corresponding to a requested build target.

o If the task doesn’t get blocked, terminate the build. If the
task is complete, then the target has been successfully built;
otherwise, it can’t be built (x must have failed with an error).

o If x gets blocked on another task y, switch to building y.
If that gets blocked too, keep building dependencies in the
depth-first manner. If there are no cycles, a “leaf” task with
no dependencies will eventually be reached, and the previ-
ously blocked task will be restarted. Continue until all tasks
blocking the “root” x have been built.

Claim: The algorithm does at most n task restarts.

Proof sketch: We can count the number of restarts by counting
the number of blocking edges discovered by the above algorithm,
since every time a task is blocked, we recurse to build the blocking

Andrey Mokhov

dependency and then restart the task. Here is a simple observation:
each task can be a blocking dependency at most once. This holds
because we build tasks in the depth-first order: when we “enter” a
task, we never “leave” it until its whole subtree is complete, and
so only the very first incoming edge will be blocking. Since there
are n tasks and each has at most one incoming blocking edge, there
will at most n blocking edges, and hence at most n restarts.

REFERENCES

Bazel Team. 2018. Starlark Language. (2018). https://docs.bazel.build/versions/main/
skylark/language.html.

Stuart I Feldman. 1979. Make—A program for maintaining computer programs. Soft-
ware: Practice and experience 9, 4 (1979), 255-265.

Google. 2016. Bazel. (2016). http://bazel.io/.

Berwyn Hoyt, Bryan Hoyt, and Ben Hoyt. 2009. Fabricate: The better build tool. (2009).
https://github.com/SimonAlfie/fabricate.

Jane Street. 2018. Dune: A composable build system. (2018). https://dune.build/.

Bill McCloskey. 2008. Memoize. (2008). https://github.com/kgaughan/memoize.py.

Neil Mitchell. 2012. Shake before building: Replacing Make with Haskell. In ACM
SIGPLAN Notices, Vol. 47. ACM, 55-66.

Andrey Mokhov. 2019. Stroll: an experimental build system. (2019). https://blogs.ncl.
ac.uk/andreymokhov/stroll/.

Andrey Mokhov, Neil Mitchell, and Simon Peyton Jones. 2020. Build systems a la carte:
Theory and practice. Journal of Functional Programming 30 (2020).

Andrey Mokhov, Neil Mitchell, Simon Peyton Jones, and Simon Marlow. 2016. Non-
recursive Make Considered Harmful: Build Systems at Scale. In Proceedings of the
9th International Symposium on Haskell (Haskell 2016). ACM, 170-181.

Sarah Spall, Neil Mitchell, and Sam Tobin-Hochstadt. 2020. Build Scripts with Perfect
Dependencies. Proc. ACM Program. Lang. 4, OOPSLA, Article 169 (2020), 28 pages.
https://doi.org/10.1145/3428237

https://docs.bazel.build/versions/main/skylark/language.html
https://docs.bazel.build/versions/main/skylark/language.html
http://bazel.io/
https://github.com/SimonAlfie/fabricate
https://dune.build/
https://github.com/kgaughan/memoize.py
https://blogs.ncl.ac.uk/andreymokhov/stroll/
https://blogs.ncl.ac.uk/andreymokhov/stroll/
https://doi.org/10.1145/3428237

	Abstract
	1 Introduction
	2 Stroll's main algorithm
	3 Building tasks with known outputs
	References

