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Abstract
The paper presents a minimalistic and elegant approach to working
with graphs in Haskell. It is built on a rigorous mathematical foun-
dation — an algebra of graphs — that allows us to apply equational
reasoning for proving the correctness of graph transformation al-
gorithms. Algebraic graphs let us avoid partial functions typically
caused by ‘malformed graphs’ that contain an edge referring to a
non-existent vertex. This helps to liberate APIs of existing graph
libraries from partial functions.

The algebra of graphs can represent directed, undirected, reflex-
ive and transitive graphs, as well as hypergraphs, by appropriately
choosing the set of underlying axioms. The flexibility of the ap-
proach is demonstrated by developing a library for constructing
and transforming polymorphic graphs.
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1 Introduction
Graphs are ubiquitous in computing, yet working with graphs often
requires painfully low-level fiddling with sets of vertices and edges.
Building high-level abstractions is difficult, because the commonly
used foundation – the pair (V ,E) of vertex set V and edge set
E ⊆ V ×V – is a source of partial functions. We can represent the
pair (V ,E) by the following simple data type1:

data G a = G { vertices :: [a], edges :: [(a,a)] }

Now G [1,2,3] [(1,2),(2,3)] is the graph with three vertices
V = {1, 2, 3} and two edges E = {(1, 2), (2, 3)}. The consistency
invariant E ⊆ V ×V holds. But what is G [1] [(1,2)]? The edge
refers to the non-existent vertex 2, breaking the invariant, and there
is no easy way to reflect this in types. Perhaps, our data type is just
too simplistic; let us look at state-of-the-art graph libraries instead.

The containers library is designed for performance and powers
GHC itself. It represents graphs by adjacency arrays [King and
Launchbury 1995] whose consistency invariant is not statically
checked, which can lead to runtime usage errors such as ‘index
out of range’. Another popular library fgl uses the inductive graph
representation [Erwig 2001], but its API also has partial functions,
e.g. inserting an edge can fail with the ‘edge from non-existent

1Although in this paper we exclusively use Haskell, the problem we solve is general
and the proposed approach can be readily adapted to other programming languages.
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vertex’ error. Both containers and fgl are treasure troves of graph
algorithms, but it is easy to make an error when using them. Is
there a safe graph construction interface we can build on top?

In this paper we present algebraic graphs — a new interface
for constructing and transforming graphs (more precisely, graphs
with labelled vertices and unlabelled edges). We abstract away
from graph representation details and characterise graphs by a set
of axioms, much like numbers are algebraically characterised by
rings [Mac Lane and Birkhoff 1999]. Our approach is based on the
algebra of parameterised graphs, a mathematical formalism used
in digital circuit design [Mokhov and Khomenko 2014], which we
simplify and adapt to the context of functional programming.

Algebraic graphs have a safe and minimalistic core of four graph
construction primitives, as captured by the following data type:

data Graph a = Empty
| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

Here Empty and Vertex construct the empty and single-vertex
graphs, respectively; Overlay composes two graphs by taking
the union of their vertices and edges, and Connect is similar to
Overlay but also creates edges between vertices of the two graphs,
see Fig. 1 for examples. The overlay and connect operations have
two important properties: (i) they are closed on the set of graphs,
i.e. are total functions, and (ii) they can be used to construct any
graph starting from the empty and single-vertex graphs. For exam-
ple, Connect (Vertex 1) (Vertex 2) is the graph with two ver-
tices {1, 2} and a single edge (1, 2). Malformed graphs, such as
G [1] [(1,2)], cannot be expressed in this core language.

The main goal of this paper is to demonstrate that this core is
a safe, flexible and elegant foundation for working with graphs that
have no edge labels. Our specific contributions are:
• Compared to existing libraries, algebraic graphs have a smaller
core (just four graph construction primitives), are more com-
positional (hence greater code reuse), and have no partial
functions (hence fewer opportunities for usage errors). We
present the core and justify these claims in §2.
• The core has a simple mathematical structure fully charac-
terised by a set of axioms (§3). This makes the proposed
interface easier for testing and formal verification. We show
that the core is complete, i.e. any graph can be constructed,
and sound, i.e. malformed graphs cannot be constructed.
• Under the basic set of axioms, algebraic graphs correspond to
directed graphs. As we show in §4, by extending the algebra
with additional axioms, we can represent undirected, reflex-
ive, transitive graphs, their combinations, and hypergraphs.
Importantly, the core remains unchanged, which allows us
to define highly reusable polymorphic functions on graphs.
• We develop a library2 for constructing and transforming
algebraic graphs and demonstrate its flexibility in §5.

2The library is on Hackage: http://hackage.haskell.org/package/algebraic-graphs.
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Figure 1. Examples of graph construction. The overlay and connect operations are denoted by + and→, respectively.

Graphs and functional programming have a long history. We
review related work in §6. Limitations of the presented approach
and future research directions are discussed in §7.

2 The Core
In this section we define the core of algebraic graphs comprising
four graph construction primitives. We describe the semantics of
the primitives using the common representation of graphs by sets of
vertices and edges, and then abstract away from this representation
by focusing on the laws that these primitives satisfy.

LetG be the set of all directed graphs whose vertices come from
a fixed universe V. As an example, we can think of graphs whose
vertices are positive integers. A graph д ∈ G can be represented by
a pair (V ,E) whereV ⊆ V is the set of its vertices and E ⊆ V ×V is
the set of its edges. As mentioned in §1, when E * V ×V the pair
(V ,E) is inconsistent and does not correspond to a graph.

When one needs to guarantee the internal consistency of a data
structure, the standard solution is to define an abstract interface
that encapsulates the data structure and provides a set of safe
construction primitives. This is exactly the approach we take.

2.1 Constructing Graphs
The simplest possible graph is the empty graph. We denote it by ε ,
therefore ε = (∅,∅) and ε ∈ G. A graph with a single vertex v ∈ V
is denoted simply by v . For example, 1 ∈ G is the graph (1,∅).

To construct larger graphs from the above primitives we de-
fine binary operations overlay and connect, denoted by + and→,
respectively. The overlay operation + is defined as

(V1,E1) + (V2,E2)
def
= (V1 ∪V2,E1 ∪ E2).

That is, the overlay of two graphs comprises the union of their
vertices and edges. The connect→ operation is defined similarly:

(V1,E1) → (V2,E2)
def
= (V1 ∪V2,E1 ∪ E2 ∪V1 ×V2).

The difference is that when we connect two graphs, an edge is
added from each vertex of the left-hand argument to each vertex of
the right-hand argument3. Note that the connect operation is the
only source of edges when constructing graphs. As we will see in §3,
overlay and connect are very similar to addition and multiplication.
We therefore give connect a higher precedence, i.e. 1 + 2 → 3 is
interpreted as 1+ (2→ 3). Fig. 1 illustrates a few examples of graph
construction using the defined primitives:
• 1 + 2 is the graph with two isolated vertices 1 and 2.
• 1→ 2 is the graph with an edge between vertices 1 and 2.
• 1→ (2+3) comprises vertices {1, 2, 3} and edges {(1, 2), (1, 3)}.
• 1→ 1 is the graph with vertex 1 and the self-loop.
• 1→ 2 + 2→ 3 is the path graph on vertices {1, 2, 3}.

3Our definitions of overlay and connect coincide with those of graph union and join,
respectively, e.g see Harary [1969], however the arguments of union and join are
typically assumed to have disjoint sets of vertices. We make no such assumptions,
hence our definitions are total: any graphs can be composed using overlay and connect.

As shown in §1, the core can be represented by a simple data
type Graph, parameterised by the type of vertices a. To make the
core more reusable, the next subsection defines the core type class
that has the usual inhabitants, such as the pair (V ,E), data types
from containers and fgl, as well as other, stranger forms of life.

2.2 Type Class
We abstract the graph construction primitives defined in §2.1 as
the type class Graph4:
class Graph g where

type Vertex g
empty :: g
vertex :: Vertex g -> g
overlay :: g -> g -> g
connect :: g -> g -> g

Here the associated type5 Vertex g corresponds to the universe of
graph vertices V, empty is the empty graph ε , vertex constructs
a graph with a single vertex, and overlay and connect compose
given graphs according to the definitions in §2.1. All methods of the
type class are total, i.e. are defined for all possible inputs, therefore,
the presented API allows fewer opportunities for usage errors and
greater opportunities for reuse.

Let us put the interface to the test and construct some graphs. A
single edge is obtained by connecting two vertices:
edge :: Graph g => Vertex g -> Vertex g -> g
edge x y = connect (vertex x) (vertex y)

The graphs in Fig. 1(b,d) are edge 1 2 and edge 1 1, respectively.
A graph that contains a given list of isolated vertices can be con-
structed as follows:
vertices :: Graph g => [Vertex g] -> g
vertices = foldr overlay empty . map vertex

That is, we turn each vertex into a singleton graph and overlay
the results. The graph in Fig. 1(a) is vertices [1,2]. By replacing
overlaywith connect in the above definition, we obtain a directed
clique – a fully connected graph on a given list of vertices:
clique :: Graph g => [Vertex g] -> g
clique = foldr connect empty . map vertex

For example, clique [1,2,3] expands to 1→ 2→ 3→ ε , i.e. the
graph with three vertices {1, 2, 3} and three edges (1, 2), (1, 3) and
(2, 3). Note that it is different from the graph in Fig. 1(e).

The graph construction functions defined above are total, fully
polymorphic, and elegant. Thanks to the minimalistic core type
class, it is easy to wrap your favourite graph library into the de-
scribed interface, and reuse the above functions, as well as many
others that we define throughout this paper.

4The name collision (data Graph and class Graph) is not a problem in practice,
because the data type and type class are not used together and live in separate modules.
5Associated types [Chakravarty et al. 2005] require the TypeFamilies GHC extension.
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Figure 2. Two axioms of the algebra of graphs.

3 Algebraic Structure
The functions edge, vertices and clique defined in the previous
section §2 satisfy a few properties that we can intuitively write
down and verify at the level of sets of vertices and edges:
• vertex x = vertices [x] and edge x y = clique [x,y].
• vertices xs ⊆ clique xs, where x ⊆ y means x is a
subgraph of y, i.e. Vx ⊆ Vy and Ex ⊆ Ey hold.
• clique (xs ++ ys) = connect (clique xs) (clique ys).

In this section we characterise the Graph type class with a set of
axioms that reveal an algebraic structure very similar to a semiring6.
This provides a convenient framework for proving graph properties,
such as those listed above, using equational reasoning. The pre-
sented characterisation is generally useful for formal verification,
as well as automated testing of graph library APIs.

3.1 Axiomatic Characterisation
The definitions of vertices and clique in §2.2 use ε as the identity
for both overlay + and connect→ operations. This seems unusual,
but we can check that x +ε = x and x → ε = x for any graph x ∈ G
by plugging the empty graph into the definitions of overlay and
connect, respectively. Furthermore, we can verify the following:
• (G,+, ε ) is an idempotent commutative monoid.
• (G,→, ε ) is a monoid.
• → distributes over +, as illustrated in Fig. 2(a).

The above looks remarkably close to a semiring, with the only
oddity being the shared identity of the two operations. The lack of
the annihilating zero element (i.e. x → 0 = 0) and the following
decomposition law is what makes the algebra of graphs different:

x → y → z = x → y + x → z + y → z.

Fig. 2(b) illustrates the law by showing that the triangle graph
can be obtained in two different ways: by connecting the three
vertices of the triangle and by constructing its edges separately and
overlaying them.

Interestingly, the fact that overlay and connect share the same
identity follows from the decomposition law. Indeed, let ε+ and ε→
stand for the identities of + and→, respectively. Then:

ε+ = ε+ → ε→ → ε→ (identity of→)
= ε+ → ε→ + ε+ → ε→ + ε→ → ε→ (decomposition)
= ε+ + ε+ + ε→ (identity of→)
= ε→ (identity of +)

Furthermore, the identity (x + ε = x ) and idempotence (x + x = x )
can be proved from the decomposition law, which leads to the
following minimal set of axioms that characterise algebraic graphs.

6 See Golan [1999] for a classic overview of semiring applications, where the author
hints at the existence of a non-semiring ‘algebra of digraphs’ whose operations coincide
with overlay and connect, referring to an unpublished paper by Anthony P. Stone.
Dolan [2013] uses the semiring theory to implement graph algorithms in Haskell.

Algebraic graphs are characterised by the following 8 axioms:
• + is commutative and associative, i.e. x + y = y + x and
x + (y + z) = (x + y) + z.
• (G,→, ε ) is a monoid, i.e. ε → x = x , x → ε = x and
x → (y → z) = (x → y) → z.
• → distributes over +: x → (y + z) = x → y + x → z and
(x + y) → z = x → z + y → z.
• Decomposition: x → y → z = x → y + x → z + y → z.

Our definition of graph construction primitives in §2.1 satisfies
these axioms and is therefore a valid Graph instance. We provide
an implementation for this and other useful instances in §4. Some
of them will satisfy additional axioms; for example, by making the
connect operation commutative, we obtain undirected graphs.

Algebraic graphs are complete in the sense that it is possible to
describe any graph using the core interface. Indeed, given a graph
(V ,E) we can construct it as graphV E, where the function graph
is defined as follows.
graph :: Graph g => [Vertex g] -> [(Vertex g, Vertex g)] -> g
graph vs es = overlay (vertices vs) (edges es)

Here edges is a generalisation of the function edge to a list of
edges, so that edge x y = edges [(x,y)]:
edges :: Graph g => [(Vertex g, Vertex g)] -> g
edges = foldr overlay empty . map (uncurry edge)

The absorption theorem x → y + x + y = x → y, which follows
from decomposition of x → y → ε , states that an edge (u,v ) con-
tains its two vertices {u,v} and is inseparable from them. Therefore,
if the pair (V ,E) is inconsistent, the set of vertices of graphV E
will be expanded to V̂ so that E ⊆ V̂ × V̂ holds. More generally, the
absorption theorem states that in addition to being complete, the
algebraic graph API is also sound in the sense that it is impossible to
construct an inconsistent pair (V ,E) using the four Graphmethods.

The following theorems can be proved from the axioms:
• Identity of +: x + ε = x .
• Idempotence of +: x + x = x .
• Absorption: x → y + x + y = x → y.
• Saturation: x → x → x = x → x .

These theorems were verified in Agda by Alekseyev [2014] who
studied the more general algebra of parameterised graphs.

3.2 Partial Order on Graphs
It is fairly standard to define x ≼ y as x + y = y for an idempotent
operation +, since it gives a partial order on the elements of the
algebra. Indeed, all partial order laws are satisfied:
• Reflexivity x ≼ x follows from the idempotence x + x = x .
• Antisymmetry x ≼ y ∧y ≼ x ⇒ x = y holds since x +y = y
and y + x = x imply x = y.
• Transitivity x ≼ y ∧ y ≼ z ⇒ x ≼ z can be proved as
z = y + z = (x + y) + z = x + (y + z) = x + z.
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vertices (h:t) = foldr overlay empty (map vertex (h:t)) (definition of vertices)
= foldr overlay empty (vertex h : map vertex t) (definition of map)
= overlay (vertex h) (vertices t) (definition of foldr)
⊆ overlay (vertex h) (clique t) (monotony and the inductive hypothesis)
⊆ connect (vertex h) (clique t) (overlay-connect order)
= foldr connect empty (vertex h : map vertex t) (definition of foldr)
= foldr connect empty (map vertex (h:t)) (definition of map)
= clique (h:t) (definition of clique)

Figure 3. Equational reasoning with algebraic graphs.

It turns out that this definition corresponds to the subgraph relation,
i.e. we can define:

x ⊆ y
def
= x + y = y.

Indeed, expanding x +y = y to (Vx ,Ex ) + (Vy ,Ey ) = (Vy ,Ey ) gives
usVx ∪Vy = Vy and Ex ∪ Ey = Ey , which is equivalent toVx ⊆ Vy
and Ex ⊆ Ey , as desired.

Therefore, we can check if a graph is a subgraph of another one
if we know how to compare graphs for equality:
isSubgraphOf :: (Graph g, Eq g) => g -> g -> Bool
isSubgraphOf x y = overlay x y == y

The following theorems about the partial order on graphs can
be proved:
• Least element: ε ⊆ x .
• Overlay order: x ⊆ x + y.
• Overlay-connect order: x + y ⊆ x → y.
• Monotony: x ⊆ y ⇒
(x + z ⊆ y + z) ∧ (x → z ⊆ y → z) ∧ (z → x ⊆ z → y).

3.3 Equational Reasoning
In this subsection we show how to use equational reasoning and
the laws of the algebra to prove properties of functions on graphs.
For example, to prove that vertex x = vertices [x] we rewrite
the right-hand side using the function definitions and x + ε = x :

vertices [x] = foldr overlay empty (map vertex [x])
= foldr overlay empty [vertex x]
= overlay (vertex x) empty
= vertex x

Proving that vertices xs ⊆ clique xs requires more work.
We start with the casewhen xs is the empty list [], which is straight-
forward: vertices [] = ε ⊆ ε = clique [], as follows from the
definition of foldr. If xs is non-empty, i.e. xs = h:t, we make the
inductive hypothesis that vertices t ⊆ clique t and proceed
as shown in Fig. 3.

We formally proved all properties and theorems discussed in
this paper in Agda7.

4 Graphs à la Carte
In this section we define several useful Graph instances, and show
that the algebra presented in the previous section §3 is not restricted
to directed graphs, but can be extended to axiomatically represent
undirected (§4.3), reflexive (§4.4) and transitive (§4.5) graphs, their
various combinations (§4.6), and even hypergraphs (§4.7).

7The proofs are available at https://github.com/snowleopard/alga-theory.

4.1 Binary Relation
We start by a direct encoding of the graph construction primitives
defined in §2.1 into the abstract data type Relation isomorphic to a
pair of sets (V ,E), see Fig. 4. As we have seen, this implementation
satisfies the axioms of the graph algebra. Furthermore, it is a free
graph in the sense that it does not satisfy any other laws. This
follows from the fact that any algebraic graph expression д can be
rewritten in the following canonical form:

д =
( ∑
v ∈Vд

v
)
+

( ∑
(u,v )∈Eд

u → v
)
,

where Vд is the set of vertices that appear in д, and (u,v ) ∈ Eд
if vertices u and v appear in the left-hand and right-hand argu-
ments of the connect operation→ at least once (and should thus
be connected by an edge). The canonical form of an expression д
can be represented as R Vд Eд , and any additional law on Relation
would therefore violate the canonicity property. The existence of
the canonical form was proved by Mokhov and Khomenko [2014]
for an extended version of the algebra. The proof fundamentally
builds on the decomposition axiom: one can apply it repeatedly
to an expression, breaking up connect sequences x → y → z into
pairs x → y until the decomposition can no longer be applied. We
can then open parentheses, such as x → (y + z), using the distribu-
tivity axiom and rearrange terms into the canonical form by the
commutativity and idempotence of overlay +.

It is convenient to make Relation an instance of the Num type
class to use the standard + and ∗ operators as shortcuts for overlay
and connect, respectively:
instance (Ord a, Num a) => Num (Relation a) where

fromInteger = vertex . fromInteger
(+) = overlay
(*) = connect
signum = const empty
abs = id
negate = id

Note that the Num law abs x * signum x == x is satisfied by the
above definition since x → ε = x . Any Graph instance can be made
a Num instance if need be, using a definition similar to the above.

We can now experiment with graphs and binary relations using
the interactive GHC:

λ> 1 * (2 + 3) :: Relation Int
R {domain = fromList [1,2,3], relation = fromList [(1,2),(1,3)]}
λ> 1 * (2 + 3) + 2 * 3 == (clique [1..3] :: Relation Int)
True
λ> 1 * 2 == (2 * 1 :: Relation Int)
False

https://github.com/snowleopard/alga-theory
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import Data.Set (Set, singleton, union, elems, fromAscList)
import qualified Data.Set as Set (empty)

data Relation a = R { domain :: Set a, relation :: Set (a, a) } deriving Eq

instance Ord a => Graph (Relation a) where
type Vertex (Relation a) = a
empty = R Set.empty Set.empty
vertex x = R (singleton x) Set.empty
overlay x y = R (domain x `union` domain y) (relation x `union` relation y)
connect x y = R (domain x `union` domain y) (relation x `union` relation y `union`

fromAscList [ (a, b) | a <- elems (domain x), b <- elems (domain y) ])

Figure 4. Implementing the Graph type class by a binary relation and the core graph construction primitives defined in §2.1.

λ> :t clique "abc"
clique "abc" :: (Graph g, Vertex g ∼ Char) => g
λ> relation (clique "abc")
fromList [(’a’,’b’),(’a’,’c’),(’b’,’c’)]

The last example highlights the fact that the Relation a instance
allows vertices of any type a that satisfies the Ord a constraint.

4.2 Deep Embedding
We can embed the core graph construction primitives into a simple
data type (excuse and ignore the name clash with the type class):
data Graph a = Empty

| Vertex a
| Overlay (Graph a) (Graph a)
| Connect (Graph a) (Graph a)

The instance definition is a direct mapping from the shallow
embedding of the core primitives, represented by the type class,
into the corresponding deep embedding, represented by the data
type. It is known, e.g. see Gibbons and Wu [2014], that by folding
the data type one can always obtain the inverse mapping:
fold :: Graph g => Graph (Vertex g) -> g
fold Empty = empty
fold (Vertex x ) = vertex x
fold (Overlay x y) = overlay (fold x) (fold y)
fold (Connect x y) = connect (fold x) (fold y)

We cannot use the derived Eq instance of the Graph data type,
because it would clearly violate the axioms of the algebra, e.g.
Overlay Empty Empty is structurally different from Empty, but they
must be equal according to the axioms. One way to implement a
custom law-abiding Eq instance is to reinterpret the graph expres-
sion as a binary relation, thereby gaining access to the canonical
graph representation:
instance Ord a => Eq (Graph a) where

x == y = fold x == (fold y :: Relation a)

An interesting feature of this graph instance is that it allows us
to represent densely connected graphs more compactly. For exam-
ple, clique [1..n] :: Graph Int has a linear-size representa-
tion in memory, while clique [1..n] :: Relation Int stores
each edge separately and therefore requiresO (n2) memory. Exploit-
ing the compact graph representation for deriving algorithms that
are asymptotically faster on dense graphs, compared to conven-
tional algorithms operating on ‘uncompressed’ graph representa-
tions isomorphic to (V ,E), is outside the scope of this paper, but is
an interesting direction of future research.

4.3 Undirected Graphs
As hinted at in §3.1, to switch from directed to undirected graphs
it is sufficient to add the axiom of commutativity for the connect
operation. For undirected graphs we can denote connect by↔:
• ↔ is commutative: x ↔ y = y ↔ x .

Curiously, with the introduction of this axiom, the associativity
of↔ follows from the left-associated version of the decomposition
axiom and the commutativity of +:

(x ↔ y) ↔ z = x ↔ y + x ↔ z + y ↔ z (decomposition)
= y ↔ z + y ↔ x + z ↔ x (commutativity)
= (y ↔ z) ↔ x (decomposition)
= x ↔ (y ↔ z) (commutativity)

Therefore, the minimal algebraic characterisation of undirected
graphs comprises only 6 axioms:
• + is commutative and associative, i.e. x + y = y + x and
x + (y + z) = (x + y) + z.
• ↔ is commutative x ↔ y = y ↔ x and has ε is the identity:
x ↔ ε = x .
• Left distributivity: x ↔ (y + z) = x ↔ y + x ↔ z.
• Left decomposition: (x ↔ y) ↔ z = x ↔ y +x ↔ z +y ↔ z.

Commutativity of the connect operator forces graph expressions
that differ only in the direction of edges into the same equiva-
lence class. One can implement this by the symmetric closure of the
underlying binary relation:
newtype Symmetric a = S (Relation a) deriving (Graph, Num)

instance Ord a => Eq (Symmetric a) where
S x == S y = symmetricClosure x == symmetricClosure y

Note that algebraic expressions of undirected graphs have the
canonical form where all edges are directed in a canonical order,
e.g. according to some total order on vertices.

Let’s test that the custom equality works as desired:

λ> clique "abcd" == (clique "dcba" :: Relation Char)
False

λ> clique "abcd" == (clique "dcba" :: Symmetric Char)
True

As you can see, polymorphic graph construction functions, such
as clique, can be reused when working with undirected graphs.
We can define a subclass class Graph g => UndirectedGraph g
and use the UndirectedGraph g constraint for functions that rely
on the commutativity of the connect method.
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Figure 5. 3-decomposition: 1→ 2→ 3→ 4 = 1→ 2→ 3 + 1→ 2→ 4 + 1→ 3→ 4 + 2→ 3→ 4.

4.4 Reflexive Graphs
A graph is reflexive if every vertex of the graph is connected to itself,
i.e. has a self-loop. An example of a reflexive graph is the graph
corresponding to the partial order relation ⊆ on graphs: indeed,
x ⊆ x holds for all x . To represent reflexive graphs algebraically
we can introduce the following axiom:
• Self-loop: v = v → v , where v ∈ V is a vertex.

The self-loop axiom corresponds to the additional Graph law:
• vertex x = connect (vertex x) (vertex x).

One can implement the reflexive Graph instance analogously to
the implementation of the Symmetric data type presented in §4.3,
by wrapping the Relation into a newtype and giving it a custom
Eq instance based on the reflexiveClosure.

We can define class Graph g => ReflexiveGraph g to increase
the type safety of functions that rely on the self-loop axiom.

4.5 Transitive Graphs
In many applications graphs satisfy the transitivity property: if a
vertex x is connected to y, and y is connected to z, then the edge
between x and z can be added or removed without changing the
semantics of the graph. A common example is dependency graphs
or partial orders — the semantics of such graphs is typically their
transitive closure. To describe this class of graphs algebraically we
add the following closure axiom:
• Closure: y , ε ⇒ x → y +y → z + x → z = x → y +y → z.

By using the axiom one can rewrite a graph expression into
its transitive closure or, alternatively, into its transitive reduction,
hence all graphs that differ only in the existence of some transitive
edges are forced into the same equivalence class. Note that the
precondition y , ε is necessary as otherwise + and → can no
longer be distinguished, which is clearly undesirable:

x→z = x→ε→ z = x→ε + ε→z + x→z = x→ε + ε→z = x + z.

It is interesting to note that + and→ have simple meanings for
transitive graphs: they correspond to the parallel and sequential
composition, respectively. This allows us to algebraically describe
concurrent systems, which was the original motivation behind the
research on algebraic graphs [Mokhov and Khomenko 2014].

We can implement transitive graphs by wrapping Relation
in a newtype Transitive with a custom equality test that com-
pares the transitive closures of the underlying relations. A subclass
class Graph g => TransitiveGraph g can be defined to distin-
guish algebraic graphs with the closure axiom from others.

4.6 Preorders and Equivalence Relations
By combining reflexive and transitive graphs, one can obtain pre-
orders. For example, (1 + 2 + 3) → (2 + 3 + 4) is a preorder with

vertices 2 and 3 forming a strongly-connected component. By finding
all strongly-connected components in the graph (e.g. by utilising
the function scc from the containers library) we can derive the
following graph condensation: {1} → {2, 3} → {4}. One way to
interpret this preorder as a dependency graph is that tasks 2 and 3
are executed as a step, simultaneously, and that they both depend
on task 1, and are prerequisite for task 4. Note that having sets as
the type of graph vertices is perfectly legal: the type of the above
graph condensation is (Graph g, Vertex g ∼ Set Int) => g.

One can further combine preorders and undirected graphs, ob-
taining equivalence relations, which can be equipped with an effi-
cient instance based on the disjoint set data structure [Tarjan and
Van Leeuwen 1984]. One interesting application of the resulting
algebra is modelling connectivity in circuits [Mokhov 2015].

4.7 Hypergraphs
As described in §4.1, the decomposition axiom collapses an alge-
braic graph expression into a collection of vertices and pairs of
vertices (i.e. graphs). By replacing the decomposition axiom with
3-decomposition, we obtain hypergraphs comprising vertices, edges
and 3-edges (triples of vertices):
• 3-decomposition:w → x → y → z =
w → x → y +w → x → z +w → y → z + x → y → z.

Fig. 5 illustrates the axiom by decomposing a tetrahedron into
four 3-edges corresponding to its faces. To better understand the
difference between the (2-)decomposition and 3-decomposition
axioms, let us substitute ε forw in the 3-decomposition and simplify:

x → y → z = x → y + x → z + y → z + x → y → z.

This is almost the 2-decomposition axiom, yet there is no way to get
rid of the term x → y → z on the right-hand side: indeed, a triple
is unbreakable in this algebra, and one can only extract the pairs
(edges) that are embedded in it. In fact, we can take this further and
rewrite the above expression to also expose the embedded vertices:

x → y → z = x + y + z + x → y + x → z + y → z + x → y → z.

Note that with 2-decomposition we can achieve something similar
via the absorption theorem:

x → y = x + y + x → y.

This can be taken further by defining 4-decomposition and so forth,
creating a hierarchy of algebraic structures corresponding to hy-
pergraphs of different ranks.

Since every graph is also a hypergraph, we can define a super-
class class HyperGraph g => Graph g, moving all Graph meth-
ods to the superclass, and leaving only the decomposition axiom in
Graph, as the law that distinguishes it from HyperGraph.
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vertices :: Graph g => [Vertex g] -> g
clique :: Graph g => [Vertex g] -> g
edge :: Graph g => Vertex g -> Vertex g -> g
edges :: Graph g => [(Vertex g, Vertex g)] -> g
graph :: Graph g => [Vertex g] -> [(Vertex g, Vertex g)] -> g
isSubgraphOf :: (Graph g, Eq g) => g -> g -> Bool

(a) Derived graph construction primitives and the subgraph relation

path :: Graph g => [Vertex g] -> g
circuit :: Graph g => [Vertex g] -> g
star :: Graph g => Vertex g -> [Vertex g] -> g
tree :: Graph g => Tree (Vertex g) -> g
forest :: Graph g => Forest (Vertex g) -> g
fold :: Graph g => Graph (Vertex g) -> g

(b) Standard families of graphs and graph folding

transpose :: Transpose g -> g
toList :: ToList a -> [a]
gmap :: Graph g => (a -> Vertex g) -> GraphFunctor a -> g
mergeVertices :: Graph g => (Vertex g -> Bool) -> Vertex g -> GraphFunctor (Vertex g) -> g
bind :: Graph g => GraphMonad a -> (a -> g) -> g
induce :: Graph g => (Vertex g -> Bool) -> GraphMonad (Vertex g) -> g
removeVertex :: (Graph g, Eq (Vertex g)) => Vertex g -> GraphMonad (Vertex g) -> g
splitVertex :: (Graph g, Eq (Vertex g)) => Vertex g -> [Vertex g] -> GraphMonad (Vertex g) -> g
removeEdge :: (Graph g, Eq (Vertex g)) => Vertex g -> Vertex g -> RemoveEdge (Vertex g) -> g
box :: (Graph g, Vertex g ∼ (a, b)) => GraphFunctor a -> GraphFunctor b -> g
deBruijn :: (Graph g, Vertex g ∼ [a]) => Int -> [a] -> g

(c) Polymorphic graph manipulation

Figure 6. API of the graph construction and transformation library.

5 Graph Transformation Library
As shown in the previous section §4, the world of Graph instances
has many inhabitants sharing a part of their ‘algebraic DNA’. They
all can benefit from a library of polymorphic graph construction
and transformation, which we develop in this section. The API of
the library is summarised in Fig. 6. The part shown in Fig. 6(a) has
been defined in §3.

5.1 Standard Families of Graphs
This subsection defines a few simple functions for constructing
graphs from standard graph families. See Fig. 6(b) for the list of all
functions we define.

A path on a list of vertices can be constructed from the edges
formed by the path neighbours:
path :: Graph g => [Vertex g] -> g
path [] = empty
path [x] = vertex x
path xs = edges $ zip xs (tail xs)

Note that the case with a single vertex on the path requires a special
treatment.

If we connect the last vertex of a path to the first one, we get
a circuit graph, or a cycle. Let us express this in terms of the path
function:
circuit :: Graph g => [Vertex g] -> g
circuit [] = empty
circuit xs = path (xs ++ [head xs])

A star graph can be obtained by connecting a centre vertex to a
given list of leaves:
star :: Graph g => Vertex g -> [Vertex g] -> g
star x ys = connect (vertex x) (vertices ys)

Finally, trees and forests can be constructed by the following pair
of mutually recursive functions:
tree :: Graph g => Tree (Vertex g) -> g
tree (Node r f) = star r (map rootLabel f) `overlay` forest f

forest :: Graph g => Forest (Vertex g) -> g
forest = foldr overlay empty . map tree

That is, a tree is represented by the root star overlaid with the forest
of subtrees of the root’s descendants. We remind the reader the
definitions of the data types Tree and Forest from the containers
library for completeness:

data Tree a = Node { rootLabel :: a
, subForest :: Forest a }

type Forest a = [Tree a]

Below we experiment with these functions and their properties,
and define graphs pentagon and p4 that will be used in subsec-
tion §5.3 and in particular will feature in Fig. 7. The helper function
edgeList is defined as edgeList = Set.toList . relation.

λ> pentagon = circuit [1..5]
λ> p4 = path "abcd"

λ> :t pentagon
pentagon :: (Graph g, Num (Vertex g), Enum (Vertex g)) => g

λ> isSubgraphOf (path [1..5]) (pentagon :: Relation Int)
True

λ> edgeList p4
[(’a’,’b’),(’b’,’c’),(’c’,’d’)]

λ> t = Node 1 [Node 2 [], Node 3 [Node 4 [], Node 5 []]]
λ> edgeList (tree t)
[(1,2),(1,3),(3,4),(3,5)]

λ> p4 == (clique "abcd" :: Transitive Char)
True

The last property deserves a remark: the transitive closure of a
path graph is the directed clique on the same set of vertices, there-
fore they are considered equal by the Transitive graph instance.
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5.2 Graph Transpose
In the rest of this section we present a toolbox for transforming
polymorphic graph expressions. The functions in the presented
toolbox are listed in Fig. 6(c).

One of the simplest transformations one can apply to a graph is
to flip the direction of all of its edges. Transpose is usually straight-
forward to implement but whichever data structure you use to
represent graphs, you will spend at leastO (1) time to modify it (say,
by flipping the treatAsTransposed flag); much more often you
will have to traverse the data structure and flip every edge, resulting
in O ( |V | + |E |) time complexity. However, by working with poly-
morphic graphs, i.e. graphs of type forall g. Graph g => g, and
using Haskell’s zero-cost newtype wrappers, we can implement
transpose that takes zero time.

Consider the following Graph instance:
newtype Transpose g = T { transpose :: g } deriving Eq

instance Graph g => Graph (Transpose g) where
type Vertex (Transpose g) = Vertex g
empty = T empty
vertex = T . vertex
overlay x y = T $ overlay (transpose x) (transpose y)
connect x y = T $ connect (transpose y) (transpose x)

That is, we wrap a graph in a newtype flipping the order of connect
arguments. Let us check if this works:

λ> edgeList $ 1 * (2 + 3) * 4
[(1,2),(1,3),(1,4),(2,4),(3,4)]

λ> edgeList $ transpose $ 1 * (2 + 3) * 4
[(2,1),(3,1),(4,1),(4,2),(4,3)]

The transpose has zero runtime cost, because all we do is wrap-
ping and unwrapping the newtype, which is guaranteed to be free
or, to be more precise, is handled by GHC at compile time.

To make sure transpose is only applied to polymorphic graphs,
we do not export the constructor T, therefore the only way to call
transpose is to give it a polymorphic argument and let the type
inference interpret it as a value of type Transpose.

5.3 Graph Functor
We now implement a function gmap that given a function a -> b and
a polymorphic graph whose vertices are of type a will produce a
polymorphic graph with vertices of type b by applying the function
to each vertex. This is almost a Functor but it does not have the
usual type signature, because Graph is not a higher-kinded type8:

newtype GraphFunctor a =
F { gfor :: forall g. Graph g => (a -> Vertex g) -> g }

instance Graph (GraphFunctor a) where
type Vertex (GraphFunctor a) = a
empty = F $ \_ -> empty
vertex x = F $ \f -> vertex (f x)
overlay x y = F $ \f -> overlay (gmap f x) (gmap f y)
connect x y = F $ \f -> connect (gmap f x) (gmap f y)

gmap :: Graph g => (a -> Vertex g) -> GraphFunctor a -> g
gmap = flip gfor

8It is possible to define a higher-kinded version of Graph, but it has fewer instances.

Essentially, we are defining another newtype wrapper, which
pushes the given function all the way towards the vertices of a
given graph expression. This has no runtime cost, just as before,
although the actual evaluation of the given function at each vertex
will not be free, of course. Here is gmap in action:

λ> edgeList $ 1 * 2 * 3 + 4 * 5
[(1,2),(1,3),(2,3),(4,5)]

λ> edgeList $ gmap (+1) $ 1 * 2 * 3 + 4 * 5
[(2,3),(2,4),(3,4),(5,6)]

As you can see, we can increment the value of each vertex by map-
ping the function (+1) over the graph. The resulting expression is a
polymorphic graph, as desired. Note that gmap satisfies the functor
laws gmap id = id and gmap f . gmap g = gmap (f . g), be-
cause it does not change the structure of the given expression and
only pushes the given function down to its leaves – the vertices.

An alert reader might wonder: what happens if the function
maps two different vertices into the same one? They will be merged.
Merging graph vertices is a useful graph transformation, so let us
define it in terms of gmap:

mergeVertices :: Graph g => (Vertex g -> Bool)
-> Vertex g -> GraphFunctor (Vertex g) -> g

mergeVertices p v = gmap $ \u -> if p u then v else u

λ> edgeList $ mergeVertices odd 3 $ 1 * 2 * 3 + 4 * 5
[(2,3),(3,2),(3,3),(4,3)]

The function takes a predicate on graph vertices and a target vertex
andmaps all vertices satisfying the predicate into the target, thereby
merging them. In our example the odd vertices {1, 3, 5} are merged
into 3, in particular creating the self-loop 3 → 3. Note: it takes
linear time O ( |д |) for mergeVertices to traverse the graph and
apply the predicate to each vertex (where |д | is the size of the graph
expression д), which may be much more efficient than merging
vertices in a concrete data structure. For example, if the graph is
represented by an adjacency matrix, it will likely be necessary to
rebuild the resulting matrix from scratch, which takesO ( |V |2) time.
Since for many graphs we have |д | = O ( |V |), our mergeVertices
may be quadratically faster than the matrix-based one.

As another application of gmap, we implement the Cartesian
graph product operation box, orG � H , where the resulting vertex
set is VG × VH and vertex (x ,y) is connected to vertex (x ′,y′) if
either x = x ′ and (y,y′) ∈ EH , or y = y′ and (x ,x ′) ∈ EG . An
example of the Cartesian product of graphs pentagon and p4 is
shown in Fig. 7.

box :: (Graph g, Vertex g ∼ (a, b))
=> GraphFunctor a -> GraphFunctor b -> g

box x y = foldr overlay empty $ xs ++ ys
where

xs = map (\b -> gmap (,b) x) . toList $ gmap id y
ys = map (\a -> gmap (a,) y) . toList $ gmap id x

The Cartesian product G � H is assembled by creating |VH |
copies of graph G and overlaying them with |VG | copies of graph
H . We get access to the list of graph vertices using toList and
turn vertices of original graphs into pairs of vertices by gmap. Note
that we need to reinterpret the input of type GraphFunctor as a
polymorphic graph by gmap id before passing it to the toList
function, which expects inputs of type ToList. As you can see,
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Figure 7. The Cartesian graph product of pentagon and p4.

we managed to implement quite a sophisticated graph transfor-
mation function box fully polymorphically. One can go further
up in layers of abstraction and use box to construct mesh and
torus graphs as mesh xs ys = box (path xs) (path ys) and
torus xs ys = box (circuit xs) (circuit ys), respectively.

The toList function is implemented as follows:
newtype ToList a = L { toList :: [a] }

instance Graph (ToList a) where
type Vertex (ToList a) = a
empty = L $ []
vertex x = L $ [x]
overlay x y = L $ toList x ++ toList y
connect x y = L $ toList x ++ toList y

Note that we do not provide the Eq instance for ToList, because it is
impossible to make it law-abiding without requiring Eq for vertices,
and we would like to avoid this in order to keep the box type
signature fully parametric. As a consequence, toList (1 + 1)
produces the list [1,1].

5.4 Graph Monad
What do the operations of removing a vertex and splitting a vertex
have in common? They both can be implemented by replacing each
vertex of a graph with a (possibly empty) subgraph and flattening
the result. You may recognise this as the bind operation of a monad.
We implement bind by wrapping it into yet another newtype:
newtype GraphMonad a =

M { bind :: forall g. Graph g => (a -> g) -> g }

instance Graph (GraphMonad a) where
type Vertex (GraphMonad a) = a
empty = M $ \_ -> empty
vertex x = M $ \f -> f x
overlay x y = M $ \f -> overlay (bind x f) (bind y f)
connect x y = M $ \f -> connect (bind x f) (bind y f)

The implementation is almost identical to gmap: instead of wrap-
ping the value f x into a vertex, we should just leave it as is. Let
us see how we can make use of this new type in our toolbox.

Firstly, we are going to implement a filter-like function induce
that, given a vertex predicate and a graph, will compute the induced
subgraph on the set of vertices that satisfy the predicate by turning
all other vertices into empty subgraphs and flattening the result.
induce :: Graph g

=> (Vertex g -> Bool) -> GraphMonad (Vertex g) -> g
induce p g = bind g $

\v -> if p v then vertex v else empty

λ> edgeList $ induce (<3) $ clique [0..10]
[(0,1),(0,2),(1,2)]

As you can see, by inducing a clique on a subset of the vertices
that we like (<3), we get a smaller clique, as expected. The cost of
induce for a given expression д is O ( |д |).

Now we can implement the removeVertex function:
removeVertex :: (Graph g, Eq (Vertex g))

=> Vertex g -> GraphMonad (Vertex g) -> g
removeVertex v = induce (/= v)

λ> edgeList $ removeVertex 2 $ 1 * 2 + 3 * 1
[(3,1)]

The polymorphic implementation of removeVertex presented
above takes O ( |д |) to remove a vertex from a graph expression д,
which is slower than some concrete graph data structures.

We can also use the bind function to split a vertex into a list of
given vertices:
splitVertex :: (Graph g, Eq (Vertex g)) => Vertex g

-> [Vertex g] -> GraphMonad (Vertex g) -> g
splitVertex v vs g = bind g $

\u -> if u == v then vertices vs else vertex u

λ> edgeList $ splitVertex 1 [0, 1] $ 1 * (2 + 3)
[(0,2),(0,3),(1,2),(1,3)]

Here vertex 1 is split into a pair of vertices {0, 1} that have the same
connectivity.

5.5 Beyond Homomorphisms
Most of the newtype wrappers defined in this section are homo-
morphisms, that is, they preserve the structure of the original graph
expression. The two exceptions are: Transpose, which is an anti-
homomorphism, and ToList which collapses the structure of the
original expression into a list.

Below we derive an implementation for removeEdge, which is
another example of a useful function that is not a homomorphism.
Removing an edge sounds easy, but the result is the most compli-
cated newtype in this paper.
Here is how it works. Removing an edge (u,v ) from the empty
graph or a vertex is easy: nothing needs to be done, because there
are no edges. To remove the edge from an overlay, we simply
recurse to both subexpressions, because the overlay does not create
any edges. The connect case x → y is handled by overlaying two
graphs: xu → yuv and xuv → yv , where:
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newtype RemoveEdge a = RE { re :: forall g. (Vertex g ∼ a, Graph g) => a -> a -> g }

instance Eq a => Graph (RemoveEdge a) where
type Vertex (RemoveEdge a) = a
empty = RE $ \_ _ -> empty
vertex x = RE $ \_ _ -> vertex x
overlay x y = RE $ \u v -> overlay (re x u v) (re y u v)
connect x y = RE $ \u v -> connect (removeVertex u $ re x u u) (re y u v) `overlay`

connect (re x u v) (removeVertex v $ re y v v)

removeEdge :: (Eq (Vertex g), Graph g) => Vertex g -> Vertex g -> RemoveEdge (Vertex g) -> g
removeEdge u v g = re g u v

Figure 8. Removing an edge from a polymorphic graph.

• xu = removeVertex u x and yuv = removeEdge u v y, thus
xu → yuv definitely does not contain the edge (u,v ) at the
cost of losing the vertex u in the left-hand side xu .
• yv = removeVertex v y and xuv = removeEdge u v x , thus
xuv → yv definitely does not contain the edge (u,v ) at the
cost of losing the vertex v in the right-hand side yv .

The overlay xu → yuv + xuv → yv contains the vertices u and v ,
because at least one copy of each vertex has been preserved, but
the edge (u,v ) is removed in both subexpressions as intended.

We demonstrate removeEdge on two simple examples:

λ> edgeList $ path "Hello"
[(’H’,’e’),(’e’,’l’),(’l’,’l’),(’l’,’o’)]

λ> edgeList $ removeEdge ’H’ ’e’ $ path "Hello"
[(’e’,’l’),(’l’,’l’),(’l’,’o’)]

λ> edgeList $ removeEdge ’l’ ’l’ $ path "Hello"
[(’H’,’e’),(’e’,’l’),(’l’,’o’)]

The removeEdge function is expensive: given an expression of size
|д | it may produce a transformed expression of the quadratic size
O ( |д |2). Many concrete Graph instances provide much faster equiv-
alents of removeEdge.

5.6 De Bruijn Graphs
To demonstrate that one can easily construct sophisticated graphs
using the presented library, let us try it on De Bruijn graphs, an
interesting combinatorial object that frequently shows up in com-
puter engineering and bioinformatics. The implementation is very
short, but requires some explanation:
deBruijn :: (Graph g, Vertex g ∼ [a]) => Int -> [a] -> g
deBruijn len alphabet = bind skeleton expand
where

overlaps = mapM (const alphabet) [2..len]
skeleton = edges [ (Left s, Right s) | s <- overlaps ]
expand v = vertices

[ either ([a]++) (++[a]) v | a <- alphabet ]

The function builds a De Bruijn graph of dimension len from
symbols of the given alphabet. The vertices of the graph are all
possible words of length len containing symbols of the alphabet,
and two words are connected x → y whenever x and y match
after we remove the first symbol of x and the last symbol of y
(equivalently, when x = az and y = zb for some symbols a and b).
The process of construction of a 3-dimensional De Bruijn graph on

the alphabet {0, 1} is illustrated in Fig. 9. Here are all the ingredients
of the solution:

• overlaps contains all possible words of length len-1 that
correspond to overlaps of connected vertices.
• skeleton contains one edge per overlap, with Left and
Right vertices acting as temporary placeholders.
• We replace a vertex Left s with a subgraph of two vertices
{0s, 1s}, i.e. the vertices whose suffix is s . Symmetrically,
Right s is replaced by vertices {s0, s1}. This is captured by
the function expand.
• The result is obtained by computing bind skeleton expand.

Below we construct the De Bruijn graph shown in Fig. 9.

λ> edgeList $ deBruijn 3 "01"
[("000","000"),("000","001"),("001","010"),("001","011")
,("010","100"),("010","101"),("011","110"),("011","111")
,("100","000"),("100","001"),("101","010"),("101","011")
,("110","100"),("110","101"),("111","110"),("111","111")]

λ> g = deBruijn 9 "abc"
λ> all (\(x,y) -> drop 1 x == dropEnd 1 y) $ edgeList g
True

λ> Set.size $ domain g
19683 -- i.e. 3^9

λ> Set.size $ relation g
59049 -- i.e. 3^10

Note that a De Bruijn graph of dimension len on the alphabet has
|alphabet|len vertices and |alphabet|len+1 edges.

5.7 Summary
We have presented a library of polymorphic graph construction and
transformation functions that provide a flexible and elegant way
to manipulate graph expressions polymorphically. Polymorphic
graphs are highly reusable and composable, and can be interpreted
using any of the Graph instances defined in §4, as well as other
instances provided by the algebraic-graphs library that is available
on Hackage. The library is written in the vanilla functional pro-
gramming style and has no dependencies apart from core GHC
libraries. Many of the presented graph transformation algorithms
are expressed using familiar functional programming abstractions,
such as functors and monads.
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Figure 9. Constructing De Bruijn graphs using the graph monad.

6 Related Work
Historically, first approaches to graph representation in functional
programming used edge lists, adjacency lists, as well as mutually
recursive data structures representing cyclic graphs by the so-called
‘tying the knot’ approach. The former were generally slower than
their imperative counterparts, while the latter were very difficult
to work with. An asymptotically optimal implementation of the
depth-first search algorithm developed by King and Launchbury
[1995] used arrays to represent graphs and state-transformer mon-
ads [Launchbury and Peyton Jones 1994] to mimic imperative array
updates in pure functional programming. The developed algorithms
are still in use today and are available from the containers library
shipped with GHC. The API of the library contains partial functions.

A fundamentally different approach by Erwig [2001] is based on
inductive graphs, whereby a graph can be decomposed into a context
(a node with its neighbourhood) and the rest of the graph. This
inductive definition makes it possible to share common subgraphs
and provides a way to implement graph algorithms in a more func-
tional style compared to the previous approaches based on array
representations. Inductive graphs are implemented in the fgl library
that contains implementations of many standard graph algorithms,
from depth-first search to maximum flow on weighted graphs. The
library defines type classes Graph and DynGraph for working with
static (unchangeable) and dynamic (changeable) graphs, comprising
10 class methods in total. Compared to algebraic graphs proposed
in this paper, fgl has a larger core of graph construction primitives
(10 vs 4), some of which are partial. An important advantage of fgl
is the support of edge-labelled graphs.

Several other authors investigated ways to define graphs com-
positionally, e.g. Gibbons [1995] proposed an algebraic framework
for modelling directed acyclic graphs comprising 6 core graph con-
struction primitives, but the approach was not general enough to
handle other practically useful classes of graphs.

Gibbon’s algebra is an example of a large body of research on
categorical graph algebras, e.g. see a survey by Selinger [2010].
These algebras are typically much more complex than the one
presented in this paper9, because they can represent graphs with
heterogeneous vertices and edges, where not all vertices and edges

9As an example, Signal Flow Graphs [Bonchi et al. 2015] have 17 primitives and a
few dozens of laws. Smaller characterisations of Signal Flow Graphs exist, however
minimising the number of graph construction primitives has not (so far) been a priority
for the authors (private communication with Pawel Sobocinski).

are compatible. Graphs in this paper are homogeneous, i.e. an edge is
allowed between any pair of vertices. This is a limitation for some
applications, but it allows us to have a much simpler theory and
implementation. Petri nets [Murata 1989] is an example of graphs
where not all edges are allowed10. Algebraic graphs proposed in
this paper cannot represent Petri nets in a safe way.

From a very different angle, simple algebraic structures, such as
semirings, have been successfully applied to solving various path
problems on graphs using functional programming, e.g. see Dolan
[2013]. These approaches typically use matrix-based data struc-
tures for manipulating connectivity and distance information with
the goal of solving optimisation problems on graphs, and are not
suitable as an abstract interface for graph representation.

Simple graph construction cores are known for special families
of graphs. For example, non-empty series-parallel graphs require
only three primitives: a single vertex, and series and parallel com-
position operations. A classical result [Valdes et al. 1979] states that
only N -free graphs can be constructed using these primitives. Simi-
larly, the family of cographs corresponds to P4-free graphs, which
also require only three graph construction primitives: a single ver-
tex, graph complement, and disjoint graph union [Corneil et al.
1981]. Interestingly, there is an alternative core for cographs: a
single vertex, disjoint graph union, and disjoint graph join. The
only difference from the core used in this paper is the disjointness
requirement. By dropping this requirement, we can construct ar-
bitrary graphs. In particular, both N = 1 → 2 + 3 → (2 + 4) and
P4 = 1→ 2 + 2→ 3 + 3→ 4 can be easily constructed.

This paper builds on the work by Mokhov and Khomenko [2014],
where the algebra of parameterised graphs, a mathematical structure
very similar to a semiring, was proposed as a complete and sound
formalism for graph representation in the context of digital circuit
design. In that paper the authors did not investigate applications of
the algebra in functional programming but proved many important
results that are essential for this work. Alekseyev [2014] derived a
formalisation of the algebra of parameterised graphs in Agda, using
an encoding similar to the core type class that we define.

7 Discussion and FutureResearchOpportunities
The paper presented a new algebraic foundation for working with
graphs. It is particularly well-suited for functional programming
10Petri nets have vertices of two types, called places and transitions, and edges are only
allowed between vertices of different types.
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languages and benefits from functional programming abstractions,
such as functors and monads. Compared to the state-of-the-art,
algebraic graphs are easier to use and reuse, more compositional,
and have a smaller core of only four graph construction primitives,
fully characterised by an elegant algebra of graphs.

We demonstrated the flexibility of algebraic graphs by several
examples and developed a Haskell library for constructing and
transforming polymorphic graphs.

The presented approach has a few important limitations:
• This paper has not addressed edge-labelled graphs. In partic-
ular, there is no known extension of the presented algebra
characterising graphs with arbitrary vertex and edge labels.
However, Mokhov and Khomenko [2014] give an algebraic
characterisation for graphs labelled with Boolean functions,
which can be generalised to labels that form a semiring.
We found that one can represent edge-labelled graphs by
functions from labels to graphs. For example, a finite automa-
ton can be thought of as a collection of graphs, one for each
symbol of the alphabet:

type Automaton a s = a -> Relation s

Here a and s stand for the alphabet and the set of states of
the automaton, respectively. This representation of labelled
graphs is supported by the following graph instance:

instance Graph g => Graph (a -> g) where
type Vertex (a -> g) = Vertex g
empty = pure empty
vertex = pure . vertex
overlay x y = overlay <$> x <*> y
connect x y = connect <$> x <*> y

Therefore, Automaton a s is a valid Graph instance.
• As mentioned in §6, the presented approach is designed for
homogeneous graphs, where an edge is allowed between
any pair of vertices. It is an open research question whether
it is possible to extend algebraic graphs for modelling het-
erogeneous graphs, such as Petri nets, without sacrificing
the simplicity of the algebraic core.
• Many graph instances, e.g. Relation, incur a logarithmic
overhead during graph construction, and may therefore be
unsuitable for high-performance applications. One possible
solution is to operate on deeply-embedded algebraic graphs
(such as data Graph), and perform conversions to more
conventional representations only when necessary.
• There are no known efficient implementations of fundamen-
tal graph algorithms, such as depth-first search, that work
directly on the algebraic core. Therefore, we need to trans-
late core expressions to conventional graph representations,
such as adjacency lists, and utilise existing graph libraries,
which may be suboptimal for certain algorithmic problems.

Despite these limitations, algebraic graphs have been success-
fully used in the design of processor microcontrollers [Mokhov and
Khomenko 2014] and asynchronous circuits [Beaumont et al. 2015].

Our future research will focus on addressing the above limita-
tions, and on the exploration of the following topics:
• Algebraic graph expressions can be minimised via themodu-
lar decomposition of graphs [McConnell and De Montgolfier
2005], thereby reducing their memory footprint, as well as

speeding up their processing. Modular decomposition is a
canonical graph representation, which can therefore be used
to efficiently compare algebraic graph expressions for equal-
ity. Exploiting the compactness of algebraic graphs in algo-
rithms is a promising research direction.
• By using the algebraic approach to graph representation
one can formulate graph algorithms in the form of solving
systems of algebraic equations with unknowns. This may
potentially open way to the discovery of novel graph algo-
rithms.
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