Skip to content

[CVPR 2024] Aligning and Prompting Everything All at Once for Universal Visual Perception

License

Notifications You must be signed in to change notification settings

shenyunhang/APE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

35 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

APE: Aligning and Prompting Everything All at Once for Universal Visual Perception

πŸ‡ [Read our arXiv Paper] Β  🍎 [Try our Online Demo]


πŸ’‘ Highlight

  • High Performance. SotA (or competitive) performance on 160 datasets with only one model.
  • Perception in the Wild. Detect and segment everything with thousands of vocabularies or language descriptions all at once.
  • Flexible. Support both foreground objects and background stuff for instance segmentation and semantic segmentation.

🏷️ TODO

  • Release inference code and demo.
  • Release checkpoints.
  • Release training codes.
  • Add clean docs.

πŸ› οΈ Install

  1. Clone the APE repository from GitHub:
git clone https://github.com/shenyunhang/APE
cd APE
  1. Install the required dependencies and APE:
pip3 install -r requirements.txt
python3 -m pip install -e .

▢️ Demo Localy

Web UI demo

pip3 install gradio
cd APE/demo
python3 app.py

If you have GPUs, this demo will detect them and use one GPU.

Please feel free to try our Online Demo!

πŸ“š Data Prepare

Following here to prepare the following datasets:

COCO LVIS Objects365 Openimages VisualGenome SA-1B RefCOCO GQA PhraseCut Flickr30k ODinW SegInW Roboflow100 ADE20k ADE-full BDD10k Cityscapes PC459 PC59 VOC D3
Train βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ— βœ— βœ— βœ— βœ— βœ— βœ— βœ— βœ— βœ— βœ—
Test βœ“ βœ“ βœ“ βœ“ βœ— βœ— βœ“ βœ— βœ— βœ— βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“ βœ“

Noted we do not use coco_2017_train for training.

Instead, we augment lvis_v1_train with annotations from coco, and keep the image set unchanged.

And we register it as lvis_v1_train+coco for instance segmentation and lvis_v1_train+coco_panoptic_separated for panoptic segmentation.

πŸ§ͺ Inference

Infer on 160+ dataset

We provide several scripts to evaluate all models.

It is necessary to adjust the checkpoint location and GPU number in the scripts before running them.

scripts/eval_all_D.sh
scripts/eval_all_C.sh
scripts/eval_all_B.sh
scripts/eval_all_A.sh

Infer on images or videos

APE-D

python3.9 demo/demo_lazy.py \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k.py \
--input image1.jpg image2.jpg image3.jpg \
--output /path/to/output/dir \
--confidence-threshold 0.1 \
--text-prompt 'person,car,chess piece of horse head' \
--with-box \
--with-mask \
--with-sseg \
--opts \
train.init_checkpoint=/path/to/APE-D/checkpoint \
model.model_vision.select_box_nums_for_evaluation=500 \
model.model_vision.text_feature_bank_reset=True \

πŸš‹ Training

Prepare backbone and language models

git lfs install
git clone https://huggingface.co/QuanSun/EVA-CLIP models/QuanSun/EVA-CLIP/
git clone https://huggingface.co/BAAI/EVA models/BAAI/EVA/
git clone https://huggingface.co/Yuxin-CV/EVA-02 models/Yuxin-CV/EVA-02/

Resize patch size:

python3.9 tools/eva_interpolate_patch_14to16.py --input models/QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14_plus_s9B.pt --output models/QuanSun/EVA-CLIP/EVA02_CLIP_E_psz14to16_plus_s9B.pt --image_size 224
python3.9 tools/eva_interpolate_patch_14to16.py --input models/QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14_s11B.pt --output models/QuanSun/EVA-CLIP/EVA01_CLIP_g_14_plus_psz14to16_s11B.pt --image_size 224
python3.9 tools/eva_interpolate_patch_14to16.py --input models/QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14_s6B.pt --output models/QuanSun/EVA-CLIP/EVA02_CLIP_L_336_psz14to16_s6B.pt --image_size 336

Train APE-D

Single node:

python3.9 tools/train_net.py \
--num-gpus 8 \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_`date +'%Y%m%d_%H%M%S'`

Multiple nodes:

python3.9 tools/train_net.py \
--dist-url="tcp:https://${MASTER_IP}:${MASTER_PORT}" \
--num-gpus ${HOST_GPU_NUM} \
--num-machines ${HOST_NUM} \
--machine-rank ${INDEX} \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO_GQA_PhraseCut_Flickr30k/ape_deta/ape_deta_vitl_eva02_clip_vlf_lsj1024_cp_16x4_1080k_mdl_`date +'%Y%m%d_%H'`0000

Train APE-C

Single node:

python3.9 tools/train_net.py \
--num-gpus 8 \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k_`date +'%Y%m%d_%H%M%S'`

Multiple nodes:

python3.9 tools/train_net.py \
--dist-url="tcp:https://${MASTER_IP}:${MASTER_PORT}" \
--num-gpus ${HOST_GPU_NUM} \
--num-machines ${HOST_NUM} \
--machine-rank ${INDEX} \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_SA1B_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k_`date +'%Y%m%d_%H'`0000

Train APE-B

Single node:

python3.9 tools/train_net.py \
--num-gpus 8 \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k_`date +'%Y%m%d_%H%M%S'`

Multiple nodes:

python3.9 tools/train_net.py \
--dist-url="tcp:https://${MASTER_IP}:${MASTER_PORT}" \
--num-gpus ${HOST_GPU_NUM} \
--num-machines ${HOST_NUM} \
--machine-rank ${INDEX} \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VGR_REFCOCO/ape_deta/ape_deta_vitl_eva02_vlf_lsj1024_cp_1080k_`date +'%Y%m%d_%H'`0000

Train APE-A

Single node:

python3.9 tools/train_net.py \
--num-gpus 8 \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj1024_cp_720k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj1024_cp_720k_`date +'%Y%m%d_%H%M%S'`

Multiple nodes:

python3.9 tools/train_net.py \
--dist-url="tcp:https://${MASTER_IP}:${MASTER_PORT}" \
--num-gpus ${HOST_GPU_NUM} \
--num-machines ${HOST_NUM} \
--machine-rank ${INDEX} \
--resume \
--config-file configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj1024_cp_720k.py \
train.output_dir=output/APE/configs/LVISCOCOCOCOSTUFF_O365_OID_VG/ape_deta/ape_deta_vitl_eva02_lsj1024_cp_720k_`date +'%Y%m%d_%H'`0000

🧳 Checkpoints

git lfs install
git clone https://huggingface.co/shenyunhang/APE
name Checkpoint Config
1 APE-A HF link link
2 APE-B HF link link
3 APE-C HF link link
4 APE-D HF link link

πŸŽ–οΈ Results

radar

βœ’οΈ Citation

If you find our work helpful for your research, please consider citing the following BibTeX entry.

@article{shen2023aligning,
  title={Aligning and Prompting Everything All at Once for Universal Visual Perception},
  author={Yunhang Shen and Chaoyou Fu and Peixian Chen and Mengdan Zhang and Ke Li and Xing Sun and Yunsheng Wu and Shaohui Lin and Rongrong Ji},
  journal={arXiv preprint arXiv:2312.02153},
  year={2023}
}