diff --git a/python/sglang/srt/models/stablelm.py b/python/sglang/srt/models/stablelm.py new file mode 100644 index 00000000000..8828f238a79 --- /dev/null +++ b/python/sglang/srt/models/stablelm.py @@ -0,0 +1,293 @@ +# This code is based on: +# https://github.com/vllm-project/vllm/blob/main/vllm/model_executor/models/stablelm.py +"""Inference-only StabeLM-2 (https://huggingface.co/stabilityai/stablelm-2-1_6b) +model compatible with HuggingFace weights.""" +from typing import Optional, Tuple + +import torch +from torch import nn +from transformers import PretrainedConfig + +from sglang.srt.layers.logits_processor import LogitsProcessor +from sglang.srt.layers.radix_attention import RadixAttention +from sglang.srt.managers.router.model_runner import InputMetadata +from vllm.model_executor.layers.activation import SiluAndMul +from vllm.model_executor.layers.linear import ( + LinearMethodBase, + MergedColumnParallelLinear, + QKVParallelLinear, + RowParallelLinear, +) +from vllm.model_executor.layers.rotary_embedding import get_rope +from vllm.model_executor.layers.vocab_parallel_embedding import ( + VocabParallelEmbedding, + ParallelLMHead, +) +from vllm.model_executor.parallel_utils.parallel_state import ( + get_tensor_model_parallel_world_size, +) +from vllm.model_executor.weight_utils import ( + default_weight_loader, + hf_model_weights_iterator, +) + + +class StablelmMLP(nn.Module): + def __init__( + self, config: PretrainedConfig, linear_method: Optional[LinearMethodBase] = None + ) -> None: + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + self.intermediate_size = config.intermediate_size + self.gate_up_proj = MergedColumnParallelLinear( + config.hidden_size, + [config.intermediate_size] * 2, + bias=False, + linear_method=linear_method, + ) + self.down_proj = RowParallelLinear( + config.intermediate_size, config.hidden_size, bias=False + ) + self.act_fn = SiluAndMul() + + def forward(self, x: torch.Tensor) -> torch.Tensor: + gate_up, _ = self.gate_up_proj(x) + x = self.act_fn(gate_up) + x, _ = self.down_proj(x) + return x + + +class StablelmAttention(nn.Module): + def __init__( + self, + config: PretrainedConfig, + layer_id: int = 0, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.config = config + self.hidden_size = config.hidden_size + tp_size = get_tensor_model_parallel_world_size() + self.total_num_heads = config.num_attention_heads + self.num_heads = self.total_num_heads // tp_size + + self.total_num_key_value_heads = config.num_key_value_heads + if self.total_num_key_value_heads >= tp_size: + # Number of KV heads is greater than TP size, so we partition + # the KV heads across multiple tensor parallel GPUs. + assert self.total_num_key_value_heads % tp_size == 0 + else: + # Number of KV heads is less than TP size, so we replicate + # the KV heads across multiple tensor parallel GPUs. + assert tp_size % self.total_num_key_value_heads == 0 + self.num_key_value_heads = max(1, self.total_num_key_value_heads // tp_size) + self.head_dim = self.hidden_size // self.total_num_heads + self.max_position_embeddings = config.max_position_embeddings + rope_pct = getattr( + config, "rope_pct", getattr(config, "partial_rotary_factor", 1) + ) + self.rotary_ndims = int(self.head_dim * rope_pct) + self.scaling = self.head_dim**-0.5 + self.q_size = self.num_heads * self.head_dim + self.kv_size = self.num_key_value_heads * self.head_dim + self.qkv_bias = getattr(config, "use_qkv_bias", False) + if (self.head_dim * self.num_heads * tp_size) != self.hidden_size: + raise ValueError( + f"hidden_size must be divisible by num_heads " + f"(got `hidden_size`: {self.hidden_size}" + f" and `num_heads`: {self.num_heads})." + ) + + self.qkv_proj = QKVParallelLinear( + self.hidden_size, + self.head_dim, + self.total_num_heads, + self.total_num_key_value_heads, + self.qkv_bias, + linear_method=linear_method, + ) + self.o_proj = RowParallelLinear( + self.total_num_heads * self.head_dim, + self.hidden_size, + bias=False, + linear_method=linear_method, + ) + self.rotary_emb = get_rope( + self.head_dim, + rotary_dim=self.rotary_ndims, + max_position=self.config.max_position_embeddings, + base=self.config.rope_theta, + ) + self.attn = RadixAttention( + self.num_heads, + self.head_dim, + self.scaling, + num_kv_heads=self.num_key_value_heads, + layer_id=layer_id, + ) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + input_metadata: InputMetadata, + ) -> torch.Tensor: + qkv, _ = self.qkv_proj(hidden_states) + q, k, v = qkv.split([self.q_size, self.kv_size, self.kv_size], dim=-1) + q, k = self.rotary_emb(positions, q, k) + attn_output = self.attn(q, k, v, input_metadata) + output, _ = self.o_proj(attn_output) + return output + + +class StablelmDecoderLayer(nn.Module): + def __init__( + self, + config: PretrainedConfig, + layer_id: int = 0, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.self_attn = StablelmAttention(config, layer_id=layer_id) + self.mlp = StablelmMLP(config, linear_method) + norm_eps = getattr(config, "norm_eps", getattr(config, "layer_norm_eps", 1e-05)) + self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=norm_eps) + self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=norm_eps) + + def forward( + self, + positions: torch.Tensor, + hidden_states: torch.Tensor, + input_metadata: InputMetadata, + ) -> Tuple[torch.Tensor, torch.Tensor]: + # Self Attention + residual = hidden_states + hidden_states = self.input_layernorm(hidden_states) + hidden_states = self.self_attn( + positions=positions, + hidden_states=hidden_states, + input_metadata=input_metadata, + ) + hidden_states = residual + hidden_states + + # Fully Connected + residual = hidden_states + hidden_states = self.post_attention_layernorm(hidden_states) + hidden_states = self.mlp(hidden_states) + hidden_states = residual + hidden_states + + return hidden_states, residual + + +class StableLMEpochModel(nn.Module): + def __init__( + self, config: PretrainedConfig, linear_method: Optional[LinearMethodBase] = None + ) -> None: + super().__init__() + self.embed_tokens = VocabParallelEmbedding( + config.vocab_size, + config.hidden_size, + ) + self.layers = nn.ModuleList( + [ + StablelmDecoderLayer(config, i, linear_method) + for i in range(config.num_hidden_layers) + ] + ) + norm_eps = getattr(config, "norm_eps", getattr(config, "layer_norm_eps", 1e-05)) + self.norm = nn.LayerNorm(config.hidden_size, eps=norm_eps) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + input_metadata: InputMetadata, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + if input_embeds is None: + hidden_states = self.embed_tokens(input_ids) + else: + hidden_states = input_embeds + for i in range(len(self.layers)): + layer = self.layers[i] + hidden_states, residual = layer( + positions, + hidden_states, + input_metadata, + ) + hidden_states = self.norm(hidden_states) + return hidden_states + + +class StableLmForCausalLM(nn.Module): + def __init__( + self, + config: PretrainedConfig, + linear_method: Optional[LinearMethodBase] = None, + ) -> None: + super().__init__() + self.config = config + self.linear_method = linear_method + self.model = StableLMEpochModel(config, linear_method) + self.lm_head = ParallelLMHead(config.vocab_size, config.hidden_size) + self.logits_processor = LogitsProcessor(config) + + def forward( + self, + input_ids: torch.Tensor, + positions: torch.Tensor, + input_metadata: InputMetadata, + input_embeds: torch.Tensor = None, + ) -> torch.Tensor: + hidden_states = self.model(input_ids, positions, input_metadata, input_embeds) + return self.logits_processor( + input_ids, hidden_states, self.lm_head.weight, input_metadata + ) + + def load_weights( + self, + model_name_or_path: str, + cache_dir: Optional[str] = None, + load_format: str = "auto", + revision: Optional[str] = None, + ): + stacked_params_mapping = [ + # (param_name, shard_name, shard_id) + ("qkv_proj", "q_proj", "q"), + ("qkv_proj", "k_proj", "k"), + ("qkv_proj", "v_proj", "v"), + ("gate_up_proj", "gate_proj", 0), + ("gate_up_proj", "up_proj", 1), + ] + params_dict = dict(self.named_parameters()) + for name, loaded_weight in hf_model_weights_iterator( + model_name_or_path, cache_dir, load_format, revision + ): + if "rotary_emb.inv_freq" in name: + continue + if "rotary_emb.cos_cached" in name or "rotary_emb.sin_cached" in name: + # Models trained using ColossalAI may include these tensors in + # the checkpoint. Skip them. + continue + for param_name, weight_name, shard_id in stacked_params_mapping: + if weight_name not in name: + continue + name = name.replace(weight_name, param_name) + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = param.weight_loader + weight_loader(param, loaded_weight, shard_id) + break + else: + # Skip loading extra bias for GPTQ models. + if name.endswith(".bias") and name not in params_dict: + continue + param = params_dict[name] + weight_loader = getattr(param, "weight_loader", default_weight_loader) + weight_loader(param, loaded_weight) + + +EntryClass = StableLmForCausalLM