Short description of
- problem in field (e.g. cancer)
- what is current solution (handdrawn segmentation)
- what this software does to solve it (sota segmentation)
- proposed impact (accelerated/accurate diagnosis)
git clone <thisrepo>
# build instructions
pip install mysoftware
conda install mysoftware
or using the environment
conda env create --name myproject --file=myproject.yml
sudo singularity build container/singularityrecipe.def
singularity pull repo:image.version
To run the tests ensuring the installation is valid, please run
python -m mymodule.testmycode
Example inference on in silico data
import seaborn as sns
import mysoftware.preprocessing as stk
import numpy as np
np.random.seed(42)
silico_data = stk.generate_insilico(args)
q = stk.infer(silico_data)
sns.boxplot(x='method', y='accuracy', data=q)
See notebooks/example.ipynb for an example interactive workflow.
See TODO for the complete API documentation
[your citation here]
See [mysoftware/insilico] on how to generate our in silico datasets. For your convenience, this can be downloaded as well:
mkdir insilico && cd insilico
wget -O insilico.hdf5 https://mydatarepo/insilico.hdf5
mkdir mydata
wget -O dataset.hdf5 https://mydatarepo/dataset.hdf5
Ensure the checksums match
md5sum dataset.hdf5
should produce
4a4f224c7b7c871855fd307ae323be93 dataset.hdf5
See scripts/preprocessing.py for the preprocessing scripts that configure the dataset and generate the plots
Please create a new issue detailing concisely, yet complete what issue you encountered, in a reproducible way.