
gprof — A Call Graph Execution Profiler PSD:18-1

gprof: a Call Graph Execution Profiler1

by Susan L. Graham Peter B. Kessler Marshall K. McKusick

Computer Science Division Electrical Engineering and Computer Science Department University of Cali-
fornia, Berkeley Berkeley, California 94720

Abstract

Large complex programs are composed of many small routines that implement abstractions for the
routines that call them. To be useful, an execution profiler must attribute execution time in a way that is
significant for the logical structure of a program as well as for its textual decomposition. This data must
then be displayed to the user in a convenient and informative way. The gprof profiler accounts for the run-
ning time of called routines in the running time of the routines that call them. The design and use of this
profiler is described.

1. Programs to be Profiled

Software research environments normally include many large programs both for production use and
for experimental investigation. These programs are typically modular, in accordance with generally
accepted principles of good program design. Often they consist of numerous small routines that implement
various abstractions. Sometimes such large programs are written by one programmer who has understood
the requirements for these abstractions, and has programmed them appropriately. More frequently the pro-
gram has had multiple authors and has evolved over time, changing the demands placed on the implemen-
tation of the abstractions without changing the implementation itself. Finally, the program may be assem-
bled from a library of abstraction implementations unexamined by the programmer.

Once a large program is executable, it is often desirable to increase its speed, especially if small por-
tions of the program are found to dominate its execution time. The purpose of the gprof profiling tool is to
help the user evaluate alternative implementations of abstractions. We developed this tool in response to
our efforts to improve a code generator we were writing [Graham82].

The gprof design takes advantage of the fact that the programs to be measured are large, structured
and hierarchical. We provide a profile in which the execution time for a set of routines that implement an
abstraction is collected and charged to that abstraction. The profile can be used to compare and assess the
costs of various implementations.

The profiler can be linked into a program without special planning by the programmer. The over-
head for using gprof is low; both in terms of added execution time and in the volume of profiling informa-
tion recorded.

2. Types of Profiling

There are several different uses for program profiles, and each may require different information
from the profiles, or different presentation of the information. We distinguish two broad categories of
profiles: those that present counts of statement or routine invocations, and those that display timing infor-
mation about statements or routines. Counts are typically presented in tabular form, often in parallel with a
listing of the source code. Timing information could be similarly presented; but more than one measure of
time might be associated with each statement or routine. For example, in the framework used by gprof
each profiled segment would display two times: one for the time used by the segment itself, and another for
the time inherited from code segments it invokes.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh

1This work was supported by grant MCS80-05144 from the National Science Foundation.



PSD:18-2 gprof — a Call Graph Execution Profiler

Execution counts are used in many different contexts. The exact number of times a routine or state-
ment is activated can be used to determine if an algorithm is performing as expected. Cursory inspection
of such counters may show algorithms whose complexity is unsuited to the task at hand. Careful interpre-
tation of counters can often suggest improvements to acceptable algorithms. Precise examination can
uncover subtle errors in an algorithm. At this level, profiling counters are similar to debugging statements
whose purpose is to show the number of times a piece of code is executed. Another view of such counters
is as boolean values. One may be interested that a portion of code has executed at all, for exhaustive test-
ing, or to check that one implementation of an abstraction completely replaces a previous one.

Execution counts are not necessarily proportional to the amount of time required to execute the rou-
tine or statement. Further, the execution time of a routine will not be the same for all calls on the routine.
The criteria for establishing execution time must be decided. If a routine implements an abstraction by
invoking other abstractions, the time spent in the routine will not accurately reflect the time required by the
abstraction it implements. Similarly, if an abstraction is implemented by several routines the time required
by the abstraction will be distributed across those routines.

Given the execution time of individual routines, gprof accounts to each routine the time spent for it
by the routines it invokes. This accounting is done by assembling a call graph with nodes that are the rou-
tines of the program and directed arcs that represent calls from call sites to routines. We distinguish among
three different call graphs for a program. The complete call graph incorporates all routines and all poten-
tial arcs, including arcs that represent calls to functional parameters or functional variables. This graph
contains the other two graphs as subgraphs. The static call graph includes all routines and all possible arcs
that are not calls to functional parameters or variables. The dynamic call graph includes only those rou-
tines and arcs traversed by the profiled execution of the program. This graph need not include all routines,
nor need it include all potential arcs between the routines it covers. It may, however, include arcs to func-
tional parameters or variables that the static call graph may omit. The static call graph can be determined
from the (static) program text. The dynamic call graph is determined only by profiling an execution of the
program. The complete call graph for a monolithic program could be determined by data flow analysis
techniques. The complete call graph for programs that change during execution, by modifying themselves
or dynamically loading or overlaying code, may never be determinable. Both the static call graph and the
dynamic call graph are used by gprof, but it does not search for the complete call graph.

3. Gathering Profile Data

Routine calls or statement executions can be measured by having a compiler augment the code at
strategic points. The additions can be inline increments to counters [Knuth71] [Satterthwaite72] [Joy79] or
calls to monitoring routines [Unix]. The counter increment overhead is low, and is suitable for profiling
statements. A call of the monitoring routine has an overhead comparable with a call of a regular routine,
and is therefore only suited to profiling on a routine by routine basis. However, the monitoring routine
solution has certain advantages. Whatever counters are needed by the monitoring routine can be managed
by the monitoring routine itself, rather than being distributed around the code. In particular, a monitoring
routine can easily be called from separately compiled programs. In addition, different monitoring routines
can be linked into the program being measured to assemble different profiling data without having to
change the compiler or recompile the program. We have exploited this approach; our compilers for C, For-
tran77, and Pascal can insert calls to a monitoring routine in the prologue for each routine. Use of the mon-
itoring routine requires no planning on part of a programmer other than to request that augmented routine
prologues be produced during compilation.

We are interested in gathering three pieces of information during program execution: call counts and
execution times for each profiled routine, and the arcs of the dynamic call graph traversed by this execution
of the program. By post-processing of this data we can build the dynamic call graph for this execution of
the program and propagate times along the edges of this graph to attribute times for routines to the routines
that invoke them.

Gathering of the profiling information should not greatly interfere with the running of the program.
Thus, the monitoring routine must not produce trace output each time it is invoked. The volume of data
thus produced would be unmanageably large, and the time required to record it would overwhelm the run-
ning time of most programs. Similarly, the monitoring routine can not do the analysis of the profiling data
(e.g. assembling the call graph, propagating times around it, discovering cycles, etc.) during program exe-
cution. Our solution is to gather profiling data in memory during program execution and to condense it to a



gprof — A Call Graph Execution Profiler PSD:18-3

file as the profiled program exits. This file is then processed by a separate program to produce the listing of
the profile data. An advantage of this approach is that the profile data for several executions of a program
can be combined by the post-processing to provide a profile of many executions.

The execution time monitoring consists of three parts. The first part allocates and initializes the run-
time monitoring data structures before the program begins execution. The second part is the monitoring
routine invoked from the prologue of each profiled routine. The third part condenses the data structures
and writes them to a file as the program terminates. The monitoring routine is discussed in detail in the fol-
lowing sections.

3.1. Execution Counts

The gprof monitoring routine counts the number of times each profiled routine is called. The moni-
toring routine also records the arc in the call graph that activated the profiled routine. The count is associ-
ated with the arc in the call graph rather than with the routine. Call counts for routines can then be deter-
mined by summing the counts on arcs directed into that routine. In a machine-dependent fashion, the mon-
itoring routine notes its own return address. This address is in the prologue of some profiled routine that is
the destination of an arc in the dynamic call graph. The monitoring routine also discovers the return
address for that routine, thus identifying the call site, or source of the arc. The source of the arc is in the
caller, and the destination is in the callee. For example, if a routine A calls a routine B, A is the caller, and
B is the callee. The prologue of B will include a call to the monitoring routine that will note the arc from A
to B and either initialize or increment a counter for that arc.

One can not afford to have the monitoring routine output tracing information as each arc is identified.
Therefore, the monitoring routine maintains a table of all the arcs discovered, with counts of the numbers
of times each is traversed during execution. This table is accessed once per routine call. Access to it must
be as fast as possible so as not to overwhelm the time required to execute the program.

Our solution is to access the table through a hash table. We use the call site as the primary key with
the callee address being the secondary key. Since each call site typically calls only one callee, we can
reduce (usually to one) the number of minor lookups based on the callee. Another alternative would use
the callee as the primary key and the call site as the secondary key. Such an organization has the advan-
tage of associating callers with callees, at the expense of longer lookups in the monitoring routine. We are
fortunate to be running in a virtual memory environment, and (for the sake of speed) were able to allocate
enough space for the primary hash table to allow a one-to-one mapping from call site addresses to the pri-
mary hash table. Thus our hash function is trivial to calculate and collisions occur only for call sites that
call multiple destinations (e.g. functional parameters and functional variables). A one level hash function
using both call site and callee would result in an unreasonably large hash table. Further, the number of
dynamic call sites and callees is not known during execution of the profiled program.

Not all callers and callees can be identified by the monitoring routine. Routines that were compiled
without the profiling augmentations will not call the monitoring routine as part of their prologue, and thus
no arcs will be recorded whose destinations are in these routines. One need not profile all the routines in a
program. Routines that are not profiled run at full speed. Certain routines, notably exception handlers, are
invoked by non-standard calling sequences. Thus the monitoring routine may know the destination of an
arc (the callee), but find it difficult or impossible to determine the source of the arc (the caller). Often in
these cases the apparent source of the arc is not a call site at all. Such anomalous invocations are declared
‘‘spontaneous’’.

3.2. Execution Times

The execution times for routines can be gathered in at least two ways. One method measures the
execution time of a routine by measuring the elapsed time from routine entry to routine exit. Unfor-
tunately, time measurement is complicated on time-sharing systems by the time-slicing of the program. A
second method samples the value of the program counter at some interval, and infers execution time from
the distribution of the samples within the program. This technique is particularly suited to time-sharing
systems, where the time-slicing can serve as the basis for sampling the program counter. Notice that,
whereas the first method could provide exact timings, the second is inherently a statistical approximation.

The sampling method need not require support from the operating system: all that is needed is the
ability to set and respond to ‘‘alarm clock’’ interrupts that run relative to program time. It is imperative



PSD:18-4 gprof — a Call Graph Execution Profiler

that the intervals be uniform since the sampling of the program counter rather than the duration of the inter-
val is the basis of the distribution. If sampling is done too often, the interruptions to sample the program
counter will overwhelm the running of the profiled program. On the other hand, the program must run for
enough sampled intervals that the distribution of the samples accurately represents the distribution of time
for the execution of the program. As with routine call tracing, the monitoring routine can not afford to out-
put information for each program counter sample. In our computing environment, the operating system
can provide a histogram of the location of the program counter at the end of each clock tick (1/60th of a
second) in which a program runs. The histogram is assembled in memory as the program runs. This facil-
ity is enabled by our monitoring routine. We have adjusted the granularity of the histogram so that pro-
gram counter values map one-to-one onto the histogram. We make the simplifying assumption that all
calls to a specific routine require the same amount of time to execute. This assumption may disguise that
some calls (or worse, some call sites) always invoke a routine such that its execution is faster (or slower)
than the average time for that routine.

When the profiled program terminates, the arc table and the histogram of program counter samples is
written to a file. The arc table is condensed to consist of the source and destination addresses of the arc and
the count of the number of times the arc was traversed by this execution of the program. The recorded his-
togram consists of counters of the number of times the program counter was found to be in each of the
ranges covered by the histogram. The ranges themselves are summarized as a lower and upper bound and
a step size.

4. Post Processing

Having gathered the arcs of the call graph and timing information for an execution of the program,
we are interested in attributing the time for each routine to the routines that call it. We build a dynamic call
graph with arcs from caller to callee, and propagate time from descendants to ancestors by topologically
sorting the call graph. Time propagation is performed from the leaves of the call graph toward the roots,
according to the order assigned by a topological numbering algorithm. The topological numbering ensures
that all edges in the graph go from higher numbered nodes to lower numbered nodes. An example is given
in Figure 1. If we propagate time from nodes in the order assigned by the algorithm, execution time can be
propagated from descendants to ancestors after a single traversal of each arc in the call graph. Each parent
receives some fraction of a child’s time. Thus time is charged to the caller in addition to being charged to
the callee.

Let Ce be the number of calls to some routine, e , and Ce
r be the number of calls from a caller r to a

callee e . Since we are assuming each call to a routine takes the average amount of time for all calls to that
routine, the caller is accountable for Ce

r/Ce of the time spent by the callee. Let the Se be the selftime of a
routine, e . The selftime of a routine can be determined from the timing information gathered during
profiled program execution. The total time, Tr , we wish to account to a routine r , is then given by the

8 9

3 7

2 5 6

1 4

Topological ordering
Figure 1.



gprof — A Call Graph Execution Profiler PSD:18-5

recurrence equation:

Tr = Sr +
r CALLS e

Σ Te ×
Ce

Ce
r

hhh

where r CALLS e is a relation showing all routines e called by a routine r . This relation is easily avail-
able from the call graph.

However, if the execution contains recursive calls, the call graph has cycles that cannot be topologi-
cally sorted. In these cases, we discover strongly-connected components in the call graph, treat each such
component as a single node, and then sort the resulting graph. We use a variation of Tarjan’s strongly-
connected components algorithm that discovers strongly-connected components as it is assigning topologi-
cal order numbers [Tarjan72].

Time propagation within strongly connected components is a problem. For example, a self-recursive
routine (a trivial cycle in the call graph) is accountable for all the time it uses in all its recursive instantia-
tions. In our scheme, this time should be shared among its call graph parents. The arcs from a routine to
itself are of interest, but do not participate in time propagation. Thus the simple equation for time propaga-
tion does not work within strongly connected components. Time is not propagated from one member of a
cycle to another, since, by definition, this involves propagating time from a routine to itself. In addition,
children of one member of a cycle must be considered children of all members of the cycle. Similarly,
parents of one member of the cycle must inherit all members of the cycle as descendants. It is for these
reasons that we collapse connected components. Our solution collects all members of a cycle together,
summing the time and call counts for all members. All calls into the cycle are made to share the total time
of the cycle, and all descendants of the cycle propagate time into the cycle as a whole. Calls among the
members of the cycle do not propagate any time, though they are listed in the call graph profile.

Figure 2 shows a modified version of the call graph of Figure 1, in which the nodes labelled 3 and 7
in Figure 1 are mutually recursive. The topologically sorted graph after the cycle is collapsed is given in
Figure 3.

Since the technique described above only collects the dynamic call graph, and the program typically
does not call every routine on each execution, different executions can introduce different cycles in the
dynamic call graph. Since cycles often have a significant effect on time propagation, it is desirable to
incorporate the static call graph so that cycles will have the same members regardless of how the program
runs.

The static call graph can be constructed from the source text of the program. However, discovering
the static call graph from the source text would require two moderately difficult steps: finding the source
text for the program (which may not be available), and scanning and parsing that text, which may be in any
one of several languages.

b b

g g

b b b

b b

Cycle to be collapsed.
Figure 2.



PSD:18-6 gprof — a Call Graph Execution Profiler

7 8

6 6

2 4 5

1 3

Topological numbering after cycle collapsing.
Figure 3.

In our programming system, the static calling information is also contained in the executable version
of the program, which we already have available, and which is in language-independent form. One can
examine the instructions in the object program, looking for calls to routines, and note which routines can be
called. This technique allows us to add arcs to those already in the dynamic call graph. If a statically
discovered arc already exists in the dynamic call graph, no action is required. Statically discovered arcs
that do not exist in the dynamic call graph are added to the graph with a traversal count of zero. Thus they
are never responsible for any time propagation. However, they may affect the structure of the graph.
Since they may complete strongly connected components, the static call graph construction is done before
topological ordering.

5. Data Presentation

The data is presented to the user in two different formats. The first presentation simply lists the rou-
tines without regard to the amount of time their descendants use. The second presentation incorporates the
call graph of the program.

5.1. The Flat Profile

The flat profile consists of a list of all the routines that are called during execution of the program,
with the count of the number of times they are called and the number of seconds of execution time for
which they are themselves accountable. The routines are listed in decreasing order of execution time. A
list of the routines that are never called during execution of the program is also available to verify that
nothing important is omitted by this execution. The flat profile gives a quick overview of the routines that
are used, and shows the routines that are themselves responsible for large fractions of the execution time.
In practice, this profile usually shows that no single function is overwhelmingly responsible for the total
time of the program. Notice that for this profile, the individual times sum to the total execution time.

5.2. The Call Graph Profile

Ideally, we would like to print the call graph of the program, but we are limited by the two-
dimensional nature of our output devices. We cannot assume that a call graph is planar, and even if it is,
that we can print a planar version of it. Instead, we choose to list each routine, together with information
about the routines that are its direct parents and children. This listing presents a window into the call
graph. Based on our experience, both parent information and child information is important, and should be
available without searching through the output.

The major entries of the call graph profile are the entries from the flat profile, augmented by the time
propagated to each routine from its descendants. This profile is sorted by the sum of the time for the rou-
tine itself plus the time inherited from its descendants. The profile shows which of the higher level routines
spend large portions of the total execution time in the routines that they call. For each routine, we show the



gprof — A Call Graph Execution Profiler PSD:18-7

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
called/total parents

index %time self descendants called+self name index
called/total childreniiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

0.20 1.20 4/10 CALLER1 [7]
0.30 1.80 6/10 CALLER2 [1]

[2] 41.5 0.50 3.00 10+4 EXAMPLE [2]
1.50 1.00 20/40 SUB1 <cycle1> [4]
0.00 0.50 1/5 SUB2 [9]
0.00 0.00 0/5 SUB3 [11]iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiicc

c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c

Profile entry for EXAMPLE.
Figure 4.

amount of time passed by each child to the routine, which includes time for the child itself and for the des-
cendants of the child (and thus the descendants of the routine). We also show the percentage these times
represent of the total time accounted to the child. Similarly, the parents of each routine are listed, along
with time, and percentage of total routine time, propagated to each one.

Cycles are handled as single entities. The cycle as a whole is shown as though it were a single rou-
tine, except that members of the cycle are listed in place of the children. Although the number of calls of
each member from within the cycle are shown, they do not affect time propagation. When a child is a
member of a cycle, the time shown is the appropriate fraction of the time for the whole cycle. Self-
recursive routines have their calls broken down into calls from the outside and self-recursive calls. Only
the outside calls affect the propagation of time.

The following example is a typical fragment of a call graph.

CALLER1 CALLER2

EXAMPLE

SUB1 SUB2 SUB3

The entry in the call graph profile listing for this example is shown in Figure 4.

The entry is for routine EXAMPLE, which has the Caller routines as its parents, and the Sub routines
as its children. The reader should keep in mind that all information is given with respect to EXAMPLE. The
index in the first column shows that EXAMPLE is the second entry in the profile listing. The EXAMPLE
routine is called ten times, four times by CALLER1, and six times by CALLER2. Consequently 40% of
EXAMPLE’s time is propagated to CALLER1, and 60% of EXAMPLE’s time is propagated to CALLER2.
The self and descendant fields of the parents show the amount of self and descendant time EXAMPLE pro-
pagates to them (but not the time used by the parents directly). Note that EXAMPLE calls itself recursively
four times. The routine EXAMPLE calls routine SUB1 twenty times, SUB2 once, and never calls SUB3.
Since SUB2 is called a total of five times, 20% of its self and descendant time is propagated to EXAMPLE’s
descendant time field. Because SUB1 is a member of cycle 1, the self and descendant times and call count
fraction are those for the cycle as a whole. Since cycle 1 is called a total of forty times (not counting calls
among members of the cycle), it propagates 50% of the cycle’s self and descendant time to EXAMPLE’s
descendant time field. Finally each name is followed by an index that shows where on the listing to find
the entry for that routine.



PSD:18-8 gprof — a Call Graph Execution Profiler

6. Using the Profiles

The profiler is a useful tool for improving a set of routines that implement an abstraction. It can be
helpful in identifying poorly coded routines, and in evaluating the new algorithms and code that replace
them. Taking full advantage of the profiler requires a careful examination of the call graph profile, and a
thorough knowledge of the abstractions underlying the program.

The easiest optimization that can be performed is a small change to a control construct or data struc-
ture that improves the running time of the program. An obvious starting point is a routine that is called
many times. For example, suppose an output routine is the only parent of a routine that formats the data. If
this format routine is expanded inline in the output routine, the overhead of a function call and return can
be saved for each datum that needs to be formatted.

The drawback to inline expansion is that the data abstractions in the program may become less
parameterized, hence less clearly defined. The profiling will also become less useful since the loss of rou-
tines will make its output more granular. For example, if the symbol table functions ‘‘lookup’’, ‘‘insert’’,
and ‘‘delete’’ are all merged into a single parameterized routine, it will be impossible to determine the
costs of any one of these individual functions from the profile.

Further potential for optimization lies in routines that implement data abstractions whose total execu-
tion time is long. For example, a lookup routine might be called only a few times, but use an inefficient
linear search algorithm, that might be replaced with a binary search. Alternately, the discovery that a
rehashing function is being called excessively, can lead to a different hash function or a larger hash table.
If the data abstraction function cannot easily be speeded up, it may be advantageous to cache its results,
and eliminate the need to rerun it for identical inputs. These and other ideas for program improvement are
discussed in [Bentley81].

This tool is best used in an iterative approach: profiling the program, eliminating one bottleneck, then
finding some other part of the program that begins to dominate execution time. For instance, we have used
gprof on itself; eliminating, rewriting, and inline expanding routines, until reading data files (hardly a tar-
get for optimization!) represents the dominating factor in its execution time.

Certain types of programs are not easily analyzed by gprof. They are typified by programs that exhi-
bit a large degree of recursion, such as recursive descent compilers. The problem is that most of the major
routines are grouped into a single monolithic cycle. As in the symbol table abstraction that is placed in one
routine, it is impossible to distinguish which members of the cycle are responsible for the execution time.
Unfortunately there are no easy modifications to these programs that make them amenable to analysis.

A completely different use of the profiler is to analyze the control flow of an unfamiliar program. If
you receive a program from another user that you need to modify in some small way, it is often unclear
where the changes need to be made. By running the program on an example and then using gprof, you can
get a view of the structure of the program.

Consider an example in which you need to change the output format of the program. For purposes of
this example suppose that the call graph of the output portion of the program has the following structure:

CALC1 CALC2 CALC3

FORMAT1 FORMAT2

"WRITE"

Initially you look through the gprof output for the system call ‘‘WRITE’’. The format routine you will
need to change is probably among the parents of the ‘‘WRITE’’ procedure. The next step is to look at the
profile entry for each of parents of ‘‘WRITE’’, in this example either ‘‘FORMAT1’’ or ‘‘FORMAT2’’, to
determine which one to change. Each format routine will have one or more parents, in this example



gprof — A Call Graph Execution Profiler PSD:18-9

‘‘CALC1’’, ‘‘CALC2’’, and ‘‘CALC3’’. By inspecting the source code for each of these routines you can
determine which format routine generates the output that you wish to modify. Since the gprof entry shows
all the potential calls to the format routine you intend to change, you can determine if your modifications
will affect output that should be left alone. If you desire to change the output of ‘‘CALC2’’, but not
‘‘CALC3’’, then formatting routine ‘‘FORMAT2’’ needs to be split into two separate routines, one of which
implements the new format. You can then retarget just the call by ‘‘CALC2’’ that needs the new format. It
should be noted that the static call information is particularly useful here since the test case you run prob-
ably will not exercise the entire program.

7. Conclusions

We have created a profiler that aids in the evaluation of modular programs. For each routine in the
program, the profile shows the extent to which that routine helps support various abstractions, and how that
routine uses other abstractions. The profile accurately assesses the cost of routines at all levels of the pro-
gram decomposition. The profiler is easily used, and can be compiled into the program without any prior
planning by the programmer. It adds only five to thirty percent execution overhead to the program being
profiled, produces no additional output until after the program finishes, and allows the program to be meas-
ured in its actual environment. Finally, the profiler runs on a time-sharing system using only the normal
services provided by the operating system and compilers.

8. References

[Bentley81]
Bentley, J. L., ‘‘Writing Efficient Code’’, Department of Computer Science, Carnegie-Mellon
University, Pittsburgh, Pennsylvania, CMU-CS-81-116, 1981.

[Graham82]
Graham, S. L., Henry, R. R., Schulman, R. A., ‘‘An Experiment in Table Driven Code Generation’’,
SIGPLAN ’82 Symposium on Compiler Construction, June, 1982.

[Joy79]
Joy, W. N., Graham, S. L., Haley, C. B. ‘‘Berkeley Pascal User’s Manual’’, Version 1.1, Computer
Science Division University of California, Berkeley, CA. April 1979.

[Knuth71]
Knuth, D. E. ‘‘An empirical study of FORTRAN programs’’, Software - Practice and Experience, 1,
105-133. 1971

[Satterthwaite72]
Satterthwaite, E. ‘‘Debugging Tools for High Level Languages’’, Software - Practice and Experi-
ence, 2, 197-217, 1972

[Tarjan72]
Tarjan, R. E., ‘‘Depth first search and linear graph algorithm,’’ SIAM J. Computing 1:2, 146-160,
1972.

[Unix]
Unix Programmer’s Manual, ‘‘prof command’’, section 1, Bell Laboratories, Murray Hill, NJ. Janu-
ary 1979.


