
Berkeley Pascal User’s Manual
Version 3.1 −− April 1986

William N. Joy‡, Susan L. Graham, Charles B. Haley‡,
Marshall Kirk McKusick, and Peter B. Kessler‡

Computer Science Division
Department of Electrical Engineering and Computer Science

University of California, Berkeley
Berkeley, California 94720

ABSTRACT

Berkeley Pascal is designed for interactive instructional use and runs on the PDP/11
and VAX/11 computers. Interpretive code is produced, providing fast translation at the
expense of slower execution speed. There is also a fully compatible compiler for the
VAX/11. An execution profiler and Wirth’s cross reference program are also available
with the system.

The system supports full Pascal. The language accepted is ‘standard’ Pascal, and a
small number of extensions. There is an option to suppress the extensions. The exten-
sions include a separate compilation facility and the ability to link to object modules pro-
duced from other source languages.

The User’s Manual gives a list of sources relating to the UNIX† system, the Pascal
language, and the Berkeley Pascal system. Basic usage examples are provided for the
Pascal components pi , px , pix , pc , and pxp . Errors commonly encountered in these pro-
grams are discussed. Details are given of special considerations due to the interactive
implementation. A number of examples are provided including many dealing with
input/output. An appendix supplements Wirth’s Pascal Report to form the full definition
of the Berkeley implementation of the language.

Introduction

The Berkeley Pascal User’s Manual consists of five major sections and an appendix. In section 1 we
give sources of information about UNIX, about the programming language Pascal, and about the Berkeley
implementation of the language. Section 2 introduces the Berkeley implementation and provides a number
of tutorial examples. Section 3 discusses the error diagnostics produced by the translators pc and pi , and
the runtime interpreter px . Section 4 describes input/output with special attention given to features of the
interactive implementation and to features unique to UNIX. Section 5 gives details on the components of
the system and explanation of all relevant options. The User’s Manual concludes with an appendix to
Wirth’s Pascal Report with which it forms a precise definition of the implementation.

hhhhhhhhhhhhhhhhhh
Copyright 1977, 1979, 1980, 1983 W. N. Joy, S. L. Graham, C. B. Haley, M. K. McKusick, P. B. Kessler
‡Author’s current addresses: William Joy and Peter Kessler: Sun Microsystems, 2550 Garcia Ave., Mountain View, CA
94043; Charles Haley: S & B Associates, 1110 Centennial Ave., Piscataway, NJ 08854; Marshall Kirk McKusick: 1614
Oxford St, Berkeley, CA 94709-1608
† UNIX is a registered trademark of AT&T Bell Laboratories in the USA and other countries.

PSD:7-2 Berkeley Pascal User´s Manual

History of the implementation

The first Berkeley system was written by Ken Thompson in early 1976. The main features of the
present system were implemented by Charles Haley and William Joy during the latter half of 1976. Earlier
versions of this system have been in use since January, 1977.

The system was moved to the VAX-11 by Peter Kessler and Kirk McKusick with the porting of the
interpreter in the spring of 1979, and the implementation of the compiler in the summer of 1980.

1. Sources of information

This section lists the resources available for information about general features of UNIX, text editing,
the Pascal language, and the Berkeley Pascal implementation, concluding with a list of references. The
available documents include both so-called standard documents − those distributed with all UNIX system −
and documents (such as this one) written at Berkeley.

1.1. Where to get documentation

Current documentation for most of the UNIX system is available ‘‘on line’’ at your terminal. Details
on getting such documentation interactively are given in section 1.3.

1.2. Documentation describing UNIX

The following documents are those recommended as tutorial and reference material about the UNIX
system. We give the documents with the introductory and tutorial materials first, the reference materials
last.

UNIX For Beginners −− Second Edition

This document is the basic tutorial for UNIX available with the standard system.

Communicating with UNIX

This is also a basic tutorial on the system and assumes no previous familiarity with computers; it was
written at Berkeley.

An introduction to the C shell

This document introduces csh, the shell in common use at Berkeley, and provides a good deal of
general description about the way in which the system functions. It provides a useful glossary of terms
used in discussing the system.

UNIX Programmer’s Manual

This manual is the major source of details on the components of the UNIX system. It consists of an
Introduction, a permuted index, and eight command sections. Section 1 consists of descriptions of most of
the ‘‘commands’’ of UNIX. Most of the other sections have limited relevance to the user of Berkeley Pas-
cal, being of interest mainly to system programmers.

UNIX documentation often refers the reader to sections of the manual. Such a reference consists of a
command name and a section number or name. An example of such a reference would be: ed (1). Here
ed is a command name − the standard UNIX text editor, and ‘(1)’ indicates that its documentation is in sec-
tion 1 of the manual.

The pieces of the Berkeley Pascal system are pi (1), px (1), the combined Pascal translator and inter-
pretive executor pix (1), the Pascal compiler pc (1), the Pascal execution profiler pxp (1), and the Pascal
cross-reference generator pxref (1).

It is possible to obtain a copy of a manual section by using the man (1) command. To get the Pascal
documentation just described one could issue the command:

% man pi

Berkeley Pascal User´s Manual PSD:7−3

to the shell. The user input here is shown in bold face; the ‘% ’, which was printed by the shell as a
prompt, is not. Similarly the command:

% man man

asks the man command to describe itself.

1.3. Text editing documents

The following documents introduce the various UNIX text editors. Most Berkeley users use a version
of the text editor ex; either edit, which is a version of ex for new and casual users, ex itself, or vi (visual)
which focuses on the display editing portion of ex.

A Tutorial Introduction to the UNIX Text Editor

This document, written by Brian Kernighan of Bell Laboratories, is a tutorial for the standard UNIX
text editor ed. It introduces you to the basics of text editing, and provides enough information to meet
day-to-day editing needs, for ed users.

Ex Reference Manual −− Version 3.7

A complete reference on the features of ex and edit.

An Introduction to Display Editing with Vi

Vi is a display oriented text editor. It can be used on most any CRT terminal, and uses the screen as a
window into the file you are editing. Changes you make to the file are reflected in what you see. This
manual serves both as an introduction to editing with vi and a reference manual.

Vi Reference Manual

This document summarizes the features of the nvi and nex editors distributed with 4.4BSD in a con-
cise but complete fashion. The vi manual page is a shorter reference for these editors and also includes a
minimal introduction on how to use them.

The Jove Editor

Jove is a small, self-documenting, customizable display editor, based on EMACS. A plausible alter-
native to vi.

1.4. Pascal documents −− The language

This section describes the documents on the Pascal language which are likely to be most useful to the
Berkeley Pascal user. Complete references for these documents are given in section 1.7.

Pascal User Manual

By Kathleen Jensen and Niklaus Wirth, the User Manual provides a tutorial introduction to the
features of the language Pascal, and serves as an excellent quick-reference to the language. The reader
with no familiarity with Algol-like languages may prefer one of the Pascal text books listed below, as they
provide more examples and explanation. Particularly important here are pages 116-118 which define the
syntax of the language. Sections 13 and 14 and Appendix F pertain only to the 6000-3.4 implementation of
Pascal.

Pascal Report

By Niklaus Wirth, this document is bound with the User Manual. It is the guiding reference for
implementors and the fundamental definition of the language. Some programmers find this report too con-
cise to be of practical use, preferring the User Manual as a reference.

PSD:7-4 Berkeley Pascal User´s Manual

Books on Pascal

Several good books which teach Pascal or use it as a medium are available. The books by Wirth Sys-
tematic Programming and Algorithms + Data Structures = Programs use Pascal as a vehicle for teaching
programming and data structure concepts respectively. They are both recommended. Other books on Pas-
cal are listed in the references below.

1.5. Pascal documents −− The Berkeley Implementation

This section describes the documentation which is available describing the Berkeley implementation
of Pascal.

User’s Manual

The document you are reading is the User’s Manual for Berkeley Pascal. We often refer the reader
to the Jensen-Wirth User Manual mentioned above, a different document with a similar name.

Manual sections

The sections relating to Pascal in the UNIX Programmer’s Manual are pix (1), pi (1), pc (1), px (1),
pxp (1), and pxref (1). These sections give a description of each program, summarize the available
options, indicate files used by the program, give basic information on the diagnostics produced and include
a list of known bugs.

Implementation notes

For those interested in the internal organization of the Berkeley Pascal system there are a series of
Implementation Notes describing these details. The Berkeley Pascal PXP Implementation Notes describe
the Pascal interpreter px ; and the Berkeley Pascal PX Implementation Notes describe the structure of the
execution profiler pxp . These documents are not reproduced in these manuals; they are available on the
CD-ROM in /usr/src/share/doc/papers .

1.6. References

UNIX Documents

William Joy
Ex Reference Manual − Version 3.7
4.4BSD User’s Supplementary Documents (USD), 12
University of California, Berkeley, CA. 94720
April, 1994.

William Joy
An Introduction to Display Editing with Vi
4.4BSD User’s Supplementary Documents (USD), 11
University of California, Berkeley, CA. 94720
April, 1994.

William Joy
An Introduction to the C shell (Revised)
4.4BSD User’s Supplementary Documents (USD), 4
University of California, Berkeley, CA. 94720
April, 1994.

Brian W. Kernighan
UNIX for Beginners − Second Edition
4.4BSD User’s Supplementary Documents (USD), 1

Berkeley Pascal User´s Manual PSD:7-5

University of California, Berkeley, CA. 94720
April, 1994.

Brian W. Kernighan
A Tutorial Introduction to the UNIX Text Editor
4.4BSD User’s Supplementary Documents (USD), 9
University of California, Berkeley, CA. 94720
April, 1994.

Dennis M. Ritchie and Ken Thompson
The UNIX Time Sharing System
Reprinted from Communications of the ACM July 1974 in
4.4BSD Programmer’s Supplementary Documents (PSD), 1
University of California, Berkeley, CA. 94720
April, 1994.

Pascal Language Documents

Cooper and Clancy
Oh! Pascal!, 2nd Edition
W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1985, 475 pp.

Cooper
Standard Pascal User Reference Manual
W. W. Norton & Company, Inc.
500 Fifth Ave., NY, NY. 10110
1983, 176 pp.

Kathleen Jensen and Niklaus Wirth
Pascal − User Manual and Report
Springer-Verlag, New York.
1975, 167 pp.

Niklaus Wirth
Algorithms + Data structures = Programs
Prentice-Hall, New York.
1976, 366 pp.

2. Basic UNIX Pascal

The following sections explain the basics of using Berkeley Pascal. In examples here we use the text
editor ex (1). Users of the text editor ed should have little trouble following these examples, as ex is simi-
lar to ed . We use ex because it allows us to make clearer examples.† The new UNIX user will find it help-
ful to read one of the text editor documents described in section 1.4 before continuing with this section.

hhhhhhhhhhhhhhhhhh
† Users with CRT terminals should find the editor vi more pleasant to use; we do not show its use here because its display
oriented nature makes it difficult to illustrate.

PSD:7-6 Berkeley Pascal User´s Manual

2.1. A first program

To prepare a program for Berkeley Pascal we first need to have an account on UNIX and to ‘login’ to
the system on this account. These procedures are described in the documents Communicating with UNIX
and UNIX for Beginners .

Once we are logged in we need to choose a name for our program; let us call it ‘first’ as this is the
first example. We must also choose a name for the file in which the program will be stored. The Berkeley
Pascal system requires that programs reside in files which have names ending with the sequence ‘.p’ so we
will call our file ‘first.p’.

A sample editing session to create this file would begin:

% ex first.p
"first.p" [New file]
:

We didn’t expect the file to exist, so the error diagnostic doesn’t bother us. The editor now knows the
name of the file we are creating. The ‘:’ prompt indicates that it is ready for command input. We can add
the text for our program using the ‘append’ command as follows.

:append
program first(output)
begin

writeln(´Hello, world!´)
end.
.
:

The line containing the single ‘.’ character here indicated the end of the appended text. The ‘:’ prompt
indicates that ex is ready for another command. As the editor operates in a temporary work space we must
now store the contents of this work space in the file ‘first.p’ so we can use the Pascal translator and execu-
tor pix on it.

:write
"first.p" [New file] 4 lines, 59 characters
:quit
%

We wrote out the file from the edit buffer here with the ‘write’ command, and ex indicated the number of
lines and characters written. We then quit the editor, and now have a prompt from the shell.‡

We are ready to try to translate and execute our program.

% pix first.p
Tue May 24 14:54 1994 first.p:

2 begin
e ---↑ --- Inserted ´;´
Execution begins...
Hello, world!
Execution terminated.

1 statements executed in 0.00 seconds cpu time.
%

The translator first printed a syntax error diagnostic. The number 2 here indicates that the rest of the
line is an image of the second line of our program. The translator is saying that it expected to find a ‘;’
hhhhhhhhhhhhhhhhhh
‡ Our examples here assume you are using csh.

Berkeley Pascal User´s Manual PSD:7-7

before the keyword begin on this line. If we look at the Pascal syntax charts in the Jensen-Wirth User
Manual , or at some of the sample programs therein, we will see that we have omitted the terminating ‘;’ of
the program statement on the first line of our program.

One other thing to notice about the error diagnostic is the letter ‘e’ at the beginning. It stands for
‘error’, indicating that our input was not legal Pascal. The fact that it is an ‘e’ rather than an ‘E’ indicates
that the translator managed to recover from this error well enough that generation of code and execution
could take place. Execution is possible whenever no fatal ‘E’ errors occur during translation. The other
classes of diagnostics are ‘w’ warnings, which do not necessarily indicate errors in the program, but point
out inconsistencies which are likely to be due to program bugs, and ‘s’ standard-Pascal violations.†

After completing the translation of the program to interpretive code, the Pascal system indicates that
execution of the translated program began. The output from the execution of the program then appeared.
At program termination, the Pascal runtime system indicated the number of statements executed, and the
amount of cpu time used, with the resolution of the latter being 1/60’th of a second.

Let us now fix the error in the program and translate it to a permanent object code file obj using pi .
The program pi translates Pascal programs but stores the object code instead of executing it‡.

% ex first.p
"first.p" 4 lines, 59 characters
:1 print
program first(output)
:s/$/;
program first(output);
:write
"first.p" 4 lines, 60 characters
:quit
% pi first.p
%

If we now use the UNIX ls list files command we can see what files we have:

% ls
first.p
obj
%

The file ‘obj’ here contains the Pascal interpreter code. We can execute this by typing:

% px obj
Hello, world!

1 statements executed in 0.00 seconds cpu time.
%

Alternatively, the command:

% obj

will have the same effect. Some examples of different ways to execute the program follow.
hhhhhhhhhhhhhhhhhh
†The standard Pascal warnings occur only when the associated s translator option is enabled. The s option is discussed in
sections 5.1 and A.6 below. Warning diagnostics are discussed at the end of section 3.2, the associated w option is
described in section 5.2.
‡This script indicates some other useful approaches to debugging Pascal programs. As in ed we can shorten commands in
ex to an initial prefix of the command name as we did with the substitute command here. We have also used the ‘!’ shell
escape command here to execute other commands with a shell without leaving the editor.

PSD:7-8 Berkeley Pascal User´s Manual

% px
Hello, world!

1 statements executed in 0.00 seconds cpu time.
% pi −−p first.p
% px obj
Hello, world!
% pix −−p first.p
Hello, world!
%

Note that px will assume that ‘obj’ is the file we wish to execute if we don’t tell it otherwise. The
last two translations use the −−p no-post-mortem option to eliminate execution statistics and ‘Execution
begins’ and ‘Execution terminated’ messages. See section 5.2 for more details. If we now look at the files
in our directory we will see:

% ls
first.p
obj
%

We can give our object program a name other than ‘obj’ by using the move command mv (1). Thus to
name our program ‘hello’:

% mv obj hello
% hello
Hello, world!
% ls
first.p
hello
%

Finally we can get rid of the Pascal object code by using the rm (1) remove file command, e.g.:

% rm hello
% ls
first.p
%

For small programs which are being developed pix tends to be more convenient to use than pi and
px . Except for absence of the obj file after a pix run, a pix command is equivalent to a pi command fol-
lowed by a px command. For larger programs, where a number of runs testing different parts of the pro-
gram are to be made, pi is useful as this obj file can be executed any desired number of times.

2.2. A larger program

Suppose that we have used the editor to put a larger program in the file ‘bigger.p’. We can list this
program with line numbers by using the program cat -n i.e.:

% cat −−n bigger.p
1 (∗
2 ∗ Graphic representation of a function
3 ∗ f(x) = exp(−x) ∗ sin(2 ∗ pi ∗ x)
4 ∗)
5 program graph1(output);
6 const
7 d = 0.0625; (∗ 1/16, 16 lines for interval [x, x+1] ∗)

Berkeley Pascal User´s Manual PSD:7−9

8 s = 32; (∗ 32 character width for interval [x, x+1]
9 h = 34; (∗ Character position of x−axis ∗)

10 c = 6.28138; (∗ 2 ∗ pi ∗)
11 lim = 32;
12 var
13 x, y: real;
14 i, n: integer;
15 begin
16 for i := 0 to lim begin
17 x := d / i;
18 y := exp(−x9 ∗ sin(i ∗ x);
19 n := Round(s ∗ y) + h;
20 repeat
21 write(´ ´);
22 n := n − 1
23 writeln(´∗ ´)
24 end.

%

This program is similar to program 4.9 on page 30 of the Jensen-Wirth User Manual . A number of prob-
lems have been introduced into this example for pedagogical reasons.

If we attempt to translate and execute the program using pix we get the following response:

% pix bigger.p
Tue May 24 14:54 1994 bigger.p:

9 h = 34; (∗ Character position of x−axis ∗)
w ------------------------↑ ---- (∗ in a (∗ ... ∗) comment

16 for i := 0 to lim begin
e -----------------------------↑ ---- Inserted keyword do

18 y := exp(−x9 ∗ sin(i ∗ x);
E ----------------------------↑ ---- Undefined variable
e ---↑ ---- Inserted ´)´

19 n := Round(s ∗ y) + h;
E ---------------------↑ ---- Undefined function
E --↑ ---- Undefined variable

23 writeln(´∗ ´)
e ----------------↑ ---- Inserted ´;´

24 end.
E ----↑ ---- Expected keyword until
E ---------↑ ---- Malformed declaration
E ---------↑ ---- Unexpected end−of−file − QUIT
Execution suppressed due to compilation errors
%

Since there were fatal ‘E’ errors in our program, no code was generated and execution was neces-
sarily suppressed. One thing which would be useful at this point is a listing of the program with the error
messages. We can get this by using the command:

% pi −−l bigger.p

There is no point in using pix here, since we know there are fatal errors in the program. This command
will produce the output at our terminal. If we are at a terminal which does not produce a hard copy we may
wish to print this listing off-line on a line printer. We can do this with the command:

% pi −−l bigger.p | lpr

PSD:7−10 Berkeley Pascal User´s Manual

In the next few sections we will illustrate various aspects of the Berkeley Pascal system by correcting
this program.

2.3. Correcting the first errors

Most of the errors which occurred in this program were syntactic errors, those in the format and
structure of the program rather than its content. Syntax errors are flagged by printing the offending line,
and then a line which flags the location at which an error was detected. The flag line also gives an explana-
tion stating either a possible cause of the error, a simple action which can be taken to recover from the
error so as to be able to continue the analysis, a symbol which was expected at the point of error, or an
indication that the input was ‘malformed’. In the last case, the recovery may skip ahead in the input to a
point where analysis of the program can continue.

In this example, the first error diagnostic indicates that the translator detected a comment within a
comment. While this is not considered an error in ‘standard’ Pascal, it usually corresponds to an error in
the program which is being translated. In this case, we have accidentally omitted the trailing ‘∗)’ of the
comment on line 8. We can begin an editor session to correct this problem by doing:

% ex bigger.p
"bigger.p" 24 lines, 512 characters
:8s/$/ ∗∗)

s = 32; (∗ 32 character width for interval [x, x+1] ∗)
:

The second diagnostic, given after line 16, indicates that the keyword do was expected before the
keyword begin in the for statement. If we examine the statement syntax chart on page 118 of the Jensen-
Wirth User Manual we will discover that do is a necessary part of the for statement. Similarly, we could
have referred to section C.3 of the Jensen-Wirth User Manual to learn about the for statement and gotten
the same information there. It is often useful to refer to these syntax charts and to the relevant sections of
this book.

We can correct this problem by first scanning for the keyword for in the file and then substituting the
keyword do to appear in front of the keyword begin there. Thus:

:/for
for i := 0 to lim begin

:s/begin/do &
for i := 0 to lim do begin

:

The next error in the program is easy to pinpoint. On line 18, we didn’t hit the shift key and got a ‘9’
instead of a ‘)’. The translator diagnosed that ‘x9’ was an undefined variable and, later, that a ‘)’ was miss-
ing in the statement. It should be stressed that pi is not suggesting that you should insert a ‘)’ before the
‘;’. It is only indicating that making this change will help it to be able to continue analyzing the program so
as to be able to diagnose further errors. You must then determine the true cause of the error and make the
appropriate correction to the source text.

This error also illustrates the fact that one error in the input may lead to multiple error diagnostics.
Pi attempts to give only one diagnostic for each error, but single errors in the input sometimes appear to be
more than one error. It is also the case that pi may not detect an error when it occurs, but may detect it
later in the input. This would have happened in this example if we had typed ‘x’ instead of ‘x9’.

The translator next detected, on line 19, that the function Round and the variable h were undefined.
It does not know about Round because Berkeley Pascal normally distinguishes between upper and lower
case.† On UNIX lower-case is preferred‡, and all keywords and built-in procedure and function names
hhhhhhhhhhhhhhhhhh
†In ‘‘standard’’ Pascal no distinction is made based on case.
‡One good reason for using lower-case is that it is easier to type.

Berkeley Pascal User´s Manual PSD:7-11

are composed of lower-case letters, just as they are in the Jensen-Wirth Pascal Report . Thus we need to
use the function round here. As far as h is concerned, we can see why it is undefined if we look back to
line 9 and note that its definition was lost in the non-terminated comment. This diagnostic need not, there-
fore, concern us.

The next error which occurred in the program caused the translator to insert a ‘;’ before the statement
calling writeln on line 23. If we examine the program around the point of error we will see that the actual
error is that the keyword until and an associated expression have been omitted here. Note that the diagnos-
tic from the translator does not indicate the actual error, and is somewhat misleading. The translator made
the correction which seemed to be most plausible. As the omission of a ‘;’ character is a common mistake,
the translator chose to indicate this as a possible fix here. It later detected that the keyword until was miss-
ing, but not until it saw the keyword end on line 24. The combination of these diagnostics indicate to us
the true problem.

The final syntactic error message indicates that the translator needed an end keyword to match the
begin at line 15. Since the end at line 24 is supposed to match this begin, we can infer that another begin
must have been mismatched, and have matched this end. Thus we see that we need an end to match the
begin at line 16, and to appear before the final end. We can make these corrections:

:/x9/s//x)
y := exp(−x) ∗ sin(i ∗ x);

:++s/Round/round
n := round(s ∗ y) + h;

:/write
write(´ ´);

:/
writeln(´∗ ´)

:insert
until n == 0;

.
:$
end.
:insert

end
.
:

At the end of each procedure or function and the end of the program the translator summarizes
references to undefined variables and improper usages of variables. It also gives warnings about potential
errors. In our program, the summary errors do not indicate any further problems but the warning that c is
unused is somewhat suspicious. Examining the program we see that the constant was intended to be used
in the expression which is an argument to sin , so we can correct this expression, and translate the program.
We have now made a correction for each diagnosed error in our program.

:?i ?s//c /
y := exp(−x) ∗ sin(c ∗ x);

:write
"bigger.p" 26 lines, 538 characters
:quit
% pi bigger.p
%

It should be noted that the translator suppresses warning diagnostics for a particular procedure, function
or the main program when it finds severe syntax errors in that part of the source text. This is to prevent
possibly confusing and incorrect warning diagnostics from being produced. Thus these warning diagnos-
tics may not appear in a program with bad syntax errors until these errors are corrected.

PSD:7−12 Berkeley Pascal User´s Manual

We are now ready to execute our program for the first time. We will do so in the next section after
giving a listing of the corrected program for reference purposes.

% cat −−n bigger.p
1 (∗
2 ∗ Graphic representation of a function
3 ∗ f(x) = exp(−x) ∗ sin(2 ∗ pi ∗ x)
4 ∗)
5 program graph1(output);
6 const
7 d = 0.0625; (∗ 1/16, 16 lines for interval [x, x+1] ∗)
8 s = 32; (∗ 32 character width for interval [x, x+1] ∗)
9 h = 34; (∗ Character position of x−axis ∗)

10 c = 6.28138; (∗ 2 ∗ pi ∗)
11 lim = 32;
12 var
13 x, y: real;
14 i, n: integer;
15 begin
16 for i := 0 to lim do begin
17 x := d / i;
18 y := exp(−x) ∗ sin(c ∗ x);
19 n := round(s ∗ y) + h;
20 repeat
21 write(´ ´);
22 n := n − 1
23 until n = 0;
24 writeln(´∗ ´)
25 end
26 end.

%

2.4. Executing the second example

We are now ready to execute the second example. The following output was produced by our first
run.

% px
Execution begins...

Real division by zero

Error in "graph1"+2 near line 17.
Execution terminated abnormally.

2 statements executed in 0.00 seconds cpu time.
%

Here the interpreter is presenting us with a runtime error diagnostic. It detected a ‘division by zero’ at line
17. Examining line 17, we see that we have written the statement ‘x := d / i’ instead of ‘x := d ∗ i’. We can
correct this and rerun the program:

% ex bigger.p
"bigger.p" 26 lines, 538 characters
:17

Berkeley Pascal User´s Manual PSD:7−13

x := d / i
:s´/´∗∗

x := d ∗ i
:write
"bigger.p" 26 lines, 538 characters
:q
% pix bigger.p
Execution begins...

∗
∗

∗
∗
∗

∗
∗

∗
∗

∗
∗

∗
∗
∗

∗
∗

∗
∗

∗
∗
∗
∗

∗
∗

∗
∗
∗
∗
∗
∗
∗
∗
∗

Execution terminated.

2550 statements executed in 0.04 seconds cpu time.
%

This appears to be the output we wanted. We could now save the output in a file if we wished by us-
ing the shell to redirect the output:

% px > graph

We can use cat (1) to see the contents of the file graph. We can also make a listing of the graph on the line
printer without putting it into a file, e.g.

% px | lpr

PSD:7−14 Berkeley Pascal User´s Manual

Execution begins...
Execution terminated.

2550 statements executed in 0.04 seconds cpu time.
%

Note here that the statistics lines came out on our terminal. The statistics line comes out on the diagnostic
output (unit 2.) There are two ways to get rid of the statistics line. We can redirect the statistics message
to the printer using the syntax ‘| &’ to the shell rather than ‘|’, i.e.:

% px | & lpr
%

or we can translate the program with the p option disabled on the command line as we did above. This will
disable all post-mortem dumping including the statistics line, thus:

% pi −−p bigger.p
% px | lpr
%

This option also disables the statement limit which normally guards against infinite looping. You should
not use it until your program is debugged. Also if p is specified and an error occurs, you will not get run
time diagnostic information to help you determine what the problem is.

2.5. Formatting the program listing

It is possible to use special lines within the source text of a program to format the program listing.
An empty line (one with no characters on it) corresponds to a ‘space’ macro in an assembler, leaving a
completely blank line without a line number. A line containing only a control-l (form-feed) character will
cause a page eject in the listing with the corresponding line number suppressed. This corresponds to an
‘eject’ pseudo-instruction. See also section 5.2 for details on the n and i options of pi .

2.6. Execution profiling

An execution profile consists of a structured listing of (all or part of) a program with information
about the number of times each statement in the program was executed for a particular run of the program.
These profiles can be used for several purposes. In a program which was abnormally terminated due to
excessive looping or recursion or by a program fault, the counts can facilitate location of the error. Zero
counts mark portions of the program which were not executed; during the early debugging stages they
should prompt new test data or a re-examination of the program logic. The profile is perhaps most valu-
able, however, in drawing attention to the (typically small) portions of the program that dominate execution
time. This information can be used for source level optimization.

An example

A prime number is a number which is divisible only by itself and the number one. The program
primes , written by Niklaus Wirth, determines the first few prime numbers. In translating the program we
have specified the z option to pix . This option causes the translator to generate counters and count instruc-
tions sufficient in number to determine the number of times each statement in the program was executed.†
When execution of the program completes, either normally or abnormally, this count data is written to the
file pmon.out in the current directory.‡ It is then possible to prepare an execution profile by giving pxp the
name of the file associated with this data, as was done in the following example.
hhhhhhhhhhhhhhhhhh
†The counts are completely accurate only in the absence of runtime errors and nonlocal goto statements. This is not gen-
erally a problem, however, as in structured programs nonlocal goto statements occur infrequently, and counts are incorrect
after abnormal termination only when the upward look described below to get a count passes a suspended call point.
‡Pmon.out has a name similar to mon.out the monitor file produced by the profiling facility of the C compiler cc (1). See
prof (1) for a discussion of the C compiler profiling facilities.

Berkeley Pascal User´s Manual PSD:7-15

% pix −−l −−z primes.p
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 primes.p

1 program primes(output);
2 const n = 50; n1 = 7; (∗ n1 = sqrt(n)∗)
3 var i,k,x,inc,lim,square,l: integer;
4 prim: boolean;
5 p,v: array[1..n1] of integer;
6 begin
7 write(2:6, 3:6); l := 2;
8 x := 1; inc := 4; lim := 1; square := 9;
9 for i := 3 to n do

10 begin (∗ find next prime∗)
11 repeat x := x + inc; inc := 6−inc;
12 if square <= x then
13 begin lim := lim+1;
14 v[lim] := square; square := sqr(p[lim+1])
15 end ;
16 k := 2; prim := true;
17 while prim and (k<lim) do
18 begin k := k+1;
19 if v[k] < x then v[k] := v[k] + 2∗ p[k];
20 prim := x <> v[k]
21 end
22 until prim;
23 if i <= n1 then p[i] := x;
24 write(x:6); l := l+1;
25 if l = 10 then
26 begin writeln; l := 0
27 end
28 end ;
29 writeln;
30 end .

Execution begins...
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.

1404 statements executed in 0.02 seconds cpu time.
%

Discussion

The header lines of the outputs of pix and pxp in this example indicate the version of the translator
and execution profiler in use at the time this example was prepared. The time given with the file name
(also on the header line) indicates the time of last modification of the program source file. This time serves
to version stamp the input program. Pxp also indicates the time at which the profile data was gathered.

% pxp −−z primes.p

PSD:7−16 Berkeley Pascal User´s Manual

Berkeley Pascal PXP −− Version 2.13 (4/2/84)

Tue May 24 14:54 1994 primes.p

Profiled Tue May 24 22:51 1994

1 1.-----|program primes(output);
%

To determine the number of times a statement was executed, one looks to the left of the statement
and finds the corresponding vertical bar ‘|’. If this vertical bar is labelled with a count then that count gives
the number of times the statement was executed. If the bar is not labelled, we look up in the listing to find
the first ‘|’ which directly above the original one which has a count and that is the answer. Thus, in our
example, k was incremented 157 times on line 18, while the write procedure call on line 24 was executed
48 times as given by the count on the repeat.

More information on pxp can be found in its manual section pxp (1) and in sections 5.4, 5.5 and
5.10.

3. Error diagnostics

This section of the User’s Manual discusses the error diagnostics of the programs pi , pc and px .
Pix is a simple but useful program which invokes pi and px to do all the real processing. See its manual
section pix (1) and section 5.2 below for more details. All the diagnostics given by pi will also be given
by pc .

3.1. Translator syntax errors

A few comments on the general nature of the syntax errors usually made by Pascal programmers and
the recovery mechanisms of the current translator may help in using the system.

Illegal characters

Characters such as ‘$’, ‘!’, and ‘@’ are not part of the language Pascal. If they are found in the
source program, and are not part of a constant string, a constant character, or a comment, they are con-
sidered to be ‘illegal characters’. This can happen if you leave off an opening string quote ‘´’. Note that
the character ‘"’, although used in English to quote strings, is not used to quote strings in Pascal. Most
non-printing characters in your input are also illegal except in character constants and character strings.
Except for the tab and form feed characters, which are used to ease formatting of the program, non-printing
characters in the input file print as the character ‘?’ so that they will show in your listing.

String errors

There is no character string of length 0 in Pascal. Consequently the input ‘´´’ is not acceptable.
Similarly, encountering an end-of-line after an opening string quote ‘´’ without encountering the matching
closing quote yields the diagnostic ‘‘Unmatched ´ for string’’. It is permissible to use the character ‘#’
instead of ‘´’ to delimit character and constant strings for portability reasons. For this reason, a spuriously
placed ‘#’ sometimes causes the diagnostic about unbalanced quotes. Similarly, a ‘#’ in column one is
used when preparing programs which are to be kept in multiple files. See section 5.11 for details.

Comments in a comment, non-terminated comments

As we saw above, these errors are usually caused by leaving off a comment delimiter. You can con-
vert parts of your program to comments without generating this diagnostic since there are two different
kinds of comments − those delimited by ‘{’ and ‘}’, and those delimited by ‘(∗ ’ and ‘∗)’. Thus consider:

{ This is a comment enclosing a piece of program
a := functioncall; (∗ comment within comment ∗)
procedurecall;

Berkeley Pascal User´s Manual PSD:7−17

lhs := rhs; (∗ another comment ∗)
}

By using one kind of comment exclusively in your program you can use the other delimiters when
you need to ‘‘comment out’’ parts of your program†. In this way you will also allow the translator to help
by detecting statements accidentally placed within comments.

If a comment does not terminate before the end of the input file, the translator will point to the begin-
ning of the comment, indicating that the comment is not terminated. In this case processing will terminate
immediately. See the discussion of ‘‘QUIT’’ below.

Digits in numbers

This part of the language is a minor nuisance. Pascal requires digits in real numbers both before and
after the decimal point. Thus the following statements, which look quite reasonable to FORTRAN users,
generate diagnostics in Pascal:

Tue May 24 14:54 1994 digits.p:
4 r := 0.;

e ----------↑ ---- Digits required after decimal point
5 r := .0;

e --------↑ ---- Digits required before decimal point
6 r := 1.e10;

e ----------↑ ---- Digits required after decimal point
7 r := .05e−10;

e --------↑ ---- Digits required before decimal point

These same constructs are also illegal as input to the Pascal interpreter px .

Replacements, insertions, and deletions

When a syntax error is encountered in the input text, the parser invokes an error recovery procedure.
This procedure examines the input text immediately after the point of error and considers a set of simple
corrections to see whether they will allow the analysis to continue. These corrections involve replacing an
input token with a different token, inserting a token, or replacing an input token with a different token.
Most of these changes will not cause fatal syntax errors. The exception is the insertion of or replacement
with a symbol such as an identifier or a number; in this case the recovery makes no attempt to determine
which identifier or what number should be inserted, hence these are considered fatal syntax errors.

Consider the following example.

% pix −−l synerr.p
Berkeley Pascal PI -- Version 3.1 (6/6/93)

Tue May 24 14:54 1994 synerr.p

1 program syn(output);
2 var i, j are integer;

e ------------↑ --- Replaced identifier with a ´:´
3 begin
4 for j :∗ 1 to 20 begin

e ----------------↑ --- Replaced ´∗ ´ with a ´x´
e ---------------------------↑ --- Inserted keyword do

5 write(j);
hhhhhhhhhhhhhhhhhh
†If you wish to transport your program, especially to the 6000-3.4 implementation, you should use the character sequence
`(∗ ´ to delimit comments. For transportation over the rcslink to Pascal 6000-3.4, the character `#´ should be used to delimit
characters and constant strings.

PSD:7-18 Berkeley Pascal User´s Manual

6 i = 2 ∗∗ j;
e -----------------↑ --- Inserted ´:´
E -----------------------↑ --- Inserted identifier

7 writeln(i))
E --------------------------↑ --- Deleted ´)´

8 end
9 end.

%

The only surprise here may be that Pascal does not have an exponentiation operator, hence the complaint
about ‘∗∗ ’. This error illustrates that, if you assume that the language has a feature which it does not, the
translator diagnostic may not indicate this, as the translator is unlikely to recognize the construct you sup-
ply.

Undefined or improper identifiers

If an identifier is encountered in the input but is undefined, the error recovery will replace it with an
identifier of the appropriate class. Further references to this identifier will be summarized at the end of the
containing procedure or function or at the end of the program if the reference occurred in the main pro-
gram. Similarly, if an identifier is used in an inappropriate way, e.g. if a type identifier is used in an
assignment statement, or if a simple variable is used where a record variable is required, a diagnostic will
be produced and an identifier of the appropriate type inserted. Further incorrect references to this identifier
will be flagged only if they involve incorrect use in a different way, with all incorrect uses being summar-
ized in the same way as undefined variable uses are.

Expected symbols, malformed constructs

If none of the above mentioned corrections appear reasonable, the error recovery will examine the
input to the left of the point of error to see if there is only one symbol which can follow this input. If this is
the case, the recovery will print a diagnostic which indicates that the given symbol was ‘Expected’.

In cases where none of these corrections resolve the problems in the input, the recovery may issue a
diagnostic that indicates that the input is ‘‘malformed’’. If necessary, the translator may then skip forward
in the input to a place where analysis can continue. This process may cause some errors in the text to be
missed.

Consider the following example:

% pix −−l synerr2.p
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 synerr2.p

1 program synerr2(input,outpu);
2 integer a(10)

E ---↑ ---- Malformed declaration
3 begin
4 read(b);

E ---------------↑ ---- Undefined variable
5 for c := 1 to 10 do

E -------------↑ ---- Undefined variable
6 a(c) := b ∗ c;

E ---------------↑ ---- Undefined procedure
E ---------------------↑ ---- Malformed statement

7 end.
E 1 − File outpu listed in program statement but not declared
In program synerr2:
E − a undefined on lines 6

Berkeley Pascal User´s Manual PSD:7−19

E − b undefined on line 4
E − c undefined on line 5 6

Execution suppressed due to compilation errors
%

Here we misspelled output and gave a FORTRAN style variable declaration which the translator diagnosed
as a ‘Malformed declaration’. When, on line 6, we used ‘(’ and ‘)’ for subscripting (as in FORTRAN) rather
than the ‘[’ and ‘]’ which are used in Pascal, the translator noted that a was not defined as a procedure.
This occurred because procedure and function argument lists are delimited by parentheses in Pascal. As
it is not permissible to assign to procedure calls the translator diagnosed a malformed statement at the point
of assignment.

Expected and unexpected end-of-file, ‘‘QUIT’’

If the translator finds a complete program, but there is more non-comment text in the input file, then
it will indicate that an end-of-file was expected. This situation may occur after a bracketing error, or if too
many ends are present in the input. The message may appear after the recovery says that it ‘‘Expected
`.´ ’’ since ‘.’ is the symbol that terminates a program.

If severe errors in the input prohibit further processing the translator may produce a diagnostic fol-
lowed by ‘‘QUIT’’. One example of this was given above − a non-terminated comment; another example
is a line which is longer than 160 characters. Consider also the following example.

% pix −−l mism.p
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 mism.p

1 program mismatch(output)
2 begin

e ---↑ ---- Inserted ´;´
3 writeln(´∗∗∗ ´);
4 { The next line is the last line in the file }
5 writeln

E ------------------↑ ---- Malformed declaration
E ------------------↑ ---- Unexpected end−of−file − QUIT
%

3.2. Translator semantic errors

The extremely large number of semantic diagnostic messages which the translator produces make it
unreasonable to discuss each message or group of messages in detail. The messages are, however, very
informative. We will here explain the typical formats and the terminology used in the error messages so
that you will be able to make sense out of them. In any case in which a diagnostic is not completely
comprehensible you can refer to the User Manual by Jensen and Wirth for examples.

Format of the error diagnostics

As we saw in the example program above, the error diagnostics from the Pascal translator include the
number of a line in the text of the program as well as the text of the error message. While this number is
most often the line where the error occurred, it is occasionally the number of a line containing a bracketing
keyword like end or until. In this case, the diagnostic may refer to the previous statement. This occurs
because of the method the translator uses for sampling line numbers. The absence of a trailing ‘;’ in the
previous statement causes the line number corresponding to the end or until. to become associated with
the statement. As Pascal is a free-format language, the line number associations can only be approximate
and may seem arbitrary to some users. This is the only notable exception, however, to reasonable associa-
tions.

PSD:7-20 Berkeley Pascal User´s Manual

Incompatible types

Since Pascal is a strongly typed language, many semantic errors manifest themselves as type errors.
These are called ‘type clashes’ by the translator. The types allowed for various operators in the language
are summarized on page 108 of the Jensen-Wirth User Manual . It is important to know that the Pascal
translator, in its diagnostics, distinguishes between the following type ‘classes’:

array Boolean char file integer
pointer real record scalar string

These words are plugged into a great number of error messages. Thus, if you tried to assign an integer
value to a char variable you would receive a diagnostic like the following:

Tue May 24 14:54 1994 clash.p:
E 7 − Type clash: integer is incompatible with char
... Type of expression clashed with type of variable in assignment

In this case, one error produced a two line error message. If the same error occurs more than once, the
same explanatory diagnostic will be given each time.

Scalar

The only class whose meaning is not self-explanatory is ‘scalar’. Scalar has a precise meaning in the
Jensen-Wirth User Manual where, in fact, it refers to char , integer , real , and Boolean types as well as the
enumerated types. For the purposes of the Pascal translator, scalar in an error message refers to a user-
defined, enumerated type, such as ops in the example above or color in

type color = (red, green, blue)

For integers, the more explicit denotation integer is used. Although it would be correct, in the context of
the User Manual to refer to an integer variable as a scalar variable pi prefers the more specific
identification.

Function and procedure type errors

For built-in procedures and functions, two kinds of errors occur. If the routines are called with the
wrong number of arguments a message similar to:

Tue May 24 14:54 1994 sin1.p:
E 12 − sin takes exactly one argument

is given. If the type of the argument is wrong, a message like

Tue May 24 14:54 1994 sin2.p:
E 12 − sin´s argument must be integer or real, not char

is produced. A few functions and procedures implemented in Pascal 6000-3.4 are diagnosed as unimple-
mented in Berkeley Pascal, notably those related to segmented files.

Can’t read and write scalars, etc.

The messages which state that scalar (user-defined) types cannot be written to and from files are
often mysterious. It is in fact the case that if you define

type color = (red, green, blue)

‘‘standard’’ Pascal does not associate these constants with the strings ‘red’, ‘green’, and ‘blue’ in any way.
An extension has been added which allows enumerated types to be read and written, however if the pro-
gram is to be portable, you will have to write your own routines to perform these functions. Standard Pas-
cal only allows the reading of characters, integers and real numbers from text files. You cannot read
strings or Booleans. It is possible to make a

Berkeley Pascal User´s Manual PSD:7-21

file of color

but the representation is binary rather than string.

Expression diagnostics

The diagnostics for semantically ill-formed expressions are very explicit. Consider this sample
translation:

% pi −−l expr.p
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 expr.p

1 program x(output);
2 var
3 a: set of char;
4 b: Boolean;
5 c: (red, green, blue);
6 p: ↑ integer;
7 A: alfa;
8 B: packed array [1..5] of char;
9 begin
10 b := true;
11 c := red;
12 new(p);
13 a := [];
14 A := ´Hello, yellow´;
15 b := a and b;
16 a := a ∗ 3;
17 if input < 2 then writeln(´boo´);
18 if p <= 2 then writeln(´sure nuff´);
19 if A = B then writeln(´same´);
20 if c = true then writeln(´hue´´s and color´´s´)
21 end.

E 14 − Constant string too long
E 15 − Left operand of and must be Boolean, not set
E 16 − Cannot mix sets with integers and reals as operands of ∗
E 17 − files may not participate in comparisons
E 18 − pointers and integers cannot be compared − operator was <=
E 19 − Strings not same length in = comparison
E 20 − scalars and Booleans cannot be compared − operator was =
e 21 − Input is used but not defined in the program statement
In program x:
w − constant green is never used
w − constant blue is never used
w − variable B is used but never set

%

This example is admittedly far-fetched, but illustrates that the error messages are sufficiently clear to allow
easy determination of the problem in the expressions.

Type equivalence

Several diagnostics produced by the Pascal translator complain about ‘non-equivalent types’. In gen-
eral, Berkeley Pascal considers variables to have the same type only if they were declared with the same
constructed type or with the same type identifier. Thus, the variables x and y declared as

PSD:7-22 Berkeley Pascal User´s Manual

var
x: ↑ integer;
y: ↑ integer;

do not have the same type. The assignment

x := y

thus produces the diagnostics:

Tue May 24 14:54 1994 typequ.p:
E 7 − Type clash: non−identical pointer types
... Type of expression clashed with type of variable in assignment

Thus it is always necessary to declare a type such as

type intptr = ↑ integer;

and use it to declare

var x: intptr; y: intptr;

Note that if we had initially declared

var x, y: ↑ integer;

then the assignment statement would have worked. The statement

x↑ := y↑

is allowed in either case. Since the parameter to a procedure or function must be declared with a type
identifier rather than a constructed type, it is always necessary, in practice, to declare any type which will
be used in this way.

Unreachable statements

Berkeley Pascal flags unreachable statements. Such statements usually correspond to errors in the
program logic. Note that a statement is considered to be reachable if there is a potential path of control,
even if it can never be taken. Thus, no diagnostic is produced for the statement:

if false then
writeln(´impossible!´)

Goto’s into structured statements

The translator detects and complains about goto statements which transfer control into structured
statements (for, while, etc.) It does not allow such jumps, nor does it allow branching from the then part
of an if statement into the else part. Such checks are made only within the body of a single procedure or
function.

Unused variables, never set variables

Although pi always clears variables to 0 at procedure and function entry, pc does not unless run-
time checking is enabled using the C option. It is not good programming practice to rely on this initializa-
tion. To discourage this practice, and to help detect errors in program logic, pi flags as a ‘w’ warning
error:

1) Use of a variable which is never assigned a value.

2) A variable which is declared but never used, distinguishing between those variables for which
values are computed but which are never used, and those completely unused.

Berkeley Pascal User´s Manual PSD:7-23

In fact, these diagnostics are applied to all declared items. Thus a const or a procedure which is declared
but never used is flagged. The w option of pi may be used to suppress these warnings; see sections 5.1 and
5.2.

3.3. Translator panics, i/o errors

Panics

One class of error which rarely occurs, but which causes termination of all processing when it does is
a panic. A panic indicates a translator-detected internal inconsistency. A typical panic message is:

snark (rvalue) line=110 yyline=109
Snark in pi

If you receive such a message, the translation will be quickly and perhaps ungracefully terminated. You
should contact a teaching assistant or a member of the system staff, after saving a copy of your program for
later inspection. If you were making changes to an existing program when the problem occurred, you may
be able to work around the problem by ascertaining which change caused the snark and making a different
change or correcting an error in the program. A small number of panics are possible in px . All panics
should be reported to a teaching assistant or systems staff so that they can be fixed.

Out of memory

The only other error which will abort translation when no errors are detected is running out of
memory. All tables in the translator, with the exception of the parse stack, are dynamically allocated, and
can grow to take up the full available process space of 64000 bytes on the PDP-11. On the VAX-11, table
sizes are extremely generous and very large (25000) line programs have been easily accommodated. For
the PDP−11, it is generally true that the size of the largest translatable program is directly related to pro-
cedure and function size. A number of non-trivial Pascal programs, including some with more than 2000
lines and 2500 statements have been translated and interpreted using Berkeley Pascal on PDP-11’s. Notable
among these are the Pascal-S interpreter, a large set of programs for automated generation of code genera-
tors, and a general context-free parsing program which has been used to parse sentences with a grammar
for a superset of English. In general, very large programs should be translated using pc and the separate
compilation facility.

If you receive an out of space message from the translator during translation of a large procedure or
function or one containing a large number of string constants you may yet be able to translate your pro-
gram if you break this one procedure or function into several routines.

I/O errors

Other errors which you may encounter when running pi relate to input-output. If pi cannot open the
file you specify, or if the file is empty, you will be so informed.

3.4. Run-time errors

We saw, in our second example, a run-time error. We here give the general description of run-time
errors. The more unusual interpreter error messages are explained briefly in the manual section for px (1).

Start-up errors

These errors occur when the object file to be executed is not available or appropriate. Typical errors
here are caused by the specified object file not existing, not being a Pascal object, or being inaccessible to
the user.

Program execution errors

These errors occur when the program interacts with the Pascal runtime environment in an inappropri-
ate way. Typical errors are values or subscripts out of range, bad arguments to built-in functions, exceed-
ing the statement limit because of an infinite loop, or running out of memory‡. The interpreter will
hhhhhhhhhhhhhhhhhh
‡The checks for running out of memory are not foolproof and there is a chance that the interpreter will fault, producing a
core image when it runs out of memory. This situation occurs very rarely.

PSD:7-24 Berkeley Pascal User´s Manual

produce a backtrace after the error occurs, showing all the active routine calls, unless the p option was dis-
abled when the program was translated. Unfortunately, no variable values are given and no way of extract-
ing them is available.∗

As an example of such an error, assume that we have accidentally declared the constant n1 to be 6,
instead of 7 on line 2 of the program primes as given in section 2.6 above. If we run this program we get
the following response.

% pix primes.p
Execution begins...

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167
Subscript value of 7 is out of range

Error in "primes"+8 near line 14.
Execution terminated abnormally.

941 statements executed in 0.01 seconds cpu time.
%

Here the interpreter indicates that the program terminated abnormally due to a subscript out of range
near line 14, which is eight lines into the body of the program primes.

Interrupts

If the program is interrupted while executing and the p option was not specified, then a backtrace
will be printed.† The file pmon.out of profile information will be written if the program was translated
with the z option enabled to pi or pix .

I/O interaction errors

The final class of interpreter errors results from inappropriate interactions with files, including the
user’s terminal. Included here are bad formats for integer and real numbers (such as no digits after the
decimal point) when reading.

4. Input/output

This section describes features of the Pascal input/output environment, with special consideration of
the features peculiar to an interactive implementation.

4.1. Introduction

Our first sample programs, in section 2, used the file output . We gave examples there of redirecting
the output to a file and to the line printer using the shell. Similarly, we can read the input from a file or
another program. Consider the following Pascal program which is similar to the program cat (1).

% pix −−l kat.p <primes
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 kat.p
hhhhhhhhhhhhhhhhhh
∗ On the VAX−11, each variable is restricted to allocate at most 65000 bytes of storage (this is a PDP−11ism that has survived
to the VAX.)
†Occasionally, the Pascal system will be in an inconsistent state when this occurs, e.g. when an interrupt terminates a pro-
cedure or function entry or exit. In this case, the backtrace will only contain the current line. A reverse call order list of
procedures will not be given.

Berkeley Pascal User´s Manual PSD:7−25

1 program kat(input, output);
2 var
3 ch: char;
4 begin
5 while not eof do begin
6 while not eoln do begin
7 read(ch);
8 write(ch)
9 end;

10 readln;
11 writeln
12 end
13 end { kat }.

Execution begins...
2 3 5 7 11 13 17 19 23 29

31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

Execution terminated.

925 statements executed in 0.01 seconds cpu time.
%

Here we have used the shell’s syntax to redirect the program input from a file in primes in which we had
placed the output of our prime number program of section 2.6. It is also possible to ‘pipe’ input to this pro-
gram much as we piped input to the line printer daemon lpr (1) before. Thus, the same output as above
would be produced by

% cat primes | pix −−l kat.p

All of these examples use the shell to control the input and output from files. One very simple way
to associate Pascal files with named UNIX files is to place the file name in the program statement. For
example, suppose we have previously created the file data. We then use it as input to another version of a
listing program.

% cat data
line one.
line two.
line three is the end.
% pix −−l copydata.p
Berkeley Pascal PI −− Version 3.1 (6/6/93)

Tue May 24 14:54 1994 copydata.p

1 program copydata(data, output);
2 var
3 ch: char;
4 data: text;
5 begin
6 reset(data);
7 while not eof(data) do begin
8 while not eoln(data) do begin
9 read(data, ch);

PSD:7−26 Berkeley Pascal User´s Manual

10 write(ch)
11 end;
12 readln(data);
13 writeln
14 end
15 end { copydata }.

Execution begins...
line one.
line two.
line three is the end.
Execution terminated.

134 statements executed in 0.00 seconds cpu time.
%

By mentioning the file data in the program statement, we have indicated that we wish it to correspond to
the UNIX file data . Then, when we ‘reset(data)’, the Pascal system opens our file ‘data’ for reading. More
sophisticated, but less portable, examples of using UNIX files will be given in sections 4.5 and 4.6. There is
a portability problem even with this simple example. Some Pascal systems attach meaning to the ordering
of the file in the program statement file list. Berkeley Pascal does not do so.

4.2. Eof and eoln

An extremely common problem encountered by new users of Pascal, especially in the interactive
environment offered by UNIX, relates to the definitions of eof and eoln . These functions are supposed to
be defined at the beginning of execution of a Pascal program, indicating whether the input device is at the
end of a line or the end of a file. Setting eof or eoln actually corresponds to an implicit read in which the
input is inspected, but no input is ‘‘used up’’. In fact, there is no way the system can know whether the
input is at the end-of-file or the end-of-line unless it attempts to read a line from it. If the input is from a
previously created file, then this reading can take place without run-time action by the user. However, if
the input is from a terminal, then the input is what the user types.† If the system were to do an initial read
automatically at the beginning of program execution, and if the input were a terminal, the user would have
to type some input before execution could begin. This would make it impossible for the program to begin
by prompting for input or printing a herald.

Berkeley Pascal has been designed so that an initial read is not necessary. At any given time, the
Pascal system may or may not know whether the end-of-file or end-of-line conditions are true. Thus, inter-
nally, these functions can have three values − true, false, and ‘‘I don’t know yet; if you ask me I’ll have to
find out’’. All files remain in this last, indeterminate state until the Pascal program requires a value for eof
or eoln either explicitly or implicitly, e.g. in a call to read . The important point to note here is that if you
force the Pascal system to determine whether the input is at the end-of-file or the end-of-line, it will be
necessary for it to attempt to read from the input.

Thus consider the following example code

while not eof do begin
write(´number, please? ´);
read(i);
writeln(´that was a ´, i: 2)

end

At first glance, this may be appear to be a correct program for requesting, reading and echoing numbers.
Notice, however, that the while loop asks whether eof is true before the request is printed. This will force
the Pascal system to decide whether the input is at the end-of-file. The Pascal system will give no
hhhhhhhhhhhhhhhhhh
†It is not possible to determine whether the input is a terminal, as the input may appear to be a file but actually be a pipe,
the output of a program which is reading from the terminal.

Berkeley Pascal User´s Manual PSD:7-27

messages; it will simply wait for the user to type a line. By producing the desired prompting before testing
eof, the following code avoids this problem:

write(´number, please ?´);
while not eof do begin

read(i);
writeln(´that was a ´, i:2);
write(´number, please ?´)

end

The user must still type a line before the while test is completed, but the prompt will ask for it. This exam-
ple, however, is still not correct. To understand why, it is first necessary to know, as we will discuss
below, that there is a blank character at the end of each line in a Pascal text file. The read procedure, when
reading integers or real numbers, is defined so that, if there are only blanks left in the file, it will return a
zero value and set the end-of-file condition. If, however, there is a number remaining in the file, the end-
of-file condition will not be set even if it is the last number, as read never reads the blanks after the
number, and there is always at least one blank. Thus the modified code will still put out a spurious

that was a 0

at the end of a session with it when the end-of-file is reached. The simplest way to correct the problem in
this example is to use the procedure readln instead of read here. In general, unless we test the end-of-file
condition both before and after calls to read or readln , there will be inputs for which our program will
attempt to read past end-of-file.

4.3. More about eoln

To have a good understanding of when eoln will be true it is necessary to know that in any file there
is a special character indicating end-of-line, and that, in effect, the Pascal system always reads one charac-
ter ahead of the Pascal read commands.† For instance, in response to ‘read(ch)’, the system sets ch to the
current input character and gets the next input character. If the current input character is the last character
of the line, then the next input character from the file is the new-line character, the normal UNIX line
separator. When the read routine gets the new-line character, it replaces that character by a blank (causing
every line to end with a blank) and sets eoln to true. Eoln will be true as soon as we read the last character
of the line and before we read the blank character corresponding to the end of line. Thus it is almost
always a mistake to write a program which deals with input in the following way:

read(ch);
if eoln then

Done with line
else

Normal processing

as this will almost surely have the effect of ignoring the last character in the line. The ‘read(ch)’ belongs as
part of the normal processing.

Given this framework, it is not hard to explain the function of a readln call, which is defined as:

while not eoln do
get(input);

get(input);

This advances the file until the blank corresponding to the end-of-line is the current input symbol and then
discards this blank. The next character available from read will therefore be the first character of the next
line, if one exists.
hhhhhhhhhhhhhhhhhh
†In Pascal terms, ‘read(ch)’ corresponds to ‘ch := inputˆ; get(input)’

PSD:7-28 Berkeley Pascal User´s Manual

4.4. Output buffering

A final point about Pascal input-output must be noted here. This concerns the buffering of the file
output . It is extremely inefficient for the Pascal system to send each character to the user’s terminal as the
program generates it for output; even less efficient if the output is the input of another program such as the
line printer daemon lpr (1). To gain efficiency, the Pascal system ‘‘buffers’’ the output characters (i.e. it
saves them in memory until the buffer is full and then emits the entire buffer in one system interaction.)
However, to allow interactive prompting to work as in the example given above, this prompt must be
printed before the Pascal system waits for a response. For this reason, Pascal normally prints all the output
which has been generated for the file output whenever

1) A writeln occurs, or

2) The program reads from the terminal, or

3) The procedure message or flush is called.

Thus, in the code sequence

for i := 1 to 5 do begin
write(i: 2);
Compute a lot with no output

end;
writeln

the output integers will not print until the writeln occurs. The delay can be somewhat disconcerting, and
you should be aware that it will occur. By setting the b option to 0 before the program statement by
inserting a comment of the form

(∗ $b0∗)

we can cause output to be completely unbuffered, with a corresponding horrendous degradation in pro-
gram efficiency. Option control in comments is discussed in section 5.

4.5. Files, reset, and rewrite

It is possible to use extended forms of the built-in functions reset and rewrite to get more general
associations of UNIX file names with Pascal file variables. When a file other than input or output is to be
read or written, then the reading or writing must be preceded by a reset or rewrite call. In general, if the
Pascal file variable has never been used before, there will be no UNIX filename associated with it. As we
saw in section 2.9, by mentioning the file in the program statement, we could cause a UNIX file with the
same name as the Pascal variable to be associated with it. If we do not mention a file in the program state-
ment and use it for the first time with the statement

reset(f)

or

rewrite(f)

then the Pascal system will generate a temporary name of the form ‘tmp.x’ for some character ‘x’, and
associate this UNIX file name name with the Pascal file. The first such generated name will be ‘tmp.1’ and
the names continue by incrementing their last character through the ASCII set. The advantage of using such
temporary files is that they are automatically remove d by the Pascal system as soon as they become inac-
cessible. They are not removed, however, if a runtime error causes termination while they are in scope.

To cause a particular UNIX pathname to be associated with a Pascal file variable we can give that
name in the reset or rewrite call, e.g. we could have associated the Pascal file data with the file ‘primes’ in
our example in section 3.1 by doing:

reset(data, ´primes´)

Berkeley Pascal User´s Manual PSD:7−29

instead of a simple

reset(data)

In this case it is not essential to mention ‘data’ in the program statement, but it is still a good idea because
is serves as an aid to program documentation. The second parameter to reset and rewrite may be any
string value, including a variable. Thus the names of UNIX files to be associated with Pascal file variables
can be read in at run time. Full details on file name/file variable associations are given in section A.3.

4.6. Argc and argv

Each UNIX process receives a variable length sequence of arguments each of which is a variable
length character string. The built-in function argc and the built-in procedure argv can be used to access
and process these arguments. The value of the function argc is the number of arguments to the process.
By convention, the arguments are treated as an array, and indexed from 0 to argc −1, with the zeroth argu-
ment being the name of the program being executed. The rest of the arguments are those passed to the
command on the command line. Thus, the command

% obj /etc/motd /usr/dict/words hello

will invoke the program in the file obj with argc having a value of 4. The zeroth element accessed by
argv will be ‘obj’, the first ‘/etc/motd’, etc.

Pascal does not provide variable size arrays, nor does it allow character strings of varying length. ne
1i For this reason, argv is a procedure and has the syntax

argv(i, a)

where i is an integer and a is a string variable. This procedure call assigns the (possibly truncated or blank
padded) i ’th argument of the current process to the string variable a . The file manipulation routines reset
and rewrite will strip trailing blanks from their optional second arguments so that this blank padding is not
a problem in the usual case where the arguments are file names.

We are now ready to give a Berkeley Pascal program ‘kat’, based on that given in section 3.1 above,
which can be used with the same syntax as the UNIX system program cat (1).

% cat kat.p
program kat(input, output);
var

ch: char;
i: integer;
name: packed array [1..100] of char;

begin
i := 1;
repeat

if i < argc then begin
argv(i, name);
reset(input, name);
i := i + 1

end;
while not eof do begin

while not eoln do begin
read(ch);
write(ch)

end;
readln;
writeln

end

PSD:7−30 Berkeley Pascal User´s Manual

until i >= argc
end { kat }.
%

Note that the reset call to the file input here, which is necessary for a clear program, may be disallowed on
other systems. As this program deals mostly with argc and argv and UNIX system dependent considera-
tions, portability is of little concern.

If this program is in the file ‘kat.p’, then we can do

% pi kat.p
% mv obj kat
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

927 statements executed in 0.00 seconds cpu time.
% kat
This is a line of text.
This is a line of text.
The next line contains only an end−−of−−file (an invisible control−−d!)
The next line contains only an end−of−file (an invisible control−d!)

284 statements executed in 0.01 seconds cpu time.
%

Thus we see that, if it is given arguments, ‘kat’ will, like cat, copy each one in turn. If no arguments are
given, it copies from the standard input. Thus it will work as it did before, with

% kat < primes

now equivalent to

% kat primes

although the mechanisms are quite different in the two cases. Note that if ‘kat’ is given a bad file name, for
example:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"+5 near line 11.

4 statements executed in 0.00 seconds cpu time.
%

it will give a diagnostic and a post-mortem control flow backtrace for debugging. If we were going to use
‘kat’, we might want to translate it differently, e.g.:

% pi −−pb kat.p
% mv obj kat

Here we have disabled the post-mortem statistics printing, so as not to get the statistics or the full traceback

Berkeley Pascal User´s Manual PSD:7-31

on error. The b option will cause the system to block buffer the input/output so that the program will run
more efficiently on large files. We could have also specified the t option to turn off runtime tests if that
was felt to be a speed hindrance to the program. Thus we can try the last examples again:

% kat xxxxqqq

Could not open xxxxqqq: No such file or directory

Error in "kat"
% kat primes

2 3 5 7 11 13 17 19 23 29
31 37 41 43 47 53 59 61 67 71
73 79 83 89 97 101 103 107 109 113

127 131 137 139 149 151 157 163 167 173
179 181 191 193 197 199 211 223 227 229

%

The interested reader may wish to try writing a program which accepts command line arguments like
pi does, using argc and argv to process them.

5. Details on the components of the system

5.1. Options

The programs pi , pc , and pxp take a number of options.† There is a standard UNIX convention for
passing options to programs on the command line, and this convention is followed by the Berkeley Pascal
system programs. As we saw in the examples above, option related arguments consisted of the character
‘−’ followed by a single character option name.

Except for the b option which takes a single digit value, each option may be set on (enabled) or off
(disabled.) When an on/off valued option appears on the command line of pi or it inverts the default set-
ting of that option. Thus

% pi −−l foo.p

enables the listing option l, since it defaults off, while

% pi −−t foo.p

disables the run time tests option t, since it defaults on.

In additon to inverting the default settings of pi options on the command line, it is also possible to
control the pi options within the body of the program by using comments of a special form illustrated by

{$l−}

Here we see that the opening comment delimiter (which could also be a ‘(∗ ’) is immediately fol-
lowed by the character ‘$’. After this ‘$’, which signals the start of the option list, we can place a sequence
of letters and option controls, separated by ‘,’ characters‡. The most basic actions for options are to set
them, thus

hhhhhhhhhhhhhhhhhh
†As pix uses pi to translate Pascal programs, it takes the options of pi also. We refer to them here, however, as pi options.
‡This format was chosen because it is used by Pascal 6000-3.4. In general the options common to both implementations
are controlled in the same way so that comment control in options is mostly portable. It is recommended, however, that
only one control be put per comment for maximum portability, as the Pascal 6000-3.4 implementation will ignore controls
after the first one which it does not recognize.

PSD:7-32 Berkeley Pascal User´s Manual

{$l+ Enable listing}

or to clear them

{$t−,p− No run−time tests, no post mortem analysis}

Notice that ‘+’ always enables an option and ‘−’ always disables it, no matter what the default is. Thus ‘−’
has a different meaning in an option comment than it has on the command line. As shown in the examples,
normal comment text may follow the option list.

5.2. Options common to Pi, Pc, and Pix

The following options are common to both the compiler and the interpreter. With each option we
give its default setting, the setting it would have if it appeared on the command line, and a sample com-
mand using the option. Most options are on/off valued, with the b option taking a single digit value.

Buffering of the file output −− b

The b option controls the buffering of the file output . The default is line buffering, with flushing at
each reference to the file input and under certain other circumstances detailed in section 5 below. Men-
tioning b on the command line, e.g.

% pi −−b assembler.p

causes standard output to be block buffered, where a block is some system−defined number of characters.
The b option may also be controlled in comments. It, unique among the Berkeley Pascal options, takes a
single digit value rather than an on or off setting. A value of 0, e.g.

{$b0}

causes the file output to be unbuffered. Any value 2 or greater causes block buffering and is equivalent to
the flag on the command line. The option control comment setting b must precede the program statement.

Include file listing −− i

The i option takes the name of an include file, procedure or function name and causes it to be listed
while translating†. Typical uses would be

% pix −−i scanner.i compiler.p

to make a listing of the routines in the file scanner.i, and

% pix −−i scanner compiler.p

to make a listing of only the routine scanner . This option is especially useful for conservation-minded pro-
grammers making partial program listings.

Make a listing −− l

The l option enables a listing of the program. The l option defaults off. When specified on the com-
mand line, it causes a header line identifying the version of the translator in use and a line giving the
modification time of the file being translated to appear before the actual program listing. The l option is
pushed and popped by the i option at appropriate points in the program.

Standard Pascal only −− s

The s option causes many of the features of the UNIX implementation which are not found in standard
Pascal to be diagnosed as ‘s’ warning errors. This option defaults off and is enabled when mentioned on
hhhhhhhhhhhhhhhhhh
†Include files are discussed in section 5.9.

Berkeley Pascal User´s Manual PSD:7-33

the command line. Some of the features which are diagnosed are: non-standard procedures and functions,
extensions to the procedure write , and the padding of constant strings with blanks. In addition, all letters
are mapped to lower case except in strings and characters so that the case of keywords and identifiers is
effectively ignored. The s option is most useful when a program is to be transported, thus

% pi −−s isitstd.p

will produce warnings unless the program meets the standard.

Runtime tests −− t and C

These options control the generation of tests that subrange variable values are within bounds at run
time. pi defaults to generating tests and uses the option t to disable them. pc defaults to not generating
tests, and uses the option C to enable them. Disabling runtime tests also causes assert statements to be
treated as comments.‡

Suppress warning diagnostics −− w

The w option, which defaults on, allows the translator to print a number of warnings about incon-
sistencies it finds in the input program. Turning this option off with a comment of the form

{$w−}

or on the command line

% pi −−w tryme.p

suppresses these usually useful diagnostics.

Generate counters for a pxp execution profile −− z

The z option, which defaults off, enables the production of execution profiles. By specifying z on the
command line, i.e.

% pi −−z foo.p

or by enabling it in a comment before the program statement causes pi and pc to insert operations in the
interpreter code to count the number of times each statement was executed. An example of using pxp was
given in section 2.6; its options are described in section 5.6. Note that the z option cannot be used on
separately compiled programs.

5.3. Options available in Pi

Post-mortem dump −− p

The p option defaults on, and causes the runtime system to initiate a post-mortem backtrace when an
error occurs. It also cause px to count statements in the executing program, enforcing a statement limit to
prevent infinite loops. Specifying p on the command line disables these checks and the ability to give this
post-mortem analysis. It does make smaller and faster programs, however. It is also possible to control the
p option in comments. To prevent the post-mortem backtrace on error, p must be off at the end of the pro-
gram statement. Thus, the Pascal cross-reference program was translated with

% pi −−pbt pxref.p

hhhhhhhhhhhhhhhhhh
‡See section A.1 for a description of assert statements.

PSD:7-34 Berkeley Pascal User´s Manual

5.4. Options available in Px

The first argument to px is the name of the file containing the program to be interpreted. If no argu-
ments are given, then the file obj is executed. If more arguments are given, they are available to the Pascal
program by using the built-ins argc and argv as described in section 4.6.

Px may also be invoked automatically. In this case, whenever a Pascal object file name is given as a
command, the command will be executed with px prepended to it; that is

% obj primes

will be converted to read

% px obj primes

5.5. Options available in Pc

Generate assembly language −− S

The program is compiled and the assembly language output is left in file appended .s. Thus

% pc −−S foo.p

creates a file foo.s . No executable file is created.

Symbolic Debugger Information −− g

The g option causes the compiler to generate information needed by sdb (1) the symbolic debugger.
For a complete description of sdb see Volume 2c of the UNIX Reference Manual.

Redirect the output file −− o

The name argument after the -o is used as the name of the output file instead of a.out . Its typical use
is to name the compiled program using the root of the file name. Thus:

% pc −−o myprog myprog.p

causes the compiled program to be called myprog .

Generate counters for a prof execution profile −− p

The compiler produces code which counts the number of times each routine is called. The profiling
is based on a periodic sample taken by the system rather than by inline counters used by pxp . This results
in less degradation in execution, at somewhat of a loss in accuracy. See prof (1) for a more complete
description.

Run the object code optimizer −− O

The output of the compiler is run through the object code optimizer. This provides an increase in
compile time in exchange for a decrease in compiled code size and execution time.

5.6. Options available in Pxp

Pxp takes, on its command line, a list of options followed by the program file name, which must end
in ‘.p’ as it must for pi , pc , and pix . Pxp will produce an execution profile if any of the z, t or c options is
specified on the command line. If none of these options is specified, then pxp functions as a program
reformatter.

It is important to note that only the z and w options of pxp , which are common to pi , pc , and pxp
can be controlled in comments. All other options must be specified on the command line to have any
effect.

Berkeley Pascal User´s Manual PSD:7-35

The following options are relevant to profiling with pxp :

Include the bodies of all routines in the profile −− a

Pxp normally suppresses printing the bodies of routines which were never executed, to make the
profile more compact. This option forces all routine bodies to be printed.

Suppress declaration parts from a profile −− d

Normally a profile includes declaration parts. Specifying d on the command line suppresses declara-
tion parts.

Eliminate include directives −− e

Normally, pxp preserves include directives to the output when reformatting a program, as though
they were comments. Specifying −−e causes the contents of the specified files to be reformatted into the out-
put stream instead. This is an easy way to eliminate include directives, e.g. before transporting a program.

Fully parenthesize expressions −− f

Normally pxp prints expressions with the minimal parenthesization necessary to preserve the struc-
ture of the input. This option causes pxp to fully parenthesize expressions. Thus the statement which
prints as

d := a + b mod c / e

with minimal parenthesization, the default, will print as

d := a + ((b mod c) / e)

with the f option specified on the command line.

Left justify all procedures and functions −− j

Normally, each procedure and function body is indented to reflect its static nesting depth. This
option prevents this nesting and can be used if the indented output would be too wide.

Print a table summarizing procedure and function calls −− t

The t option causes pxp to print a table summarizing the number of calls to each procedure and
function in the program. It may be specified in combination with the z option, or separately.

Enable and control the profile −− z

The z profile option is very similar to the i listing control option of pi . If z is specified on the com-
mand line, then all arguments up to the source file argument which ends in ‘.p’ are taken to be the names of
procedures and functions or include files which are to be profiled. If this list is null, then the whole file is
to be profiled. A typical command for extracting a profile of part of a large program would be

% pxp −−z test parser.i compiler.p

This specifies that profiles of the routines in the file parser.i and the routine test are to be made.

5.7. Formatting programs using pxp

The program pxp can be used to reformat programs, by using a command of the form

% pxp dirty.p > clean.p

Note that since the shell creates the output file ‘clean.p’ before pxp executes, so ‘clean.p’ and ‘dirty.p’
must not be the same file.

PSD:7-36 Berkeley Pascal User´s Manual

Pxp automatically paragraphs the program, performing housekeeping chores such as comment align-
ment, and treating blank lines, lines containing exactly one blank and lines containing only a form-feed
character as though they were comments, preserving their vertical spacing effect in the output. Pxp distin-
guishes between four kinds of comments:

1) Left marginal comments, which begin in the first column of the input line and are placed in the
first column of an output line.

2) Aligned comments, which are preceded by no input tokens on the input line. These are aligned
in the output with the running program text.

3) Trailing comments, which are preceded in the input line by a token with no more than two
spaces separating the token from the comment.

4) Right marginal comments, which are preceded in the input line by a token from which they are
separated by at least three spaces or a tab. These are aligned down the right margin of the out-
put, currently to the first tab stop after the 40th column from the current ‘‘left margin’’.

Consider the following program.

% cat comments.p
{ This is a left marginal comment. }
program hello(output);
var i : integer; {This is a trailing comment}
j : integer; {This is a right marginal comment}
k : array [1..10] of array [1..10] of integer; {Marginal, but past the margin}
{
An aligned, multi−line comment
which explains what this program is
all about

}
begin
i := 1; {Trailing i comment}
{A left marginal comment}
{An aligned comment}
j := 1; {Right marginal comment}
k[1] := 1;
writeln(i, j, k[1])
end.

When formatted by pxp the following output is produced.

% pxp comments.p
{ This is a left marginal comment. }

program hello(output);
var

i: integer; {This is a trailing comment}
j: integer; {This is a right marginal comment}
k: array [1..10] of array [1..10] of integer; {Marginal, but past the margin}

{
An aligned, multi−line comment
which explains what this program is
all about

}
begin

i := 1; {Trailing i comment}
{A left marginal comment}

{An aligned comment}

Berkeley Pascal User´s Manual PSD:7−37

j := 1; {Right marginal comment}
k[1] := 1;
writeln(i, j, k[1])

end.
%

The following formatting related options are currently available in pxp . The options f and j described in
the previous section may also be of interest.

Strip comments −−s

The s option causes pxp to remove all comments from the input text.

Underline keywords −− i

A command line argument of the form −−i as in

% pxp −−i dirty.p

can be used to cause pxp to underline all keywords in the output for enhanced readability.

Specify indenting unit −− [23456789]

The normal unit which pxp uses to indent a structure statement level is 4 spaces. By giving an argu-
ment of the form −−d with d a digit, 2 ≤ d ≤ 9 you can specify that d spaces are to be used per level instead.

5.8. Pxref

The cross-reference program pxref may be used to make cross-referenced listings of Pascal pro-
grams. To produce a cross-reference of the program in the file ‘foo.p’ one can execute the command:

% pxref foo.p

The cross-reference is, unfortunately, not block structured. Full details on pxref are given in its manual
section pxref (1).

5.9. Multi-file programs

A text inclusion facility is available with Berkeley Pascal. This facility allows the interpolation of
source text from other files into the source stream of the translator. It can be used to divide large programs
into more manageable pieces for ease in editing, listing, and maintenance.

The include facility is based on that of the UNIX C compiler. To trigger it you can place the charac-
ter ‘#’ in the first portion of a line and then, after an arbitrary number of blanks or tabs, the word ‘include’
followed by a filename enclosed in single ‘´’ or double ‘"’ quotation marks. The file name may be fol-
lowed by a semicolon ‘;’ if you wish to treat this as a pseudo-Pascal statement. The filenames of included
files must end in ‘.i’. An example of the use of included files in a main program would be:

program compiler(input, output, obj);

#include "globals.i"
#include "scanner.i"
#include "parser.i"
#include "semantics.i"

begin
{ main program }

end.

PSD:7-38 Berkeley Pascal User´s Manual

At the point the include pseudo-statement is encountered in the input, the lines from the included file
are interpolated into the input stream. For the purposes of translation and runtime diagnostics and state-
ment numbers in the listings and post-mortem backtraces, the lines in the included file are numbered from
1. Nested includes are possible up to 10 deep.

See the descriptions of the i option of pi in section 5.2 above; this can be used to control listing when
include files are present.

When a non-trivial line is encountered in the source text after an include finishes, the ‘popped’
filename is printed, in the same manner as above.

For the purposes of error diagnostics when not making a listing, the filename will be printed before
each diagnostic if the current filename has changed since the last filename was printed.

5.10. Separate Compilation with Pc

A separate compilation facility is provided with the Berkeley Pascal compiler, pc . This facility
allows programs to be divided into a number of files and the pieces to be compiled individually, to be
linked together at some later time. This is especially useful for large programs, where small changes would
otherwise require time-consuming re-compilation of the entire program.

Normally, pc expects to be given entire Pascal programs. However, if given the −−c option on the
command line, it will accept a sequence of definitions and declarations, and compile them into a .o file, to
be linked with a Pascal program at a later time. In order that procedures and functions be available across
separately compiled files, they must be declared with the directive external. This directive is similar to the
directive forward in that it must precede the resolution of the function or procedure, and formal parameters
and function result types must be specified at the external declaration and may not be specified at the reso-
lution.

Type checking is performed across separately compiled files. Since Pascal type defintions define
unique types, any types which are shared between separately compiled files must be the same definition.
This seemingly impossible problem is solved using a facility similar to the include facility discussed
above. Definitions may be placed in files with the extension .h and the files included by separately com-
piled files. Each definition from a .h file defines a unique type, and all uses of a definition from the same .h
file define the same type. Similarly, the facility is extended to allow the definition of consts and the
declaration of labels, vars, and external functions and procedures. Thus procedures and functions
which are used between separately compiled files must be declared external, and must be so declared in a
.h file included by any file which calls or resolves the function or procedure. Conversely, functions and
procedures declared external may only be so declared in .h files. These files may be included only at the
outermost level, and thus define or declare global objects. Note that since only external function and pro-
cedure declarations (and not resolutions) are allowed in .h files, statically nested functions and pro-
cedures can not be declared external.

An example of the use of included .h files in a program would be:

program compiler(input, output, obj);

#include "globals.h"
#include "scanner.h"
#include "parser.h"
#include "semantics.h"

begin
{ main program }

end.

This might include in the main program the definitions and declarations of all the global labels,
consts, types vars from the file globals.h, and the external function and procedure declarations for each
of the separately compiled files for the scanner, parser and semantics. The header file scanner.h would
contain declarations of the form:

Berkeley Pascal User´s Manual PSD:7-39

type
token = record

{ token fields }
end;

function scan(var inputfile: text): token;
external;

Then the scanner might be in a separately compiled file containing:

#include "globals.h"
#include "scanner.h"

function scan;
begin

{ scanner code }
end;

which includes the same global definitions and declarations and resolves the scanner functions and pro-
cedures declared external in the file scanner.h.

A. Appendix to Wirth’s Pascal Report

This section is an appendix to the definition of the Pascal language in Niklaus Wirth’s Pascal Report
and, with that Report, precisely defines the Berkeley implementation. This appendix includes a summary
of extensions to the language, gives the ways in which the undefined specifications were resolved, gives
limitations and restrictions of the current implementation, and lists the added functions and procedures
available. It concludes with a list of differences with the commonly available Pascal 6000−3.4 implemen-
tation, and some comments on standard and portable Pascal.

A.1. Extensions to the language Pascal

This section defines non-standard language constructs available in Berkeley Pascal. The s standard
Pascal option of the translators pi and pc can be used to detect these extensions in programs which are to
be transported.

String padding

Berkeley Pascal will pad constant strings with blanks in expressions and as value parameters to make
them as long as is required. The following is a legal Berkeley Pascal program:

program x(output);
var z : packed array [1 .. 13] of char;
begin

z := ´red´;
writeln(z)

end;

The padded blanks are added on the right. Thus the assignment above is equivalent to:

z := ´red ´

which is standard Pascal.

Octal constants, octal and hexadecimal write

Octal constants may be given as a sequence of octal digits followed by the character ‘b’ or ‘B’. The
forms

PSD:7-40 Berkeley Pascal User´s Manual

write(a:n oct)

and

write(a:n hex)

cause the internal representation of expression a, which must be Boolean, character, integer, pointer, or a
user-defined enumerated type, to be written in octal or hexadecimal respectively.

Assert statement

An assert statement causes a Boolean expression to be evaluated each time the statement is exe-
cuted. A runtime error results if any of the expressions evaluates to be false . The assert statement is
treated as a comment if run-time tests are disabled. The syntax for assert is:

assert <expr>

Enumerated type input-output

Enumerated types may be read and written. On output the string name associated with the
enumerated value is output. If the value is out of range, a runtime error occurs. On input an identifier is
read and looked up in a table of names associated with the type of the variable, and the appropriate internal
value is assigned to the variable being read. If the name is not found in the table a runtime error occurs.

Structure returning functions

An extension has been added which allows functions to return arbitrary sized structures rather than
just scalars as in the standard.

Separate compilation

The compiler pc has been extended to allow separate compilation of programs. Procedures and
functions declared at the global level may be compiled separately. Type checking of calls to separately
compiled routines is performed at load time to insure that the program as a whole is consistent. See section
5.10 for details.

A.2. Resolution of the undefined specifications

File name −− file variable associations

Each Pascal file variable is associated with a named UNIX file. Except for input and output, which
are exceptions to some of the rules, a name can become associated with a file in any of three ways:

1) If a global Pascal file variable appears in the program statement then it is associated with
UNIX file of the same name.

2) If a file was reset or rewritten using the extended two-argument form of reset or rewrite then
the given name is associated.

3) If a file which has never had UNIX name associated is reset or rewritten without specifying a
name via the second argument, then a temporary name of the form ‘tmp.x’ is associated with
the file. Temporary names start with ‘tmp.1’ and continue by incrementing the last character
in the USASCII ordering. Temporary files are removed automatically when their scope is exited.

The program statement

The syntax of the program statement is:

program <id> (<file id> { , <file id > }) ;

The file identifiers (other than input and output) must be declared as variables of file type in the global
declaration part.

Berkeley Pascal User´s Manual PSD:7-41

The files input and output

The formal parameters input and output are associated with the UNIX standard input and output and
have a somewhat special status. The following rules must be noted:

1) The program heading must contains the formal parameter output. If input is used, explicitly
or implicitly, then it must also be declared here.

2) Unlike all other files, the Pascal files input and output must not be defined in a declaration, as
their declaration is automatically:

var input, output: text

3) The procedure reset may be used on input. If no UNIX file name has ever been associated with
input, and no file name is given, then an attempt will be made to ‘rewind’ input. If this fails, a
run time error will occur. Rewrite calls to output act as for any other file, except that output
initially has no associated file. This means that a simple

rewrite(output)

associates a temporary name with output.

Details for files

If a file other than input is to be read, then reading must be initiated by a call to the procedure reset
which causes the Pascal system to attempt to open the associated UNIX file for reading. If this fails, then a
runtime error occurs. Writing of a file other than output must be initiated by a rewrite call, which causes
the Pascal system to create the associated UNIX file and to then open the file for writing only.

Buffering

The buffering for output is determined by the value of the b option at the end of the program state-
ment. If it has its default value 1, then output is buffered in blocks of up to 512 characters, flushed when-
ever a writeln occurs and at each reference to the file input. If it has the value 0, output is unbuffered. Any
value of 2 or more gives block buffering without line or input reference flushing. All other output files are
always buffered in blocks of 512 characters. All output buffers are flushed when the files are closed at
scope exit, whenever the procedure message is called, and can be flushed using the built-in procedure
flush.

An important point for an interactive implementation is the definition of ‘input↑ ’. If input is a tele-
type, and the Pascal system reads a character at the beginning of execution to define ‘input↑ ’, then no
prompt could be printed by the program before the user is required to type some input. For this reason,
‘input↑ ’ is not defined by the system until its definition is needed, reading from a file occurring only when
necessary.

The character set

Seven bit USASCII is the character set used on UNIX. The standard Pascal symbols ‘and’, ’or’, ’not’,
’<=’, ’>=’, ’<>’, and the uparrow ‘↑ ’ (for pointer qualification) are recognized.† Less portable are the
synonyms tilde ‘˜’ for not, ‘&’ for and, and ‘|’ for or.

Upper and lower case are considered to be distinct. Keywords and built-in procedure and function
names are composed of all lower case letters. Thus the identifiers GOTO and GOto are distinct both from
each other and from the keyword goto. The standard type ‘boolean’ is also available as ‘Boolean’.

Character strings and constants may be delimited by the character ‘´’ or by the character ‘#’; the
latter is sometimes convenient when programs are to be transported. Note that the ‘#’ character has special
hhhhhhhhhhhhhhhhhh
†On many terminals and printers, the up arrow is represented as a circumflex ‘ˆ’. These are not distinct characters, but rath-
er different graphic representations of the same internal codes.
The proposed standard for Pascal considers them to be the same.

PSD:7-42 Berkeley Pascal User´s Manual

meaning when it is the first character on a line − see Multi-file programs below.

The standard types

The standard type integer is conceptually defined as

type integer = minint .. maxint;

Integer is implemented with 32 bit twos complement arithmetic. Predefined constants of type integer are:

const maxint = 2147483647; minint = −2147483648;

The standard type char is conceptually defined as

type char = minchar .. maxchar;

Built-in character constants are ‘minchar’ and ‘maxchar’, ‘bell’ and ‘tab’; ord(minchar) = 0, ord(maxchar)
= 127.

The type real is implemented using 64 bit floating point arithmetic. The floating point arithmetic is
done in ‘rounded’ mode, and provides approximately 17 digits of precision with numbers as small as 10 to
the negative 38th power and as large as 10 to the 38th power.

Comments

Comments can be delimited by either ‘{’ and ‘}’ or by ‘(∗ ’ and ‘∗)’. If the character ‘{’ appears in a
comment delimited by ‘{’ and ‘}’, a warning diagnostic is printed. A similar warning will be printed if the
sequence ‘(∗ ’ appears in a comment delimited by ‘(∗ ’ and ‘∗)’. The restriction implied by this warning is
not part of standard Pascal, but detects many otherwise subtle errors.

Option control

Options of the translators may be controlled in two distinct ways. A number of options may appear
on the command line invoking the translator. These options are given as one or more strings of letters pre-
ceded by the character ‘−’ and cause the default setting of each given option to be changed. This method
of communication of options is expected to predominate for UNIX. Thus the command

% pi −−l −−s foo.p

translates the file foo.p with the listing option enabled (as it normally is off), and with only standard Pascal
features available.

If more control over the portions of the program where options are enabled is required, then option
control in comments can and should be used. The format for option control in comments is identical to that
used in Pascal 6000−3.4. One places the character ‘$’ as the first character of the comment and follows it
by a comma separated list of directives. Thus an equivalent to the command line example given above
would be:

{$l+,s+ listing on, standard Pascal}

as the first line of the program. The ‘l’ option is more appropriately specified on the command line, since it
is extremely unlikely in an interactive environment that one wants a listing of the program each time it is
translated.

Directives consist of a letter designating the option, followed either by a ‘+’ to turn the option on, or
by a ‘−’ to turn the option off. The b option takes a single digit instead of a ‘+’ or ‘−’.

Notes on the listings

The first page of a listing includes a banner line indicating the version and date of generation of pi or
pc . It also includes the UNIX path name supplied for the source file and the date of last modification of that
file.

Berkeley Pascal User´s Manual PSD:7-43

Within the body of the listing, lines are numbered consecutively and correspond to the line numbers
for the editor. Currently, two special kinds of lines may be used to format the listing: a line consisting of a
form-feed character, control-l, which causes a page eject in the listing, and a line with no characters which
causes the line number to be suppressed in the listing, creating a truly blank line. These lines thus
correspond to ‘eject’ and ‘space’ macros found in many assemblers. Non-printing characters are printed as
the character ‘?’ in the listing.†

The standard procedure write

If no minimum field length parameter is specified for a write, the following default values are
assumed:

integer 10
real 22
Boolean length of ‘true’ or ‘false’
char 1
string length of the string
oct 11
hex 8

The end of each line in a text file should be explicitly indicated by ‘writeln(f)’, where ‘writeln(output)’
may be written simply as ‘writeln’. For UNIX, the built-in function ‘page(f)’ puts a single ASCII form-feed
character on the output file. For programs which are to be transported the filter pcc can be used to interpret
carriage control, as UNIX does not normally do so.

A.3. Restrictions and limitations

Files

Files cannot be members of files or members of dynamically allocated structures.

Arrays, sets and strings

The calculations involving array subscripts and set elements are done with 16 bit arithmetic. This
restricts the types over which arrays and sets may be defined. The lower bound of such a range must be
greater than or equal to −32768, and the upper bound less than 32768. In particular, strings may have any
length from 1 to 65535 characters, and sets may contain no more than 65535 elements.

Line and symbol length

There is no intrinsic limit on the length of identifiers. Identifiers are considered to be distinct if they
differ in any single position over their entire length. There is a limit, however, on the maximum input line
length. This limit is quite generous however, currently exceeding 160 characters.

Procedure and function nesting and program size

At most 20 levels of procedure and function nesting are allowed. There is no fundamental, transla-
tor defined limit on the size of the program which can be translated. The ultimate limit is supplied by the
hardware and thus, on the PDP-11, by the 16 bit address space. If one runs up against the ‘ran out of
memory’ diagnostic the program may yet translate if smaller procedures are used, as a lot of space is freed
by the translator at the completion of each procedure or function in the current implementation.

On the VAX-11, there is an implementation defined limit of 65536 bytes per variable. There is no
limit on the number of variables.

hhhhhhhhhhhhhhhhhh
†The character generated by a control-i indents to the next ‘tab stop’. Tab stops are set every 8 columns in UNIX. Tabs
thus provide a quick way of indenting in the program.

PSD:7-44 Berkeley Pascal User´s Manual

Overflow

There is currently no checking for overflow on arithmetic operations at run-time on the PDP-11.
Overflow checking is performed on the VAX-11 by the hardware.

A.4. Added types, operators, procedures and functions

Additional predefined types

The type alfa is predefined as:

type alfa = packed array [1..10] of char

The type intset is predefined as:

type intset = set of 0..127

In most cases the context of an expression involving a constant set allows the translator to determine the
type of the set, even though the constant set itself may not uniquely determine this type. In the cases where
it is not possible to determine the type of the set from local context, the expression type defaults to a set
over the entire base type unless the base type is integer†. In the latter case the type defaults to the current
binding of intset, which must be ‘‘type set of (a subrange of) integer’’ at that point.

Note that if intset is redefined via:

type intset = set of 0..58;

then the default integer set is the implicit intset of Pascal 6000−3.4

Additional predefined operators

The relationals ‘<’ and ‘>’ of proper set inclusion are available. With a and b sets, note that

(not (a < b)) <> (a >= b)

As an example consider the sets a = [0,2] and b = [1]. The only relation true between these sets is ‘<>’.

Non-standard procedures

argv(i,a) where i is an integer and a is a string variable assigns the (possibly trun-
cated or blank padded) i ’th argument of the invocation of the current UNIX
process to the variable a . The range of valid i is 0 to argc−1 .

date(a) assigns the current date to the alfa variable a in the format ‘dd mmm yy ’,
where ‘mmm’ is the first three characters of the month, i.e. ‘Apr’.

flush(f) writes the output buffered for Pascal file f into the associated UNIX file.

halt terminates the execution of the program with a control flow backtrace.

linelimit(f,x)‡ with f a textfile and x an integer expression causes the program to be abnor-
mally terminated if more than x lines are written on file f . If x is less than 0
then no limit is imposed.

message(x,...) causes the parameters, which have the format of those to the built-in pro-
cedure write, to be written unbuffered on the diagnostic unit 2, almost
always the user’s terminal.

null a procedure of no arguments which does absolutely nothing. It is useful as a
place holder, and is generated by pxp in place of the invisible empty

hhhhhhhhhhhhhhhhhh
†The current translator makes a special case of the construct ‘if ... in [...]’ and enforces only the more lax restriction on 16
bit arithmetic given above in this case.
‡Currently ignored by pdp-11 px .

Berkeley Pascal User´s Manual PSD:7-45

statement.

remove(a) where a is a string causes the UNIX file whose name is a, with trailing
blanks eliminated, to be removed.

reset(f,a) where a is a string causes the file whose name is a (with blanks trimmed) to
be associated with f in addition to the normal function of reset.

rewrite(f,a) is analogous to ‘reset’ above.

stlimit(i) where i is an integer sets the statement limit to be i statements. Specifying
the p option to pc disables statement limit counting.

time(a) causes the current time in the form ‘ hh:mm:ss ’ to be assigned to the alfa
variable a.

Non-standard functions

argc returns the count of arguments when the Pascal program was invoked.
Argc is always at least 1.

card(x) returns the cardinality of the set x, i.e. the number of elements contained in
the set.

clock returns an integer which is the number of central processor milliseconds of
user time used by this process.

expo(x) yields the integer valued exponent of the floating-point representation of x ;
expo(x) = entier(log2(abs(x))).

random(x) where x is a real parameter, evaluated but otherwise ignored, invokes a
linear congruential random number generator. Successive seeds are gen-
erated as (seed∗ a + c) mod m and the new random number is a normaliza-
tion of the seed to the range 0.0 to 1.0; a is 62605, c is 113218009, and m is
536870912. The initial seed is 7774755.

seed(i) where i is an integer sets the random number generator seed to i and returns
the previous seed. Thus seed(seed(i)) has no effect except to yield value i.

sysclock an integer function of no arguments returns the number of central processor
milliseconds of system time used by this process.

undefined(x) a Boolean function. Its argument is a real number and it always returns
false.

wallclock an integer function of no arguments returns the time in seconds since
00:00:00 GMT January 1, 1970.

A.5. Remarks on standard and portable Pascal

It is occasionally desirable to prepare Pascal programs which will be acceptable at other Pascal ins-
tallations. While certain system dependencies are bound to creep in, judicious design and programming
practice can usually eliminate most of the non-portable usages. Wirth’s Pascal Report concludes with a
standard for implementation and program exchange.

In particular, the following differences may cause trouble when attempting to transport programs
between this implementation and Pascal 6000−3.4. Using the s translator option may serve to indicate
many problem areas.†

hhhhhhhhhhhhhhhhhh
†The s option does not, however, check that identifiers differ in the first 8 characters. Pi and pc also do not check the se-
mantics of packed.

PSD:7-46 Berkeley Pascal User´s Manual

Features not available in Berkeley Pascal

Segmented files and associated functions and procedures.

The function trunc with two arguments.

Arrays whose indices exceed the capacity of 16 bit arithmetic.

Features available in Berkeley Pascal but not in Pascal 6000-3.4

The procedures reset and rewrite with file names.

The functions argc, seed, sysclock, and wallclock.

The procedures argv, flush, and remove.

Message with arguments other than character strings.

Write with keyword hex.

The assert statement.

Reading and writing of enumerated types.

Allowing functions to return structures.

Separate compilation of programs.

Comparison of records.

Other problem areas

Sets and strings are more general in Berkeley Pascal; see the restrictions given in the Jensen-Wirth
User Manual for details on the 6000−3.4 restrictions.

The character set differences may cause problems, especially the use of the function chr, characters
as arguments to ord, and comparisons of characters, since the character set ordering differs between the
two machines.

The Pascal 6000−3.4 compiler uses a less strict notion of type equivalence. In Berkeley Pascal,
types are considered identical only if they are represented by the same type identifier. Thus, in particular,
unnamed types are unique to the variables/fields declared with them.

Pascal 6000−3.4 doesn’t recognize our option flags, so it is wise to put the control of Berkeley Pascal
options to the end of option lists or, better yet, restrict the option list length to one.

For Pascal 6000−3.4 the ordering of files in the program statement has significance. It is desirable to
place input and output as the first two files in the program statement.

Acknowledgments

The financial support of William Joy and Susan Graham by the National Science Foundation under
grants MCS74-07644-A04, MCS78-07291, and MCS80-05144, and of William Joy by an IBM Graduate
Fellowship are gratefully acknowledged.

