
Berkeley Software Architecture Manual
4.4BSD Edition

M. Kirk McKusick, Michael Karels

Samuel Leffler, William Joy

Robert Fabry

Computer Systems Research Group
Computer Science Division

Department of Electrical Engineering and Computer Science
University of California, Berkeley

Berkeley, CA 94720

ABSTRACT

This document summarizes the system calls provided by the 4.4BSD operating sys-
tem. It does not attempt to act as a tutorial for use of the system, nor does it attempt to
explain or justify the design of the system facilities. It gives neither motivation nor
implementation details, in favor of brevity.

The first section describes the basic kernel functions provided to a process: process
naming and protection, memory management, software interrupts, time and statistics
functions, object references (descriptors), and resource controls. These facilities, as well
as facilities for bootstrap, shutdown and process accounting, are provided solely by the
kernel.

The second section describes the standard system abstractions for files and filesys-
tems, communication, terminal handling, and process control and debugging. These
facilities are implemented by the operating system or by network server processes.

PSD:5-4 4.4BSD Architecture Manual

Notation and Types

The notation used to describe system calls is a variant of a C language function call, consisting of a
prototype call followed by the declaration of parameters and results. An additional keyword result, not
part of the normal C language, is used to indicate which of the declared entities receive results. As an
example, consider the read call, as described in section 2.1.1:

cc = read(fd, buf, nbytes);
result ssize_t cc; int fd; result void *buf; size_t nbytes;

The first line shows how the read routine is called, with three parameters. As shown on the second line,
the return value cc is a size_t and read also returns information in the parameter buf.

The descriptions of error conditions arising from each system call are not provided here; they appear
in section 2 of the Programmer’s Reference Manual. In particular, when accessed from the C language,
many calls return a characteristic −1 value when an error occurs, returning the error code in the global vari-
able errno. Other languages may present errors in different ways.

A number of system standard types are defined by the include file <sys/types.h> and used in the
specifications here and in many C programs.

Type Valueii
caddr_t char * /* a memory address */
clock_t unsigned long /* count of CLK_TCK’s */
gid_t unsigned long /* group ID */
int16_t short /* 16-bit integer */
int32_t int /* 32-bit integer */
int64_t long long /* 64-bit integer */
int8_t signed char /* 8-bit integer */
mode_t unsigned short /* file permissions */
off_t quad_t /* file offset */
pid_t long /* process ID */
qaddr_t quad_t *
quad_t long long
size_t unsigned int /* count of bytes */
ssize_t int /* signed size_t */
time_t long /* seconds since the Epoch */
u_char unsigned char
u_int unsigned int
u_int16_t unsigned short /* unsigned 16-bit integer */
u_int32_t unsigned int /* unsigned 32-bit integer */
u_int64_t unsigned long long /* unsigned 64-bit integer */
u_int8_t unsigned char /* unsigned 8-bit integer */
u_long unsigned long
u_quad_t unsigned long long
u_short unsigned short
uid_t unsigned long /* user ID */
uint unsigned int /* System V compatibility */
ushort unsigned short /* System V compatibility */

1. Kernel primitives

The facilities available to a user process are logically divided into two parts: kernel facilities directly
implemented by code running in the operating system, and system facilities implemented either by the sys-
tem, or in cooperation with a server process. The kernel facilities are described in section 1.

4.4BSD Architecture Manual PSD:5-5

The facilities implemented in the kernel are those which define the 4.4BSD virtual machine in which
each process runs. Like many real machines, this virtual machine has memory management hardware, an
interrupt facility, timers and counters. The 4.4BSD virtual machine allows access to files and other objects
through a set of descriptors. Each descriptor resembles a device controller, and supports a set of opera-
tions. Like devices on real machines, some of which are internal to the machine and some of which are
external, parts of the descriptor machinery are built-in to the operating system, while other parts are imple-
mented in server processes on other machines. The facilities provided through the descriptor machinery
are described in section 2.

1.1. Processes and protection

1.1.1. Host identifiers

Each host has associated with it an integer host ID, and a host name of up to MAXHOSTNAMELEN
(256) characters (as defined in <sys/param.h>). These identifiers are set (by a privileged user) and
retrieved using the sysctl interface described in section 1.7.1. The host ID is seldom used (or set), and is
deprecated. For convenience and backward compatibility, the following library routines are provided:

sethostid(hostid);
long hostid;

hostid = gethostid();
result long hostid;

sethostname(name, len);
char *name; int len;

len = gethostname(buf, buflen);
result int len; result char *buf; int buflen;

1.1.2. Process identifiers

Each host runs a set of processes. Each process is largely independent of other processes, having its own
protection domain, address space, timers, and an independent set of references to system or user imple-
mented objects.

Each process in a host is named by an integer called the process ID. This number is in the range
1-30000 and is returned by the getpid routine:

pid = getpid();
result pid_t pid;

On each host this identifier is guaranteed to be unique; in a multi-host environment, the (hostid, process ID)
pairs are guaranteed unique. The parent process identifier can be obtained using the getppid routine:

pid = getppid();
result pid_t pid;

1.1.3. Process creation and termination

A new process is created by making a logical duplicate of an existing process:

pid = fork();
result pid_t pid;

The fork call returns twice, once in the parent process, where pid is the process identifier of the child, and
once in the child process where pid is 0. The parent-child relationship imposes a hierarchical structure on
the set of processes in the system.

PSD:5-6 4.4BSD Architecture Manual

For processes that are forking solely for the purpose of execve’ing another program, the vfork system
call provides a faster interface:

pid = vfork();
result pid_t pid;

Like fork, the vfork call returns twice, once in the parent process, where pid is the process identifier of the
child, and once in the child process where pid is 0. The parent process is suspended until the child process
calls either execve or exit.

A process may terminate by executing an exit call:

exit(status);
int status;

The lower 8 bits of exit status are available to its parent.

When a child process exits or terminates abnormally, the parent process receives information about
the event which caused termination of the child process. The interface allows the parent to wait for a par-
ticular process, process group, or any direct descendent and to retrieve information about resources con-
sumed by the process during its lifetime. The request may be done either synchronously (waiting for one
of the requested processes to exit), or asynchronously (polling to see if any of the requested processes have
exited):

pid = wait4(wpid, astatus, options, arusage);
result pid_t pid; pid_t wpid; result int *astatus;
int options; result struct rusage *arusage;

A process can overlay itself with the memory image of another process, passing the newly created
process a set of parameters, using the call:

execve(name, argv, envp);
char *name, *argv[], *envp[];

The specified name must be a file which is in a format recognized by the system, either a binary executable
file or a file which causes the execution of a specified interpreter program to process its contents. If the
set-user-ID mode bit is set, the effective user ID is set to the owner of the file; if the set-group-ID mode bit
is set, the effective group ID is set to the group of the file. Whether changed or not, the effective user ID is
then copied to the saved user ID, and the effective group ID is copied to the saved group ID.

1.1.4. User and group IDs

Each process in the system has associated with it three user IDs: a real user ID, an effective user ID,
and a saved user ID, all unsigned integral types (uid_t). Each process has a real group ID and a set of
access group IDs, the first of which is the effective group ID. The group IDs are unsigned integral types
(gid_t). Each process may be in multiple access groups. The maximum concurrent number of access
groups is a system compilation parameter, represented by the constant NGROUPS in the file
<sys/param.h>. It is guaranteed to be at least 16.

The real group ID is used in process accounting and in testing whether the effective group ID may be
changed; it is not otherwise used for access control. The members of the access group ID set are used for
access control. Because the first member of the set is the effective group ID, which is changed when exe-
cuting a set-group-ID program, that element is normally duplicated in the set so that access privileges for
the original group are not lost when using a set-group-ID program.

The real and effective user IDs associated with a process are returned by:

ruid = getuid();
result uid_t ruid;

4.4BSD Architecture Manual PSD:5-7

euid = geteuid();
result uid_t euid;

the real and effective group IDs by:

rgid = getgid();
result gid_t rgid;

egid = getegid();
result gid_t egid;

The access group ID set is returned by a getgroups call:

ngroups = getgroups(gidsetsize, gidset);
result int ngroups; int gidsetsize; result gid_t gidset[gidsetsize];

The user and group IDs are assigned at login time using the setuid, setgid, and setgroups calls:

setuid(uid);
uid_t uid;

setgid(gid);
gid_t gid;

setgroups(gidsetsize, gidset);
int gidsetsize; gid_t gidset[gidsetsize];

The setuid call sets the real, effective, and saved user IDs, and is permitted only if the specified uid is the
current real user ID or if the caller is the super-user. The setgid call sets the real, effective, and saved
group IDs; it is permitted only if the specified gid is the current real group ID or if the caller is the super-
user. The setgroups call sets the access group ID set, and is restricted to the super-user.

The seteuid routine allows any process to set its effective user ID to either its real or saved user ID:

seteuid(uid);
uid_t uid;

The setegid routine allows any process to set its effective group ID to either its real or saved group ID:

setegid(gid);
gid_t gid;

1.1.5. Sessions

When a user first logs onto the system, they are put into a session with a controlling process (usually
a shell). The session is created with the call:

pid = setsid();
result pid_t pid;

All subsequent processes created by the user (that do not call setsid) will be part of the session. The ses-
sion also has a login name associated with it which is set using the privileged call:

setlogin(name);
char *name;

The login name can be retrieved using the call:

name = getlogin();
result char *name;

Unlike historic systems, the value returned by getlogin is stored in the kernel and can be trusted.

PSD:5-8 4.4BSD Architecture Manual

1.1.6. Process groups

Each process in the system is also associated with a process group. The group of processes in a pro-
cess group is sometimes referred to as a job and manipulated by high-level system software (such as the
shell). All members of a process group are members of the same session. The current process group of a
process is returned by the getpgrp call:

pgrp = getpgrp();
result pid_t pgrp;

When a process is in a specific process group it may receive software interrupts affecting the group, caus-
ing the group to suspend or resume execution or to be interrupted or terminated. In particular, a system ter-
minal has a process group and only processes which are in the process group of the terminal may read from
the terminal, allowing arbitration of a terminal among several different jobs.

The process group associated with a process may be changed by the setpgid call:

setpgid(pid, pgrp);
pid_t pid, pgrp;

Newly created processes are assigned process IDs distinct from all processes and process groups, and the
same process group as their parent. Any process may set its process group equal to its process ID or to the
value of any process group within its session.

1.2. Memory management

1.2.1. Text, data, and stack

Each process begins execution with three logical areas of memory called text, data, and stack. The
text area is read-only and shared, while the data and stack areas are writable and private to the process.
Both the data and stack areas may be extended and contracted on program request. The call:

brk(addr);
caddr_t addr;

sets the end of the data segment to the specified address. More conveniently, the end can be extended by
incr bytes, and the base of the new area returned with the call:

addr = sbrk(incr);
result caddr_t addr; int incr;

Application programs normally use the library routines malloc and free, which provide a more convenient
interface than brk and sbrk.

There is no call for extending the stack, as it is automatically extended as needed.

1.2.2. Mapping pages

The system supports sharing of data between processes by allowing pages to be mapped into
memory. These mapped pages may be shared with other processes or private to the process. Protection
and sharing options are defined in <sys/mman.h> as:

Protections are chosen from these bits, or-ed together:

PROT_READ /* pages can be read */
PROT_WRITE /* pages can be written */
PROT_EXEC /* pages can be executed */

4.4BSD Architecture Manual PSD:5-9

Flags contain sharing type and options. Sharing options, choose one:

MAP_SHARED /* share changes */
MAP_PRIVATE /* changes are private */

Option flags†:

MAP_ANON /* allocated from virtual memory; fd ignored */
MAP_FIXED /* map addr must be exactly as requested */
MAP_NORESERVE /* don’t reserve needed swap area */
MAP_INHERIT /* region is retained after exec */
MAP_HASSEMAPHORE /* region may contain semaphores */

The size of a page is cpu-dependent, and is returned by the sysctl interface described in section 1.7.1. The
getpagesize library routine is provided for convenience and backward compatibility:

pagesize = getpagesize();
result int pagesize;

The call:

maddr = mmap(addr, len, prot, flags, fd, pos);
result caddr_t maddr; caddr_t addr; size_t len; int prot, flags, fd; off_t pos;

causes the pages starting at addr and continuing for at most len bytes to be mapped from the object
represented by descriptor fd, starting at byte offset pos. If addr is NULL, the system picks an unused
address for the region. The starting address of the region is returned; for the convenience of the system, it
may differ from that supplied unless the MAP_FIXED flag is given, in which case the exact address will be
used or the call will fail. The addr parameter must be a multiple of the pagesize (if MAP_FIXED is given).
If pos and len are not a multiple of pagesize, they will be rounded (down and up respectively) to a page
boundary by the system; the rounding will cause the mapped region to extend past the specified range. A
successful mmap will delete any previous mapping in the allocated address range. The parameter prot
specifies the accessibility of the mapped pages. The parameter flags specifies the type of object to be
mapped, mapping options, and whether modifications made to this mapped copy of the page are to be kept
private, or are to be shared with other references. Possible types include MAP_SHARED or
MAP_PRIVATE that map a regular file or character-special device memory, and MAP_ANON, which
maps memory not associated with any specific file. The file descriptor used when creating MAP_ANON
regions is not used and should be −1. The MAP_INHERIT flag allows a region to be inherited after an
execve. The MAP_HASSEMAPHORE flag allows special handling for regions that may contain sema-
phores. The MAP_NORESERVE flag allows processes to allocate regions whose virtual address space, if
fully allocated, would exceed the available memory plus swap resources. Such regions may get a SIG-
SEGV signal if they page fault and resources are not available to service their request; typically they would
free up some resources via munmap so that when they return from the signal the page fault could be com-
pleted successfully.

A facility is provided to synchronize a mapped region with the file it maps; the call:

msync(addr, len);
caddr_t addr; size_t len;

causes any modified pages in the specified region to be synchronized with their source and other mappings.
If necessary, it writes any modified pages back to the filesystem, and updates the file modification time. If
len is 0, all modified pages within the region containing addr will be flushed; this usage is provisional, and
hhhhhhhhhhhhhhhhhh
† In 4.4BSD, only MAP_ANON and MAP_FIXED are implemented.

PSD:5-10 4.4BSD Architecture Manual

may be withdrawn. If len is non-zero, only the pages containing addr and len succeeding locations will be
examined. Any required synchronization of memory caches will also take place at this time.

Filesystem operations on a file that is mapped for shared modifications are currently unpredictable except
after an msync.

A mapping can be removed by the call

munmap(addr, len);
caddr_t addr; size_t len;

This call deletes the mappings for the specified address range, and causes further references to addresses
within the range to generate invalid memory references.

1.2.3. Page protection control

A process can control the protection of pages using the call:

mprotect(addr, len, prot);
caddr_t addr; size_t len; int prot;

This call changes the specified pages to have protection prot . Not all implementations will guarantee pro-
tection on a page basis; the granularity of protection changes may be as large as an entire region.

1.2.4. Giving and getting advice

A process that has knowledge of its memory behavior may use the madvise† call:

madvise(addr, len, behav);
caddr_t addr; size_t len; int behav;

Behav describes expected behavior, as given in <sys/mman.h>:

MADV_NORMAL /* no further special treatment */
MADV_RANDOM /* expect random page references */
MADV_SEQUENTIAL /* expect sequential references */
MADV_WILLNEED /* will need these pages */
MADV_DONTNEED /* don’t need these pages */

The mincore† function allows a process to obtain information about whether pages are memory resident:

mincore(addr, len, vec);
caddr_t addr; size_t len; result char *vec;

Here the current memory residency of the pages is returned in the character array vec, with a value of 1
meaning that the page is in-memory. Mincore provides only transient information about page residency.
Real-time processes that need guaranteed residence over time can use the call:

mlock(addr, len);
caddr_t addr; size_t len;

This call locks the pages for the specified address range into memory (paging them in if necessary) ensur-
ing that further references to addresses within the range will never generate page faults. The amount of
memory that may be locked is controlled by a resource limit, see section 1.6.3. When the memory is no
longer critical it can be unlocked using:

munlock(addr, len);
caddr_t addr; size_t len;

hhhhhhhhhhhhhhhhhh
† The entry point for this system call is defined, but is not implemented, so currently always returns with the error ‘‘Opera-
tion not supported.’’

4.4BSD Architecture Manual PSD:5-11

After the munlock call, the pages in the specified address range are still accessible but may be paged out if
memory is needed and they are not accessed.

1.2.5. Synchronization primitives

Primitives are provided for synchronization using semaphores in shared memory.‡ These primitives are
expected to be superseded by the semaphore interface being specified by the POSIX 1003 Pthread stan-
dard. They are provided as an efficient interim solution. Application programmers are encouraged to use
the Pthread interface when it becomes available.

Semaphores must lie within a MAP_SHARED region with at least modes PROT_READ and
PROT_WRITE. The MAP_HASSEMAPHORE flag must have been specified when the region was
created. To acquire a lock a process calls:

value = mset(sem, wait);
result int value; semaphore *sem; int wait;

Mset indivisibly tests and sets the semaphore sem. If the previous value is zero, the process has acquired
the lock and mset returns true immediately. Otherwise, if the wait flag is zero, failure is returned. If wait is
true and the previous value is non-zero, mset relinquishes the processor until notified that it should retry.

To release a lock a process calls:

mclear(sem);
semaphore *sem;

Mclear indivisibly tests and clears the semaphore sem. If the ‘‘WANT’’ flag is zero in the previous value,
mclear returns immediately. If the ‘‘WANT’’ flag is non-zero in the previous value, mclear arranges for
waiting processes to retry before returning.

Two routines provide services analogous to the kernel sleep and wakeup functions interpreted in the
domain of shared memory. A process may relinquish the processor by calling msleep with a set sema-
phore:

msleep(sem);
semaphore *sem;

If the semaphore is still set when it is checked by the kernel, the process will be put in a sleeping state until
some other process issues an mwakeup for the same semaphore within the region using the call:

mwakeup(sem);
semaphore *sem;

An mwakeup may awaken all sleepers on the semaphore, or may awaken only the next sleeper on a queue.

1.3. Signals

1.3.1. Overview

The system defines a set of signals that may be delivered to a process. Signal delivery resembles the
occurrence of a hardware interrupt: the signal is blocked from further occurrence, the current process con-
text is saved, and a new one is built. A process may specify a handler to which a signal is delivered, or
specify that the signal is to be blocked or ignored. A process may also specify that a default action is to be
taken when signals occur.

Some signals will cause a process to exit if they are not caught. This may be accompanied by crea-
tion of a core image file, containing the current memory image of the process for use in post-mortem
debugging. A process may also choose to have signals delivered on a special stack, so that sophisticated
software stack manipulations are possible.
hhhhhhhhhhhhhhhhhh
‡ All currently unimplemented, no entry points exists.

PSD:5-12 4.4BSD Architecture Manual

All signals have the same priority. If multiple signals are pending, signals that may be generated by
the program’s action are delivered first; the order in which other signals are delivered to a process is not
specified. Signal routines execute with the signal that caused their invocation blocked, but other signals
may occur. Multiple signals may be delivered on a single entry to the system, as if signal handlers were
interrupted by other signal handlers. Mechanisms are provided whereby critical sections of code may pro-
tect themselves against the occurrence of specified signals.

1.3.2. Signal types

The signals defined by the system fall into one of five classes: hardware conditions, software condi-
tions, input/output notification, process control, or resource control. The set of signals is defined by the file
<signal.h>.

Hardware signals are derived from exceptional conditions which may occur during execution. Such
signals include SIGFPE representing floating point and other arithmetic exceptions, SIGILL for illegal
instruction execution, SIGSEGV for attempts to access addresses outside the currently assigned area of
memory, and SIGBUS for accesses that violate memory access constraints.

Software signals reflect interrupts generated by user request: SIGINT for the normal interrupt signal;
SIGQUIT for the more powerful quit signal, which normally causes a core image to be generated; SIGHUP
and SIGTERM that cause graceful process termination, either because a user has ‘‘hung up’’, or by user or
program request; and SIGKILL, a more powerful termination signal which a process cannot catch or
ignore. Programs may define their own asynchronous events using SIGUSR1 and SIGUSR2. Other
software signals (SIGALRM, SIGVTALRM, SIGPROF) indicate the expiration of interval timers. When a
window changes size, a SIGWINCH is sent to the controlling terminal process group.

A process can request notification via a SIGIO signal when input or output is possible on a descrip-
tor, or when a non-blocking operation completes. A process may request to receive a SIGURG signal
when an urgent condition arises.

A process may be stopped by a signal sent to it or the members of its process group. The SIGSTOP
signal is a powerful stop signal, because it cannot be caught. Other stop signals SIGTSTP, SIGTTIN, and
SIGTTOU are used when a user request, input request, or output request respectively is the reason for stop-
ping the process. A SIGCONT signal is sent to a process when it is continued from a stopped state.
Processes may receive notification with a SIGCHLD signal when a child process changes state, either by
stopping or by terminating.

Exceeding resource limits may cause signals to be generated. SIGXCPU occurs when a process
nears its CPU time limit and SIGXFSZ when a process reaches the limit on file size.

1.3.3. Signal handlers

A process has a handler associated with each signal. The handler controls the way the signal is
delivered. The call:

struct sigaction {
void (*sa_handler)();
sigset_t sa_mask;
int sa_flags;

};

sigaction(signo, sa, osa);
int signo; struct sigaction *sa; result struct sigaction *osa;

assigns interrupt handler address sa_handler to signal signo. Each handler address specifies either an inter-
rupt routine for the signal, that the signal is to be ignored, or that a default action (usually process termina-
tion) is to occur if the signal occurs. The constants SIG_IGN and SIG_DFL used as values for sa_handler
cause ignoring or defaulting of a condition, respectively. The sa_mask value specifies the signal mask to
be used when the handler is invoked; it implicitly includes the signal which invoked the handler. Signal

4.4BSD Architecture Manual PSD:5-13

masks include one bit for each signal. The following macros, defined in signal.h, create an empty mask,
then put signo into it:

sigemptyset(set);
sigaddset(set, signo);
result sigset_t *set; int signo;

Sa_flags specifies whether pending system calls should be restarted if the signal handler returns
(SA_RESTART) and whether the handler should operate on the normal run-time stack or a special signal
stack (SA_ONSTACK; see below). If osa is non-zero, the previous signal handler information is returned.

When a signal condition arises for a process, the signal is added to a set of signals pending for the
process. If the signal is not currently blocked by the process it then will be delivered. The process of sig-
nal delivery adds the signal to be delivered and those signals specified in the associated signal handler’s
sa_mask to a set of those masked for the process, saves the current process context, and places the process
in the context of the signal handling routine. The call is arranged so that if the signal handling routine
returns normally, the signal mask will be restored and the process will resume execution in the original
context.

The mask of blocked signals is independent of handlers for signals. It delays signals from being
delivered much as a raised hardware interrupt priority level delays hardware interrupts. Preventing an
interrupt from occurring by changing the handler is analogous to disabling a device from further interrupts.

The signal handling routine sa_handler is called by a C call of the form:

(*sa_handler)(signo, code, scp);
int signo; long code; struct sigcontext *scp;

The signo gives the number of the signal that occurred, and the code, a word of signal-specific information
supplied by the hardware. The scp parameter is a pointer to a machine-dependent structure containing the
information for restoring the context before the signal. Normally this context will be restored when the sig-
nal handler returns. However, a process may do so at any time by using the call:

sigreturn(scp);
struct sigcontext *scp;

If the signal handler makes a call to longjmp, the signal mask at the time of the corresponding setjmp is
restored.

1.3.4. Sending signals

A process can send a signal to another process or processes group with the call:

kill(pid, signo)
pid_t pid; int signo;

For compatibility with old systems, a compatibility routine is provided to send a signal to a process group:

killpg(pgrp, signo)
pid_t pgrp; int signo;

Unless the process sending the signal is privileged, it must have the same effective user id as the process
receiving the signal.

Signals also are sent implicitly from a terminal device to the process group associated with the termi-
nal when certain input characters are typed.

1.3.5. Protecting critical sections

The sigprocmask system call is used to manipulate the mask of blocked signals:

sigprocmask(how, newmask, oldmask);
int how; sigset_t *newmask; result sigset_t *oldmask;

PSD:5-14 4.4BSD Architecture Manual

The actions done by sigprocmask are to add to the list of masked signals (SIG_BLOCK), delete from the
list of masked signals (SIG_UNBLOCK), and block a specific set of signals (SIG_SETMASK). The sig-
procmask call can be used to read the current mask by specifying SIG_BLOCK with an empty newmask .

It is possible to check conditions with some signals blocked, and then to pause waiting for a signal
and restoring the mask, by using:

sigsuspend(mask);
sigset_t *mask;

It is also possible to find out which blocked signals are pending delivery using the call:

sigpending(mask);
result sigset_t *mask;

1.3.6. Signal stacks

Applications that maintain complex or fixed size stacks can use the call:

struct sigaltstack {
caddr_t ss_sp;
long ss_size;
int ss_flags;

};

sigaltstack(ss, oss)
struct sigaltstack *ss; result struct sigaltstack *oss;

to provide the system with a stack based at ss_sp of size ss_size for delivery of signals. The value ss_flags
indicates whether the process is currently on the signal stack, a notion maintained in software by the sys-
tem.

When a signal is to be delivered to a handler for which the SA_ONSTACK flag was set, the system
checks whether the process is on a signal stack. If not, then the process is switched to the signal stack for
delivery, with the return from the signal doing a sigreturn to restore the previous stack. If the process takes
a non-local exit from the signal routine, longjmp will do a sigreturn call to switch back to the run-time
stack.

1.4. Timers

1.4.1. Real time

The system’s notion of the current time is in Coordinated Universal Time (UTC, previously GMT)
and the current time zone is set and returned by the calls:

settimeofday(tp, tzp);
struct timeval *tp;
struct timezone *tzp;

gettimeofday(tp, tzp);
result struct timeval *tp;
result struct timezone *tzp;

where the structures are defined in <sys/time.h> as:

4.4BSD Architecture Manual PSD:5-15

struct timeval {
long tv_sec; /* seconds since Jan 1, 1970 */
long tv_usec; /* and microseconds */

};
struct timezone {

int tz_minuteswest; /* of Greenwich */
int tz_dsttime; /* type of dst correction to apply */

};

The timezone information is present only for historical reasons and is unused by the current system.

The precision of the system clock is hardware dependent. Earlier versions of UNIX contained only a 1-
second resolution version of this call, which remains as a library routine:

time(tvsec);
result time_t *tvsec;

returning only the tv_sec field from the gettimeofday call.

The adjtime system calls allows for small changes in time without abrupt changes by skewing the rate at
which time advances:

adjtime(delta, olddelta);
struct timeval *delta; result struct timeval *olddelta;

1.4.2. Interval time

The system provides each process with three interval timers, defined in <sys/time.h>:

ITIMER_REAL /* real time intervals */
ITIMER_VIRTUAL /* virtual time intervals */
ITIMER_PROF /* user and system virtual time */

The ITIMER_REAL timer decrements in real time. It could be used by a library routine to maintain a
wakeup service queue. A SIGALRM signal is delivered when this timer expires.

The ITIMER_VIRTUAL timer decrements in process virtual time. It runs only when the process is
executing. A SIGVTALRM signal is delivered when it expires.

The ITIMER_PROF timer decrements both in process virtual time and when the system is running
on behalf of the process. It is designed to be used by processes to statistically profile their execution. A
SIGPROF signal is delivered when it expires.

A timer value is defined by the itimerval structure:

struct itimerval {
struct timeval it_interval; /* timer interval */
struct timeval it_value; /* current value */

};

and a timer is set or read by the call:

setitimer(which, value, ovalue);
int which; struct itimerval *value; result struct itimerval *ovalue;

getitimer(which, value);
int which; result struct itimerval *value;

The it_value specifies the time until the next signal; the it_interval specifies a new interval that should be

PSD:5-16 4.4BSD Architecture Manual

loaded into the timer on each expiration. The third argument to setitimer specifies an optional structure to
receive the previous contents of the interval timer. A timer can be disabled by setting it_value and
it_interval to 0.

The system rounds argument timer intervals to be not less than the resolution of its clock. This clock
resolution can be determined by loading a very small value into a timer and reading the timer back to see
what value resulted.

The alarm system call of earlier versions of UNIX is provided as a library routine using the
ITIMER_REAL timer.

The process profiling facilities of earlier versions of UNIX remain because it is not always possible
to guarantee the automatic restart of system calls after receipt of a signal. The profil call arranges for the
kernel to begin gathering execution statistics for a process:

profil(samples, size, offset, scale);
result char *samples; int size, offset, scale;

This call begins sampling the program counter, with statistics maintained in the user-provided buffer.

1.5. Descriptors

1.5.1. The reference table

Each process has access to resources through descriptors. Each descriptor is a handle allowing
processes to reference objects such as files, devices and communications links.

Rather than allowing processes direct access to descriptors, the system introduces a level of indirec-
tion, so that descriptors may be shared between processes. Each process has a descriptor reference table,
containing pointers to the actual descriptors. The descriptors themselves therefore may have multiple
references, and are reference counted by the system.

Each process has a limited size descriptor reference table, where the current size is returned by the
getdtablesize call:

nds = getdtablesize();
result int nds;

and guaranteed to be at least 64. The maximum number of descriptors is a resource limit (see section
1.6.3). The entries in the descriptor reference table are referred to by small integers; for example if there
are 64 slots they are numbered 0 to 63.

1.5.2. Descriptor properties

Each descriptor has a logical set of properties maintained by the system and defined by its type.
Each type supports a set of operations; some operations, such as reading and writing, are common to
several abstractions, while others are unique. For those types that support random access, the current file
offset is stored in the descriptor. The generic operations applying to many of these types are described in
section 2.1. Naming contexts, files and directories are described in section 2.2. Section 2.3 describes com-
munications domains and sockets. Terminals and (structured and unstructured) devices are described in
section 2.4.

1.5.3. Managing descriptor references

A duplicate of a descriptor reference may be made by doing:

new = dup(old);
result int new; int old;

returning a copy of descriptor reference old which is indistinguishable from the original. The value of new
chosen by the system will be the smallest unused descriptor reference slot. A copy of a descriptor refer-
ence may be made in a specific slot by doing:

4.4BSD Architecture Manual PSD:5-17

dup2(old, new);
int old, new;

The dup2 call causes the system to deallocate the descriptor reference current occupying slot new, if any,
replacing it with a reference to the same descriptor as old.

Descriptors are deallocated by:

close(old);
int old;

1.5.4. Multiplexing requests

The system provides a standard way to do synchronous and asynchronous multiplexing of opera-
tions. Synchronous multiplexing is performed by using the select call to examine the state of multiple
descriptors simultaneously, and to wait for state changes on those descriptors. Sets of descriptors of
interest are specified as bit masks, as follows:

nds = select(nd, in, out, except, tvp);
result int nds; int nd; result fd_set *in, *out, *except;
struct timeval *tvp;

FD_CLR(fd, &fdset);
FD_COPY(&fdset, &fdset2);
FD_ISSET(fd, &fdset);
FD_SET(fd, &fdset);
FD_ZERO(&fdset);
int fd; fs_set fdset, fdset2;

The select call examines the descriptors specified by the sets in, out and except, replacing the specified bit
masks by the subsets that select true for input, output, and exceptional conditions respectively (nd indicates
the number of file descriptors specified by the bit masks). If any descriptors meet the following criteria,
then the number of such descriptors is returned in nds and the bit masks are updated.

g A descriptor selects for input if an input oriented operation such as read or receive is possible, or if a
connection request may be accepted (see sections 2.1.3 and 2.3.1.4).

g A descriptor selects for output if an output oriented operation such as write or send is possible, or if
an operation that was ‘‘in progress’’, such as connection establishment, has completed (see sections
2.1.3 and 2.3.1.5).

g A descriptor selects for an exceptional condition if a condition that would cause a SIGURG signal to
be generated exists (see section 1.3.2), or other device-specific events have occurred.

For these tests, an operation is considered to be possible if a call to the operation would return without
blocking (even if the O_NONBLOCK flag were not set). For example, a descriptor would test as ready for
reading if a read call would return immediately with data, an end-of-file indication, or an error other than
EWOULDBLOCK.

If none of the specified conditions is true, the operation waits for one of the conditions to arise, blocking at
most the amount of time specified by tvp. If tvp is given as NULL, the select waits indefinitely.

Options affecting I/O on a descriptor may be read and set by the call:

dopt = fcntl(d, cmd, arg);
result int dopt; int d, cmd, arg;

PSD:5-18 4.4BSD Architecture Manual

/* command values */

F_DUPFD /* return a new descriptor */
F_GETFD /* get file descriptor flags */
F_SETFD /* set file descriptor flags */
F_GETFL /* get file status flags */
F_SETFL /* set file status flags */
F_GETOWN /* get SIGIO/SIGURG proc/pgrp */
F_SETOWN /* set SIGIO/SIGURG proc/pgrp */
F_GETLK /* get blocking lock */
F_SETLK /* set or clear lock */
F_SETLKW /* set lock with wait */

The F_DUPFD cmd provides identical functionality to dup2; it is provided solely for POSIX compatibility.
The F_SETFD cmd can be used to set the close-on-exec flag for a file descriptor. The F_SETFL cmd may
be used to set a descriptor in non-blocking I/O mode and/or enable signaling when I/O is possible.
F_SETOWN may be used to specify a process or process group to be signaled when using the latter mode
of operation or when urgent indications arise. The fcntl system call also provides POSIX-compliant byte-
range locking on files. However the semantics of unlocking on every close rather than last close makes
them useless. Much better semantics and faster locking are provided by the flock system call (see section
2.2.7). The fcntl and flock locks can be used concurrently; they will serialize against each other properly.

Operations on non-blocking descriptors will either complete immediately, return the error
EWOULDBLOCK, partially complete an input or output operation returning a partial count, or return an
error EINPROGRESS noting that the requested operation is in progress. A descriptor which has signalling
enabled will cause the specified process and/or process group be signaled, with a SIGIO for input, output,
or in-progress operation complete, or a SIGURG for exceptional conditions.

For example, when writing to a terminal using non-blocking output, the system will accept only as
much data as there is buffer space, then return. When making a connection on a socket, the operation may
return indicating that the connection establishment is ‘‘in progress’’. The select facility can be used to
determine when further output is possible on the terminal, or when the connection establishment attempt is
complete.

1.6. Resource controls

1.6.1. Process priorities

The system gives CPU scheduling priority to processes that have not used CPU time recently. This
tends to favor interactive processes and processes that execute only for short periods. The instantaneous
scheduling priority is a function of CPU usage and a settable priority value used in adjusting the instantane-
ous priority with CPU usage or inactivity. It is possible to determine the settable priority factor currently
assigned to a process (PRIO_PROCESS), process group (PRIO_PGRP), or the processes of a specified user
(PRIO_USER), or to alter this priority using the calls:

prio = getpriority(which, who);
result int prio; int which, who;

setpriority(which, who, prio);
int which, who, prio;

The value prio is in the range −20 to 20. The default priority is 0; lower priorities cause more favorable
execution. The getpriority call returns the highest priority (lowest numerical value) enjoyed by any of the
specified processes. The setpriority call sets the priorities of all the specified processes to the specified
value. Only the super-user may lower priorities.

4.4BSD Architecture Manual PSD:5-19

1.6.2. Resource utilization

The getrusage call returns information describing the resources utilized by the current process
(RUSAGE_SELF), or all its terminated descendent processes (RUSAGE_CHILDREN):

getrusage(who, rusage);
int who; result struct rusage *rusage;

The information is returned in a structure defined in <sys/resource.h>:

struct rusage {
struct timeval ru_utime; /* user time used */
struct timeval ru_stime; /* system time used */
int ru_maxrss; /* maximum core resident set size: kbytes */
int ru_ixrss; /* integral shared memory size (kbytes*sec) */
int ru_idrss; /* unshared data memory size */
int ru_isrss; /* unshared stack memory size */
int ru_minflt; /* page-reclaims */
int ru_majflt; /* page faults */
int ru_nswap; /* swaps */
int ru_inblock; /* block input operations */
int ru_oublock; /* block output operations */
int ru_msgsnd; /* messages sent */
int ru_msgrcv; /* messages received */
int ru_nsignals; /* signals received */
int ru_nvcsw; /* voluntary context switches */
int ru_nivcsw; /* involuntary context switches */

};

1.6.3. Resource limits

The resources of a process for which limits are controlled by the kernel are defined in
<sys/resource.h>, and controlled by the getrlimit and setrlimit calls:

getrlimit(resource, rlp);
int resource; result struct rlimit *rlp;

setrlimit(resource, rlp);
int resource; struct rlimit *rlp;

The resources that may currently be controlled include:

RLIMIT_CPU /* cpu time in milliseconds */
RLIMIT_FSIZE /* maximum file size */
RLIMIT_DATA /* data size */
RLIMIT_STACK /* stack size */
RLIMIT_CORE /* core file size */
RLIMIT_RSS /* resident set size */
RLIMIT_MEMLOCK /* locked-in-memory address space */
RLIMIT_NPROC /* number of processes */
RLIMIT_NOFILE /* number of open files */

PSD:5-20 4.4BSD Architecture Manual

Each limit has a current value and a maximum defined by the rlimit structure:

struct rlimit {
quad_t rlim_cur; /* current (soft) limit */
quad_t rlim_max; /* hard limit */

};

Only the super-user can raise the maximum limits. Other users may only alter rlim_cur within the
range from 0 to rlim_max or (irreversibly) lower rlim_max. To remove a limit on a resource, the value is
set to RLIM_INFINITY.

1.7. System operation support

Unless noted otherwise, the calls in this section are permitted only to a privileged user.

1.7.1. Monitoring system operation

The sysctl function allows any process to retrieve system information and allows processes with
appropriate privileges to set system configurations.

sysctl(name, namelen, oldp, oldlenp, newp, newlen);
int *name; u_int namelen; result void *oldp; result size_t *oldlenp;
void *newp; size_t newlen;

The information available from sysctl consists of integers, strings, and tables. Sysctl returns a consistent
snapshot of the data requested. Consistency is obtained by locking the destination buffer into memory so
that the data may be copied out without blocking. Calls to sysctl are serialized to avoid deadlock.

The object to be interrogated or set is named using a ‘‘Management Information Base’’ (MIB) style
name, listed in name, which is a namelen length array of integers. This name is from a hierarchical name
space, with the most significant component in the first element of the array. It is analogous to a file path-
name, but with integers as components rather than slash-separated strings.

The information is copied into the buffer specified by oldp. The size of the buffer is given by the
location specified by oldlenp before the call, and that location is filled in with the amount of data copied
after a successful call. If the amount of data available is greater than the size of the buffer supplied, the
call supplies as much data as fits in the buffer provided and returns an error.

To set a new value, newp is set to point to a buffer of length newlen from which the requested value
is to be taken. If a new value is not to be set, newp should be set to NULL and newlen set to 0.

The top level names (those used in the first element of the name array) are defined with a CTL_
prefix in <sys/sysctl.h>, and are as follows. The next and subsequent levels down are found in the include
files listed here:

Name Next Level Names Descriptionii
CTLiDEBUG sys/sysctl.h Debugging
CTLiFS sys/sysctl.h Filesystem
CTLiHW sys/sysctl.h Generic CPU, I/O
CTLiKERN sys/sysctl.h High kernel limits
CTLiMACHDEP sys/sysctl.h Machine dependent
CTLiNET sys/socket.h Networking
CTLiUSER sys/sysctl.h User-level
CTLiVM vm/vm_param.h Virtual memory

4.4BSD Architecture Manual PSD:5-21

1.7.2. Bootstrap operations

The call:

mount(type, dir, flags, data);
int type; char *dir; int flags; caddr_t data;

extends the name space. The mount call grafts a filesystem object onto the system file tree at the point
specified in dir. The argument type specifies the type of filesystem to be mounted. The argument data
describes the filesystem object to be mounted according to the type. The contents of the filesystem become
available through the new mount point dir. Any files in or below dir at the time of a successful mount
disappear from the name space until the filesystem is unmounted. The flags value specifies generic proper-
ties, such as a request to mount the filesystem read-only.

Information about all mounted filesystems can be obtained with the call:

getfsstat(buf, bufsize, flags);
result struct statfs *buf; long bufsize, int flags;

The call:

swapon(blkdev);
char *blkdev;

specifies a device to be made available for paging and swapping.

1.7.3. Shutdown operations

The call:

unmount(dir, flags);
char *dir; int flags;

unmounts the filesystem mounted on dir. This call will succeed only if the filesystem is not currently being
used or if the MNT_FORCE flag is specified.

The call:

sync();

schedules I/O to flush all modified disk blocks resident in the kernel. (This call does not require privileged
status.) Files can be selectively flushed to disk using the fsync call (see section 2.2.6).

The call:

reboot(how);
int how;

causes a machine halt or reboot. The call may request a reboot by specifying how as RB_AUTOBOOT, or
that the machine be halted with RB_HALT, among other options. These constants are defined in
<sys/reboot.h>.

1.7.4. Accounting

The system optionally keeps an accounting record in a file for each process that exits on the system.
The format of this record is beyond the scope of this document. The accounting may be enabled to a file
name by doing:

acct(path);
char *path;

If path is NULL, then accounting is disabled. Otherwise, the named file becomes the accounting file.

PSD:5-22 4.4BSD Architecture Manual

2. System facilities

The system abstractions described are:

Directory contexts
A directory context is a position in the filesystem name space. Operations on files and other named
objects in a filesystem are always specified relative to such a context.

Files
Files are used to store uninterpreted sequences of bytes, which may be read and written randomly.
Pages from files may also be mapped into the process address space. A directory may be read as a
file if permitted by the underlying storage facility, though it is usually accessed using getdirentries
(see section 2.2.3.1). (Local filesystems permit directories to be read, although most NFS implemen-
tations do not allow reading of directories.)

Communications domains
A communications domain represents an interprocess communications environment, such as the
communications facilities of the 4.4BSD system, communications in the INTERNET, or the resource
sharing protocols and access rights of a resource sharing system on a local network.

Sockets
A socket is an endpoint of communication and the focal point for IPC in a communications domain.
Sockets may be created in pairs, or given names and used to rendezvous with other sockets in a com-
munications domain, accepting connections from these sockets or exchanging messages with them.
These operations model a labeled or unlabeled communications graph, and can be used in a wide
variety of communications domains. Sockets can have different types to provide different semantics
of communication, increasing the flexibility of the model.

Terminals and other devices
Devices include terminals (providing input editing, interrupt generation, output flow control, and
editing), magnetic tapes, disks, and other peripherals. They normally support the generic read and
write operations as well as a number of ioctl ’s.

Processes
Process descriptors provide facilities for control and debugging of other processes.

2.1. Generic operations

Many system abstractions support the read, write, and ioctl operations. We describe the basics of
these common primitives here. Similarly, the mechanisms whereby normally synchronous operations may
occur in a non-blocking or asynchronous fashion are common to all system-defined abstractions and are
described here.

2.1.1. Read and write

The read and write system calls can be applied to communications channels, files, terminals and dev-
ices. They have the form:

cc = read(fd, buf, nbytes);
result ssize_t cc; int fd; result void *buf; size_t nbytes;

cc = write(fd, buf, nbytes);
result ssize_t cc; int fd; void *buf; size_t nbytes;

The read call transfers as much data as possible from the object defined by fd to the buffer at address buf of
size nbytes. The number of bytes transferred is returned in cc, which is −1 if a return occurred before any
data was transferred because of an error or use of non-blocking operations. A return value of 0 is used to
indicate an end-of-file condition.

The write call transfers data from the buffer to the object defined by fd. Depending on the type of fd,
it is possible that the write call will accept only a portion of the provided bytes; the user should resubmit
the other bytes in a later request. Error returns because of interrupted or otherwise incomplete operations

4.4BSD Architecture Manual PSD:5-23

are possible, in which case no data will have been transferred.

Scattering of data on input, or gathering of data for output is also possible using an array of
input/output vector descriptors. The type for the descriptors is defined in <sys/uio.h> as:

struct iovec {
char *iov_base; /* base of a component */
size_t iov_len; /* length of a component */

};

The iov_base field should be treated as if its type were ‘‘void *’’ as POSIX and other versions of the struc-
ture may use that type. Thus, pointer arithmetic should not use this value without a cast.

The calls using an array of iovec structures are:

cc = readv(fd, iov, iovlen);
result ssize_t cc; int fd; struct iovec *iov; int iovlen;

cc = writev(fd, iov, iovlen);
result ssize_t cc; int fd; struct iovec *iov; int iovlen;

Here iovlen is the count of elements in the iov array.

2.1.2. Input/output control

Control operations on an object are performed by the ioctl operation:

ioctl(fd, request, buffer);
int fd; u_long request; caddr_t buffer;

This operation causes the specified request to be performed on the object fd. The request parameter
specifies whether the argument buffer is to be read, written, read and written, or is not used, and also the
size of the buffer, as well as the request. Different descriptor types and subtypes within descriptor types
may use distinct ioctl requests. For example, operations on terminals control flushing of input and output
queues and setting of terminal parameters; operations on disks cause formatting operations to occur; opera-
tions on tapes control tape positioning. The names for basic control operations are defined by
<sys/ioctl.h>, or more specifically by files it includes.

2.1.3. Non-blocking and asynchronous operations

A process that wishes to do non-blocking operations on one of its descriptors sets the descriptor in
non-blocking mode as described in section 1.5.4. Thereafter the read call will return a specific EWOULD-
BLOCK error indication if there is no data to be read. The process may select the associated descriptor to
determine when a read is possible.

Output attempted when a descriptor can accept less than is requested will either accept some of the
provided data, returning a shorter than normal length, or return an error indicating that the operation would
block. More output can be performed as soon as a select call indicates the object is writable.

Operations other than data input or output may be performed on a descriptor in a non-blocking
fashion. These operations will return with a characteristic error indicating that they are in progress if they
cannot complete immediately. The descriptor may then be select’ed for write to find out when the opera-
tion has been completed. When select indicates the descriptor is writable, the operation has completed.
Depending on the nature of the descriptor and the operation, additional activity may be started or the new

PSD:5-24 4.4BSD Architecture Manual

state may be tested.

2.2. Filesystem

2.2.1. Overview

The filesystem abstraction provides access to a hierarchical filesystem structure. The filesystem con-
tains directories (each of which may contain sub-directories) as well as files and references to other objects
such as devices and inter-process communications sockets.

Each file is organized as a linear array of bytes. No record boundaries or system related information
is present in a file. Files may be read and written in a random-access fashion. If permitted by the underly-
ing storage mechanism, the user may read the data in a directory as though it were an ordinary file to deter-
mine the names of the contained files, but only the system may write into the directories.

2.2.2. Naming

The filesystem calls take path name arguments. These consist of a zero or more component file
names separated by ‘‘/’’ characters, where each file name is up to NAME_MAX (255) characters exclud-
ing null and ‘‘/’’. Each pathname is up to PATH_MAX (1024) characters excluding null.

Each process always has two naming contexts: one for the root directory of the filesystem and one
for the current working directory. These are used by the system in the filename translation process. If a
path name begins with a ‘‘/’’, it is called a full path name and interpreted relative to the root directory con-
text. If the path name does not begin with a ‘‘/’’ it is called a relative path name and interpreted relative to
the current directory context.

The file name ‘‘.’’ in each directory refers to that directory. The file name ‘‘..’’ in each directory
refers to the parent directory of that directory. The parent directory of the root of the filesystem is itself.

The calls:

chdir(path);
char *path;

fchdir(fd);
int fd;

chroot(path);
char *path;

change the current working directory or root directory context of a process. Only the super-user can
change the root directory context of a process.

Information about a filesystem that contains a particular file can be obtained using the calls:

statfs(path, buf);
char *path; struct statfs *buf;

fstatfs(fd, buf);
int fd; struct statfs *buf;

2.2.3. Creation and removal

The filesystem allows directories, files, special devices, and fifos to be created and removed from the
filesystem.

4.4BSD Architecture Manual PSD:5-25

2.2.3.1. Directory creation and removal

A directory is created with the mkdir system call:

mkdir(path, mode);
char *path; mode_t mode;

where the mode is defined as for files (see section 2.2.3.2). Directories are removed with the rmdir system
call:

rmdir(path);
char *path;

A directory must be empty (other than the entries ‘‘.’’ and ‘‘..’’) if it is to be deleted.

Although directories can be read as files, the usual interface is to use the call:

getdirentries(fd, buf, nbytes, basep);
int fd; char *buf; int nbytes; long *basep;

The getdirentries system call returns a canonical array of directory entries in the filesystem independent
format described in <dirent.h>. Application programs usually use the library routines opendir, readdir,
and closedir which provide a more convenient interface than getdirentries. The fts package is provided for
recursive directory traversal.

2.2.3.2. File creation

Files are opened and/or created with the open system call:

fd = open(path, oflag, mode);
result int fd; char *path; int oflag; mode_t mode;

The path parameter specifies the name of the file to be opened. The oflag parameter must include
O_CREAT to cause the file to be created. Bits for oflag are defined in <sys/fcntl.h>:

O_RDONLY /* open for reading only */
O_WRONLY /* open for writing only */
O_RDWR /* open for reading and writing */
O_NONBLOCK /* no delay */
O_APPEND /* set append mode */
O_SHLOCK /* open with shared file lock */
O_EXLOCK /* open with exclusive file lock */
O_ASYNC /* signal pgrp when data ready */
O_FSYNC /* synchronous writes */
O_CREAT /* create if nonexistent */
O_TRUNC /* truncate to zero length */
O_EXCL /* error if already exists */

One of O_RDONLY, O_WRONLY and O_RDWR should be specified, indicating what types of
operations are desired to be done on the open file. The operations will be checked against the user’s access
rights to the file before allowing the open to succeed. Specifying O_APPEND causes all writes to be
appended to the file. Specifying O_TRUNC causes the file to be truncated when opened. The flag
O_CREAT causes the file to be created if it does not exist, owned by the current user and the group of the
containing directory. The permissions for the new file are specified in mode as the OR of the appropriate
permissions as defined in <sys/stat.h>:

PSD:5-26 4.4BSD Architecture Manual

S_IRWXU /* RWX for owner */
S_IRUSR /* R for owner */
S_IWUSR /* W for owner */
S_IXUSR /* X for owner */
S_IRWXG /* RWX for group */
S_IRGRP /* R for group */
S_IWGRP /* W for group */
S_IXGRP /* X for group */
S_IRWXO /* RWX for other */
S_IROTH /* R for other */
S_IWOTH /* W for other */
S_IXOTH /* X for other */
S_ISUID /* set user id */
S_ISGID /* set group id */
S_ISTXT /* sticky bit */

Historically, the file mode has been used as a four digit octal number. The bottom three digits encode read
access as 4, write access as 2 and execute access as 1, or’ed together. The 0700 bits describe owner access,
the 070 bits describe the access rights for processes in the same group as the file, and the 07 bits describe
the access rights for other processes. The 7000 bits encode set user ID as 4000, set group ID as 2000, and
the sticky bit as 1000. The mode specified to open is modified by the process umask; permissions specified
in the umask are cleared in the mode of the created file. The umask can be changed with the call:

oldmask = umask(newmask);
result mode_t oldmask; mode_t newmask;

If the O_EXCL flag is set, and the file already exists, then the open will fail without affecting the file
in any way. This mechanism provides a simple exclusive access facility. For security reasons, if the
O_EXCL flag is set and the file is a symbolic link, the open will fail regardless of the existence of the file
referenced by the link. The O_SHLOCK and O_EXLOCK flags allow the file to be atomically open’ed
and flock’ed; see section 2.2.7 for the semantics of flock style locks. The O_ASYNC flag enables the
SIGIO signal to be sent to the process group of the opening process when I/O is possible, e.g., upon availa-
bility of data to be read.

2.2.3.3. Creating references to devices

The filesystem allows entries which reference peripheral devices. Peripherals are distinguished as
block or character devices according by their ability to support block-oriented operations. Devices are
identified by their ‘‘major’’ and ‘‘minor’’ device numbers. The major device number determines the kind
of peripheral it is, while the minor device number indicates either one of possibly many peripherals of that
kind, or special characteristics of the peripheral. Structured devices have all operations done internally in
‘‘block’’ quantities while unstructured devices may have input and output done in varying units, and may
act as a non-seekable communications channel rather than a random-access device. The mknod call creates
special entries:

mknod(path, mode, dev);
char *path; mode_t mode; dev_t dev;

where mode is formed from the object type and access permissions. The parameter dev is a configuration
dependent parameter used to identify specific character or block I/O devices.

Fifo’s can be created in the filesystem using the call:

mkfifo(path, mode);
char *path; mode_t mode;

The mode parameter is used solely to specify the access permissions of the newly created fifo.

4.4BSD Architecture Manual PSD:5-27

2.2.3.4. Links and renaming

Links allow multiple names for a file to exist. Links exist independently of the file to which they are
linked.

Two types of links exist, hard links and symbolic links. A hard link is a reference counting mechan-
ism that allows a file to have multiple names within the same filesystem. Each link to a file is equivalent,
referring to the file independently of any other name. Symbolic links cause string substitution during the
pathname interpretation process, and refer to a file name rather than referring directly to a file.

Hard links and symbolic links have different properties. A hard link ensures that the target file will
always be accessible, even after its original directory entry is removed; no such guarantee exists for a sym-
bolic link. Unlike hard links, symbolic links can refernce directories and span filesystems boundaries. An
lstat (see section 2.2.4) call on a hard link will return the information about the file (or directory) that the
link references while an lstat call on a symbolic link will return information about the link itself. A sym-
bolic link does not have an owner, group, permissions, access and modification times, etc. The only attri-
butes returned from an lstat that refer to the symbolic link itself are the file type (S_IFLNK), size, blocks,
and link count (always 1). The other attributes are filled in from the directory that contains the link.

The following calls create a new link, named path2, to path1:

link(path1, path2);
char *path1, *path2;

symlink(path1, path2);
char *path1, *path2;

The unlink primitive may be used to remove either type of link.

If a file is a symbolic link, the ‘‘value’’ of the link may be read with the readlink call:

len = readlink(path, buf, bufsize);
result int len; char *path; result char *buf; int bufsize;

This call returns, in buf, the string substituted into pathnames passing through path . (This string is not
NULL terminated.)

Atomic renaming of filesystem resident objects is possible with the rename call:

rename(oldname, newname);
char *oldname, *newname;

where both oldname and newname must be in the same filesystem. If either oldname or newname is a
directory, then the other also must be a directory for the rename to succeed. If newname exists and is a
directory, then it must be empty.

2.2.3.5. File, device, and fifo removal

A reference to a file, special device or fifo may be removed with the unlink call:

unlink(path);
char *path;

The caller must have write access to the directory in which the file is located for this call to be successful.
When the last name for a file has been removed, the file may no longer be opened; the file itself is removed
once any existing references have been closed.

All current access to a file can be revoked using the call:

revoke(path);
char *path;

Subsequent operations on any descriptors open at the time of the revoke fail, with the exceptions that a
close call will succeed, and a read from a character device file which has been revoked returns a count of
zero (end of file). If the file is a special file for a device which is open, the device close function is called

PSD:5-28 4.4BSD Architecture Manual

as if all open references to the file had been closed. Open’s done after the revoke may succeed. This call is
most useful for revoking access to a terminal line after a hangup in preparation for reuse by a new login
session. Access to a controlling terminal is automatically revoked when the session leader for the session
exits.

2.2.4. Reading and modifying file attributes

Detailed information about the attributes of a file may be obtained with the calls:

stat(path, stb);
char *path; result struct stat *stb;

fstat(fd, stb);
int fd; result struct stat *stb;

The stat structure includes the file type, protection, ownership, access times, size, and a count of hard links.
If the file is a symbolic link, then the status of the link itself (rather than the file the link references) may be
obtained using the lstat call:

lstat(path, stb);
char *path; result struct stat *stb;

Newly created files are assigned the user ID of the process that created them and the group ID of the
directory in which they were created. The ownership of a file may be changed by either of the calls:

chown(path, owner, group);
char *path; uid_t owner; gid_t group;

fchown(fd, owner, group);
int fd, uid_t owner; gid_t group;

In addition to ownership, each file has three levels of access protection associated with it. These lev-
els are owner relative, group relative, and other. Each level of access has separate indicators for read per-
mission, write permission, and execute permission. The protection bits associated with a file may be set by
either of the calls:

chmod(path, mode);
char *path; mode_t mode;

fchmod(fd, mode);
int fd, mode_t mode;

where mode is a value indicating the new protection of the file, as listed in section 2.2.3.2.

Each file has a set of flags stored as a bit mask associated with it. These flags are returned in the stat
structure and are set using the calls:

chflags(path, flags);
char *path; u_long flags;

fchflags(fd, flags);
int fd; u_long flags;

The flags specified are formed by or’ing the following values:

4.4BSD Architecture Manual PSD:5-29

UF_NODUMP Do not dump the file.
UF_IMMUTABLE The file may not be changed.
UF_APPEND The file may only be appended to.
SF_IMMUTABLE The file may not be changed.
SF_APPEND The file may only be appended to.

The UF_NODUMP, UF_IMMUTABLE and UF_APPEND flags may be set or unset by either the owner of
a file or the super-user. The SF_IMMUTABLE and SF_APPEND flags may only be set or unset by the
super-user. They may be set at any time, but normally may only be unset when the system is in single-user
mode.

Finally, the access and modify times on a file may be set by the call:

utimes(path, tvp);
char *path; struct timeval *tvp[2];

This is particularly useful when moving files between media, to preserve file access and modification times.

2.2.5. Checking accessibility

A process running with different real and effective user-ids may interrogate the accessibility of a file
to the real user by using the access call:

accessible = access(path, how);
result int accessible; char *path; int how;

How is constructed by OR’ing the following bits, defined in <unistd.h>:

F_OK /* file exists */
X_OK /* file is executable/searchable */
W_OK /* file is writable */
R_OK /* file is readable */

The presence or absence of advisory locks does not affect the result of access.

The pathconf and fpathconf functions provide a method for applications to determine the current
value of a configurable system limit or option variable associated with a pathname or file descriptor:

ans = pathconf(path, name);
result long ans; char *path; int name;

ans = fpathconf(fd, name);
result long ans; int fd, name;

For pathconf, the path argument is the name of a file or directory. For fpathconf, the fd argument is an
open file descriptor. The name argument specifies the system variable to be queried. Symbolic constants
for each name value are found in the include file <unistd.h>.

2.2.6. Extension and truncation

Files are created with zero length and may be extended simply by writing or appending to them.
While a file is open the system maintains a pointer into the file indicating the current location in the file
associated with the descriptor. This pointer may be moved about in the file in a random access fashion. To
set the current offset into a file, the lseek call may be used:

oldoffset = lseek(fd, offset, type);
result off_t oldoffset; int fd; off_t offset; int type;

PSD:5-30 4.4BSD Architecture Manual

where type is defined by <unistd.h> as one of:

SEEK_SET /* set file offset to offset */
SEEK_CUR /* set file offset to current plus offset */
SEEK_END /* set file offset to EOF plus offset */

The call ‘‘lseek(fd, 0, SEEK_CUR)’’ returns the current offset into the file.

Files may have ‘‘holes’’ in them. Holes are areas in the linear extent of the file where data has never
been written. These may be created by seeking to a location in a file past the current end-of-file and writ-
ing. Holes are treated by the system as zero valued bytes.

A file may be extended or truncated with either of the calls:

truncate(path, length);
char *path; off_t length;

ftruncate(fd, length);
int fd; off_t length;

changing the size of the specified file to length bytes.

Unless opened with the O_FSYNC flag, writes to files are held for an indeterminate period of time in
the system buffer cache. The call:

fsync(fd);
int fd;

ensures that the contents of a file are committed to disk before returning. This feature is used by applica-
tions such as editors that want to ensure the integrity of a new file before continuing.

2.2.7. Locking

The filesystem provides basic facilities that allow cooperating processes to synchronize their access
to shared files. A process may place an advisory read or write lock on a file, so that other cooperating
processes may avoid interfering with the process’ access. This simple mechanism provides locking with
file granularity. Byte range locking is available with fcntl; see section 1.5.4. The system does not force
processes to obey the locks; they are of an advisory nature only.

Locking can be done as part of the open call (see section 2.2.3.2) or after an open call by applying the flock
primitive:

flock(fd, how);
int fd, how;

where the how parameter is formed from bits defined in <fcntl.h>:

LOCK_SH /* shared file lock */
LOCK_EX /* exclusive file lock */
LOCK_NB /* don’t block when locking */
LOCK_UN /* unlock file */

Successive lock calls may be used to increase or decrease the level of locking. If an object is currently
locked by another process when a flock call is made, the caller will be blocked until the current lock owner
releases the lock; this may be avoided by including LOCK_NB in the how parameter. Specifying
LOCK_UN removes all locks associated with the descriptor. Advisory locks held by a process are
automatically deleted when the process terminates.

4.4BSD Architecture Manual PSD:5-31

2.2.8. Disk quotas

As an optional facility, each local filesystem can impose limits on a user’s or group’s disk usage.
Two quantities are limited: the total amount of disk space which a user or group may allocate in a filesys-
tem and the total number of files a user or group may create in a filesystem. Quotas are expressed as hard
limits and soft limits. A hard limit is always imposed; if a user or group would exceed a hard limit, the
operation which caused the resource request will fail. A soft limit results in the user or group receiving a
warning message, but with allocation succeeding. Facilities are provided to turn soft limits into hard limits
if a user or group has exceeded a soft limit for an unreasonable period of time.

The quotactl call enables, disables and manipulates filesystem quotas:

quotactl(path, cmd, id, addr);
char *path; int cmd; int id; char *addr;

A quota control command given by cmd operates on the given filename path for the given user ID. The
address of an optional command specific data structure, addr, may be given. The supported commands
include:

Q_QUOTAON /* enable quotas */
Q_QUOTAOFF /* disable quotas */
Q_GETQUOTA /* get limits and usage */
Q_SETQUOTA /* set limits and usage */
Q_SETUSE /* set usage */
Q_SYNC /* sync disk copy of a filesystems quotas */

2.2.9. Remote filesystems

There are two system calls intended to help support the remote filesystem implementation. The call:

nfssvc(flags, argstructp);
int flags, void *argstructp;

is used by the NFS daemons to pass information into and out of the kernel and also to enter the kernel as a
server daemon. The flags argument consists of several bits that show what action is to be taken once in the
kernel and argstructp points to one of three structures depending on which bits are set in flags.

The call:

getfh(path, fhp);
char *path; result fhandle_t *fhp;

returns a file handle for the specified file or directory in the file handle pointed to by fhp. This file handle
can then be used in future calls to NFS to access the file without the need to repeat the pathname transla-
tion. This system call is restricted to the superuser.

2.2.10. Other filesystems

The kernel supports many other filesystems. These include:

g The log-structured filesystem. It provides an alternate disk layout than the fast filesystem optimized
for writing rather than reading. For further information see the mount_lfs(8) manual page.

g The ISO-standard 9660 filesystem with Rock Ridge extensions used for CD-ROMs. For further
information see the mount_cd9660(8) manual page.

g The file descriptor mapping filesystem. For further information see the mount_fdesc(8) manual
page.

g The /proc filesystem as an alternative for debuggers. For further information see section 2.5.1 and
the mount_procfs(8) manual page.

PSD:5-32 4.4BSD Architecture Manual

g The memory-based filesystem, used primarily for fast but ethereal uses such as /tmp. For further
information see the mount_mfs(8) manual page.

g The kernel variable filesystem, used as an alternative to sysctl. For further information see section
1.7.1 and the mount_kernfs(8) manual page.

g The portal filesystem, used to mount processes in the filesystem. For further information see the
mount_portal(8) manual page.

g The uid/gid remapping filesystem, usually layered above NFS filesystems exported to an outside
administrative domain. For further information see the mount_umap(8) manual page.

g The union filesystem, used to place a writable filesystem above a read-only filesystem. This filesys-
tem is useful for compiling sources on a CD-ROM without having to copy the CD-ROM contents to
writable disk. For further information see the mount_union(8) manual page.

2.3. Interprocess communications

2.3.1. Interprocess communication primitives

2.3.1.1. Communication domains

The system provides access to an extensible set of communication domains. A communication
domain (or protocol family) is identified by a manifest constant defined in the file <sys/socket.h>. Impor-
tant standard domains supported by the system are the local (‘‘UNIX’’) domain (PF_LOCAL or
PF_UNIX) for communication within the system, the ‘‘Internet’’ domain (PF_INET) for communication in
the DARPA Internet, the ISO family of protocols (PF_ISO and PF_CCITT) for providing a check-off box
on the list of your system capabilities, and the ‘‘NS’’ domain (PF_NS) for communication using the Xerox
Network Systems protocols. Other domains can be added to the system.

2.3.1.2. Socket types and protocols

Within a domain, communication takes place between communication endpoints known as sockets.
Each socket has the potential to exchange information with other sockets of an appropriate type within the
domain.

Each socket has an associated abstract type, which describes the semantics of communication using
that socket. Properties such as reliability, ordering, and prevention of duplication of messages are deter-
mined by the type. The basic set of socket types is defined in <sys/socket.h>:

Standard socket typesiii
SOCK_DGRAM /* datagram */
SOCK_STREAM /* virtual circuit */
SOCK_RAW /* raw socket */
SOCK_RDM /* reliably-delivered message */
SOCK_SEQPACKET /* sequenced packets */

The SOCK_DGRAM type models the semantics of datagrams in network communication: messages may
be lost or duplicated and may arrive out-of-order. A datagram socket may send messages to and receive
messages from multiple peers. The SOCK_RDM type models the semantics of reliable datagrams: mes-
sages arrive unduplicated and in-order, the sender is notified if messages are lost. The send and receive
operations (described below) generate reliable or unreliable datagrams. The SOCK_STREAM type models
connection-based virtual circuits: two-way byte streams with no record boundaries. Connection setup is
required before data communication may begin. The SOCK_SEQPACKET type models a connection-
based, full-duplex, reliable, exchange preserving message boundaries; the sender is notified if messages are
lost, and messages are never duplicated or presented out-of-order. Users of the last two abstractions may
use the facilities for out-of-band transmission to send out-of-band data.

4.4BSD Architecture Manual PSD:5-33

SOCK_RAW is used for unprocessed access to internal network layers and interfaces; it has no
specific semantics. Other socket types can be defined.

Each socket may have a specific protocol associated with it. This protocol is used within the domain
to provide the semantics required by the socket type. Not all socket types are supported by each domain;
support depends on the existence and the implementation of a suitable protocol within the domain. For
example, within the ‘‘Internet’’ domain, the SOCK_DGRAM type may be implemented by the UDP user
datagram protocol, and the SOCK_STREAM type may be implemented by the TCP transmission control
protocol, while no standard protocols to provide SOCK_RDM or SOCK_SEQPACKET sockets exist.

2.3.1.3. Socket creation, naming and service establishment

Sockets may be connected or unconnected. An unconnected socket descriptor is obtained by the
socket call:

s = socket(domain, type, protocol);
result int s; int domain, type, protocol;

The socket domain and type are as described above, and are specified using the definitions from
<sys/socket.h>. The protocol may be given as 0, meaning any suitable protocol. One of several possible
protocols may be selected using identifiers obtained from a library routine, getprotobyname.

An unconnected socket descriptor of a connection-oriented type may yield a connected socket
descriptor in one of two ways: either by actively connecting to another socket, or by becoming associated
with a name in the communications domain and accepting a connection from another socket. Datagram
sockets need not establish connections before use.

To accept connections or to receive datagrams, a socket must first have a binding to a name (or
address) within the communications domain. Such a binding may be established by a bind call:

bind(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Datagram sockets may have default bindings established when first sending data if not explicitly bound
earlier. In either case, a socket’s bound name may be retrieved with a getsockname call:

getsockname(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

while the peer’s name can be retrieved with getpeername:

getpeername(s, name, namelen);
int s; result struct sockaddr *name; result int *namelen;

Domains may support sockets with several names.

2.3.1.4. Accepting connections

Once a binding is made to a connection-oriented socket, it is possible to listen for connections:

listen(s, backlog);
int s, backlog;

The backlog specifies the maximum count of connections that can be simultaneously queued awaiting
acceptance.

An accept call:

t = accept(s, name, anamelen);
result int t; int s; result struct sockaddr *name; result int *anamelen;

returns a descriptor for a new, connected, socket from the queue of pending connections on s. If no new
connections are queued for acceptance, the call will wait for a connection unless non-blocking I/O has been
enabled (see section 1.5.4).

PSD:5-34 4.4BSD Architecture Manual

2.3.1.5. Making connections

An active connection to a named socket is made by the connect call:

connect(s, name, namelen);
int s; struct sockaddr *name; int namelen;

Although datagram sockets do not establish connections, the connect call may be used with such sockets to
create an association with the foreign address. The address is recorded for use in future send calls, which
then need not supply destination addresses. Datagrams will be received only from that peer, and asynchro-
nous error reports may be received.

It is also possible to create connected pairs of sockets without using the domain’s name space to ren-
dezvous; this is done with the socketpair call†:

socketpair(domain, type, protocol, sv);
int domain, type, protocol; result int sv[2];

Here the returned sv descriptors correspond to those obtained with accept and connect.

The call:

pipe(pv);
result int pv[2];

creates a pair of SOCK_STREAM sockets in the PF_LOCAL domain, with pv[0] only writable and pv[1]
only readable.

2.3.1.6. Sending and receiving data

Messages may be sent from a socket by:

cc = sendto(s, msg, len, flags, to, tolen);
result int cc; int s; void *msg; size_t len;
int flags; struct sockaddr *to; int tolen;

if the socket is not connected or:

cc = send(s, msg, len, flags);
result int cc; int s; void *msg; size_t len; int flags;

if the socket is connected. The corresponding receive primitives are:

msglen = recvfrom(s, buf, len, flags, from, fromlenaddr);
result int msglen; int s; result void *buf; size_t len; int flags;
result struct sockaddr *from; result int *fromlenaddr;

and:

msglen = recv(s, buf, len, flags);
result int msglen; int s; result void *buf; size_t len; int flags;

In the unconnected case, the parameters to and tolen specify the destination or source of the message,
while the from parameter stores the source of the message, and *fromlenaddr initially gives the size of the
from buffer and is updated to reflect the true length of the from address.

All calls cause the message to be received in or sent from the message buffer of length len bytes,
starting at address buf. The flags specify peeking at a message without reading it, sending or receiving
high-priority out-of-band messages, or other special requests as follows:

hhhhhhhhhhhhhhhhhh
† 4.4BSD supports socketpair creation only in the PF_LOCAL communication domain.

4.4BSD Architecture Manual PSD:5-35

MSG_OOB /* process out-of-band data */
MSG_PEEK /* peek at incoming message */
MSG_DONTROUTE /* send without using routing tables */
MSG_EOR /* data completes record */
MSG_TRUNC /* data discarded before delivery */
MSG_CTRUNC /* control data lost before delivery */
MSG_WAITALL /* wait for full request or error */
MSG_DONTWAIT /* this message should be nonblocking */

2.3.1.7. Scatter/gather and exchanging access rights

It is possible to scatter and gather data and to exchange access rights with messages. When either of
these operations is involved, the number of parameters to the call becomes large. Thus, the system defines
a message header structure, in <sys/socket.h>, which can be used to conveniently contain the parameters to
the calls:

struct msghdr {
caddr_t msg_name; /* optional address */
u_int msg_namelen; /* size of address */
struct iovec *msg_iov; /* scatter/gather array */
u_int msg_iovlen; /* # elements in msg_iov */
caddr_t msg_control; /* ancillary data */
u_int msg_controllen; /* ancillary data buffer len */
int msg_flags; /* flags on received message */

};

Here msg_name and msg_namelen specify the source or destination address if the socket is unconnected;
msg_name may be given as a null pointer if no names are desired or required. The msg_iov and
msg_iovlen describe the scatter/gather locations, as described in section 2.1.1. The data in the msg_control
buffer is composed of an array of variable length messages used for additional information with or about a
datagram not expressible by flags. The format is a sequence of message elements headed by cmsghdr
structures:

struct cmsghdr {
u_int cmsg_len; /* data byte count, including hdr */
int cmsg_level; /* originating protocol */
int cmsg_type; /* protocol-specific type */
u_char cmsg_data[]; /* variable length type specific data */

};

The following macros are provided for use with the msg_control buffer:

CMSG_FIRSTHDR(mhdr) /* given msghdr, return first cmsghdr */
CMSG_NXTHDR(mhdr, cmsg) /* given msghdr and cmsghdr, return next cmsghdr */
CMSG_DATA(cmsg) /* given cmsghdr, return associated data pointer */

Access rights to be sent along with the message are specified in one of these cmsghdr structures, with level
SOL_SOCKET and type SCM_RIGHTS. In the PF_LOCAL domain these are an array of integer descrip-

PSD:5-36 4.4BSD Architecture Manual

tors, copied from the sending process and duplicated in the receiver.

This structure is used in the operations sendmsg and recvmsg:

sendmsg(s, msg, flags);
int s; struct msghdr *msg; int flags;

msglen = recvmsg(s, msg, flags);
result int msglen; int s; result struct msghdr *msg; int flags;

2.3.1.8. Using read and write with sockets

The normal read and write calls may be applied to connected sockets and translated into send and
receive calls from or to a single area of memory and discarding any rights received. A process may operate
on a virtual circuit socket, a terminal or a file with blocking or non-blocking input/output operations
without distinguishing the descriptor type.

2.3.1.9. Shutting down halves of full-duplex connections

A process that has a full-duplex socket such as a virtual circuit and no longer wishes to read from or
write to this socket can give the call:

shutdown(s, direction);
int s, direction;

where direction is 0 to not read further, 1 to not write further, or 2 to completely shut the connection down.
If the underlying protocol supports unidirectional or bidirectional shutdown, this indication will be passed
to the peer. For example, a shutdown for writing might produce an end-of-file condition at the remote end.

2.3.1.10. Socket and protocol options

Sockets, and their underlying communication protocols, may support options. These options may be
used to manipulate implementation- or protocol-specific facilities. The getsockopt and setsockopt calls are
used to control options:

getsockopt(s, level, optname, optval, optlen);
int s, level, optname; result void *optval; result int *optlen;

setsockopt(s, level, optname, optval, optlen);
int s, level, optname; void *optval; int optlen;

The option optname is interpreted at the indicated protocol level for socket s. If a value is specified with
optval and optlen, it is interpreted by the software operating at the specified level. The level
SOL_SOCKET is reserved to indicate options maintained by the socket facilities. Other level values indi-
cate a particular protocol which is to act on the option request; these values are normally interpreted as a
‘‘protocol number’’ within the protocol family.

2.3.2. PF_LOCAL domain

This section describes briefly the properties of the PF_LOCAL (‘‘UNIX’’) communications domain.

2.3.2.1. Types of sockets

In the local domain, the SOCK_STREAM abstraction provides pipe-like facilities, while
SOCK_DGRAM provides (usually) reliable message-style communications.

4.4BSD Architecture Manual PSD:5-37

2.3.2.2. Naming

Socket names are strings and may appear in the filesystem name space.

2.3.2.3. Access rights transmission

The ability to pass descriptors with messages in this domain allows migration of service within the
system and allows user processes to be used in building system facilities.

2.3.3. INTERNET domain

This section describes briefly how the Internet domain is mapped to the model described in this sec-
tion. More information will be found in the document describing the network implementation in 4.4BSD
(SMM:18).

2.3.3.1. Socket types and protocols

SOCK_STREAM is supported by the Internet TCP protocol; SOCK_DGRAM by the UDP protocol.
Each is layered atop the transport-level Internet Protocol (IP). The Internet Control Message Protocol is
implemented atop/beside IP and is accessible via a raw socket. The SOCK_SEQPACKET has no direct
Internet family analogue; a protocol based on one from the XEROX NS family and layered on top of IP
could be implemented to fill this gap.

2.3.3.2. Socket naming

Sockets in the Internet domain have names composed of a 32-bit Internet address and a 16-bit port
number. Options may be used to provide IP source routing or security options. The 32-bit address is com-
posed of network and host parts; the network part is variable in size and is frequency encoded. The host
part may optionally be interpreted as a subnet field plus the host on the subnet; this is is enabled by setting
a network address mask at boot time.

2.3.3.3. Access rights transmission

No access rights transmission facilities are provided in the Internet domain.

2.3.3.4. Raw access

The Internet domain allows the super-user access to the raw facilities of IP. These interfaces are
modeled as SOCK_RAW sockets. Each raw socket is associated with one IP protocol number, and
receives all traffic received for that protocol. This approach allows administrative and debugging functions
to occur, and enables user-level implementations of special-purpose protocols such as inter-gateway rout-
ing protocols.

2.4. Terminals and Devices

2.4.1. Terminals

Terminals support read and write I/O operations, as well as a collection of terminal specific ioctl
operations, to control input character interpretation and editing, and output format and delays.

A terminal may be used as a controlling terminal (login terminal) for a login session. A controlling
terminal is associated with a session (see section 1.1.4). A controlling terminal has a foreground process
group, which must be a member of the session with which the terminal is associated (see section 1.1.5).
Members of the foreground process group are allowed to read from and write to the terminal and change
the terminal settings; other process groups from the session may be stopped upon attempts to do these
operations.

A session leader allocates a terminal as the controlling terminal for its session using the ioctl

PSD:5-38 4.4BSD Architecture Manual

ioctl(fd, TIOCSCTTY, NULL);
int fd;

Only a session leader may acquire a controlling terminal.

2.4.1.1. Terminal input

Terminals are handled according to the underlying communication characteristics such as baud rate
and required delays, and a set of software parameters. These parameters are described in the termios struc-
ture maintained by the kernel for each terminal line:

struct termios {
tcflag_t c_iflag; /* input flags */
tcflag_t c_oflag; /* output flags */
tcflag_t c_cflag; /* control flags */
tcflag_t c_lflag; /* local flags */
cc_t c_cc[NCCS]; /* control chars */
long c_ispeed; /* input speed */
long c_ospeed; /* output speed */

};

The termios structure is set and retrieved using the tcsetattr and tcgetattr functions.

Two general kinds of input processing are available, determined by whether the terminal device file
is in canonical mode or noncanonical mode. Additionally, input characters are processed according to the
c_iflag and c_lflag fields. Such processing can include echoing, which in general means transmitting input
characters immediately back to the terminal when they are received from the terminal. Non-graphic ASCII
input characters may be echoed as a two-character printable representation, ‘‘ˆcharacter.’’

In canonical mode input processing, terminal input is processed in units of lines. A line is delimited
by a newline character (NL), an end-of-file (EOF) character, or an end-of-line (EOL) character. Input is
presented on a line-by-line basis. Using this mode means that a read request will not return until an entire
line has been typed, or a signal has been received. Also, no matter how many bytes are requested in the
read call, at most one line is returned. It is not, however, necessary to read a whole line at once; any
number of bytes, even one, may be requested in a read without losing information.

When the terminal is in canonical mode, editing of an input line is performed. Editing facilities
allow deletion of the previous character or word, or deletion of the current input line. In addition, a special
character may be used to reprint the current input line. Certain other characters are also interpreted spe-
cially. Flow control is provided by the stop output and start output control characters. Output may be
flushed with the flush output character; and the literal character may be used to force the following charac-
ter into the input line, regardless of any special meaning it may have.

In noncanonical mode input processing, input bytes are not assembled into lines, and erase and kill
processing does not occur. All input is passed through to the reading process immediately and without
interpretation. Signals and flow control may be enabled; here the handler interprets input only by looking
for characters that cause interrupts or output flow control; all other characters are made available.

When interrupt characters are being interpreted by the terminal handler they cause a software inter-
rupt to be sent to all processes in the process group associated with the terminal. Interrupt characters exist
to send SIGINT and SIGQUIT signals, and to stop a process group with the SIGTSTP signal either
immediately, or when all input up to the stop character has been read.

2.4.1.2. Terminal output

On output, the terminal handler provides some simple formatting services. These include converting
the carriage return character to the two character return-linefeed sequence, inserting delays after certain
standard control characters, and expanding tabs.

4.4BSD Architecture Manual PSD:5-39

2.4.2. Structured devices

Structured devices are typified by disks and magnetic tapes, but may represent any random-access
device. The system performs read-modify-write type buffering actions on block devices to allow them to
be read and written in random access fashion like ordinary files. Filesystems are normally mounted on
block devices.

2.4.3. Unstructured devices

Unstructured devices are those devices which do not support block structure. Familiar unstructured
devices are raw communications lines (with no terminal handler), raster plotters, magnetic tape and disks
unfettered by buffering and permitting large block input/output and positioning and formatting commands.

2.5. Process debugging

2.5.1. Traditional debugging

Debuggers traditionally use the ptrace interface:

ptrace(request, pid, addr, data);
int request, pid, *addr, data;

This interface provides a means by which a parent process may control the execution of a child process,
and examine and change its core image. Its primary use is for the implementation of breakpoint debug-
ging. There are four arguments whose interpretation depends on a request argument. A process being
traced behaves normally until it encounters a signal (whether internally generated like ‘‘illegal instruction’’
or externally generated like ‘‘interrupt’’). Then the traced process enters a stopped state and its parent is
notified via wait. When the child is in the stopped state, its core image can be examined and modified
using ptrace. Another ptrace request can then cause the child either to terminate or to continue, possibly
ignoring the signal.

A more general interface is also provided in 4.4BSD; the mount_procfs filesystem attaches an
instance of the process name space to the global filesystem name space. The conventional mount point is
/proc. The root of the process filesystem contains an entry for each active process. These processes are
visible as directories named by the process’ ID. In addition, the special entry curproc references the
current process. Each directory contains several files, including a ctl file. The debugger finds (or creates)
the process that it wants to debug and then issues an attach command via the ctl file. Further interaction
can then be done with the process through the other files provided by the /proc filesystem.

2.5.2. Kernel tracing

Another facility for debugging programs is provided by the ktrace interface:

ktrace(tracefile, ops, trpoints, pid);
char *tracefile; int ops, trpoints, pid;

Ktrace does kernel trace logging for the specified processes. The kernel operations that are traced include
system calls, pathname translations, signal processing, and I/O. This facility can be particularly useful to
debug programs for which you do not have the source.

PSD:5-40 4.4BSD Architecture Manual

3. Summary of facilities

1 Kernel primitives

1.1 Processes and protection
sethostid set host identifier
gethostid get host identifier
sethostname set host name
gethostname get host name
getpid get process identifier
getppid get parent process identifier
fork create a new process
vfork create a new process
exit terminate a process
wait4 collect exit status of child
execve execute a new program
getuid get real user identifier
geteuid get effective user identifier
getgid get real group identifier
getegid get effective group identifier
getgroups get access group set
setuid set real, effective, and saved user identifiers
setgid set real, effective, and saved group identifiers
setgroups set access group set
seteuid set effective user identifier
setegid set effective group identifier
setsid create a new session
setlogin set login name
getlogin get login name
getpgrp get process group
setpgid set process group

1.2 Memory management
brk set data section size
sbrk change data section size
getpagesize get system page size
mmap map files or devices into memory
msync synchronize a mapped region
munmap remove a mapping
mprotect control the protection of pages
madvise give advise about use of memory
mincore get advise about use of memory
mlock lock physical pages in memory
munlock unlock physical pages in memory
mset acquire and set a semaphore
mclear release a semaphore and awaken waiting processes
msleep wait for a semaphore
mwakeup awaken process(es) sleeping on a semaphore

1.3 Signals
sigaction setup software signal handler
sigreturn return from a signal
kill send signal to a process
killpg send signal to a process group
sigprocmask manipulate current signal mask
sigsuspend atomically release blocked signals and wait for interrupt

4.4BSD Architecture Manual PSD:5-41

sigpending get pending signals
sigaltstack set and/or get signal stack context

1.4 Timers
settimeofday set date and time
gettimeofday get date and time
adjtime synchronization of the system clock
setitimer set value of interval timer
getitimer get value of interval timer
profil control process profiling

1.5 Descriptors
getdtablesize get descriptor table size
dup duplicate an existing file descriptor
dup2 duplicate an existing file descriptor
close delete a descriptor
select synchronous I/O multiplexing
fcntl file control

1.6 Resource controls
getpriority get program scheduling priority
setpriority set program scheduling priority
getrusage get information about resource utilization
getrlimit get maximum system resource consumption
setrlimit set maximum system resource consumption

1.7 System operation support
sysctl get or set system information
mount mount a filesystem
getfsstat get list of all mounted filesystems
swapon add a swap device for interleaved paging/swapping
unmount dismount a filesystem
sync force completion of pending disk writes (flush cache)
reboot reboot system or halt processor
acct enable or disable process accounting

2 System facilities

2.1 Generic operations
read read input
write write output
readv read gathered input
writev write scattered output
ioctl control device

2.2 Filesystem
chdir change current working directory
fchdir change current working directory
chroot change root directory
statfs get file system statistics
fstatfs get file system statistics
mkdir make a directory file
rmdir remove a directory file
getdirentries get directory entries in a filesystem independent format
open open or create a file for reading or writing
umask set file creation mode mask
mknod make a special file node
mkfifo make a fifo file
link make a hard file link

PSD:5-42 4.4BSD Architecture Manual

symlink make a symbolic link to a file
readlink read value of a symbolic link
rename change the name of a file
unlink remove directory entry
revoke revoke file access
stat get file status
fstat get file status
lstat get file status
chown change owner and group of a file
fchown change owner and group of a file
chmod change mode of file
fchmod change mode of file
chflags set file flags
fchflags set file flags
utimes set file access and modification times
access check access permissions of a file or pathname
pathconf get configurable pathname variables
fpathconf get configurable pathname variables
lseek reposition read/write file offset
truncate truncate a file to a specified length
ftruncate truncate a file to a specified length
fsync synchronize in-core state of a file with that on disk
flock apply or remove an advisory lock on an open file
quotactl manipulate filesystem quotas
nfssvc NFS services
getfh get file handle

2.3 Interprocess communications
socket create an endpoint for communication
bind bind a name to a socket
getsockname get socket name
getpeername get name of connected peer
listen listen for connections on a socket
accept accept a connection on a socket
connect initiate a connection on a socket
socketpair create a pair of connected sockets
pipe create descriptor pair for interprocess communication
sendto send a message from a socket
send send a message from a socket
recvfrom receive a message from a socket
recv receive a message from a socket
sendmsg send a message from a socket
recvmsg receive a message from a socket
shutdown shut down part of a full-duplex connection
getsockopt get options on socket
setsockopt set options on socket

2.4 Terminals and Devices

2.5 Process debugging
ptrace process trace
ktrace process tracing

3 Summary of facilities

PSD:5-2 4.4BSD Architecture Manual

Contents

Notation and Types 4

1 Kernel primitives 4

1.1 Processes and protection 5
1.1.1 Host identifiers 5
1.1.2 Process identifiers 5
1.1.3 Process creation and termination 5
1.1.4 User and group IDs 6
1.1.5 Sessions 7
1.1.6 Process groups 7

1.2 Memory management 8
1.2.1 Text, data, and stack 8
1.2.2 Mapping pages 8
1.2.3 Page protection control 10
1.2.4 Giving and getting advice 10
1.2.5 Synchronization primitives 10

1.3 Signals 11
1.3.1 Overview 11
1.3.2 Signal types 11
1.3.3 Signal handlers 12
1.3.4 Sending signals 13
1.3.5 Protecting critical sections 13
1.3.6 Signal stacks 14

1.4 Timers 14
1.4.1 Real time 14
1.4.2 Interval time 15

1.5 Descriptors 16
1.5.1 The reference table 16
1.5.2 Descriptor properties 16
1.5.3 Managing descriptor references 16
1.5.4 Multiplexing requests 17

1.6 Resource controls 18
1.6.1 Process priorities 18
1.6.2 Resource utilization 18
1.6.3 Resource limits 19

1.7 System operation support 20
1.7.1 Monitoring system operation 20
1.7.2 Bootstrap operations 20
1.7.3 Shutdown operations 21
1.7.4 Accounting 21

2 System facilities 21

2.1 Generic operations 22
2.1.1 Read and write 22
2.1.2 Input/output control 23
2.1.3 Non-blocking and asynchronous operations 23

2.2 Filesystem 24
2.2.1 Overview 24
2.2.2 Naming 24
2.2.3 Creation and removal 24

4.4BSD Architecture Manual PSD:5-3

2.2.3.1 Directory creation and removal 24
2.2.3.2 File creation 25
2.2.3.3 Creating references to devices 26
2.2.3.4 Links and renaming 26
2.2.3.5 File, device, and fifo removal 27

2.2.4 Reading and modifying file attributes 28
2.2.5 Checking accessibility 29
2.2.6 Extension and truncation 29
2.2.7 Locking 30
2.2.8 Disk quotas 30
2.2.9 Remote filesystems 31

2.2.10 Other filesystems 31

2.3 Interprocess communications 32
2.3.1 Interprocess communication primitives 32

2.3.1.1 Communication domains 32
2.3.1.2 Socket types and protocols 32
2.3.1.3 Socket creation, naming and service establishment 33
2.3.1.4 Accepting connections 33
2.3.1.5 Making connections 33
2.3.1.6 Sending and receiving data 34
2.3.1.7 Scatter/gather and exchanging access rights 35
2.3.1.8 Using read and write with sockets 36
2.3.1.9 Shutting down halves of full-duplex connections 36

2.3.1.10 Socket and protocol options 36
2.3.2 PF_LOCAL domain 36

2.3.2.1 Types of sockets 36
2.3.2.2 Naming 36
2.3.2.3 Access rights transmission 36

2.3.3 INTERNET domain 36
2.3.3.1 Socket types and protocols 37
2.3.3.2 Socket naming 37
2.3.3.3 Access rights transmission 37
2.3.3.4 Raw access 37

2.4 Terminals and Devices 37
2.4.1 Terminals 37

2.4.1.1 Terminal input 38
2.4.1.2 Terminal output 38

2.4.2 Structured devices 38
2.4.3 Unstructured devices 39

2.5 Process debugging 39
2.5.1 Traditional debugging 39
2.5.2 Kernel tracing 39

3 Summary of facilities 40

