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Humans achieve fast and accurate recog-
nition of complex objects through the
ventral visual stream, a system of inter-
connected brain regions capable of hierar-
chical processing of increasingly complex
features. In the feedforward view of the
ventral visual stream, processing starts at
the primary visual cortex V1, is carried
through V2 and V4, and eventually
reaches the inferior temporal (IT) cortex
where more invariant and categorical rep-
resentations useful for object identity are
achieved (DiCarlo and Cox, 2007).

Past studies have shown that the recep-
tive field of V1 complex cells are well char-
acterized by 2D Gabor filters (Jones and
Palmer, 1997; Carandini et al., 2005) and
that IT contains subregions that are more
activated for specific stimulus category,
such as faces [fusiform face area (FFA)
and occipital face area (OFA); Kanwisher
etal., 1997], words [visual word form area
(VWFA); McCandliss et al., 2003)], and
scenes [parahippocampal place area
(PPA); Epstein et al., 1999]. However, it
remains unclear what intermediate fea-
tures are represented in downstream areas
between V1 and IT (Cox, 2014), how the
representations can be quantified, and
how representations at different points in
the ventral visual stream interrelate.
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Recently, researchers have used deep
neural networks (DNNs) to probe repre-
sentations in neural data, especially in IT
(Cadieu et al., 2014; Yamins et al., 2014;
Agrawal et al., 2014). DNNs are the state-
of-the-art machine learning tool to solve
computer vision tasks such as image clas-
sification (Krizhevsky et al., 2012; Szegedy
et al., 2015), object detection (Girshick et
al., 2014), and scene recognition (Zhou et
al., 2014). These models stack computa-
tions, building “feature maps” by com-
puting 2D filter responses at a number of
input locations (“convolution”) or taking
the maximum response from a local sub-
set of upstream inputs (“max-pooling”).
With massive multilayer computations
using millions of parameters to learn from
millions of images, these systems can
compete with human performance on
these tasks (Ciresan et al., 2012; Taigman
et al., 2014) and are inspired by the types
of neural computations and feedforward
component of the ventral visual stream.

Representations in the brain are also
being probed with encoding and decoding
models. Encoding and decoding models
are complementary methods, with their
relationship most easily understood in
terms of the transforms they apply to an
input space (e.g., stimuli), feature space
(some abstract representation), and activ-
ity space [e.g., blood oxygenation level-
dependent signal (BOLD) response;
Naselaris et al., 2011]. Linearizing encod-
ing models use a nonlinear transform to
map from the input space (stimuli) to an
abstract feature space (e.g., Gabor filters,
as in Kay et al., 2008) that the brain is

hypothesized to use, then use a linear
transformation from the feature space to
the activity space to see how well the
brain’s activity matches the encodings of
the hypothesized abstract feature space.
Linearizing decoding models also assume
a nonlinear mapping between the input
space (stimuli) and feature space (e.g., the
categories of the input stimulus); instead
of computing such a transform, they test
whether the brain has done such a trans-
form by finding the best linear mapping
from brain activity to the feature space.
The quality of the mapping between the
activity space and feature space gives in-
sight into how closely the brain’s activity is
underwritten by the features that define
the feature space.

Until recently, most encoding models
have used a predefined feature space or set
of features. Gii¢lii and van Gerven (2014)
and Agrawal etal. (2014) both learned fea-
ture spaces from a diverse set of complex
naturalistic images, betting that the fea-
tures underlying the brain’s activity space
reflect the image statistics of the world.
Using unsupervised learning, Gii¢lii and
van Gerven (2014) showed the learned
features match the BOLD responses in
early visual cortex better than the Gabor
filters used by Kay et al. (2008). Agrawal
and colleagues (2014) built encoding
models from DNNs to investigate how
well the DNN responses to naturalistic
images could predict BOLD responses in
the ventral visual stream.

Building from this recent work, Gii¢li
and van Gerven (2015) undertook a sys-
tematic examination of the predictability
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for neural populations along the entire
ventral visual stream. The authors used
encoding models built on DNNs to pre-
dict BOLD responses in the ventral visual
stream, then used multiple methods, in-
cluding decoding models, to understand
how the structure of the hierarchical neu-
ral network model mapped onto the ven-
tral visual stream.

The encoding models were similar to
that of Agrawal et al. (2014), who built
encoding models from each layer of a
multilayer convolutional neural network
trained on millions of images (ImageNet
dataset; Deng et al., 2009). Each encoding
model was trained on 1750 images and
tested on 120 images, and the best encod-
ing model for each voxel was selected; the
DNN layer of that encoding model is the
voxel’s optimal layer. Voxels that achieved
test performance at or below chance were
discarded. The decoding models esti-
mated the most likely input stimulus by
minimizing the distance between the
measured brain response and the activity
of the predicted brain response. The vox-
els were grouped by which neural network
layer their activation patterns most closely
matched.

These models showed three crucial re-
sults. First, they achieved excellent encod-
ing and decoding performance. For the
encoding model, the correlation (Pear-
son’s r) between the observed and
predicted response on the test set was
0.3~0.51 for Subject 1 (SI) and
0.26~0.42 for Subject 2 (S2), respectively.
The decoding model achieved 98% and
93% accuracy (S1 and S2, respectively) on
the test set, and surpassed the perfor-
mance of previous models. Second, voxels
followed a gradient in complexity: voxels
in early visual areas (V1, V2) can be as-
signed to low-level features (edge, con-
trast), and voxels in downstream visual
areas [lateral occipital complex (LO)]
could be assigned to more complex fea-
tures (object part, entire objects), as deter-
mined by human subject judgments of
visualized neural network features (Zeiler
and Fergus, 2014). DNNs trained on ob-
ject recognition accounted for this gradi-
ent quantitatively, via estimates of layer
complexity or assignment of voxels to the
layer of their best encoding model.
Finally, only voxels with higher-level fea-
tures contributed to an object categoriza-
tion task (animate vs inanimate),
suggesting that object recognition is a
guiding principle in the functional orga-
nization of the primate ventral stream.

The advances this paper makes in re-
lating DNNs to neuroimaging data dem-

onstrate how deep neural networks can
advance computer vision, engineering
more broadly, and our understanding of
what representations the brain forms dur-
ing tasks. Below, we outline three research
directions this paper suggests.

Decomposing voxels into cortical
computations

Encoding models in this paper, like those
referenced above, draw correspondences
between an abstract feature space and
voxel activations but stop before drawing
correspondences to meaningful computa-
tional units in the cortex. Voxel boundar-
ies are an arbitrary byproduct of scanner
settings and a subject’s position in the
scanner; they do not correspond to any
meaningful functional unit of cortex. At
the scale of the voxel (2 X 2 X 2.5 mm in
this study), the most relevant computa-
tional unit in cortex is the macrocolumn
(generally 0.5-1 mm in diameter in hu-
mans; Galuske et al., 2000). With the
above voxel size, a voxel therefore repre-
sents approximately four to eight macro-
columns.

The paper by Giiclii and van Gerven
(2015) pushes us even closer to drawing
such specific correspondences. The en-
coding model computed a linear mapping
of all features from a single network layer,
meaning each voxel’s activity is a superpo-
sition of feature maps—not too far from
an explicit model of overlapping macro-
column responses. If an encoding model
attempted to explicitly model the hemo-
dynamic interactions of macrocolumns
or how features are represented in
macrocolumns versus neurons, then an
explicit correspondence between cortical
computations and voxel activations could
be tested. fMRI data at different resolu-
tions (multi-millimeter, millimeter, sub-
millimeter) could be used to test voxel
responses built from varying degrees of
population responses.

The ventral visual pathway is richer
than suggested by comparison to a
hierarchical DNN

Another opportunity suggested by the
work of Giiglii and van Gerven (2015) lies
behind the conclusions that the ventral vi-
sual stream is hierarchically organized. A
more accurate claim may be that the ven-
tral visual stream is capable of hierarchical
processing and representation, but that
the degree of hierarchy is task-dependent.
Electrophysiological study shows dy-
namic interactions between areas, with
multiple interacting parallel pathways
that can operate even with complete dam-
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age to particular cortical areas in the so-
called hierarchy (Kravitz et al., 2013). It is
worth repeating that, in Kravitz et al.
(2013), the task design targets feedfor-
ward processing. The stimulus is flashed
briefly and unpredictably in both timing
and content, and frequently followed by a
backwards mask; these are used to reduce
recurrent processing. Thus, it is not that
the ventral visual stream is strictly hierar-
chical, but rather that these highly engi-
neered tasks are most efficiently solved by
the dynamic, interactive system in a fast,
feedforward fashion.

DNNs are not limited to feedforward
architectures, however, and Giiclii and
van Gerven (2015) provide an analysis
framework for doing similar studies using
deep recurrent neural networks (DRNNs)
on more ecologically valid tasks. DRNNs
have had great success in natural language
processing (Graves et al., 2013) and even
generating image captions and descrip-
tions (Socher et al., 2014; Fang et al.,
2015). DRNNs could be trained on dy-
namic stimuli to examine the superior
temporal sulcus, or movies to examine
representations in time (Hasson et al.,
2008). Such a program could expand our
view on neural representations beyond
the brief display of static images that cur-
rently dominates the literature. The paper
by Giiglii and van Gerven (2015) outlines
a framework capable of being extended to
such paradigms.

Finally, the ventral visual stream is not
a single pathway. In addition to its critical
role in general object recognition, the
ventral visual stream participates in fine-
grained recognition (such as face identifi-
cation) in OFA/FFA, word recognition in
the VWFA, and scene recognition in the
PPA. DNNs have been used to investigate
many of these separately (Zhou et al.,
2014; Yildirim et al., 2015), but a more
complicated model may be needed to fully
explain the data in ventral visual pathway.
Furthermore, the ventral pathway may be
reached through other pathways, such asa
fast feedback system via frontal cortex
(Bar, 2003). Clearly, much more can be
done in this area.

How should we think of discarded
voxels?

As mentioned above, Gii¢lii and van Ger-
ven (2015) only used voxels which had a
prediction accuracy significantly above
chance by any encoding model in subse-
quent analyses. Consequently, >75% of
voxels from V1, V2, V4, and LO, and
>90% of voxels overall, were discarded
from this study. Discarding this much of
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the data deserves more explanation and
could prevent the generalization of the
findings to the entire ventral visual
stream.

Notably, the distribution of discarded
voxels may not be uniform. From the cor-
tical maps (Gtligli and van Gerven, 2015,
their Figs. 2A, 4 A) it appears that the cen-
tral visual field (CVF) is selectively under-
represented, as colored voxels are less
present at the center of V1, V2, V4, and
LO (central part of the map) than at the
periphery. While the authors note that the
majority of voxel receptive fields that
show above-chance encoding perfor-
mance have receptive fields at the center
of the CVF (Giiglii and van Gerven, 2015,
their Fig. 3B), this does not tell us what
percentage of CVF voxels were discarded;
the higher number of retained CVF voxels
may simply be due to the cortical expan-
sion of the CVF—there are more voxels
with CVF receptive fields overall.

The authors suggest that discarded
voxels are at least partially due to low sig-
nal to noise ratio (Giiglii and van Gerven,
2015, their Fig. 2C). However, the corre-
lation between the two is relatively low
(r = 0.27 for S1, 0.22 for S2), suggesting
this explanation is incomplete. The rea-
sons for the large numbers of discarded
voxels should be explored further in fu-
ture studies.

In conclusion, in decontextualized ob-
ject recognition tasks, the computations
and architecture of deep neural networks
have correspondences to the human ven-
tral visual stream. The use of encoding
models and deep neural networks holds
promise to provide deeper insight into
relationships between neurons, voxels,
and cortical representations of visual
information.
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