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1 Orientation

Data analysis is essential in engineering research and practice. But the topic is confusing to many,
and inaccurate or completely incorrect conclusions, wasted effort, and miserable students are just
too common. This short book provides a concise introduction to data analysis from a very practical
perspective. In it I try to explain and demonstrate some core concepts of data analysis and also
data entry, manipulation, and related activities.

Much of this book is on relatively practical “nuts and bolts” of data analysis–including structuring
your data, making data analysis reproducible, and the importance of visualization through plots.
Where statistical models are covered, I focus on a single relatively simple set that can be used for
many types of analyses: classical linear models. This is by no means a comprehensive introduction
to anything, except maybe what I was thinking of over the days that I wrote it. However, it does, I
think, contain several useful nuggets that could serve you well as you proceed in your academic and
professional career. And if I manage to help only one of you better understand and better practice
data analysis, well. . . that is a pretty crappy return on my investment! I hope it helps at least a
dozen readers.

There are no real prerequisites for the material presented in this book, although some coursework
in introductory statistics and at least a little experience with spreadsheets and some programming
language would be helpful. The examples I present were carried out using R and LibreOffice Calc,
but other tools would work as well. If you find that you cannot understand the output from the
statistical models used here, or that the concepts are too complicated, spend some time with a good
book on statistics first and then come back. I can recommend Zar [1999].

Much of the material you will see in the following pages is based on my own opinion, so I think
it is fair for you to ask: “Who the hell are you?” I am a scientist with training in biology and
engineering, with quite a bit of practical experience in data analysis. Presently I work on problems
in environmental engineering from a modeling and data analysis perspective in the Department of
Biological and Chemical Engineering at Aarhus University1. I started working regularly with the
R language and environment in 2007, and still use R daily most weeks. I have written several
packages in R.2 For better or worse, I do not have a degree in statistics nor one in programming. I
am definitely not the best person to explain advanced statistical theory, but this background comes
with an advantage: it means I will focus on practical statistics that are relatively accessible.

2 Data analysis steps

You can think of the process of turning laboratory measurements into informative and useful results
as occuring in 6 steps:

1. Data entry (manual) or data collection (automated)

2. Data processing

3. Data manipulation

4. Data checking

5. Data visualization
1https://bce.au.dk/en/research/key-areas-in-research-and-development/environmental-engineering/
2Including two on CRAN: biogas, for data processing and more in biogas research, and monitoR, for automated
identification of animal vocalizations. See https://cran.r-project.org/web/packages/available_packages_by_
name.html for these, or https://github.com/sashahafner for others.
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6. Data analysis

Data entry is easy to do using spreadsheet programs, and Microsoft Excel or similar open source
options are convenient for data storage as well. While text files are simpler to store, search, import,
and manipulate, quickly checking and correcting data is often easier with a spreadsheet. In Section
4 below you can find some advice on how to organize data you enter into a file.

The term “data processing” is used here to refer to transforming “raw” measurements into quan-
tities and units that are useful, e.g., converting measured biogas volume in biochemical methane
potential, or even transforming electrode potential measurements into dissolved oxygen. And data
manipulation is a broad term that could cover most of the steps listed above. But here I mean
changing the structure of your data–the way they are organized within data objects–in order to use
them in the next two steps. (The hip term for this process has become “data wrangling”.) These
steps generally require more time and effort than those that follow. If you think “data science”
is cool, you had better enjoy these types of tasks! Section 3 discusses some limitations of using
spreadsheets for these operations.

Data checking should be done before analysis to find obvious input errors or missing values.
Calculation of simple descriptive statistics (mean, standard deviation), and extraction of minimum
and maximum values can be helpful here. In R, the summary()3 function is an easy way to do
this. In Python, describe() can be used. Bivariate plots can also be helpful. Unfortunately, these
approaches only highlight unusual values–they can not be used to ensure there are no errors in a
dataset.

Data visualization is the processing of plotting data, to literally look for differences, trends, or in
general, patterns. Please just accept here at the start that it is essential. It is simply impossible
to understand relationships among variables and catch all problems with data without plots. The
examples below should make all this clear.

Data analysis is the last step, and it includes hypothesis tests through application of statistical
models, perhaps as well as more mundane calculation of summaries. In this book one set of flexible
statistic models is described: classical linear models (Section 9).

This book will cover all of these six steps in at least a little detail.

3 Spreadsheets and programming languages

R (https://www.r-project.org/) is a programming language and a software environment for
statistical computing (Fig. 1). It happens to be my favorite tool for data analysis, partially because
it is really good, and partially because I was, by chance, introduced to it a decade or two ago.
Python (https://www.python.org/) is also quite popular. Matlab has its own advantages, and is
popular in academic settings, where it may actually be required for some course work. But it is not
free or open-source, and it would not be unfair to say that for data analysis, it has been eclipsed by
open-source alternatives.

Box 1. What the #@!*% is a script?
A script is just a text file with some code. When doing data analysis with a programming language,
it is typical to enter and save your commands in scripts, which can be run or modified later.

3Or dfsumm() from https://github.com/sashahafner/jumbled.
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Figure 1: The RStudio IDE, which can be used for working with the R language. It is available
for free for Windows, Mac, and Linux, and may be the easiest way to get started with R. You
can find more details here: https://www.rstudio.com/products/rstudio/download/. Personally
I find it much easier and more efficient to use the text editor Neovim with the Nvim-R plugin
(https://github.com/jalvesaq/Nvim-R).

But I would guess that Microsoft Excel, a spreadsheet program, is more popular by orders of magni-
tude.4 Why? It is probably partially related to history, but one reason may be that it is very simple
to start using Excel. Challenges come later. In contrast, gettings started with a new programming
language is not always easy. Also, Excel and other spreadsheet programs are cell-based. Users
actually see and can manually manipulate their data. Use of a programming language requires some
ability to mentally visualize data objects and their manipulation and relate these objects to symbolic
variable names and commands. All this isn’t trivial, but ultimately programming languages provide
a lot of power for data analysis.

Based on my experience, I recommend spreadsheets for no more than data entry and storage. Any-
thing else related to data analysis is better done in R or Python. R had a focus on data analysis
and statistical modelling from the start. In a comparison to Python this history still shows, and
it is arguably easier to do statistical modeling in R. But Python is much more popular5, although
perhaps not for statistical modeling.
4The number of users is somewhere around 1 billion (https://askwonder.com/research/
number-google-sheets-users-worldwide-eoskdoxav, while R and Python are probably below 10 million
(https://www.datanami.com/2019/08/15/is-python-strangling-r-to-death/), although both estimates are
both outdated and were originally imprecise anyway.

5Most popular programming language in fact, at least in early 2024: https://www.tiobe.com/tiobe-index/
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Box 2. Cell-based spreadsheets
Spreadsheet data analysis is cell-based. Results are generally dependent on many formulas dis-
tributed among many cells, and these cells may each have their own formulas. For even a simple
statistical analysis with a small data set, this may mean hundreds of formulas. This feature makes
it more difficult to write flexible “programs” and to find mistakes. In contrast, multiple rows of
data are typically changed by a single line of R or Python code. Formulas in a single spreadsheet
cell may refer to multiple cells, but it is difficult to make these references scalable, i.e., to still work
correctly when the input data change by getting more variables or more observations. In contrast
R or Python scripts are scalable by default, and can generally be applied to an expanded data set
without any changes.

Box 3. Data manipulation in spreadsheets
Restructuring small datasets in a spreadsheet using cut-and-paste operations can be easy and quick.
But manual manipulation becomes impractical for large datasets. And if original data change or
there is a need to repeat manipulation, it is necessary to start again. In contrast, a script can
simply be run again.

Although it takes a bit more effort to get started with a programming language, it takes little time to
start getting dividends. You will complete tasks more quickly, probably with more accurate results,
and automatically produce a detailed record of your analysis, which can be used again and again.
This last point is important. There are several reasons why data analysis might need to be repeated,
including correction of mistakes in the analysis itself or the original data.

R, Python, and similar languages are generally written in a script that can be saved, edited, shared,
and re-run whenever changes to the analysis or input data change (see Box 1).

If you are a student trying to improve your data analysis skills and practice, what should you do?
In general, I encourage students to learn a programming language, and the concensus seems to be
that either R or Python is a good choice. Python and R interpreters (the software that actually
reads your code and does what you tell it to do) can be downloaded and installed for free, and there
is an immense population of free resources on both.

I know I won’t convince many of you who are wedded to Excel to invest the necessary effort required
for learning R or Python. But I do strongly encourage you to follow the advice in Section 5. And
I might gently suggest that the time you would spend learning a little R or Python may quickly be
repaid the first time you need to repeat data manipulation of a large dataset.

A major bonus that comes with trying a programming language is graphics capabilities. R and
Python can be usd to produce a huge variety of high-quality plots that are way beyond what is
possible with existing spreadsheet programs. And when input data change, there is no need to
copy/paste data or use a mouse to select new plot data.

Box 4. Recommendations: Spreadsheets vs. programming languages
Use spreadsheets for no more than data entry and storage. Use R or Python for everything else
(see Section 2): data manipulation, checking, graphics, and analysis.

4 Working with organized data

To make your life easier and your research reproducible, the data you generate and work with
should be well-organized. This refers to both organization within files, and organization of files.
Data that are organized in a file in an umambiguous way are much more valuable than those that
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are not. They facilitate repeatable research and can vastly extend the useful life of your hard-
earned measurements. Sadly, a quick search of datasets available online (e.g., Mendeley Data,
https://data.mendeley.com/research-data/) shows that poorly organized and poorly described
data are common.6 Of course, any electronic format is an improvement over data only stored on
paper, but getting values into an electronic file is not in itself sufficient.

The following guidelines for data organization (Box 5) were originally developed for data that will
be analyzed using R, Python, or similar software (see Section 3), but even if you plan to carry out
all data analysis using spreadsheet software, they are still useful.

Box 5. Guidelines for organizing data within a file

1. Header rows are only present at the top of the file

2. Each column contains a single variable

3. Each row contains a single observation

4. Each file (or worksheet) contains a single block of data

This is probably best shown by example. See the files silage_comp_original.xlsx and silage_comp_restruct.xlsx
for an example. Half of the original file is shown below in Fig. 2. This file violates rules 1, 2, 3
(although it is not clear in Fig. 2, there is another set of block of data to the right), and 4. This
structure is pretty easy to understand and a person not familiar with the experiment could interpret
it without much trouble. But it would be very difficult to read the data into e.g., R and work with
them.

The restructured file, the contents of which are shown in Fig. 3, in constrast, would be easy to
work with. It follows all of the rules listed above. The only feature that that may seem a bit odd
is the use of multiple header rows. This turns out to be a convenient approach, however. The first
two rows provide information for understanding the data, including units and more details on the
analytes. These “extra” headers are simply skipped when reading these data into R or Python. The
header in row 3 contains short names easy to use in code.

Sometimes researchers have a inclination to avoid repetition in data files, and so find the value in
column B in Fig. 3 to be inappropriate. Perhaps this has to do with a focus on data entry efficiency.
If you have this perspective, please try to get over it. For data files, the goal isn’t to produce
something beautiful.

Data that don’t follow some of these rules can sometimes be restructured (reshaped) using R, Python,
etc. “Manual” restructing via cut-and-paste etc. in a spreadsheet, or even manipulation of a text
file may be the only option in other cases (as with the silage data described above). If so, take care
and be sure to save a copy of the original file so one could check the accuracy of the restructing
later.

Organizing files themselves presents its own significant challenges. Try to use a consistent structure
for your projects. Avoid accumulating numerous copies of a file. If you worry about making changes
that you will later want to undo, consider making a switch from working in spreadsheets to working
with a programming language, and see Section 5. If you receive data from a collaborator or a public
source, it is good practice to save a read-only copy of the original, e.g., in a sub-directory (folder)
named “data/original”.
6Really it is a stretch to refer to some of the files available here as “datasets”.
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Figure 2: An example of a poor data structure. Data are on composition of silage (fermented animal
feed) from a factorial experiment.

Figure 3: A better way to structure a file containing the data shown in Fig. 2. This file was manually
manipulated using a mouse and keyboard in a spreadsheet program.
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5 Tracking yourself

I think it is a bit strange to have a mobile phone record my location and activities, but I am
completely in favor of tracking my every move when it comes to data analysis. In fact, doing so it
essential for reproducible research. Ideally, any conclusion you write in a paper or report should be
based on an analysis that can be checked, repeated, and corrected. Data processing and manipulation
are both prone to problems in this area.

Working with scripts in a programming language immediately solves part of this problem for you.
Why?–because a script (see Box 1) contains a detailed description of exactly what you did. This is
a major advantage of using a programming language for your work, instead of a spreadsheet.

For complex analyses, or at least after you have a little experience with a new programming language,
I recommend going one step further, and tracking changes to your scripts. I like to use Git and
GitHub for this, but there are alternatives. These are especially useful if you collaborate with others
on data analysis.

Box 6. Git and GitHub
Git is a “version control system” originally used for software code. Git is an application that
allows developers to track all changes in code down to the character, work on multiple versions
simultaneously, and collaborate efficiently. In its simplest sense, GitHub (https://github.com) is
simply a place for storing Git repositories. But it includes a convenient web interface and handy
tools, and is now used for much more than software code (Fig. 4). All this works really well for
data analysis code as well!

Figure 4: Example of some changes in an R script tracked with Git displayed on the GitHub website.
The red code was deleted, and the green code added.

Spreadsheets do not facilite repeating or checking any of the steps listed above, but this problem
is especially accute for manual data manipulation. For calculations underlying data processing and
analysis, sure, one could find the formulas underlying the calculations, and follow the cell references
to check everything. But there are so many damn cells, each with its own formula. Code, in contrast,
is concise by its nature. You can find a bit more discussion on this difference in Section 3. If you
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insist on sticking with a spreadsheet for data analysis, what can you do? In the least, you can keep
a log of major changes within each spreadsheet, in a dedicated worksheet. Here it can be helpful to
include the date, file name, your name, in addition to a description of the changes. This is helpful
for files used for only data entry as well–if you delete or correct a cell, record that change!

6 Inferential statistics

The term “statistics” can mean a few things, but here I mean statistical methods and statistical
models used for data analysis. Here I am also focused on inferential statistics, i.e., methods and
models meant to make some kind of inference.7 For example, you might like to know if your new
sludge treatment method improves biogas yields. In some cases statistics can help answer a question
like this, and in others, they are worse than useless. To help understand why, it can be useful to
think about a basic concept in inferential statistics (Box 7).

Box 7. Inferential statistics: the basic concept
Inferential statistical methods are based comparing a measured difference in some variable to ran-
dom error in that variable. If the observed difference is large compared to the error, we can infer
that a true difference exists in the (real or hypothetical) larger population.

Typically, it is some difference in a response variable, that we are interested in. Thinking about
sludge, it might be the size of the difference in methane yield between your new treatment and a
reference treatment (or no treatment). Typically, we use the mean or average difference as our best
estimate of the effect. We might have measured the results shown in Fig. 5.

Our mean values in this case are 197 (reference) and 216 (the new treatment). So there is a clear
difference, right? No! There is always a difference, and we might need inferential statistics to
determine if a difference really means anything. In this case, we can immediately see that there is
no meaningful difference without even applying a statistical model. Why? Because the size of the
difference is small compared to the random error.8 There are no statistics needed to tell us this,
making this example the first case where statistics are not useful.

The “population” about which we make inferences can be challenging to think about.

Box 8. The population concept
Statistics are used to draw conclusions about a population, which may be real or imaginary. The
sample used in any experiment should reflect the population of interest.

For observational studies, where the population is real, there is no challenge. For example, if you
are interested in some characteristic of engineering students, the population might be all engineering
students in Germany. For experimental studies, the population is often imaginary (also called
“hypothetical” or “potential” [Zar, 1999, p. 17]). Ideally, we would like to design experiments that
provide information about how a process would function elsewhere. For example, if we actually
found a 30% increase in methane yield from the supa-dupa process, we might hope that the same
process would provide a similar improvement if applied to any sludge. But variation in sludge
composition could make this unlikely, so expecting this response is risky. Perhaps then we should
consider only sludge with similar characteristics, and our hypothetical population is all secondary
(waste activated) sludge from municipal wastewater treatment plants. Perhaps we need to consider
7Descriptive statistics, e.g., mean and standard deviation, are also useful, but the distinction should be clear.
8And we have a small sample. With a large number of observations we might be able to confirm the presence of a
difference.
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Figure 5: A comparison of biogas yields from sludge for two different treatments. Each point
represents a single unit of observation.

solids retention time also. Figure 6 in Section 8 below shows that the true population is not always
as broad as we might expect.

7 Random and systematic error

Random error is important in inferential statistics, but what is it anyway? Random error is the sum
of all the sources of error in our measurements which we do not completely understand and cannot
completely control. In the plot above (Fig. 5), the variation in the vertical position of the points
is a representation of the random error. We call it random because we cannot predict its value for
any one particular observation (i.e., any single point in the plot above). But we can estimate its
magnitude from our measurements. And if we assume it follows some kind of distribution, we can
use this information in statistical tests. It is typical to assume (effectively define) that the expected
mean value of random error is zero, and to estimate the value of random error inhererent in our
measurements from the observed error. When you calculate the standard deviation from a sample,
you are typically quantifying random error.

Systematic error is different. It is generally repeatable, and it may be possible to assign it to
a particular cause. For example, technician effects may be systematic errors. Depending on the
experimental design and the analysis approach, one particular source of error could be identified (or
not identified) as either random or systematic. If you are confused the examples below may help.

Random error is an integral part of inferential statistics, but systematic error can cause real problems.
In applying statistical models we commonly assume that individual observations are independent (see
Section 9, for example). If we want to make an estimate of the magnitude of random error, which is
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needed for a hypothesis test, we need to be sure that the the appropriate random error is reflected
in our measurements. If our observations are not in fact independent, results may be affected by
the presence of systematic error. For example, if you wanted to compare two sludge treatments, and
decided to apply one treatment in your lab and ask a friend in a different country to test the other
one, you would be asking for trouble. It would be nearly certain that some of the observed differences
between the two samples were due to systematic errors that were laboratory-dependent. Statistical
methods are very powerful for detecting this type of effect, but assigning it to the treatment would
be a major mistake.

8 Uses and abuses of statistics

Everyone knows that replication is important in statistics.9 But it must be the right kind of replica-
tion. Replicating measurements on one single experimental unit that received some treatment and
one single unit that did not can give you a lot of data, but you would both tend to underestimate
random error and assign a likely systematic difference to your treatment.10 A statistical model
alone cannot tell you about the effect of the treatment in this case, and complex fancy-sounding
approaches do not solve the problem (although many try, as numerous published papers show).
Basic principles are important!

In other cases, it may be acceptable to apply a stastical model, but unnecessary. When a measured
difference is much larger than the random error, there may not be a need to apply a statistical
model. This is common in engineering, where most experiments are designed (and resulting data
are experimental and not observational) and treatments have large effects.

Even when statistics are useful, they are not the complete solution. The magnitude of the difference
is more important. In fact, we can turn the basic idea of inferential statistics on its head for many
types of experiments by considering this: What is the probability that any two physical, chemical,
or biological treatments you might work with to improve some process have the exact same effect
on the process? Essentially nill. It is the magnitude of the difference that is important, so we must
remember to consider both the size of the difference and the evidence we have about whether it
reflects a true difference between treatments etc. Avoid feeling so satisfied by finding a “statistically
significant” difference that you ignore the size of the difference. Unfortunately this very mistake is
not rare (perhaps deliberately so) in research articles.

Box 9. Advice on multiple comparison tests
Avoid making many comparisons in your data analysis, especially if the predictor variable is quan-
titative by nature. In this case, consider using regression. Otherwise, focus on the important
comparisons, possibly to a control level.

Even if you are cautious in avoiding unneccesary hypothsis tests, conventional interpretation of
statistical results is being questioned, and this discussion is worth paying attention to. The use
of p-values and in particular, the use of an arbitrary cutoff for assessing “statistical significance”
has been strongly criticized over the past few decades, and statisticians have proposed (and argued
about) alternatives [Wasserstein et al., 2019].11 Advice includes completely dropping the use of a
fixed cutoff (commonly called α) as well as the term “statistically significant”. Instead, we might
9Although it is not always required in a strict sense. For example, a repeated-measures design can be considered a
two-factor analysis of variance without replication [Zar, 1999]. And when using regression, it is not necessary to have
multiple replicates for each level of the response variable.

10This is related to the concept of pseudoreplication or false replication, which has been discussed extensively [Hurlbert,
1984].

11This paper, actually an editorial in a special issue on the topic, provides a very interesting summary of the problem
and proposed solutions [Wasserstein et al., 2019].
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Figure 6: A demonstration of a complete lack of reproducibility in inferential statistics results among
laboratories. Individual labs measured first-order rate constant for two substrates, and the ratio of
these values is shown on the x axis. In many cases, differences (i.e., a ratio above or below 1) were
“statistically significant” based on a t-test, shown by p-values below 0.05.

consider reporting actual p-values, using confidence intervals, and always considering the magnitude
of any difference.

I’ll end this section with one last reminder about the limitations of experimental work. Even very
clear differences observed in your laboratory may not work out the same way in other laboratories,
or at pilot or full scale. Why not? For starters, there are always differences between technicians and
laboratories, and particularly for biological processes or even biological conversions, many differences
are difficult to measure or even observe. I and some collaborators have recently looked into the
reproducibility of kinetic results extracted from BMP tests in the lab.12 In many cases, results
from individual laboratories could be used to show “highly significantly different” conversion rates
between two substrates, e.g., p-values well below 0.001. But these results did not carry over to other
laboratories, some of which had similarly “significant” results, but for the opposite difference (Fig.
6)! So be modest, be careful, and accept that your results just may be wrong.

9 Classical linear models

In this book I will present a single statistical method: linear regression, which we can perhaps more
accurately refer to as a set of methods called “classical linear models” You can use classical linear
12You can find a short presentation on this topic here: https://www.bioenergie-events.de/cmp/program/

short-presentations.
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models for much more than just simple or multiple linear regression, but the heart of the calculations
are the same as in linear regression, with an analysis of variance (ANOVA) table fitted on top in
some cases. I’ve selected this method because I think it is extremely flexible and useful, and because
I tend to use it frequently. In this short book, I don’t have the option of including many different
approaches, but another reason to focus on a single method is to use it to support what I think is
an important piece of advice: focus on methods you understand.

Box 10. Advice: Don’t use methods you don’t understand
Access to powerful statistical models has increased in recent years, and code from the Internet can
easily be copied and modified to apply to a new problem. However, I would advise you to avoid
using statistical methods that you do not understand. In many cases, simpler methods will give
clearer results and reduce the risk of mistakes.

It is likely that many statistical analyses you will need to do can be done using classical linear
models, and they are relatively easy to understand and apply.

In R, several classical statistical models can be implemented using one function: lm (for lin-
ear model).13 Python has some similar functions, including ols() in the statsmodel package
(https://www.statsmodels.org/v0.10.2/). The lm function can be used for simple and mul-
tiple linear regression, analysis of variance (ANOVA), and analysis of covariance (ANCOVA). With
data transformations and polynomials, lm() can easily handle (some) non-normal error distributions
and non-linear responses.

The arguments for lm are

args(lm)

# function (formula, data, subset, weights, na.action, method = "qr",
# model = TRUE, x = FALSE, y = FALSE, qr = TRUE, singular.ok = TRUE,
# contrasts = NULL, offset, ...)
# NULL

The first argument, formula, is where you specify the basic structure of the statistical model. This
approach is used in other R functions as well, such as glm, gam, and others. Venables et al. has a
useful list of example formulas–some examples are repeated below. In these examples, the variables
x, y, and z are continuous, and A, B, and C are factors. The response variable is y, and the others
are predictor variables.

y ~ x Simple linear regression of y on x
y ~ x + z Multiple regression of y on x and z
y ~ poly(x, 2) Second order orthogonal polynomial regression
y ~ x + I(x^2) Second order polynomial regression
y ~ A Single factor ANOVA
y ~ A + B Two-factor ANOVA
y ~ A + B + A:B Two-factor ANOVA with interaction
y ~ A*B Two-factor ANOVA with interaction
y ~ (A + B + C)^2 Three-factor ANOVA with all first-order interactions
y ~ (A + B + C)^2 - B:C As above but without B:C interaction
y ~ A + x ANCOVA

13In R you can load help files by simplying typing ? followed by the name of the function, so ?lm will bring up a help
file on this handy function.
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Of course all this applies to R, but formulas in Python are similar, and even for spreadsheet programs,
the concepts still apply.

Box 11. Response and predictor variables
The term “dependent” variable has been widely used to refer to the variable that is (or hypothesized
to be) dependent on (affected by) some other variables, called “independent”. The terms “response”
and “predictor” variables doesn’t imply a dependency or not, and are therefore better terms to use.

Linear regression calculations can be used for analysis of variance (ANOVA). But predictor variables–
categorical in this case, or factors–must be converted to dummy variables first.

Box 12. What are dummy variables?
Continuous predictor variables can be used as-is in regression. But factors (categorical variables)
don’t work like this. Instead, with n levels, at least n − 1 binary (typically values of 0 or 1)
“dummy variables” are used. In effect, each level of the factor is turned into its own variable.
Dummy variables make it easy to handle categorical predictors through regression.

Transformations can make non-linear responses or non-normal error distributions easy to handle. In
some cases, true non-linear regression is a better approach, however. And generalized linear models
can be used for different types of error distributions.

Box 13. Logarithmic transformations
A logarithmic (or log) transformation of the response variables does two important things to your
model. First, it makes the effects of predictor variables multiplicative [Steel, 1997], so a fixed
absolute change in the predictor causes (or is correlated with) a relative change in the response.
Second, it changes the assumed error distribution from normal to lognormal. In many cases both
are needed together, conveniently. If this is not the case, generalized linear models are an alternative
[McCullagh and Nelder, 1989]. Predictor variables can also be transformed, giving three general
types of model in addition to true “linear” models: log-linear, linear-log, log-log. Take care with
interpretation of parameter values.

Polynomial regression can be useful for some non-linear responses.

When you apply classical linear models, you should be aware of the assumptions that are employed
every time model coefficients, p-values, or confidence intervals are returned.

1. Errors are normally distributed

2. Variance is constant

3. Observations are independent

For linear regression in particular, there are two more assumptions.

1. The actual relationship is linear

2. Error in predictor variables is negligible

Some of these assumptions can be evaluated before even entering data, but others can only be
evaluated after a model has been fit, somewhat ironically. Functions available for the R language
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make it very easy to evaluate assumptions, but even spreadsheets can be used for the task with a
bit of effort. You can find an excellent introduction to the use of linear models by Julian Faraway,
available for both R [Faraway, 2005] and now Python as well [Faraway, 2020].

10 Before you start

Some of the issues introduced above should be considered whenever analyzing data. I can think of
a few other points that are important as well. Before analyzing you data, make some plots, think
about your experiment, and ask yourself the questions listed below. This list is not explained in
great detail here, but it builds on the material from earlier sections and is referred to in the examples.

1. What research question would you like you to answer? Is your sample appropriate for your
question? The sample should reflect the population that you are interested in.

2. What is the unit of observation? What is the thing on which you made measurements? Clearly
describe it.

3. Do you have replication, and it is the right type? Are the observations independent, apart
from whatever factor you would like to test?

4. Are there systematic errors present in your data that could affect the results? If all obsera-
tions have the same systematic error (e.g., you made the measurements instead of your more
experienced colleague) there is generally no reason to expect an effect on a comparison. If
systematic error is associated with the experimental factor, however, you have a problem that
statistical models cannot (easily) solve.

5. Have you plotted your data? Explain what you see. Do you really need to apply a statistical
model?

6. Is your experimental factor continuous or categorical by nature? The answer determines the
way you should analyze your data and interpret results.

7. What type of a relationship do you expect (or see) between your treatments and the response
variable(s)? Additive? Multiplicative? How can your approach to data analysis accommodate
this? Are transformations needed? Polynomials?

8. Is there any reason to expect that errors are not normally distributed? Should you consider
a transformation? It has been argued that log-normal distributions are more common than
normal [Diwakar, 2017].

11 Example 1: Removal efficiency in treatment wetlands

Let’s, finally, work on an example. Two treatment wetlands were created and used to compare the
efficacy of wastewater treatment by two species of plants:Phragmites australis and Cyperus papyrus
[García-Ávila, 2020]. The data are in the csv file wetlands.csv (text file with comma separators). I
will use R to plot the data.

First, let’s load a handy function for summarizing datasets.14

14You can download this function from https://github.com/sashahafner/jumbled.
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source("functions/dfsumm.R")

wl <- read.csv('data/wetlands.csv')

dfsumm(wl)

#
# 83 rows and 6 columns
# 83 unique rows
# date parameter unit influent eff_cp
# Class character character character numeric numeric
# Minimum 04-15 Alkalinity 0.31 2.1
# Maximum 07-08 TSS µS/cm 1.6e+11 2.8e+09
# Mean 05-27 NH3.N mg/L 5.4e+09 1.36e+08
# Unique (excld. NA) 7 12 6 75 74
# Missing values 0 0 0 4 4
# Sorted TRUE FALSE FALSE FALSE FALSE
# eff_pa
# Class numeric
# Minimum 2.4
# Maximum 3.5e+09
# Mean 2.45e+08
# Unique (excld. NA) 72
# Missing values 4
# Sorted FALSE

These data are in a structure midway between “long” and “wide”. I’ll reshape it first, and for that
I need an add-on package. I’ll load the graphics and date/time packages as well.

library(reshape2)
library(ggplot2)
library(lubridate)
library(rmarkdown)
library(dplyr)

I’ll reshape these data in a couple ways.

wll <- melt(wl, id.vars = c('date', 'parameter', 'unit'),
measure.vars = c('influent', 'eff_cp', 'eff_pa'),
value.name = 'value', variable.name = 'source')

ww <- dcast(wll, date + source ~ parameter, value.var = 'value')

And I’ll get day of the year for plotting.

ww$date <- mdy(paste(ww$date, '2000'))
ww$doy <- yday(ww$date)

We can look at the data now. Here are the first few rows.
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head(ww)

# date source Alkalinity BOD5 COD EC FC NH3.N
# 1 2000-04-15 influent 210.2 102.50 205.04 680 1.6e+10 22.30
# 2 2000-04-15 eff_cp 126.6 29.97 89.89 545 1.6e+09 3.30
# 3 2000-04-15 eff_pa 111.6 49.90 78.04 521 1.6e+09 2.40
# 4 2000-04-29 influent NA 89.50 280.00 772 NA 35.56
# 5 2000-04-29 eff_cp NA 14.85 67.00 634 NA 11.65
# 6 2000-04-29 eff_pa NA 20.30 99.00 665 NA 13.83
# NO3.N pH TC Temperature TP TSS doy
# 1 0.605 6.79 1.6e+10 26.7 5.01 55 106
# 2 2.105 6.19 1.6e+09 26.1 3.07 58 106
# 3 7.615 5.96 1.6e+09 26.1 4.14 22 106
# 4 NA 6.94 NA 23.1 7.42 78 120
# 5 NA 6.32 NA 22.8 3.21 144 120
# 6 NA 6.45 NA 23.0 3.75 82 120

So we have influent composition, and the composition of effluent for the wetland with Phragmitis and
the one with Cyperis. Let’s assume we are interested in ammonia. I’ll plot ammonia concentrations
over time.

It it clear that both wetlands remove ammonia–effluent concentrations are always below influent
around the same date. But can we compare the two plant species? Let’s start thinking about the
questions in Section 10 before we answer that question.

1. We might be interested to know if the ammonia removal efficiency of wetlands planted with
these two plant species differs. And we should also want to know what the removal efficiency
is, i.e., its magnitude.

2. The unit of observation is a single sampling time (date) for a single wetland.

3. Yes, we have replication: we have multiple measurements for each wetland. Is it the right kind
though? Umm. . .

Are observations independent? No–all the blue observations are from a single wetland, for example.
Well, is the replication the right kind then? Probably not, but it depends on the question we want to
answer. Presumably we are interested in whether ammonia removal differs between the two species
in general. That is, our hypothetical population is a bunch of similar constructed wetlands with
one of these two species. But to answer this question using inferential statistics, we would need
multiple replicated wetlands for each species! So no, we do not have the right kind of replication. If
we proceeded to apply a statistical model here we would really be comparing these two particular
wetlands. Could we be sure that any difference is due to the plants and not some other difference
between the two wetlands, e.g., retention time, some other plants, degree of aeration? Probably not.

Unfortunately this situation may be unavoidable when it is difficult or expensive to create or treat
some unit of observation–think about pilot-scale reactors, for example. We do have the option of
assuming that the plants are the main cause of differences between these two wetlands, but such a
decision should be supported. This could be done by e.g., running the wetlands in parallel for some
time before adding plants, to show there is no difference. Or, evidence could also come from other
studies that show small variability among replicate wetlands. Regardless, this leap of faith should
be explicitly described, if it is employed.

We can get a hint that something is amiss here by thinking about this: Are we guaranteed to see a
“significant” difference eventually if we have a large enough sample size? Well, since it is impossible
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ggplot(ww, aes(doy, NH3.N, colour = source)) +
geom_line() +
geom_point() +
labs(x = 'Day of year', y = 'Total ammonia N conc. (mg/L)')
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Figure 7: Ammonia concentration in influent and effluent from the two wetlands, showing removal
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for two individual wetlands to be exactly the same, yes. In this particular example, we also have the
problem of autocorrelation within time series measurements; measurements made closer together
are more likely to be similar.

In this particular case, we do not have enough knowledge to know if it is appropriate, and we didn’t
invest the money and effort in collecting the data, so it is easy to simply say they cannot be used
in this way. Furthermore, we can see in the plot that there is no consistent difference–so there is
clearly no reason to apply a statistical model here. The only value I see in these data is in presenting
the estimates of average removal efficiency. To calculate mean values, it is easiest if we have the
different wetlands in separate columns.

head(wl)

# date parameter unit influent eff_cp eff_pa
# 1 04-15 pH 6.79 6.19 5.96
# 2 04-15 Temperature °C 26.70 26.10 26.10
# 3 04-15 Alkalinity mg/L, CaCO3 210.20 126.60 111.60
# 4 04-15 EC µS/cm 680.00 545.00 521.00
# 5 04-15 TSS mg/L 55.00 58.00 22.00
# 6 04-15 BOD5 mg/L 102.50 29.97 49.90

Let’s focus on ammonia and a few other variables where removal efficiency makes sense.

levels(wl$parameter)

# NULL

w2 <- subset(wl, parameter %in% c('TSS', 'BOD5', 'COD', 'NO3.N', 'NH3.N', 'TP'))

The hydraulic retention time in these wetlands is only 1 d, so it is not unreasonable to assume
influent and effluent samples collected on the same day are related.

w2$reff_cp <- 100 * (1 - w2$eff_cp / w2$influent)
w2$reff_pa <- 100 * (1 - w2$eff_pa / w2$influent)

head(w2)

# date parameter unit influent eff_cp eff_pa reff_cp
# 5 04-15 TSS mg/L 55.000 58.000 22.000 -5.454545
# 6 04-15 BOD5 mg/L 102.500 29.970 49.900 70.760976
# 7 04-15 COD mg/L 205.040 89.890 78.040 56.159774
# 8 04-15 NO3.N mg/L 0.605 2.105 7.615 -247.933884
# 9 04-15 NH3.N mg/L 22.300 3.300 2.400 85.201794
# 10 04-15 TP mg/L 5.010 3.070 4.140 38.722555
# reff_pa
# 5 60.00000
# 6 51.31707
# 7 61.93913
# 8 -1158.67769
# 9 89.23767
# 10 17.36527
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And we can calculate mean values and standard deviation.

w3 <- melt(w2, measure.vars = c('reff_cp', 'reff_pa'),
value.name = 'reff', variable.name = 'wetland')

wlsumm <- summarise(group_by(w3, parameter, wetland), reff_mean = mean(reff),
reff_sd = sd(reff))

# `summarise()` has grouped output by 'parameter'. You can override using the
# `.groups` argument.

kable(wlsumm, digits = 1)

parameter wetland reff_mean reff_sd
BOD5 reff_cp 80.1 12.2
BOD5 reff_pa 74.3 17.9
COD reff_cp 68.4 12.2
COD reff_pa 63.5 11.6
NH3.N reff_cp 72.2 16.3
NH3.N reff_pa 71.6 14.9
NO3.N reff_cp NA NA
NO3.N reff_pa NA NA
TP reff_cp 48.3 17.2
TP reff_pa 41.5 18.3
TSS reff_cp 12.6 66.8
TSS reff_pa 52.8 36.8

Nitrate values are missing. We can exclude missing values but then we should also add the number
of measurements.

wlsumm <- summarise(group_by(w3, parameter, wetland), nn = sum(!is.na(reff)),
reff_mean = mean(reff, na.rm = TRUE),
reff_sd = sd(reff, na.rm = TRUE))

# `summarise()` has grouped output by 'parameter'. You can override using the
# `.groups` argument.

kable(wlsumm, digits = 1)
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parameter wetland nn reff_mean reff_sd
BOD5 reff_cp 7 80.1 12.2
BOD5 reff_pa 7 74.3 17.9
COD reff_cp 7 68.4 12.2
COD reff_pa 7 63.5 11.6
NH3.N reff_cp 7 72.2 16.3
NH3.N reff_pa 7 71.6 14.9
NO3.N reff_cp 6 -1054.7 961.0
NO3.N reff_pa 6 -1275.4 891.8
TP reff_cp 7 48.3 17.2
TP reff_pa 7 41.5 18.3
TSS reff_cp 7 12.6 66.8
TSS reff_pa 7 52.8 36.8

Not surprisingly, nitrate removal was negative–presumably it is produced by nitrification. Let’s omit
it for a plot.

ggplot(subset(wlsumm, parameter != 'NO3.N'), aes(parameter, reff_mean, fill = wetland)) +
geom_bar(position = position_dodge(), stat = 'identity') +
geom_errorbar(aes(ymin = reff_mean - reff_sd, ymax = reff_mean + reff_sd),

position = position_dodge(0.9), width = 0.2) +
labs(x = 'Analyte (mg/L)', y = 'Apparent removal efficiency (%)',

fill = 'Wetland')
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So there are some “statistics”–average removal efficiency and some estimate of variability over time
for these two wetlands. There is no evidence here of meaningful differences among the two plant
species. If we were interested in this topic, we had better start designing more wetlands!
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12 Example 2: Comparing two BMP methods

I did some work on the evaluation of a new method for measurement of biochemical methane
potential (BMP) a couple years ago [Justesen et al., 2019]. We were interested in determining if our
new method gave different results from other methods. Let’s get the data.

bb <- read.csv('data/BMP_comp.csv')

This is a small dataset, so we can look at the whole thing.

bb

# method time.d id substrate bmp
# 1 grav 31.1 L1 Cellulose 363.1848
# 2 grav 31.1 L3 Cellulose 360.1335
# 3 grav 31.1 E1 Ethanol 725.7272
# 4 grav 31.1 E2 Ethanol 712.9015
# 5 grav 31.1 E3 Ethanol 762.2732
# 6 grav 31.1 A1 A 376.4508
# 7 grav 31.1 A2 A 382.8212
# 8 grav 31.1 A3 A 376.9564
# 9 grav 31.1 B1 B 375.0472
# 10 grav 31.1 B2 B 381.1704
# 11 grav 31.1 B3 B 386.2744
# 12 grav 31.1 C1 C 524.2979
# 13 grav 31.1 C2 C 521.2255
# 14 grav 31.1 C3 C 518.9827
# 15 gdt 31.1 L1 Cellulose 371.8001
# 16 gdt 31.1 L3 Cellulose 400.9151
# 17 gdt 31.1 E1 Ethanol 620.4517
# 18 gdt 31.1 E2 Ethanol 708.3848
# 19 gdt 31.1 E3 Ethanol 662.8819
# 20 gdt 31.1 A1 A 378.2669
# 21 gdt 31.1 A2 A 384.3896
# 22 gdt 31.1 A3 A 361.8799
# 23 gdt 31.1 B1 B 400.7561
# 24 gdt 31.1 B2 B 380.8994
# 25 gdt 31.1 B3 B 310.7199
# 26 gdt 31.1 C1 C 434.8386
# 27 gdt 31.1 C2 C 520.3938
# 28 gdt 31.1 C3 C 533.3696

Continuing with the questions posed in Section 10, the sample should be appropriate for the question.
The response variable is BMP measured for a single bottle using a particular method (gravimetric,
grav or the new one, GD-BMP, gdt). The experimental unit is a single bottle. It looks like we
have replication–three bottles for all substrates except cellulose, for which we have two. Apart from
receiving the same substrates, the bottles were independent. These measurements were carried out
by a single group of researchers at a single laboratory, so undoubtedly there are important systematic
errors. But we will assume they apply equally to all bottles. The experimental factor–measurement
method–is categorical by nature. Importantly, it seems that both of the methods were applied to
each bottle (the id column has a unique bottle identifier).
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Even though we can easily look at the entire data frame, let’s get in the habit of looking at a
summary of any new data set.

dfsumm(bb)

#
# 28 rows and 5 columns
# 28 unique rows
# method time.d id substrate bmp
# Class character numeric character character numeric
# Minimum gdt 31.1 A1 A 311
# Maximum grav 31.1 L3 Ethanol 762
# Mean gdt 31.1 C1 C 473
# Unique (excld. NA) 2 1 14 5 28
# Missing values 0 0 0 0 0
# Sorted FALSE TRUE FALSE FALSE FALSE

No values missing, we have two levels ofr method as expected, and BMP varies from 300 to above
700. Everything seems OK.

Let’s plot these data.

ggplot(bb, aes(substrate, bmp, colour = method)) +
geom_point(alpha = 0.7, size = 2) +
labs(x = 'Substrate', y = 'BMP (mL/g)', colour = 'BMP')
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So what do we see? Is there evidence of differences between the methods? Can we compare them?
There is in fact virtually no evidence that the methods differ; results overlap for all substrates except
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ethanol. Should we conclude then that the two methods give identical results? Hell no! In fact, we
should assume from the start that they do not. These two methods are based on different principles
and each almost certainly have their own biases. So perhaps our question should be changed to “How
different are the two methods?” The plot seems to suggest that the answer is “not very different,
at least in comparison to measurement error”. We might take this as our conclusion and stop here.
But we could try to make a quantitative estimate of how similar the two methods are likely to be.

Something else we can see in this plot is that the variability of the GD method is higher than the
gravimetric method. Is this meaningful? Well, here we see that for five different substrates, GD
results were much more variable for all of them. That is pretty strong evidence that the difference
is real. Later, perhaps, we can apply a statistical test. But it is worth pointing out that this
difference could be an impediment to applying statistical models for comparing BMP, because we
would typically have to assume that variance is constant.

Thinking more about the difference between the methods, we should consider the paired nature of
the measurements. Let’s calculate a difference between the two methods for each individual bottle.
That will remove some of the random error associated with bottles, and, conveniently, eliminates
the problem with unequal variance. See how experimental design can help you? In general, a paired
approach is more powerful, that is, more likely to show a clear difference when in fact one exists.

Box 14. Paired observations
Paired observations result from making two measurements on the same experimental unit (sub-
ject), typically under two different conditions or after application of two different treatments. In
general the approach is more powerful than if these measurements were made on different units of
observation, because some of the random error is eliminated. With more than two measurements,
this approach can be called “repeated measures”.

library(tidyr)

bw <- spread(bb, method, bmp)
head(bw)

# time.d id substrate gdt grav
# 1 31.1 A1 A 378.2669 376.4508
# 2 31.1 A2 A 384.3896 382.8212
# 3 31.1 A3 A 361.8799 376.9564
# 4 31.1 B1 B 400.7561 375.0472
# 5 31.1 B2 B 380.8994 381.1704
# 6 31.1 B3 B 310.7199 386.2744

We can now easily calculate a difference for each bottle, and I’ll add a relative difference (% of
gravimetric result) as well.

bw$diff <- bw$gdt - bw$grav
bw$rdiff <- 100 * bw$diff / bw$grav

ggplot(bw, aes(substrate, rdiff, colour = substrate)) +
geom_point(alpha = 0.7, size = 2) +
labs(x = 'Substrate', y = 'Difference in BMP (%)', colour = 'BMP')

25



−20

−10

0

10

A B C Cellulose Ethanol
Substrate

D
iff

er
en

ce
 in

 B
M

P
 (

%
)

BMP

A

B

C

Cellulose

Ethanol

Here as well, there is no evidence of a consistent difference between the methods, possibly excluding
ethanol. We can still conclude then, without fitting a statistical model, that there is no real evidence
of a systematic difference between the methods.

But, maybe we would like to say how large a difference might exist. We could use these data for this,
and can (finally) apply a statistical model! Let’s use the relative difference as the response variable,
because it likely to be less variable than the absolute differences. Still, we should include the fact
that bottles with the same substrate are not independent. We’ll fit a classical linear model using the
lm() function in R. Because substrate is a factor (categorical variable) and not continuous, R will
automatically create dummy variables for us. Essentially we are carrying out analysis of variance
(ANOVA) here.

mod1 <- lm(rdiff ~ substrate - 1, data = bw)
summary(mod1)

#
# Call:
# lm(formula = rdiff ~ substrate - 1, data = bw)
#
# Residuals:
# Min 1Q Median 3Q Max
# -15.301 -4.268 1.482 4.612 11.114
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# substrateA -1.036 5.354 -0.193 0.851
# substrateB -4.259 5.354 -0.795 0.447
# substrateC -4.817 5.354 -0.900 0.392
# substrateCellulose 6.848 6.557 1.044 0.324
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Figure 8: BMP comparison data ready for analysis in LibreOffice Calc (a spreadsheet program).

# substrateEthanol -9.393 5.354 -1.755 0.113
#
# Residual standard error: 9.273 on 9 degrees of freedom
# Multiple R-squared: 0.3856,Adjusted R-squared: 0.0443
# F-statistic: 1.13 on 5 and 9 DF, p-value: 0.4104

Not surprisingly, there is no evidence of a difference. But how large could a difference be? We can
get confidence intervals to tell us this.

confint(mod1)

# 2.5 % 97.5 %
# substrateA -13.146300 11.074698
# substrateB -16.369173 7.851825
# substrateC -16.927203 7.293795
# substrateCellulose -7.984173 21.680371
# substrateEthanol -21.503363 2.717635

We can say then, that at the 95% confidence, any difference between the methods is probably
smaller than 17%, with the exception of ethanol. That is useful. If we want more information
or a better estimate of any probable difference between the methods, we would need to carry out
additional experiments. For this new method, this is precisely what was later done, with comparisons
made within and even among other laboratories, with measurements made by differenet technicians
[Justesen et al., 2019].

Could this analysis have been done using a spreadsheet? Yes, but with some difficulty, and an
unforunate lack of clarity and reproducibility. In LibreOffice Calc, it is necessary to first calculate
the response variable (relative difference), as in the R code above, but then to add columns with
“dummy variables” for substrate. This is shown in Fig. 8, and also in the file “BMP_comp.ods” in
the spreadsheets directory.

To actually fit the regression model, the “Data” menu is selected, then “Statistics”, and finally,
“Regression”. Variables and options are selected are shown in Fig. 9.

27



Figure 9: Inputs required for analysis of the BMP data in LibreOffice Calc.

13 Example 3: VOC emission from silage

The data in ethanol_emis.xlxs are on ethanol emission from maize silage (fermented cattle feed)
measured in a simple wind tunnel. Emission was measured from 15 cm thick samples of silage taken
from bunker silos, where silage is stored for weeks or months. The measurements were part of a
crossed factorial experiment designed for evaluating the effect of temperature and wind speed at the
silage surface on emission rate. The response variable is in the last column: emis.n (for emission,
normalized), and is the fraction of initial ethanol mass lost over 12 hours of emission. Temperature
and relative humidity were controlled using an environmental chamber. Air speed was controlled
using a blower and a system of valves. The target value is given in speed.tar while the actual value
is in speed. Silage density was not controlled, but was determined because it affects porisity, which
could affect emission rate. Silage gas-phase porosity was determined from density and dry matter
content.

The primary question we were interested in was how do temperature and air speed affect ethanol
emission?

library(tidyverse)
library(readxl)

Read in the data.

et <- read_excel("data/ethanol_emis.xlsx", skip = 1)

Check data

dfsumm(et)

#
# 27 rows and 15 columns
# 27 unique rows
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# id sample box thick.samp temp.c
# Class numeric character character numeric numeric
# Minimum 124 C 2009JULY16A A 0.15 5
# Maximum 170 C2009JUNE30D D 0.15 35
# Mean 141 C2009JULY13C B 0.15 19.4
# Unique (excld. NA) 27 27 4 1 3
# Missing values 0 0 0 0 0
# Sorted TRUE FALSE FALSE TRUE FALSE
# rh.tar speed.tar headspace speed dm
# Class numeric numeric numeric numeric numeric
# Minimum 50 0.05 0.01 0.042 28.9
# Maximum 95 5 0.1 5.07 35.8
# Mean 70.4 1.4 0.0353 1.43 33.5
# Unique (excld. NA) 3 3 3 27 27
# Missing values 0 0 0 0 0
# Sorted FALSE FALSE FALSE FALSE FALSE
# c.etoh.i rho.d por.g emis.t emis.n
# Class numeric numeric numeric numeric numeric
# Minimum 1540 184 0.213 0.216 0.016
# Maximum 3930 306 0.54 6.53 0.501
# Mean 2990 266 0.304 1.52 0.141
# Unique (excld. NA) 27 27 27 27 27
# Missing values 0 0 0 0 0
# Sorted FALSE FALSE FALSE FALSE FALSE

Everything looks OK. No missing values. All the variables we are interested in are numeric, except
box, which is character. We will need to convert it to a factor later. Notice the ranges–emis.n is all
between 0.016 and 0.501.

A plot is the best place to start.

ggplot(et, aes(speed, emis.n, colour = factor(temp.c))) +
geom_point() +
labs(x = 'Air speed (m/s)', y = 'Normalized emission (frac. initial)',

colour = 'Temperature') +
theme(legend.position = 'top')
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Clearly air speed, and probably temperature, affected emission of ethanol. But let’s pause and think
about a few other things here.

First, what kind of relationships should we expect? Thinking about this will help us display the data
in the best way, and later, fit the most appropriate model. You can assume that ethanol emission
is related to its volatility, which we can quantify using Henry’s law constant. How does volatility
respond to temperature? It sure isn’t linear. In fact, a common assumption is that Henry’s law
constant changes by a factor of 2 with every 10◦C change in temperature. The form of this statement
suggests a logarithmic relationship, so we should log transform emission. How about air speed? We
might expect that emission rate is at least partially controlled by the mass transfer coefficient from
the surface. If we think about correlations for forced convection, the Reynolds number raised to the
power of 0.5, i.e., h ∝ Re0.5. A log-log model can be used for this relationship, and we can get that
by a log transformation of air speed in addition to emission.

ggplot(et, aes(log10(speed), log10(emis.n), colour = factor(temp.c))) +
geom_point() +
labs(x = 'Log10 air speed (m/s)', y = 'Log10 normalized emission (frac. initial)',

colour = 'Temperature') +
theme(legend.position = 'top')
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mod1 <- lm(log10(emis.n) ~ temp.c + log10(speed), data = et)

summary(mod1)

#
# Call:
# lm(formula = log10(emis.n) ~ temp.c + log10(speed), data = et)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.48859 -0.11700 0.02118 0.13010 0.32998
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -1.240841 0.086574 -14.333 2.91e-13 ***
# temp.c 0.017015 0.003844 4.426 0.000179 ***
# log10(speed) 0.463134 0.058796 7.877 4.15e-08 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 0.2076 on 24 degrees of freedom
# Multiple R-squared: 0.7745,Adjusted R-squared: 0.7557
# F-statistic: 41.2 on 2 and 24 DF, p-value: 1.733e-08

et$pred1 <- 10^predict(mod1)
et$resid1 <- resid(mod1)
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ggplot(et, aes(log10(speed), log10(emis.n), colour = factor(temp.c))) +
geom_point() +
geom_point(aes(y = log10(pred1)), pch = 1) +
geom_line(aes(y = log10(pred1))) +
labs(x = 'Log10 air speed (m/s)', y = 'Log10 normalized emission (frac. initial)',

colour = 'Temperature') +
theme(legend.position = 'top')
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So we could end here. But how about porosity? It was not controlled, but we might expect that it
could affect volatilization, because volatile compounds could travel through gas pores. Wouldn’t it
be great if it explained much of the variability not clearly related to the other experimental factors?
Let’s take a look.

ggplot(et, aes(por.g, log10(emis.n), colour = factor(temp.c))) +
geom_point() +
facet_wrap(~ speed.tar) +
theme(legend.position = 'top')
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There is very clear correlation and we should include it.

mod2 <- lm(log10(emis.n) ~ temp.c + log10(speed) + por.g, data = et)

summary(mod2)

#
# Call:
# lm(formula = log10(emis.n) ~ temp.c + log10(speed) + por.g, data = et)
#
# Residuals:
# Min 1Q Median 3Q Max
# -0.38144 -0.09606 0.02184 0.09561 0.30146
#
# Coefficients:
# Estimate Std. Error t value Pr(>|t|)
# (Intercept) -1.757115 0.135913 -12.928 4.93e-12 ***
# temp.c 0.018219 0.002926 6.227 2.36e-06 ***
# log10(speed) 0.462940 0.044546 10.392 3.68e-10 ***
# por.g 1.622569 0.374118 4.337 0.000243 ***
# ---
# Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#
# Residual standard error: 0.1573 on 23 degrees of freedom
# Multiple R-squared: 0.8759,Adjusted R-squared: 0.8597
# F-statistic: 54.12 on 3 and 23 DF, p-value: 1.405e-10

et$pred2 <- 10^predict(mod2)
et$resid2 <- resid(mod2)
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ggplot(et, aes(log10(speed), log10(emis.n), colour = factor(temp.c))) +
geom_point() +
geom_point(aes(y = log10(pred2)), pch = 1) +
geom_line(aes(y = log10(pred2))) +
labs(x = 'Log10 air speed (m/s)', y = 'Log10 normalized emission (frac. initial)',

colour = 'Temperature') +
theme(legend.position = 'top')
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ggplot(et, aes(log10(pred2), log10(emis.n), colour = factor(temp.c),
shape = factor(speed.tar))) +

geom_abline(intercept = 0, slope = 1) +
geom_point() +
labs(x = 'Log10 air speed (m/s)', y = 'Log10 normalized emission (frac. initial)',

colour = 'Temperature') +
theme(legend.position = 'top')
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ggplot(et, aes(log10(speed), resid2, colour = factor(temp.c))) +
geom_point() +
labs(x = 'Log10 air speed (m/s)', y = 'Residuals',

colour = 'Temperature') +
theme(legend.position = 'top')

37



−0.4

−0.2

0.0

0.2

−1.0 −0.5 0.0 0.5
Log10 air speed (m/s)

R
es

id
ua

ls

Temperature 5 20 35

That’s an informative plot.

14 Problem 1. Inoculum effects on BMP

Koch et al. [2017] studied the effect of inoculum origin on biochemical methane potential (BMP) for
four substrates. Data are given in the file BMP_inoc.csv, where the unit of observation is a single
BMP bottle. Take a look at the data and answer these questions:

1. Did BMP depend on inoculum type?

2. Did any effect vary by substrate?

The original data are in a intermediate structure, with replicates across columns.

bi <- read.csv('data/BMP_inoc.csv')

bi

# substrate inoc BMP1 BMP2 BMP3 BMP4 BMP5 BMP6 BMP7 BMP8
# 1 Sewage Sludge WWTP 293.8 272.8 303.9 260.2 275.7 276.6 309.9 330.1
# 2 Maize WWTP 319.7 320.2 344.5 324.7 328.3 338.6 324.8 351.9
# 3 Food Waste WWTP 453.9 444.5 462.9 451.1 453.9 473.7 423.8 419.5
# 4 Cellulose WWTP 333.3 315.6 341.0 322.8 330.4 338.9 338.9 343.0
# 5 Sewage Sludge ABP 294.8 294.2 293.9 267.0 269.6 272.5 332.4 319.8
# 6 Maize ABP 320.1 325.6 348.6 362.5 343.8 412.5 326.6 330.9
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# 7 Food Waste ABP 441.1 432.2 466.2 490.0 398.3 429.3 423.3 432.5
# 8 Cellulose ABP 344.1 347.7 374.8 348.5 351.3 378.0 354.9 367.5
# 9 Sewage Sludge BWTP 296.6 307.6 307.5 309.1 315.0 319.4 342.3 325.0
# 10 Maize BWTP 328.2 341.6 356.8 339.4 357.3 372.6 336.6 339.5
# 11 Food Waste BWTP 459.0 450.8 484.4 453.2 449.3 483.8 442.9 429.7
# 12 Cellulose BWTP 379.0 389.4 376.8 360.1 357.0 389.0 362.5 369.7
# BMP9
# 1 328.3
# 2 352.1
# 3 432.0
# 4 350.0
# 5 319.4
# 6 335.5
# 7 439.8
# 8 366.9
# 9 347.1
# 10 356.0
# 11 458.2
# 12 376.7

This structure could work well in a spreadsheet analysis. For analysis in R, the structure can be
changed to long using the gather() function.

library(tidyr)

bil <- gather(bi, key = 'rep', value = 'BMP', contains('BMP'))
head(bil)

# substrate inoc rep BMP
# 1 Sewage Sludge WWTP BMP1 293.8
# 2 Maize WWTP BMP1 319.7
# 3 Food Waste WWTP BMP1 453.9
# 4 Cellulose WWTP BMP1 333.3
# 5 Sewage Sludge ABP BMP1 294.8
# 6 Maize ABP BMP1 320.1

Here are the values, with a single point representing a BMP value from a single bottle.

ggplot(bil, aes(substrate, BMP, colour = inoc)) +
geom_jitter(height = 0)

39



250

300

350

400

450

500

Cellulose Food Waste Maize Sewage Sludge
substrate

B
M

P

inoc

ABP

BWTP

WWTP

15 Problem 2. Wood hardness and density

Faraway [2005] presented some data on the hardness of some Australian woods, and I’ve copied these
into the file janka.csv.

hard <- read.csv("data/janka.csv")
dfsumm(hard)

#
# 36 rows and 2 columns
# 36 unique rows
# density hardness
# Class numeric integer
# Minimum 24.7 413
# Maximum 69.1 3260
# Mean 45.7 1180
# Unique (excld. NA) 32 35
# Missing values 0 0
# Sorted TRUE FALSE

Let’s start out by seeing what the data look like.

plot(hardness ~ density, data = hard)
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We might be interested in doing two things with these data: determining if wood hardness (difficult
to measure) is related to wood density (easy to measure), and, if so, predicting hardness from the
density. Are these data experimental or observational? Try to fit an appropriate regression model
to these data, and take a look at the residuals to check the structure. Can you improve it?

16 Problem 3. Fruit fly longevity and sexual activity

The data in the file fruitfly.csv are from an experiment on fruitfly longevity and are also from
Faraway [2005]. The original objective of this famous experiment was to assess the effect of sexual
activity (manipulated by controlling the number of females placed with a single male, activity
column) on fruitfly longevity (how long the flies live, longevity column). But longevity is known
to be correlated with thorax length (thorax column.

ff <- read.csv('data/fruitfly.csv')
head(ff)

# thorax longevity activity
# 1 0.68 37 many
# 2 0.68 49 many
# 3 0.72 46 many
# 4 0.72 63 many
# 5 0.76 39 many
# 6 0.76 46 many

1. How might you plot these data to assess the effect of activity?
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2. How can you fit a statistical model that utilizes the correlation with thorax length to increase
power?

3. What approach should you use to compare the levels of activity to each other?

17 Problem 4: Growth and nitrate accumulation by Lemna
minor

Duckweeds are very tiny floating plants that can be used for wastewater treatment and recovery of
nitrogen. Harvested material can be used as an animal feed. Devlamynck et al. [2020] measured
biomass production and nitrate accumulation in a duckweed species Lemna minor. The data are in
lemna.csv. Use them to explore the following questions.

1. Did medium affect growth (grow)?

2. Did medium affect NO –
3 accumulation (NO3.accum)?

3. Is NO –
3 accumulation related to NO –

3 concentration in the medium (NO3.med)?

lem <- read.csv('data/lemna.csv')

summary(lem)

# med.descrip medium grow
# Length:24 Length:24 Min. :5.003
# Class :character Class :character 1st Qu.:5.423
# Mode :character Mode :character Median :5.823
# Mean :5.797
# 3rd Qu.:6.020
# Max. :7.467
# NO3.accum pH.med NO3.med
# Min. :0.005025 Min. :5.760 Min. : 0.009594
# 1st Qu.:0.087042 1st Qu.:6.388 1st Qu.: 2.215323
# Median :0.301076 Median :7.390 Median : 4.138554
# Mean :0.271930 Mean :7.461 Mean : 7.795348
# 3rd Qu.:0.415473 3rd Qu.:8.525 3rd Qu.: 9.410879
# Max. :0.529639 Max. :9.632 Max. :27.129694

library(ggplot2)

ggplot(lem, aes(medium, grow, colour = medium)) +
geom_point() +
labs(x = 'Medium', y = expression('Growth rate'~(mg~m^'-2'~d^'-1')))
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ggplot(lem, aes(medium, NO3.accum, colour = medium)) +
geom_point() +
labs(x = 'Medium', y = expression(NO[3]^'-'~'accumulation'~(mg~kg^'-1')))
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ggplot(lem, aes(NO3.med, NO3.accum, colour = medium)) +
geom_point() +
labs(x = 'Medium', y = expression(NO[3]^'-'~'accumulation'~(mg~kg^'-1')))
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