
Vulnerability Research of Android
apps:

from 0 to 0-day using fuzzing

DEF CON Russia | DCG7812

GitHub: saruman9 Telegram: @dura_lex

August 10, 2024

https://github.com/saruman9
https://t.me/dura_lex

About me

• Vulnerability Researcher: IoT, ICS, embedded,
mobile, etc.

• System Developer: tools for automatic analysis,
observability systems, fuzzers, emulators, etc.

2

Agenda

Beginning
Telegram
Viber
WhatsApp
General summary

The further down the list, the more difficult it is…

3

Background

• Money

4

Background

• Money

• BugBounty

4

Background

• Money

• BugBounty

• Mobile Applications, OSs, HW

4

Background

• Money

• BugBounty

• Mobile Applications, OSs, HW

• Test Task

4

Beginning

Beginning

Disclaimer

• No WEB vulnerabilities
• No Java vulnerabilities
• No vulnerabilities in protocols and specifications

6

Beginning

Disclaimer

• No WEB vulnerabilities
• No Java vulnerabilities
• No vulnerabilities in protocols and specifications

• Memory corruptions
• Binary vulnerabilities
• RCE and data-only exploits

6

Not about exploitation or a specific
vulnerability/CVE, but the

methodology

Without meme, sry 😢

Beginning

APK Analysis

What’s interesting for me?

Android manifest file:
• Activities
• Services
• Broadcasts Receivers
• Content Providers
• Permissions

8

APK Analysis Beginning

Resources:
• Libraries
• DSL parsers
• Protocol Buffers files
• Custom binary blobs

9

APK Analysis Beginning

Java Decompilation:
• Deobfuscation
• Refactoring
• Analysis (control-flow, data-flow, etc.)

10

APK Analysis Beginning

Shared/Native Libraries — my main target

11

Beginning

Is source code exist?

• Telegram — YES
• Viber — NO
• WhatsApp — NO

12

Telegram

Telegram

Why first?

• Source Code — ✅

14

Telegram

Why first?

• Source Code — ✅

• BugBounty — ✅

14

Telegram

Why first?

• Source Code — ✅

• BugBounty — ✅

• I’m a user of the app — ✅

14

Telegram

Static Analysis

• Manifest file — ✅
• Resources — ❌

15

Static Analysis Telegram

• Java
• C++ ⇒ Android Studio

16

Telegram

Shared/Native libraries

Ordered by the “low-hanging fruit” principle:

1. Legacy code
2. Self-written components
3. …
5. Crypto implementation
6. …
9. Popular open-source frameworks

10. RFC, protocols and manifests

17

Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

18

Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

2. Identify the entry points and sinks

18

Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

2. Identify the entry points and sinks
3. Building attack vectors

18

Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

2. Identify the entry points and sinks
3. Building attack vectors
4. Isolating target components

18

Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

2. Identify the entry points and sinks
3. Building attack vectors
4. Isolating target components
5. Analysis (fuzzing in our case)

18

Telegram

Attack Vectors & Components

• File parsers and decoders
‣ FLAC
‣ GIF
‣ Opus
‣ Lottie (modified)

19

Attack Vectors & Components Telegram

• Connection
‣ tgnet
‣ TLObject — (de)serialization (legacy)

• VoIP
‣ tgcalls (legacy)
‣ WebRTC (modified)

• etc.

20

Fuzzing

Telegram

Harness

Do you have the
source code?

22

Telegram

Harness

Do you have the
source code? YES ✅

22

Telegram

Harness

Do you have the
source code? YES ✅ ⇒ easy peasy lemon

squeezy?..

22

NO

Harness Telegram

• Isolation is not always possible in complex components

24

Harness Telegram

• Isolation is not always possible in complex components
• Behavior emulation (sockets, files, server, protocol, Java

code, etc.)

24

Harness Telegram

• Isolation is not always possible in complex components
• Behavior emulation (sockets, files, server, protocol, Java

code, etc.)
• Legacy code is a legacy code

24

Harness Telegram

• Isolation is not always possible in complex components
• Behavior emulation (sockets, files, server, protocol, Java

code, etc.)
• Legacy code is a legacy code
• Build for Android or for a host x86_64 POSIX machine?

24

Telegram

Example. tgnet

1. Replace Android code
2. ModifyWrite CMake file
3. Develop server¹ (MTProto²) and emulate Java code &

socket file
4. Develop a MitM PoC attack for triaging

¹https://github.com/saruman9/tg_srv
²https://github.com/saruman9/010_editor_templates

25

https://github.com/saruman9/tg_srv
https://github.com/saruman9/010_editor_templates

Telegram

Fuzzers

• AFL/AFL++
• libFuzzer / centipede / fuzztest
• honggfuzz
• LibAFL
• etc.

26

Telegram

Catches

• DoS
• Leaks
• Cryptography weaknesses
• Vulnerabilities in open source components

27

Telegram

Summary

• Not so interesting for the presentation, but important as
a base

• Not good BugBounty program
• Good for a first research in this field
• Many other methods of analysis can be applied

28

Viber

Viber

Sources

• Препарируем Viber. Мини-гид по анализу приложений
для Android¹ © Хакер

• fuzzer + harness²

¹https://xakep.ru/2023/05/16/analyzing-viber/
²https://github.com/saruman9/viber_linkparser_fuzzer/

30

https://xakep.ru/2023/05/16/analyzing-viber/
https://github.com/saruman9/viber_linkparser_fuzzer/

Viber

Static Analysis

• Manifest file — ✅
• Resources — ❌
• 1-day analysis + binary diffing — ✅

31

Shared/Native Libraries

Viber

Architecture — x86_64

• More tools
• Emulation at high speeds
• Partial analysis on a host machine

33

Viber

Native functions

• IDA Pro
• Binary Ninja
• rizin

34

Viber

Native functions

• IDA Pro
• Binary Ninja
• rizin

34

Native functions Viber

$ readelf -W --demangle --symbols $(LIBRARY_SO) | \
tail -n +4 | \
sort -k 7 | \
optional rg "FUNC.*Java_.*"
less

33: 0000000000001bb5 55 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_HttpEngine_nativeCreateHttp
34: 0000000000001bec 15 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_HttpEngine_nativeDelete
38: 0000000000001bfb 622 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_HttpEngine_nativeTest
44: 00000000000018c3 109 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnConnected
39: 00000000000015e8 366 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnData
35: 0000000000001b0c 40 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnDisconnected
40: 0000000000001930 476 FUNC GLOBAL DEFAULT 13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnHead

35

Native functions Viber

$ rg "native.*nativeCreateHttp"

app/src/main/java/com/viber/libnativehttp/HttpEngine.java
9: public static native long nativeCreateHttp();

36

Native functions Viber

Goals:
• Find open source components
• Find the target library
• Superficial analysis

37

Viber

Attack Vectors & Components

• Link parser
• SVG
• Viber RTC (WebRTC)
• VoIP engine

38

Accessibility (real sink?)

Viber

Static Analysis

• jadx¹ — decompilation IntelliJ IDEA — deobfuscation,
refactoring

• SciTools Understand² — code-flow, data-flow analysis
• strings/rizin, grep/ripgrep

¹https://github.com/skylot/jadx
²https://www.scitools.com/

40

https://github.com/skylot/jadx
https://www.scitools.com/

Static Analysis Viber

Call graph of SVG native function in Understand

41

Viber

Dynamic Analysis

• Frida and public scripts
• frida-trace
• Smali patching
• Binary patching

42

Fuzzing

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

44

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

44

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

• honggfuzz

44

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

• honggfuzz

44

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

• honggfuzz

• AFL++

44

Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

• honggfuzz

• AFL++

• LibAFL

• etc.

44

Greybox is more interesting Viber

Fuzzer
Instru-

mentation
Emulator
(x86_64)

Real device,
aarch64

AFL++¹ Frida ✅ AFL++ in ✅
AFL++² Qemu ❌ ✅
AFL++³ Qemu ✅ ❌

AFL++
Unicorn +

qiling
Unicorn ❌/✅?

honggfuzz/
AFL++

QBDI QBDI ❌/✅?

LibAFL Qemu ❌ ✅

45

Greybox is more interesting Viber

LibAFL Qemu ✅ ❌
LibAFL Frida ✅ LibAFL in ✅

¹Android greybox fuzzing with AFL++ Frida mode by Eric Le Guevel from Quarkslab
²AFL++ on Android with QEMU support by Itai Greenhut (@Gr33nh4t) from Aleph Research; fpicker-aflpp-android by marcinguy
³MMS Exploit Part 2: Effective Fuzzing of the Qmage Codec by Mateusz Jurczyk from Project Zero; Sloth by ant4g0nist

45

https://blog.quarkslab.com/android-greybox-fuzzing-with-afl-frida-mode.html
https://alephsecurity.com/2021/11/16/fuzzing-qemu-android/
https://github.com/marcinguy/fpicker-aflpp-android
https://googleprojectzero.blogspot.com/2020/07/mms-exploit-part-2-effective-fuzzing-qmage.html
https://github.com/ant4g0nist/Sloth

Viber

LibAFL + Frida

Why? Later we will review the remaining options

• I’m Rust developer
• I’ve already used LibAFL
• Frida is true cross platform software
• Rust is better for cross-compilation¹

¹not for Android, but not because Rust is bad

46

Harness

Viber

Reverse Engineering

Ghidra

• Ghidra fork¹
• ghidra_scripts²
• Recaster plugin³
• “Ghidra. Dev” presentation⁴

¹https://github.com/saruman9/ghidra
²https://github.com/saruman9/ghidra_scripts
³https://github.com/saruman9/recaster
⁴https://github.com/saruman9/ghidra_dev_pres

48

https://github.com/saruman9/ghidra
https://github.com/saruman9/ghidra_scripts
https://github.com/saruman9/recaster
https://github.com/saruman9/ghidra_dev_pres

Reverse Engineering Viber

• Binary Ninja — binja_snippets¹
• IDA Pro
• rizin

¹https://github.com/saruman9/binja_snippets

49

https://github.com/saruman9/binja_snippets

Viber

C++

Ghidra

• RecoverClassesFromRTTIScript.java
• ApplyClassFunctionSignatureUpdatesScript.java
• ApplyClassFunctionDefinitionUpdatesScript.java
• C++ directory in Script Manager
• Ghidra-Cpp-Class-Analyzer¹ by astrelsky

¹https://github.com/astrelsky/Ghidra-Cpp-Class-Analyzer

50

https://github.com/astrelsky/Ghidra-Cpp-Class-Analyzer

C++ Viber

IDA Pro

• ida_medigate¹ by Metadorius — fork of fork of fork…
• Referee² by joeleong — a python port of James Koppel’s

Referee

¹https://github.com/Metadorius/ida_medigate
²https://github.com/joeleong/ida-referee

51

https://github.com/Metadorius/ida_medigate
https://github.com/joeleong/ida-referee

C++ Viber

Binary Ninja

• Use development release channel
• ClassyPP¹ by CySHell
• binja_itanium_cxx_abi² by whitequark

¹https://github.com/CySHell/ClassyPP
²https://github.com/whitequark/binja_itanium_cxx_abi

52

https://github.com/CySHell/ClassyPP
https://github.com/whitequark/binja_itanium_cxx_abi

C++ Viber

BTW try Binary Ninja¹

¹A very old comparison of IDA and Binary Ninja — Binary Ninja 1.1.1184-dev vs IDA Pro 7.0.171130 (RU)

53

https://github.com/saruman9/binja_vs_ida

Viber

Signatures

• Ghidra: Function ID¹
• IDA Pro: lumen² — Lumina private server
• Binary Ninja: Signature Libraries³

¹FunctionID help topic
²https://github.com/naim94a/lumen
³https://binary.ninja/2020/03/11/signature-libraries.html

54

https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/FunctionID/src/main/help/help/topics/FunctionID/FunctionID.html
https://github.com/naim94a/lumen
https://binary.ninja/2020/03/11/signature-libraries.html

Viber

Diffing

• Version Tracking¹ in Ghidra
• Program Differences² in Ghidra
• BinDiff³
• Diaphora⁴

¹Version Tracking help topic
²Program Differences help topic
³https://www.zynamics.com/bindiff.html
⁴https://github.com/joxeankoret/diaphora

55

https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/VersionTracking/src/main/help/help/topics/VersionTrackingPlugin/Version_Tracking_Intro.html
https://htmlpreview.github.io/?https://github.com/NationalSecurityAgency/ghidra/blob/master/Ghidra/Features/ProgramDiff/src/main/help/help/topics/Diff/Diff.htm
https://www.zynamics.com/bindiff.html
https://github.com/joxeankoret/diaphora

Viber

Difficulties & Resolving

❓ Java + C++

❓ Threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

❓ Java + C++

💡 Find “pure” functions

❓ Threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

❓ Threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

❓ Threads

💡 Find a target function in a call graph without threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

❓ Other shared libraries as dependencies

💡 To do patching of shared libraries

💡 Load dependencies inside harness code

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56

Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

💡 Write stubs, call initialization functions

56

Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

✅ Initialization in JNI_OnLoad

56

Viber

Example of a harness for the target function

const ptrdiff_t ADDR_JNI_ONLOAD = 0x0000000000011640;
const ptrdiff_t ADDR_PARSE_LINK = 0x000000000002F870;
const ptrdiff_t ADDR_COPY_JNI_STRING_FROM_STR = 0x0000000000011160;
[--.]
Functions *load_functions()
{
 LIBC_SHARED = dlopen("/data/local/tmp/libc-+_shared.so", RTLD_NOW | RTLD_GLOBAL);
 LIBICU_BINDER = dlopen("/data/local/tmp/libicuBinder.so", RTLD_NOW | RTLD_GLOBAL);
 LIBLINKPARSER = dlopen("/data/local/tmp/liblinkparser.so", RTLD_NOW | RTLD_GLOBAL);
 if (LIBLINKPARSER -= NULL -& LIBC_SHARED -= NULL -& LIBICU_BINDER -= NULL)
 {
 int (*JNI_OnLoad)(void *, void *) = dlsym(LIBLINKPARSER, "JNI_OnLoad");
 void (*binder_init)() = dlsym(LIBICU_BINDER, "_ZN22IcuSqliteAndroidBinder4initEv");

 if (JNI_OnLoad -= NULL -& binder_init -= NULL -* -& binder_getInstance -= NULL -/)
 {
[--.]

57

Viber

Catches

• DoS
• Leaks
• Deadlocks

58

Viber

Sources (once again)

• Препарируем Viber. Мини-гид по анализу приложений
для Android¹ © Хакер

• fuzzer + harness²

¹https://xakep.ru/2023/05/16/analyzing-viber/
²https://github.com/saruman9/viber_linkparser_fuzzer/

59

https://xakep.ru/2023/05/16/analyzing-viber/
https://github.com/saruman9/viber_linkparser_fuzzer/

Viber

Summary

• More details in the article 👆
• The research has been interrupted, so go ahead!
• The basic things for graybox fuzzing were considered,

further — more

60

WhatsApp

WhatsApp

Static Analysis

• Manifest file — ✅
• Resources — ✅, see the next slide
• 1-day analysis + binary diffing — ✅

62

Shared/Native Libraries

WhatsApp

Superpack

Android app compression, which combines compiler
analysis with data compression.

See Superpack: Pushing the limits of compression in
Facebook’s mobile apps¹ by Sapan Bhatia from Facebook.

¹https://engineering.fb.com/2021/09/13/core-data/superpack/

64

https://engineering.fb.com/2021/09/13/core-data/superpack/

Superpack WhatsApp

Solutions:
• Reverse engineering and developing
• Reverse engineering and developing a wrapper (calling

functions from a shared library in an emulator)
• Decompression in an emulator/Docker

65

Superpack WhatsApp

Solutions:
• Reverse engineering and developing
• Reverse engineering and developing a wrapper (calling

functions from a shared library in an emulator)
• ✅ Decompression in an emulator/Docker

65

WhatsApp

Attack Vectors & Components

• Java part
• Many open-source components
• libwhatsapp.so

‣ Statically linked
‣ More and more Rust

66

Attack Vectors & Components WhatsApp

After a long CFG/DFG analysis…

• MP4 checking (incoming messages), converting
(outgoing messages)

• GIF checking
• WEBP parsing (stickers)
• libmagi (MIME type identification)
• VoIP (PJSIP project¹)

¹https://github.com/pjsip/pjproject

67

https://github.com/pjsip/pjproject

Fuzzing

WhatsApp

AFL++ + Frida

• Not as hard to build for Android as I expected¹
• Perfect for those who prefer C++
• Not as flexible as LibAFL, but rich in functionality

¹https://github.com/saruman9/AFLplusplus/tree/android

69

https://github.com/saruman9/AFLplusplus/tree/android

LibAFL + Frida

WhatsApp

Android NDK + Frida + Rust = Building is the real
pain!

Works: Rust 1.67, NDK 22, clang30

Doesn’t work:

• Rust 1.67, NDK 25, clang*
• Rust 1.70, NDK 21, clang*
• Rust 1.70, NDK 22, clang*
• Rust 1.70, NDK 25, clang*

71

Android NDK + Frida + Rust = Building is the real pain! WhatsApp

1. Moving Android toolchains from libgcc to libclang_rt¹
2. Updating the Android NDK in Rust 1.68²
3. Fixing build error for NDK 23 and above³
4. Patches for Frida (only for NDK below 23)⁴
5. Workaround for aarch64 -_clear_cache issue⁵
6. A dirty hack for frida-rust6

¹https://github.com/android/ndk/wiki/Changelog-r23#changes
²https://blog.rust-lang.org/2023/01/09/android-ndk-update-r25.html
³https://github.com/rust-lang/rust/pull/85806#issuecomment-1096266946
⁴https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1693328137
⁵https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1695346506
6https://github.com/frida/frida-rust/pull/112

72

https://github.com/android/ndk/wiki/Changelog-r23#changes
https://blog.rust-lang.org/2023/01/09/android-ndk-update-r25.html
https://github.com/rust-lang/rust/pull/85806#issuecomment-1096266946
https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1693328137
https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1695346506
https://github.com/frida/frida-rust/pull/112

WhatsApp

LibAFL problems

• DrCov coverage doesn’t work as expected¹,²
• Asan doesn’t work for Android x86_64³
• miniBSOD doesn’t work for Android x86_64⁴

¹https://github.com/AFLplusplus/LibAFL/pull/1579
²https://github.com/AFLplusplus/LibAFL/pull/1581
³https://github.com/AFLplusplus/LibAFL/pull/1578
⁴https://github.com/AFLplusplus/LibAFL/pull/1577

73

https://github.com/AFLplusplus/LibAFL/pull/1579
https://github.com/AFLplusplus/LibAFL/pull/1581
https://github.com/AFLplusplus/LibAFL/pull/1578
https://github.com/AFLplusplus/LibAFL/pull/1577

LibAFL problems WhatsApp

• Additional changes¹:
‣ Option to continue fuzzing
‣ Catching of timeout objectives
‣ Option to disable coverage
‣ The option of minimizing a corpus

¹https://github.com/saruman9/LibAFL/branches/all

74

https://github.com/saruman9/LibAFL/branches/all

WhatsApp

Frida

• I had a lot of problems because I didn’t understand how
Stalker works. Especially when analyzing complex
objects (JIT is terrible)

• Be sure to read the documentation¹ for Stalker (and
Gum interface) before using it

¹https://frida.re/docs/stalker/

75

https://frida.re/docs/stalker/

WhatsApp

Frida

• I had a lot of problems because I didn’t understand how
Stalker works. Especially when analyzing complex
objects (JIT is terrible)

• Be sure to read the documentation¹ for Stalker (and
Gum interface) before using it

• LibAFL + Frida = Multithreading doesn’t work
• The sanitizer based on Frida doesn’t work correctly on

some arch/platforms

¹https://frida.re/docs/stalker/

75

https://frida.re/docs/stalker/

WhatsApp

Java VM

💡
Harness = Java + Native Libraries

But how?

76

WhatsApp

Java VM

💡
Harness = Java + Native Libraries

But how?

Create Java VM from C/C++/Rust code of a harness/
fuzzer!

76

Java VM WhatsApp

Sources:

• Creating a Java VM from Android Native Code¹ by Caleb
Fenton

• Calling JNI Functions with Java Object Arguments from
the Command Line² by Caleb Fenton

• Loading Android ART virtual machine from native
executables³ by Eugene Gershnik

¹https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/
²https://calebfenton.github.io/2017/04/14/calling_jni_functions_with_java_object_arguments_from_the_command_line/
³https://gershnik.github.io/2021/03/26/load-art-from-native.html

77

https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/
https://calebfenton.github.io/2017/04/14/calling_jni_functions_with_java_object_arguments_from_the_command_line/
https://gershnik.github.io/2021/03/26/load-art-from-native.html

WhatsApp

Where hell begins?

Creating a Java VM is a non-trivial task!

78

WhatsApp

Where hell begins?

Compliance with all legacy designs in Android is
hard!

I did a separate research on the ASOP source code

78

WhatsApp

Where hell begins?

Running Java VM under a fuzzer and
Frida is a pain!

I spent many hours debugging

78

WhatsApp

Where hell begins?

A real device and an emulator are
two different things!

I have used 3 real devices and countless versions of an
emulator

78

WhatsApp

Where hell begins?

It still doesn’t work stably…

But it works!¹,²

¹https://github.com/saruman9/jnienv
²BTW Valgrind for Android: https://github.com/saruman9/valgrind

78

https://github.com/saruman9/jnienv
https://github.com/saruman9/valgrind

WhatsApp

Smali patching

Does anyone know a tool that is comfortable to use for
Smali patching?

79

WhatsApp

Smali patching

• Smali the Parseltongue Language¹ by Benoît Forgette
from Quarkslab

• Ghidra
• Binary Ninja
• Smalise extension for VSCode² by LoyieKing

¹https://blog.quarkslab.com/smali-the-parseltongue-language.html
²https://github.com/LoyieKing/Smalise

79

https://blog.quarkslab.com/smali-the-parseltongue-language.html
https://github.com/LoyieKing/Smalise

Catches

WhatsApp

DoS. Sender side

• Gallery
‣ TIFF, SVG
‣ OGG, WAV, MP3

• Live
‣ Opus (audio recorder)
‣ Video stream from a camera

• Sending
‣ MP4

81

WhatsApp

DoS. Receiver side

• Media hijacking
• Android Java exceptions, native iOS crashes

82

WhatsApp

Summary

• Only DoS… yet
• VoIP is still waiting for me

83

General summary

• The journey is 1 year long

84

General summary

• The journey is 1 year long
• From zero to hero some bugs with only fuzzing

84

General summary

• The journey is 1 year long
• From zero to hero some bugs with only fuzzing
• This is the vulnerability research for now, next time —

exploitation development

84

Thank you!

	About me
	Agenda
	Background
	Beginning
	Disclaimer
	APK Analysis
	Is source code exist?

	Telegram
	Why first?
	Static Analysis
	Shared/Native libraries
	Plan
	Attack Vectors & Components
	Fuzzing
	Harness
	Example. tgnet
	Fuzzers

	Catches
	Summary

	Viber
	Sources
	Static Analysis
	Shared/Native Libraries
	Architecture — x86_64
	Native functions

	Attack Vectors & Components
	Accessibility (real sink?)
	Static Analysis
	Dynamic Analysis

	Fuzzing
	Greybox is more interesting
	LibAFL + Frida

	Harness
	Reverse Engineering
	C++
	Signatures
	Diffing

	Difficulties & Resolving
	Example of a harness for the target function

	Catches
	Sources (once again)
	Summary

	WhatsApp
	Static Analysis
	Shared/Native Libraries
	Superpack

	Attack Vectors & Components
	Fuzzing
	AFL++ + Frida
	LibAFL + Frida
	Android NDK + Frida + Rust = Building is the real pain!
	LibAFL problems

	Frida
	Java VM
	Where hell begins?
	Smali patching

	Catches
	DoS. Sender side
	DoS. Receiver side

	Summary

	General summary

