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About me

• Vulnerability Researcher: IoT, ICS, embedded,
mobile, etc.

• System Developer: tools for automatic analysis,
observability systems, fuzzers, emulators, etc.
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Agenda

Beginning
Telegram
Viber
WhatsApp
General summary

The further down the list, the more difficult it is…
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Background

• Money
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Background

• Money

• BugBounty

• Mobile Applications, OSs, HW

• Test Task
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Beginning



Beginning

Disclaimer

• No WEB vulnerabilities
• No Java vulnerabilities
• No vulnerabilities in protocols and specifications
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Beginning

Disclaimer

• No WEB vulnerabilities
• No Java vulnerabilities
• No vulnerabilities in protocols and specifications

• Memory corruptions
• Binary vulnerabilities
• RCE and data-only exploits
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Not about exploitation or a specific
vulnerability/CVE, but the

methodology

Without meme, sry 😢



Beginning

APK Analysis

What’s interesting for me?

Android manifest file:
• Activities
• Services
• Broadcasts Receivers
• Content Providers
• Permissions
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APK Analysis Beginning

Resources:
• Libraries
• DSL parsers
• Protocol Buffers files
• Custom binary blobs
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APK Analysis Beginning

Java Decompilation:
• Deobfuscation
• Refactoring
• Analysis (control-flow, data-flow, etc.)
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APK Analysis Beginning

Shared/Native Libraries — my main target
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Beginning

Is source code exist?

• Telegram — YES
• Viber — NO
• WhatsApp — NO
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Telegram



Telegram

Why first?

• Source Code — ✅
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Telegram

Why first?

• Source Code — ✅

• BugBounty — ✅
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Telegram

Why first?

• Source Code — ✅

• BugBounty — ✅

• I’m a user of the app — ✅
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Telegram

Static Analysis

• Manifest file — ✅
• Resources — ❌
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Static Analysis Telegram

• Java
• C++ ⇒ Android Studio
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Telegram

Shared/Native libraries

Ordered by the “low-hanging fruit” principle:

1. Legacy code
2. Self-written components
3. …
5. Crypto implementation
6. …
9. Popular open-source frameworks

10. RFC, protocols and manifests
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Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)
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Telegram

Plan

1. Translate the code architecture into a convenient
format (mind map, graph, wiki, Zettelkasten, etc.)

2. Identify the entry points and sinks
3. Building attack vectors
4. Isolating target components
5. Analysis (fuzzing in our case)
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Telegram

Attack Vectors & Components

• File parsers and decoders
‣ FLAC
‣ GIF
‣ Opus
‣ Lottie (modified)
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Attack Vectors & Components Telegram

• Connection
‣ tgnet
‣ TLObject — (de)serialization (legacy)

• VoIP
‣ tgcalls (legacy)
‣ WebRTC (modified)

• etc.
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Fuzzing



Telegram

Harness

Do you have the
source code?
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Telegram

Harness

Do you have the
source code? YES ✅
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Telegram

Harness

Do you have the
source code? YES ✅ ⇒ easy peasy lemon

squeezy?..

22



NO



Harness Telegram

• Isolation is not always possible in complex components
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• Behavior emulation (sockets, files, server, protocol, Java
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Harness Telegram

• Isolation is not always possible in complex components
• Behavior emulation (sockets, files, server, protocol, Java

code, etc.)
• Legacy code is a legacy code
• Build for Android or for a host x86_64 POSIX machine?
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Telegram

Example. tgnet

1. Replace Android code
2. ModifyWrite CMake file
3. Develop server¹ (MTProto²) and emulate Java code &

socket file
4. Develop a MitM PoC attack for triaging

¹https://github.com/saruman9/tg_srv
²https://github.com/saruman9/010_editor_templates
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Telegram

Fuzzers

• AFL/AFL++
• libFuzzer / centipede / fuzztest
• honggfuzz
• LibAFL
• etc.
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Telegram

Catches

• DoS
• Leaks
• Cryptography weaknesses
• Vulnerabilities in open source components

27



Telegram

Summary

• Not so interesting for the presentation, but important as
a base

• Not good BugBounty program
• Good for a first research in this field
• Many other methods of analysis can be applied
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Viber

Sources

• Препарируем Viber. Мини-гид по анализу приложений
для Android¹ © Хакер

• fuzzer + harness²

¹https://xakep.ru/2023/05/16/analyzing-viber/
²https://github.com/saruman9/viber_linkparser_fuzzer/
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Viber

Static Analysis

• Manifest file — ✅
• Resources — ❌
• 1-day analysis + binary diffing — ✅
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Shared/Native Libraries



Viber

Architecture — x86_64

• More tools
• Emulation at high speeds
• Partial analysis on a host machine
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Viber

Native functions

• IDA Pro
• Binary Ninja
• rizin
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Viber

Native functions

• IDA Pro
• Binary Ninja
• rizin
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Native functions Viber

$ readelf -W --demangle --symbols $(LIBRARY_SO) | \
tail -n +4 | \
sort -k 7 | \
# optional rg "FUNC.*Java_.*"
less

33: 0000000000001bb5    55 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_HttpEngine_nativeCreateHttp
34: 0000000000001bec    15 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_HttpEngine_nativeDelete
38: 0000000000001bfb   622 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_HttpEngine_nativeTest
44: 00000000000018c3   109 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnConnected
39: 00000000000015e8   366 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnData
35: 0000000000001b0c    40 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnDisconnected
40: 0000000000001930   476 FUNC    GLOBAL DEFAULT   13 Java_com_viber_libnativehttp_NativeDownloader_nativeOnHead
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Native functions Viber

$ rg "native.*nativeCreateHttp"

app/src/main/java/com/viber/libnativehttp/HttpEngine.java
9:    public static native long nativeCreateHttp();
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Native functions Viber

Goals:
• Find open source components
• Find the target library
• Superficial analysis
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Viber

Attack Vectors & Components

• Link parser
• SVG
• Viber RTC (WebRTC)
• VoIP engine
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Accessibility (real sink?)



Viber

Static Analysis

• jadx¹ — decompilation IntelliJ IDEA — deobfuscation,
refactoring

• SciTools Understand² — code-flow, data-flow analysis
• strings/rizin, grep/ripgrep

¹https://github.com/skylot/jadx
²https://www.scitools.com/
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Static Analysis Viber

Call graph of SVG native function in Understand
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Viber

Dynamic Analysis

• Frida and public scripts
• frida-trace
• Smali patching
• Binary patching

42



Fuzzing



Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest
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Viber

Greybox is more interesting

• libFuzzer / centipede / fuzztest

• honggfuzz

• AFL++

• LibAFL

• etc.
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Greybox is more interesting Viber

Fuzzer
Instru-

mentation
Emulator
(x86_64)

Real device,
aarch64

AFL++¹ Frida ✅ AFL++ in ✅
AFL++² Qemu ❌ ✅
AFL++³ Qemu ✅ ❌

AFL++
Unicorn +

qiling
Unicorn ❌/✅?

honggfuzz/
AFL++

QBDI QBDI ❌/✅?

LibAFL Qemu ❌ ✅
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Greybox is more interesting Viber

LibAFL Qemu ✅ ❌
LibAFL Frida ✅ LibAFL in ✅

¹Android greybox fuzzing with AFL++ Frida mode by Eric Le Guevel from Quarkslab
²AFL++ on Android with QEMU support by Itai Greenhut (@Gr33nh4t) from Aleph Research; fpicker-aflpp-android by marcinguy
³MMS Exploit Part 2: Effective Fuzzing of the Qmage Codec by Mateusz Jurczyk from Project Zero; Sloth by ant4g0nist
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Viber

LibAFL + Frida

Why? Later we will review the remaining options

• I’m Rust developer
• I’ve already used LibAFL
• Frida is true cross platform software
• Rust is better for cross-compilation¹

¹not for Android, but not because Rust is bad
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Harness



Viber

Reverse Engineering

Ghidra

• Ghidra fork¹
• ghidra_scripts²
• Recaster plugin³
• “Ghidra. Dev” presentation⁴

¹https://github.com/saruman9/ghidra
²https://github.com/saruman9/ghidra_scripts
³https://github.com/saruman9/recaster
⁴https://github.com/saruman9/ghidra_dev_pres
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Reverse Engineering Viber

• Binary Ninja — binja_snippets¹
• IDA Pro
• rizin

¹https://github.com/saruman9/binja_snippets
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Viber

C++

Ghidra

• RecoverClassesFromRTTIScript.java
• ApplyClassFunctionSignatureUpdatesScript.java
• ApplyClassFunctionDefinitionUpdatesScript.java
• C++ directory in Script Manager
• Ghidra-Cpp-Class-Analyzer¹ by astrelsky

¹https://github.com/astrelsky/Ghidra-Cpp-Class-Analyzer
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C++ Viber

IDA Pro

• ida_medigate¹ by Metadorius — fork of fork of fork…
• Referee² by joeleong — a python port of James Koppel’s

Referee

¹https://github.com/Metadorius/ida_medigate
²https://github.com/joeleong/ida-referee
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C++ Viber

Binary Ninja

• Use development release channel
• ClassyPP¹ by CySHell
• binja_itanium_cxx_abi² by whitequark

¹https://github.com/CySHell/ClassyPP
²https://github.com/whitequark/binja_itanium_cxx_abi
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C++ Viber

BTW try Binary Ninja¹

¹A very old comparison of IDA and Binary Ninja — Binary Ninja 1.1.1184-dev vs IDA Pro 7.0.171130 (RU)
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Viber

Signatures

• Ghidra: Function ID¹
• IDA Pro: lumen² — Lumina private server
• Binary Ninja: Signature Libraries³

¹FunctionID help topic
²https://github.com/naim94a/lumen
³https://binary.ninja/2020/03/11/signature-libraries.html
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Viber

Diffing

• Version Tracking¹ in Ghidra
• Program Differences² in Ghidra
• BinDiff³
• Diaphora⁴

¹Version Tracking help topic
²Program Differences help topic
³https://www.zynamics.com/bindiff.html
⁴https://github.com/joxeankoret/diaphora
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Viber

Difficulties & Resolving

❓ Java + C++

❓ Threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad
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Viber

Difficulties & Resolving

✅ Java + C++

❓ Threads

💡 Find a target function in a call graph without threads

❓ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

56



Viber

Difficulties & Resolving

✅ Java + C++
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Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

❓ Other shared libraries as dependencies

💡 To do patching of shared libraries

💡 Load dependencies inside harness code

❓ Initialization in JNI_OnLoad

56



Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad
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Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

❓ Initialization in JNI_OnLoad

💡 Write stubs, call initialization functions
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Viber

Difficulties & Resolving

✅ Java + C++

✅ Threads

✅ Other shared libraries as dependencies

✅ Initialization in JNI_OnLoad
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Viber

Example of a harness for the target function

const ptrdiff_t ADDR_JNI_ONLOAD = 0x0000000000011640;
const ptrdiff_t ADDR_PARSE_LINK = 0x000000000002F870;
const ptrdiff_t ADDR_COPY_JNI_STRING_FROM_STR = 0x0000000000011160;
[--.]
Functions *load_functions()
{
  LIBC_SHARED = dlopen("/data/local/tmp/libc-+_shared.so", RTLD_NOW | RTLD_GLOBAL);
  LIBICU_BINDER = dlopen("/data/local/tmp/libicuBinder.so", RTLD_NOW | RTLD_GLOBAL);
  LIBLINKPARSER = dlopen("/data/local/tmp/liblinkparser.so", RTLD_NOW | RTLD_GLOBAL);
  if (LIBLINKPARSER -= NULL -& LIBC_SHARED -= NULL -& LIBICU_BINDER -= NULL)
  {
    int (*JNI_OnLoad)(void *, void *) = dlsym(LIBLINKPARSER, "JNI_OnLoad");
    void (*binder_init)() = dlsym(LIBICU_BINDER, "_ZN22IcuSqliteAndroidBinder4initEv");

    if (JNI_OnLoad -= NULL -& binder_init -= NULL -* -& binder_getInstance -= NULL -/)
    {
[--.]
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Viber

Catches

• DoS
• Leaks
• Deadlocks
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Viber

Sources (once again)

• Препарируем Viber. Мини-гид по анализу приложений
для Android¹ © Хакер

• fuzzer + harness²

¹https://xakep.ru/2023/05/16/analyzing-viber/
²https://github.com/saruman9/viber_linkparser_fuzzer/
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Viber

Summary

• More details in the article 👆
• The research has been interrupted, so go ahead!
• The basic things for graybox fuzzing were considered,

further — more
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WhatsApp

Static Analysis

• Manifest file — ✅
• Resources — ✅, see the next slide
• 1-day analysis + binary diffing — ✅
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Shared/Native Libraries



WhatsApp

Superpack

Android app compression, which combines compiler
analysis with data compression.

See Superpack: Pushing the limits of compression in
Facebook’s mobile apps¹ by Sapan Bhatia from Facebook.

¹https://engineering.fb.com/2021/09/13/core-data/superpack/
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Superpack WhatsApp

Solutions:
• Reverse engineering and developing
• Reverse engineering and developing a wrapper (calling

functions from a shared library in an emulator)
• Decompression in an emulator/Docker
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Superpack WhatsApp

Solutions:
• Reverse engineering and developing
• Reverse engineering and developing a wrapper (calling

functions from a shared library in an emulator)
• ✅ Decompression in an emulator/Docker
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WhatsApp

Attack Vectors & Components

• Java part
• Many open-source components
• libwhatsapp.so

‣ Statically linked
‣ More and more Rust
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Attack Vectors & Components WhatsApp

After a long CFG/DFG analysis…

• MP4 checking (incoming messages), converting
(outgoing messages)

• GIF checking
• WEBP parsing (stickers)
• libmagi (MIME type identification)
• VoIP (PJSIP project¹)

¹https://github.com/pjsip/pjproject
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Fuzzing



WhatsApp

AFL++ + Frida

• Not as hard to build for Android as I expected¹
• Perfect for those who prefer C++
• Not as flexible as LibAFL, but rich in functionality

¹https://github.com/saruman9/AFLplusplus/tree/android
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LibAFL + Frida



WhatsApp

Android NDK + Frida + Rust = Building is the real
pain!

Works: Rust 1.67, NDK 22, clang30

Doesn’t work:

• Rust 1.67, NDK 25, clang*
• Rust 1.70, NDK 21, clang*
• Rust 1.70, NDK 22, clang*
• Rust 1.70, NDK 25, clang*
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Android NDK + Frida + Rust = Building is the real pain! WhatsApp

1. Moving Android toolchains from libgcc to libclang_rt¹
2. Updating the Android NDK in Rust 1.68²
3. Fixing build error for NDK 23 and above³
4. Patches for Frida (only for NDK below 23)⁴
5. Workaround for aarch64 -_clear_cache issue⁵
6. A dirty hack for frida-rust6

¹https://github.com/android/ndk/wiki/Changelog-r23#changes
²https://blog.rust-lang.org/2023/01/09/android-ndk-update-r25.html
³https://github.com/rust-lang/rust/pull/85806#issuecomment-1096266946
⁴https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1693328137
⁵https://github.com/AFLplusplus/LibAFL/issues/1359#issuecomment-1695346506
6https://github.com/frida/frida-rust/pull/112
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WhatsApp

LibAFL problems

• DrCov coverage doesn’t work as expected¹,²
• Asan doesn’t work for Android x86_64³
• miniBSOD doesn’t work for Android x86_64⁴

¹https://github.com/AFLplusplus/LibAFL/pull/1579
²https://github.com/AFLplusplus/LibAFL/pull/1581
³https://github.com/AFLplusplus/LibAFL/pull/1578
⁴https://github.com/AFLplusplus/LibAFL/pull/1577
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LibAFL problems WhatsApp

• Additional changes¹:
‣ Option to continue fuzzing
‣ Catching of timeout objectives
‣ Option to disable coverage
‣ The option of minimizing a corpus

¹https://github.com/saruman9/LibAFL/branches/all
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WhatsApp

Frida

• I had a lot of problems because I didn’t understand how
Stalker works. Especially when analyzing complex
objects (JIT is terrible)

• Be sure to read the documentation¹ for Stalker (and
Gum interface) before using it

¹https://frida.re/docs/stalker/
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WhatsApp

Frida

• I had a lot of problems because I didn’t understand how
Stalker works. Especially when analyzing complex
objects (JIT is terrible)

• Be sure to read the documentation¹ for Stalker (and
Gum interface) before using it

• LibAFL + Frida = Multithreading doesn’t work
• The sanitizer based on Frida doesn’t work correctly on

some arch/platforms

¹https://frida.re/docs/stalker/
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WhatsApp

Java VM

💡
Harness = Java + Native Libraries

But how?
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WhatsApp

Java VM

💡
Harness = Java + Native Libraries

But how?

Create Java VM from C/C++/Rust code of a harness/
fuzzer!
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Java VM WhatsApp

Sources:

• Creating a Java VM from Android Native Code¹ by Caleb
Fenton

• Calling JNI Functions with Java Object Arguments from
the Command Line² by Caleb Fenton

• Loading Android ART virtual machine from native
executables³ by Eugene Gershnik

¹https://calebfenton.github.io/2017/04/05/creating_java_vm_from_android_native_code/
²https://calebfenton.github.io/2017/04/14/calling_jni_functions_with_java_object_arguments_from_the_command_line/
³https://gershnik.github.io/2021/03/26/load-art-from-native.html
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WhatsApp

Where hell begins?

Creating a Java VM is a non-trivial task!
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WhatsApp

Where hell begins?

Compliance with all legacy designs in Android is
hard!

I did a separate research on the ASOP source code
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WhatsApp

Where hell begins?

Running Java VM under a fuzzer and
Frida is a pain!

I spent many hours debugging
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WhatsApp

Where hell begins?

A real device and an emulator are
two different things!

I have used 3 real devices and countless versions of an
emulator
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WhatsApp

Where hell begins?

It still doesn’t work stably…

But it works!¹,²

¹https://github.com/saruman9/jnienv
²BTW Valgrind for Android: https://github.com/saruman9/valgrind
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WhatsApp

Smali patching

Does anyone know a tool that is comfortable to use for
Smali patching?
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WhatsApp

Smali patching

• Smali the Parseltongue Language¹ by Benoît Forgette
from Quarkslab

• Ghidra
• Binary Ninja
• Smalise extension for VSCode² by LoyieKing

¹https://blog.quarkslab.com/smali-the-parseltongue-language.html
²https://github.com/LoyieKing/Smalise
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Catches



WhatsApp

DoS. Sender side

• Gallery
‣ TIFF, SVG
‣ OGG, WAV, MP3

• Live
‣ Opus (audio recorder)
‣ Video stream from a camera

• Sending
‣ MP4

81



WhatsApp

DoS. Receiver side

• Media hijacking
• Android Java exceptions, native iOS crashes
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WhatsApp

Summary

• Only DoS… yet
• VoIP is still waiting for me
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General summary

• The journey is 1 year long
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• From zero to hero some bugs with only fuzzing
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General summary

• The journey is 1 year long
• From zero to hero some bugs with only fuzzing
• This is the vulnerability research for now, next time —

exploitation development
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Thank you!
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