
BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

NAME
buildkernel-b2 − build bootable Linux kernel for the Excito B2

SYNOPSIS
buildkernel-b2 [options]

DESCRIPTION
buildkernel-b2 is a script that builds a Gentoo Linux kernel image suitable for booting either from the B2’s
internal disk (default), or from a USB key (when the--usboption is specified).

It is useful when targeting a B2 system with:

• the default U-Boot settings in flash memory; and

• a payload kernel that has size > 4MiB uncompressed (or > 2MiB compressed).

You can runbuildkernel-b2 either on the B2 directly, or on a Gentoo PC (with an appropriately configured
crossdevsetup). If running on a PC, a directorydeploy_rootwill be created as a result of running the
script, with the necessary files for you to copy across to your B2. If running on the B2 natively, the files
(kernel, modules, DTBs, config and System.map) will be moved to the correct positions for you (and prior
copies of all but the modules backed up).

buildkernel-b2 should be run as root, in the top level kernel source directory. You will need an appropriate
.configfile in place when building the kernel (however, if running on the B2, the running kernel’s config
will be used as a fallback, if one is available via/proc/config.gz, and no other.configis found).

ALGORITHM DETAIL (DISK VARIANT)
When power is applied to the Excito B2without the rear button depressed, its U-Boot bootloader by default
executes thediskboot command, which attempts to:

1) load/boot/uImageto 0x00400000 (4MiB), then

2) load/boot/8313E21.dtbto 0x00600000 (6MiB) (rev 1 B2s load/boot/bubba.dtbinstead), then

3) bootm 0x00400000 - 0x00600000

Unfortunately, a fairly standard 3.18+ kernel has a size >2MiB, even when compressed (assuming reason-
able built-in options, such as ext4 support etc), so when U-Boot loads the DTB to the 6MiB address in step
2, it ends up overwriting some of it. Even if this problem were to be avoided, there is a further issue: the
uncompressed kernel is usually >4MiB, but must be loaded to address 0x00000000, so U-Boot will refuse
run it after decompression (as the uImage header will be detected to have been damaged)! In either case,
the image will fail to boot.

This can of course be worked around by changing U-Boot’s flash environment (to set safer load addresses),
but that risks a user bricking her device, so we’d like to avoid it.

Accordingly, in this script, we build a modified uImage, which can be booted successfully with the default
U-Boot settings. This contains a ’shim’ (built using the PowerPC assembly code fromreloc_shim.S) uIm-
age, followed by enough zero padding to reach the 16MiB boundary, followed by a 32-bit big endian quan-
tity holding the length of the ’real’ kernel, and followed finally by the uncompressed ’real’ kernel itself (the
payload).

As such, when diskboot loads our augmented uImage to 0x00400000 in step 1, we end up with the follow-
ing memory map:

Version 1.0.6: July 2015 1

BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

Addr ess Contents
0x00400000 valid (small) uImage of shim,

load/exec address 0x020000000

... zero padding ...

0x01000000 length of kernel (4 bytes big endian
unsigned)

0x01000004 uncompressed ’real’ kernel

And after it loads the DTB in step 2, we have:

Addr ess Contents
0x00400000 valid (small) uImage of shim,

load/exec address 0x020000000

... zero padding ...

0x00600000 valid image of (initial) DTB

... zero padding ...

0x01000000 length of kernel (4 bytes big endian
unsigned)

0x01000004 uncompressed ’real’ kernel

Then bootm is run by U-Boot in step 3, which copies our uImage ’shim’ payload to its target address
(which we set via mkimage to be 0x02000000), patches up the DTB (with additional info, such as (U-
Boot’s) kernel command line) then relocates it to somewhere below the 8MiB boundary that U-Boot thinks
is safe, sets up the various registers required to invoke a PowerPC kernel (see the filearch/pow-
erpc/lib/bootm.c, functionboot_jump_linux(), in the U-Boot source code), and then starts the ’kernel’ (our
shim, in this case), at its execution address (which we set also to be 0x02000000).

The map is then:

Addr ess Contents
0x00400000 valid (small) uImage of shim,

load/exec address 0x020000000

... zero padding ...

0x00600000 valid image of (initial) DTB

... zero padding ...

0x00?????? U-Boot’s modified copy of the DTB
(with command line etc.), somewhere
’safe’ (it thinks) below the 8MiB
boundary; the address of this is in r3
when the kernel (actually, our shim) is
called

... zero padding ...

0x01000000 length of kernel (4 bytes big endian
unsigned)

0x01000004 uncompressed ’real’ kernel

0x02000000 our shim (which U-Boot has just
started)

The shim will then:

Version 1.0.6: July 2015 2

BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

1) copy the (U-Boot modified and relocated) DTB up to a genuinely safe memory location (0x00f00000,
the 15MiB boundary), where the uncompressed (real) kernel will definitely not overwrite it

2) patch up the r3 register with the new DTB address

3) copy the (real) uncompressed kernel to 0x00000000, then

4) jump to 0x00000000 to start the (real) kernel.

Just prior to jumping into the real kernel, we therefore have:

Addr ess Contents
0x00000000 the real kernel image (note that the

uImage at 0x00400000, the original
DTB at 0x00600000, and possibly
ev en U-Boot’s copy of the relocated
DTB will probably be overwritten by
this, but we don’t care at this point)

... zero padding ...

0x00f00000 valid copy of (U-Boot’s modified)
DTB

... zero padding ...

0x01000000 length of kernel (4 bytes big endian
unsigned)

0x01000004 uncompressed ’real’ kernel

0x02000000 our shim (currently executing)

Once the real kernel is started, all the extra memory used for these copies is of course reclaimed, and boot
proceeds as normal.

Please note that the uImage created by this script cannot be tested directly bymkimage -l, as that command
will attempt to account for all the data in the file; however, it doeswork with U-Boot itself, since that sim-
ply loads the file into memory, and subsequently tries to figure out if the data it findsstarting at
0x00400000 is a valid uImage (which it is).

ALGORITHM DETAIL (USB VARIANT)
When power is applied to the Excito B2with the rear button depressed, its U-Boot bootloader by default
executes theusbbootcommand, which attempts to:

1) load /install/8313E21.itb (from USB partition 1) to 0x00400000 (4MiB) (rev 1 B2s load
/install/install.itb instead), then

2) bootm

The .itb is a flat image tree (FIT) file, which contains a kernel and DTB, together with some metadata for
both.

Unfortunately, a fairly standard 3.18+ kernel has a size >4MiB, when decompressed (assuming reasonable
built-in options, such as ext4 support etc), and because it has to reside at address 0x00000000, U-Boot will
fail to start it after decompression (as it will detect the corrupted FIT image header).

This can of course be worked around by changing U-Boot’s flash environment (to set a safer load address),
but that risks a user bricking her device, so we’d like to avoid it.

Accordingly, in this script, we build a modified FIT, which can be booted successfully with the default U-

Version 1.0.6: July 2015 3

BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

Boot settings.This FIT contains a ’shim’ (built using the PowerPC assembly code fromreloc_shim_itb.S)
with the real kernel appended, saved as a raw uncompressed binary, plus of course a standard DTB file.
The FIT contents and metadata are specified byreloc_shim.its, in which we specify that our ’kernel’ should
be moved (by U-Boot) to 0x02000000 (the 32MiB boundary), and executed from that address. The DTB
has no specified deployment address.

As such, whenusbboot loads our augmented FIT to 0x00400000 in step 1, we end up with the following
memory map:

Addr ess Contents
0x00400000 valid FIT image

When it runsbootm (step 2), U-Boot will copy the kernel (with our prepended relocation shim) up to
address 0x02000000 (it will not complain about this, as there is plenty of memory up there, and the copy
will not overwrite the original FIT).It then modifies the DTB in the FIT image (setting additional informa-
tion, such as the kernel command line), and relocates it to somewhere below the 8MiB boundary that it
thinks is safe. Then, it sets up the various registers required to invoke a PowerPC kernel (see the file
arch/powerpc/lib/bootm.c, function boot_jump_linux(), in the U-Boot source code), and then starts the
’kernel’ (actually, in this case, our prepended shim), at 0x02000000.

The map is then:

Addr ess Contents
0x00400000 valid FIT image

0x00?????? U-Boot’s modified copy of the DTB
(with command line etc.), somewhere
’safe’ (it thinks) below the 8MiB
boundary; the address of this is in r3
when the kernel (actually, our shim) is
called

0x02000000 our shim (which U-Boot has just
started), with the real (’payload’) ker-
nel appended

The shim will then:

1) copy the (U-Boot modified) DTB up to a genuinely safe memory location (0x00f00000, the 15MiB
boundary), where the uncompressed (real) kernel will definitely not overwrite it

2) patch up the r3 register with the new DTB address

3) copy the (real) uncompressed kernel to 0x00000000, then

4) jump to 0x00000000 to start the (real) kernel

Just prior to jumping into the real kernel, we therefore have:

Version 1.0.6: July 2015 4

BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

Addr ess Contents
0x00000000 copy of the real kernel image (note

that the FIT at 0x00400000, and possi-
bly even U-Boot’s copy of the relo-
cated DTB will probably be overwrit-
ten by this, but we don’t care at this
point)

0x00f00000 valid copy of (U-Boot’s modified)
DTB

0x02000000 our shim (currently executing), with
copy of the real kernel image
appended

Once the real kernel is started, all the extra memory used for these copies is of course reclaimed, and boot
proceeds as normal.

NB - you must use uncompressed images for this trick to work.

OPTIONS
−c, −−clean

Specifies that amake clean should be carried out in the kernel source directory prior to building
(this will leave the.configfile intact). Most of the time, it is fine not tomake clean.

−h, −−help
Displays a short help screen, and exits.

−m, −−menuconfig
Specifies that the GUI-based kernel configuration tool (make menuconfig) should be invoked at
the start of the build.

−n, −−no−pump
Normally, when building on the B2, this script will invoke make(1) with thepump(1) prefix (to
distribute compilation and pre-processing), if thedistcc-pump Portage(5) feature is detected.
Specify this option to force a local build instead.

−u, −−usb
Instructsbuildkernel-b2 to create USB-bootable FIT images (install.itb and 8313E21.itb), rather
than the default uImage.

−v, −−verbose
Provides more verbose output from invoked tools, where possible.

−V, −−version
Displays the version number ofbuildkernel-b2, and exits.

BUGS
• buildkernel-b2 currently executes the kernel build process as the root user. It would be a little more

hygienic to build as a non-privileged user, and then install as root.Also, this script should really be inte-
grated into thearch/powerpc/bootwrapper build process, rather than be shipped standalone.

• Currently, you must override the bootloader-provided command line in your kernel.config(since the for-
mer will otherwise specify an incorrect root, unless you reflash the U-Boot environment... whichwe are
trying to avoid).

• It should in theory be possible to usekexec() to have a small kernel chainload the real one, but I haven’t
had any success getting this to work cleanly on the B2. If you have, please let me know!

Version 1.0.6: July 2015 5

BUILDKERNEL-B2(8) SystemManager’s Manual BUILDKERNEL-B2(8)

COPYRIGHT
Copyright © 2015 sakaki
License GPLv3+ (GNU GPL version 3 or later)
<http://gnu.org/licenses/gpl.html>

This is free software, you are free to change and redistribute it.
There is NO WARRANTY, to the extent permitted by law.

AUTHORS
sakaki — send bug reports or comments to <sakaki@deciban.com>

SEE ALSO
make(1), pump(1), portage(5).

Version 1.0.6: July 2015 6

