BUILDKERNEL-B2(8) SystemManagers Manual BJILDKERNEL-B2(8)

NAME

buildkernel-b2 — build bootable Linux kernel for the Excito B2
SYNOPSIS

buildkernel-b2 [optiong
DESCRIPTION

buildkernel-b2 is a script that ilds a Gentoo Linux kernel image suitable for booting either from the B2’
internal disk (default), or from a USEB¥ (when the--usb option is specified).

It is useful when targeting a B2 system with:
* the default U-Boot settings in flash memory; and

» apayload kernel that has size > 4MiB uncompressed (or > 2MiB compressed).

You can runbuildkernel-b2 either on the B2 directlyr on a &ntoo PC (with an appropriately configured
crossdevsetup). Ifrunning on a PC, a directodeploy_rootwill be created as a result of running the
script, with the necessary files for you to g@gross to your B2. If running on the B2 naty, the files
(kernel, modules, DTBs, config and System.map) will bgathdo the correct positions for you (and prior
copies of all but the modules backed up).

buildkernel-b2 should be run as root, in the topdekernel source directoryfou will need an appropriate
.configfile in place when building the kernel (kever, if running on the B2, the runningilnel’s config
will be used as a fallback, if one igadable via/proc/config.gzand no otherconfigis found).

ALGORITHM DETAIL (DISK VARIANT)
When power is applied to the Excito B®&houtthe rear button depressed, its U-Boot bootloader tyudtef
executes thaliskboot command, which attempts to:

1) load/boot/uimaeto 0x00400000 (4MiB), then
2) load/boot/8313E21.dtio 0x00600000 (6MiB) (rel B2s load/boot/bubba.dtlnstead), then
3) bootm 0x00400000 - 0x00600000

Unfortunately a fairly standard 3.18+ kernel has a size >2Mi#&newhen compressed (assuming reason-
able built-in options, such as ext4 support etc), so when U-Boot loads the DTB to the 6MiB address in step
2, it ends up eerwriting some of it. Even if this problem were to bev@ded, there is a further issue: the
uncompressed kernel is usually >4MiRit Imust be loaded to address 0x00000000, so U-Boot will refuse
run it after decompression (as the ulmage header will be detectedettieleen damaged)! In either case,

the image will fail to boot.

This can of course beosked around by changing U-Bosftflash environment (to set safer load addresses),
but that risks a user bricking her device, sodWé&e to asoid it.

Accordingly, in this script, we build a modified uimage, which can be booted successfully with #udt def
U-Boot settings. This contains a 'shim’ (built using the PowerPC assembly codeefoamshim.$ ulm-

age, followed by enough zero padding to reach the 16MiB bourfddoyved by a 32-bit big endian quan-
tity holding the length of theéal’ kernel, and followed finally by the uncompressed ’real’ kernel itself (the
payload).

As such, when diskboot loads our augmented ulmage to 0x00400000 in step 1, we end up witlwthe follo
ing memory map:

Version 1.0.6: July 2015 1



BUILDKERNEL-B2(8) SystemManagers Manual BJILDKERNEL-B2(8)

Address Contents

0x00400000| vaid (small) ulmage of shim,
load/exec address 0x020000000

... zero padding ...

0x01000000| length of kernel (4 bytes big endian
unsigned)

0x01000004| uncompressed 'real’ kernel

And after it loads the DTB in step 2, wevhka

Address Contents

0x00400000| vaid (small) ulmage of shim,
load/exec address 0x020000000

... zero padding ...
0x00600000| valid image of (initial) DTB
... Zero padding ...

0x01000000| length of kernel (4 bytes big endian
unsigned)

0x01000004| uncompressed 'real’ kernel

Thenbootm is run by U-Boot in step 3, which copies our ulmage 'shim’ payload to its target address
(which we set via mkimage to be 0x02000000), patches up the DTB (with additional info, such as (U-
Boot's) kernel command line) then relocates it to ssheze belav the 8MiB boundary that U-Boot thinks

is safe, sets up theawmous registers required tovioke a PwerPC kernel (see the filarch/pow-
erpc/lib/bootm.¢functionboot_jump_linux(), in the U-Boot source code), and then starts the 'kernel’ (our
shim, in this case), at itxecution address (which we set also to be 0x02000000).

The map is then:

Address Contents
0x00400000| vaid (small) ulmage of shim,
load/eec address 0x020000000

... zero padding ...
OxOO6000OO\ valid image of (initial) DTB

... zero padding ...

0x007?7??2?2?? U-Boat'modified copy of the DTB
(with command line etc.), somvaere
'safe’ (it thinks) belaw the 8MiIB
boundary; the address of this is in|r3
when the kernel (actuallpur shim) is
called

... Zero padding ...
0x01000000| length of kernel (4 bytes big endian
unsigned)
0x01000004| uncompressed 'real’ kernel
0x02000000| our shim (which U-Boot has jus
started)

—

The shim will then:

Version 1.0.6: July 2015 2



BUILDKERNEL-B2(8) SystemManagers Manual BJILDKERNEL-B2(8)

1) copy the (U-Boot modified and relocated) DTB up to a genuinely safe memory location (0x00f00000,
the 15MiB boundary), where the uncompressed (real) kernel will definitelywewtrie it

2) patch up the r3 register with themBTB address
3) copy the (real) uncompressed kernel to 0x00000000, then
4) jump to 0x00000000 to start the (real) kernel.

Just prior to jumping into the real kernel, we thereforesha

Address Contents

0x00000000| the real lkrnel image (note that the
ulmage at 0x00400000, the original
DTB at 0x00600000, and possibly
even U-Boot’s mpy of the relocated
DTB will probably be werwritten by
this, but we dort’care at this point)

... zero padding ...
0x00f00000 | valid copy of (U-Boot's modified)
DTB

... zero padding ...
0x01000000| length of lernel (4 bytes big endia
unsigned)
0x01000004| uncompressed 'real’ kernel
0x02000000| our shim (currentlxeeuting)

=)

Once the real kernel is started, all the extra memory used for these copies is of course reclaimed, and boot
proceeds as normal.

Please note that the ulmage created by this script cannot be tested direttiynbage -, as hat command
will attempt to account for all the data in the filewawer, it doeswork with U-Boot itself, since that sim-
ply loads the file into memaoryend subsequently tries to figure out if the data it fistlrting at
0x00400000 is a valid ulmage (which it is).

ALGORITHM DETAIL (USB VARIANT)
When power is applied to the Excito B&th the rear htton depressed, its U-Boot bootloader byadéf
executes thaisbbootcommand, which attempts to:

1) load /install/8313E21.itb (from USB partition 1) to 0x00400000 (4MiB) el B2s load
/install/install.itbinstead), then

2) bootm

The .itb is a flat image tree (FIT) file, which containseenkl and DTB, together with some metadata for
both.

Unfortunately a fairly standard 3.18+ kernel has a size >4MiB, when decompressed (assuming reasonable
built-in options, such asx#4 support etc), and because it has to reside at address 0x00000000, U-Boot will
fail to start it after decompression (as it will detect the corrupted FIT image header).

This can of course beasked around by changing U-Bosfflash environment (to set a safer load address),
but that risks a user bricking her device, sodiée to avoid it.

Accordingly, in this script, we build a modified FIWhich can be booted successfully with the default U-

Version 1.0.6: July 2015 3



BUILDKERNEL-B2(8) SystemManagers Manual BJILDKERNEL-B2(8)

Boot settings.This FIT contains a 'shim’ (built using the PowerPC assembly code relmm_shim_itb.$
with the real kernel appendedyed as a aw uncompressed binarplus of course a standard DTB file.
The FIT contents and metadata are specifiegtlog_shim.itsin which we specify that our 'kernel’ should
be mwed (by U-Boot) to 0x02000000 (the 32MiB boundary), amdceted from that address. The DTB
has no specified deployment address.

As such, whemsbbootloads our augmented FIT to 0x00400000 in step 1, we end up with theifigilo
memory map:

Address Contents
0x00400000| valid FIT image

When it runsbootm (step 2), U-Boot will cop the kernel (with our prepended relocation shim) up to
address 0x02000000 (it will not complain about this, as there is plenty of memory up there, ang the cop
will not overwrite the original FIT).It then modifies the DTB in the FIT image (setting additional informa-
tion, such as the kernel command line), and relocates it to somewhenethel8MiB boundary that it
thinks is safe. Then, it sets up the variougisters required to woke a FPwerPC kernel (see the file
arch/powerpc/lib/bootm.cfunction boot_jump_linux(), in the U-Boot source code), and then starts the
'kernel’ (actually in this case, our prepended shim), at 0x02000000.

The map is then:

Address Contents

0x00400000| valid FIT image

0x007?7?7?2??? U-Boat'modified copy of the DTB
(with command line etc.), somwbere
'safe’ (it thinks) belaw the 8MiB
boundary; the address of this is in|r3
when the kernel (actuallpur shim) is
called

0x02000000| our shim (which U-Boot has just
started), with the real ('payload’)ek-
nel appended

The shim will then:

1) copy the (U-Boot modified) DTB up to a genuinely safe memory location (0x00f00000, the 15MiB
boundary), where the uncompressed (real) kernel will definitelyveotvate it

2) patch up the r3 register with thesmBTB address
3) copy the (real) uncompressed kernel to 0x00000000, then
4) jump to 0x00000000 to start the (real) kernel

Just prior to jumping into the real kernel, we thereforesha

Version 1.0.6: July 2015 4



BUILDKERNEL-B2(8) SystemManagers Manual BJILDKERNEL-B2(8)

Address Contents

0x00000000| cop of the real kernel image (note
that the FIT at 0x00400000, and possi-
bly even U-Boot's copy of the relo-
cated DTB will probably bewerwrit-

ten by this, but we doh'care at this
point)

0x00f00000 | valid copy of (U-Boot’'s modified)
DTB

0x02000000| our shim (currently xecuting), with
copy of the real kernel imag
appended

11°)

Once the real kernel is started, all the extra memory used for these copies is of course reclaimed, and boot
proceeds as normal.

NB - you must use uncompressed images for this trick to work.

OPTIONS
—-c, ——clean
Specifies that anake dean should be carried out in thetnel source directory prior taiitding
(this will leave te.configfile intact). Most of the time, it is fine not toake dean.

-h, ——help
Displays a short help screen, and exits.

—-m, ——menuconfig
Specifies that the GUI-based kernel configuration toake menuconfig should be iroked at
the start of the build.

-n, ——no—pump
Normally, when building on the B2, this script willvioke make(1) with thepump(1) prefix (to
distribute compilation and pre-processing), if ttistcc-pump Portage(5) feature is detected.
Specify this option to force a local build instead.

-u, ——usb
Instructsbuildkernel-b2 to create USB-bootable FIT images (install.itb and 8313E21.itb), rather
than the default uimage.

-v, ——verbose
Provides more verbose output fromrdked tools, where possible.

-V, ——version
Displays the version number biiildkernel-b2, and exits.

BUGS
 buildkernel-b2 currently executes the &rnel build process as the root usdrwould be a little more
hygienic to build as a non-pileged userand then install as rootAlso, this script should really be inte-
grated into thearch/powerpc/bootvrapper build process, rather than be shipped standalone.

» Currently you must oerride the bootloadeprovided command line in youreknel.config(since the for
mer will otherwise specify an incorrect root, unless you reflash the U-Baiobement... whichwe are
trying to avoid).

* It should in theory be possible to ugeec()to have a snall kernel chainload the real one, but Vérat
had ay success getting this to work cleanly on the B2. If youehplease let me know!

Version 1.0.6: July 2015 5



BUILDKERNEL-B2(8) SystenManagers Manual

COPYRIGHT
Copyright © 2015 sakaki
License GPLv3+ (GNU GPL version 3 or later)
<http://gnu.org/licenses/gpl.htmI>

This is free software, you are free to change and redistribute it.
There is NO WARRANTY1o the extent permitted byva

AUTHORS
sakaki — send bug reports or comments to <sakaki@deciban.com>

SEE ALSO
make(1), pump(1), portage(s).

Version 1.0.6: July 2015

BJILDKERNEL-B2(8)



