
Manual for CSD toolbox

a perturbation solver for Matlab,
based on CoRRAM-M

Sijmen Duineveld

CSD, version 2.4.0.a
December 9, 2021

Contents

I Manual 2

1 Introduction 3
1.1 Installation . 4
1.2 Peculiarities . 6
1.3 Other remarks . 7
1.4 Copyright and acknowledgements 7

2 Basic Procedure 8
2.1 Step 1: Symbolic model . 8
2.2 Step 2: Set parameters . 10
2.3 Step 3: Set steady state values 11
2.4 Step 4: Solve the model numerically 11
2.5 Step 5: Simulate the model . 12

3 Other aspects 13
3.1 Standard RBC model . 13
3.2 Symbolic differentiation . 15
3.3 Simulation . 15
3.4 Non-stochastic models . 16

4 Saddle cycle example 17

II Technical descriptions 20

5 Symbolic model function 21
5.1 Assign numerical values . 22

6 Function pert_ana_csd 22
6.1 Solution SOL . 23
6.2 Function get_deriv_csd . 25

7 Function eval_sol_csd 25

Bibliography 26

1

Part I

Manual

2

1. Introduction
The toolbox CSD can solve Dynamic Stochastic General Equilibrium models
using perturbation methods. The CSD toolbox is completely based on the
CoRRAM-M toolkit (2018 version) developed by Professor Alfred Maussner1. CSD
is in fact an acronym for Corram Simplified Design. The CSD toolbox does not
have the same functionality as the original CoRRAM package, but is adjusted to
make it easier to use2. One limitation is that it can currently only handle
symbolic models.

The core of the CSD toolbox consists of two functions. The calculation of
the policy function with the function pert_ana_csd, and the evaluation of the
policy functions given the state variables with the function eval_sol_csd.
This simple design of the CSD toolbox makes it especially useful for
educational purposes, simulations and simple calibration procedures, and to
obtain the initial guess for policy functions for projection methods. The simple
design is also reflected in the small file size. The installed CSD toolbox takes up
less than 1 MB of disk space, while Dynare 4.6.4 takes up about 1 GB.

To solve a model with the CSD toolbox the modeler has to program a symbolic
model file. This symbolic model is fed into the solver, similar to the popular
Dynare software. There are some advantages over Dynare. In contrast to Dynare
the CSD toolbox only uses functions, and no global variables, and does not save
any files. This keeps your Matlab workspace and folders clean.

Another advantage of the CSD solver is that it can also handle saddle cycle
models (Galizia, 2021), ie. model exhibiting attracting limit cycles. For this
purpose we have integrated the code InvSubGen developed by Galizia (2021) into
the the function pert_ana_csd_lim3. This function is similar to the function
pert_ana_csd, and gives all the candidate solutions. One of the examples uses
this function to replicate the saddle cycle model described in Beaudry, Galizia,
and Portier (2020).

We show with the program compare_csd_dynare_rbc in the folder
‘Examples’ that the solution to a standard RBC model of the CSD toolbox and
Dynare are practically the same. After a simulation of a 1000 periods the
differences in the variables (in logs) are smaller than 1e-12.

1The CoRRAM-M package can be found at https://www.uni-
augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/.

2In addition, simulations will be faster than with the 2018 CoRRAM package, because CSD
uses vectorization in simulations.

3It should be noted that if a stable manifold exists it is not guaranteed to be spanned by
the third order perturbation approximation. Therefore, the third order approximation might
not the satisfy the Transversality Condition, even when the exact model is saddle cycle stable
and satisfies the Transversality Condition.

3

https://www.uni-augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/
https://www.uni-augsburg.de/de/fakultaet/wiwi/prof/vwl/maussner/dgebook/

1.1 Installation
For the installation download the ‘CSD_v02.4.0.a.zip’ file from the website
https://www.saduineveld.com/tools, and unpack it in a folder. This will add
the folder ‘CSD_v02.4.0’ to the destination folder. The folders and files of the
CSD toolbox are shown in Figure 1.1.

In order to use the CSD toolbox in Matlab one needs to add the folder
‘CSD_v02.4.0’ and the subfolder ‘subfun’ to the searchpath. After unpacking
the zip file in the folder ‘C:\Myfolder’ one can add ‘CSD_v02.4.0’ and the
subfolder ‘subfun’ to the searchpath with the Matlab commands:

1 addpath ('C:\ Myfolder \ CSD_v02 .4.0 ');
2 addpath ('C:\ Myfolder \ CSD_v02 .4.0\ subfun ');

The folder ‘CSD_v02.4.0’ also has a subfolder ‘Examples’ which contains
five example programs:

• compare_csd_dynare_rbc compares the perturbation solution of the CSD
toolbox with the Dynare solution. This program shows that the solutions
of the CSD toolbox and Dynare are practically the same (up to order 3).
The file is not further documented, but self-explanatory. The model is
the same model as in the example main_stand_rbc_pert. The Dynare
solution is included, but it can recomputed by setting:

1 run_dyn = 1;

This requires that Dynare is installed. The file is tested with Dynare
4.6.4;

• main_sgu replicates the second order perturbation solution as in Schmitt-
Grohé and Uribe (2004). This example is discussed in Chapter 2;

• main_stand_rbc_pert demonstrates a standard RBC model, including a
simulation. This example is discussed in Chapter 3;

• main_housing_pert which solves an RBC model with two endogenous
state variables, housing and capital. It also simulates the model. This
example is not documented;

• main_repl_bgp_aer2020 which solves the non-linear risk premium
model of Beaudry, Galizia, and Portier (2020). The model is described in
Chapter 4, and uses the function pert_ana_csd_lim to solve the model.

• main_repl_galizia which solves the saddle cycle model BGPe by Galizia
(2021). This model is also solved with the function pert_ana_csd_lim.
This example is not further documented;

4

https://www.saduineveld.com/tools

Figure 1.1: CSD folders and files

Folder: CSD_v02.4.0 .2 pert_ana_csd.m

pert_ana_csd_lim.m

eval_sol_csd.m

get_deriv_csd.m

Folder: subfun
constr_mat_csd.m

cubic_csd.m

InvSubGen.m

num_eval_csd.m

quad_csd.m

sim_XXn.m

sim_YY.m

sim_ZZn.m

solab_adj_stab.m

tracem.m

Folder: Examples
compare_csd_dynare_rbc.m

main_housing_pert.m

main_repl_bgp_aer2020.m

main_repl_galizia.m

main_sgu.m

main_stnd_rbc_pert.m

Params_2_50_bgp_nlrp.mat

pars_mu_galizia.mat

pars_zz_galizia.mat

SGU_mod.m

Folder: stnd_rbc
Folder: stnd_rbc_dyn
Folder: TOOLS

5

1.2 Peculiarities
There are three peculiarities of the CSD solver.

Exogenous processes
The first is that exogenous processes should not be included in the model
function. The exogenous process is defined as:

Zt+1 = ρZt + Ωεt+1 (1.1)

where Z is a vector of length nz, and both ρ and Ω are nz× nz matrices. Both
ρ and Ω are inputs arguments when calling the solver pert_ana_csd.

Defining variables
The second peculiarity is that all variables need to have specific extensions. The
extension _t is compulsory for current period variables, and the extension _n
for period t+1 variables as shown in Section 2.1. For example assume there is a
variable Q. In the model file Qt has to be called Q_t, and Qt+1 has to be called
Q_n. If the model also includes the lagged variable Qt−1, then the modeler
has to create an extra variable, for example Q1_t = Qt−1 (see the example in
Chapter 4).

Policy functions compared to Dynare
The policy functions or decision rules in Dynare are reported differently. This
is related to the treatment of the exogenous state variables. Assume we have
a policy variable Ct that only depends on the state variable Zt, which has
exogenous shocks εt. The stochastic process is given by Zt = ρZt−1 + σεt. The
exact policy is Ct = C (Zt). For this model Dynare will use the following first
order policy function:

C̃t = azZ̃t−1 + aεεt

where the tilde indicates the deviation from the steady state. The CSD toolbox
will use the first order policy function:

C̃t = bzẐt

The coefficients are then related as az = ρbz and aε = bz
σ . Similar relations hold

for the coefficients of higher order policy functions.

6

1.3 Other remarks

Technical details
This short manual does not include any details on the solution method.

Notes on typesetting
In this manual names in general are referred to by single quotations, like a folder
name ‘Myfolder’. Variables, cell arrays, structure names, fields of structures,
objects, and properties of objects in Matlab are referred to in the text with the
mathematical font of Latex, for example variable x, structure par or the field
of a structure par.alpha. In general we use double letters in our programs such
as xx, because this makes it easier to find them in a file. In this documentation
we generally refer to variables by the single letter (x). Strings in Matlab code
will be referred to in Matlab typesetting, for example 'thisstring'. Names
referring to toolboxes, code, functions or scripts are in Typewriter font, as in
myfunction, where the .m extension of functions and scripts will be omitted for
simplicity.

Scripts versus functions
There are two main differences between a function and a script in Matlab. The
first is that one cannot define a subfunction in a script. The second is that a
script will use the current workspace, while a function has its own workspace,
which is empty unless input arguments are defined or global variables are used4.
When using a function one can evaluate the variables in the workspace by placing
a breakpoint, for example just before the end of the code.

The toolbox consists of functions, and most examples are also functions
except for the file main_sgu. That example uses an external model file which is
the function SGU_mod.

Feedback
All feedback is more than welcome at s.a.duineveld@outlook.com.

1.4 Copyright and acknowledgements
As mentioned before the CSD toolbox is completely based on the CoRRAM-M
toolkit (2018 version) developed by Professor Alfred Maussner5. It also includes
the codes:

• An adjusted version of solab by Paul Klein. The adjusted version is the
function solab_adj_stab;

4Global variables are not recommended for Matlab.
5See Footnote 1.

7

http://s.a.duineveld@outlook.com

• InvSubGen by Dana Galizia (see Galizia, 2021).

The CSD Toolbox is copyright (c) Sijmen Duineveld, 2019-2021. The CSD
Toolbox is free software: you can redistribute it and/or modify it under the
terms of the GNU General Public License as published by the Free Software
Foundation, either version 3 of the License, or (at your option) any later version.

The CSD Toolbox is distributed in the hope that it will be useful, but without
any warranty; without even the implied warranty of merchantability or fitness
for a particular purpose. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with
the CSD Toolbox. If not, see https://www.gnu.org/licenses/.

2. Basic Procedure
To solve and simulate a model using the CSD toolbox we have to take 5 steps:

1. Create the symbolic model function;

2. Set the parameters;

3. Set the steady state;

4. Solve the model, using the function pert_ana_csd;

5. Evaluate or simulate the model, using the function eval_sol_csd.

We will demonstrate these steps by replicating the results of Schmitt-Grohé
and Uribe (2004). The next sections describe these steps of the example code
main_sgu and model file SGU_mod, both in the folder ‘CSD_v02.4.0/Examples’.

The model, which we refer to as the SGU model, consists of three equations:

C−ν
t = βEtC

−ν
t+1

[
αAt+1K

α−1
t+1 + 1 − δ

]
Ct +Kt = AtK

α
t+1 + (1 − δ)Kt

log (At+1) = ρa log (At) + σεt+1

where C is consumption, A is Total Factor Productivity, Kt is the capital stock
at the beginning of the period, and ε is a stochastic shock with a standard
normal distribution.

2.1 Step 1: Symbolic model
To solve the model one has to write a symbolic model function. In our example
this is the file SGU_mod.

8

https://www.gnu.org/licenses/

Block 1: define parameters and variables
The model function first declares all the parameters and variables of the model
as shown in Listing ??. The parameters are abbreviated, with aa referring to α,
bb to β, and dd to δ. The variables in our model are Ct, Ct+1, Kt, Kt+1, At and
At+1. We use all variables in logs, so LC_t refers to log (Ct). Note that it is
a requirement of the toolbox to use extension _t for this period variables, and
_n for next period’s variables. If a model includes a lagged value, for example
Kt−1, one would have to declare an extra variable, K1, such that K1_t = Kt−1,
and K1_n = Kt.

Listing 2.1: Model file SGU_mod, Blok 1
1 function [MOD] = SGU_mod %Schmidt -Grohe -Uribe (2004 ,

JEDC) model
2
3 %% BLOCK 1: parameters and variables
4 % Parameters :
5 syms aa bb dd nu rho_a sigma_a ;
6
7 % Variables :
8 syms LC_t LC_n LK_t LK_n LA_t LA_n;

Block 2: Model equations
Next we need to write down the model equations as shown in Listing ??. As
mentioned in Section 1.2 the stochastic process should not be included in the
model file. It is implicitly defined by the input arguments Rho and Omega of
the solver pert_ana_csd. With these inputs the stochastic process is described
by equation (1.1).

Listing 2.2: Model file SGU_mod, Blok 2
1 %% BLOCK 2:
2
3 %Euler equation :
4 f1 = bb *exp(-nu*LC_n)*...
5 (aa*exp ((aa -1)*LK_n + LA_n) + (1-dd)) -...
6 exp(-nu*LC_t);
7
8 % Budget constraint :
9 f2 = exp(aa*LK_t + LA_t) + (1-dd)*exp(LK_t)...
10 - exp(LK_n) -exp(LC_t);

Block 3: Assignments
The last block of the model file should assign the required properties to the
structure MOD as explained in more detail in Chapter 5.

9

Note that contrary to Dynare the modeler has to define which variables are
state variables, and which variables are control variables. The third block is
shown in Listing 2.3.

Listing 2.3: Model file SGU_mod, blok 3
1 %% BLOCK 3: ASSIGNMENTS
2
3 %Model equations :
4 MOD.FS = [f1;f2];
5
6 % Endogenous state variables :
7 MOD.XX = [LK_t];
8
9 % Exogenous state variables :
10 MOD.ZZ = [LA_t];
11
12 % Control variables :
13 MOD.YY = LC_t;
14
15 MOD.XXn = [LK_n];
16 MOD.ZZn = [LA_n];
17 MOD.YYn = LC_n;
18
19 % Variable names (strings):
20 MOD. var_bs_nms = {'LK ','LA ','LC '};
21
22 % Parameter names (strings):
23 MOD. par_nms = {'aa ','bb ','dd ','nu '};
24
25 end

Note that var_bs_nms and par_nms are cell arrays containing strings.
Having defined the symbolic model we turn to the file main_sgu, which runs

the code. In that file we load the model with the call:

1 %% STEP 1: GET SYMBOLIC MODEL
2 [MOD] = SGU_mod ;

2.2 Step 2: Set parameters
Next we have to assign the numerical values to the parameters. The parameters
of the model are listed in Table 2.1. We first assign all parameters values to the
structure par. Next, we have to assign these values to the field MOD.par_val,
which has to mimic the order of the parameter names in MOD.par_nms. We
assign the numerical values with:

10

1 %% STEP 2: SET PARAMETERS
2
3 % Assign the numerical values :
4 MOD. par_val = [par.alpha ,par.beta ,par.delta ,par.nu];

Table 2.1: Parameters of SGU model
Parameter Value
α 0.3
β 0.95
δ 1
ν 1
ρa 0
σa 1

2.3 Step 3: Set steady state values
The steady state level where the model should be approximated is the non-
stochastic or deterministic steady state. This is the steady state occurring in
the absence of any shock, when the agents know no shock will ever occur.

The deterministic steady state levels of capital K and consumption C are:

Kss =
[

1 − β (1 − δ)
αβ

] 1
α−1

Css = Kα
ss − δKss

We need to assign the numerical values of the steady state to the field
MOD.SS_vec. We used all variables in logs, so the steady state values should
also be in logs. The order in the vector SS_vec needs to be the same as in
MOD.var_bs_nms:

1 %% STEP 3: SET STEADY STATE VALUE
2
3 MOD. SS_vec = [log(SS.Kss),log(SS.Ass),log(SS.Css)];

2.4 Step 4: Solve the model numerically
In Steps 1 to 3 we have assigned the symbolic model, the parameter values, and
steady state values to the structure MOD. We can now call the perturbation
solver with inputs MOD, Rho, order and Omega:

11

1 %% STEP 4: SOLVE MODEL NUMERICALLY
2
3 [SOL ,NUM ,MOD] = pert_ana_csd (MOD ,par.rho_a ,2, par.

sigma_a);

As explained in Chapter 6 the stochastic process is determined by the
input arguments Rho and Omega of pert_ana_csd. Note that one can also
differentiate the model before assigning the numerical values. This is useful in
a calibration loop and is explained in Section 3.2.

To verify the solution is the same as in Schmitt-Grohé and Uribe (2004) the
fields in SOL should be evaluated. These fields are explained in Section 6.1.

2.5 Step 5: Simulate the model
In Step 5 we calculate a simple first order6 Impulse Response Function (IRF),
with a 1 standard deviation shock in period 3. Note that the size of the shock,
σa, is also 1% in Schmitt-Grohé and Uribe (2004). The code to calculate the
first order IRF is shown in Listing 2.4.

Listing 2.4: IRF for SHU model
1 %IRF: 1 standard deviation shock in period 3:
2 ini_T = 3;%shock in period 3
3 TT = 15;
4
5 LK = NaN(ini_T+TT +1 ,1);
6 LA = NaN(ini_T+TT +1 ,1);
7 LC = NaN(ini_T+TT ,1);
8 % Starting values :
9 LK (1:3 ,1) = log(SS.Kss);
10 LC (1:2 ,1) = log(SS.Css);
11 LA (1:2 ,1) = log(SS.Ass);
12 % Unexpected shock in period 3:
13 LA (3 ,1) = get_ZZn (SOL ,0 ,1);
14
15 for it = ini_T:ini_T+TT
16 [LK(it +1 ,:) ,LC(it ,:) ,LA(it +1 ,:)] = eval_sol_csd (SOL ,

LK(it ,:) ,LA(it ,:) ,0,1);
17 end
18 % Remove last row for LK and LA:
19 LK = LK (1: end -1 ,:);
20 LA = LA (1: end -1 ,:);

6We use a first order IRF for simplicity as the steady state for the first order solution is
the deterministic steady state. For higher order IRFs we would first have to calculate the
stochastic steady state by simulating the model forward, without any shock.

12

21
22 % Output :
23 LY = LA+par.alpha*LK;

3. Other aspects
In this Chapter we describe several aspects that were not discussed in the
previous chapter. These aspects are demonstrated for the standard RBC
model in the example main_stnd_rbc_pert in the folder
‘CSD_v02.4.0/Examples’.

The first aspect is to differentiate the symbolic model before assigning any
numerical values. This is useful in calibration procedures, because the symbolic
differentiation only has to be carried out once, before assigning the numerical
values of the steady state and parameters.

The second aspect that was not covered before is the use of multiple variables
in one group of variables, either endogenous state variables, exogenous state
variables or control variables. We use two control variables to demonstrate this.
In addition we show how to use auxiliary variables in a model file. The third
aspect we demonstrate is a stochastic simulation.

3.1 Standard RBC model
The model equations are:

Ct +Kt+1 = ZtK
α
t H

1−α
t + (1 − δ)Kt (3.1)

χH
1
η

t = C−ν
t Zt (1 − α)Kα

t H
−α
t (3.2)

C−ν
t = βEt

{
C−ν
t+1

[
Zt+1αK

α−1
t+1 H

1−α
t+1 + 1 − δ

]}
(3.3)

log (Zt) = ρz log (Zt−1) + σzεt (3.4)

where C is consumption, Kt the capital stock at the beginning of the period, Z
Total Factor Productivity, and H hours worked.

The first two blocks of the model function are shown in Listing 3.1. We use
output LY as an auxiliary variable. This variable does not have to be declared,
and is not part of the solution. We used hours worked LH as a control variable,
which is defined by static equation f3. This equation only includes period t
variables.

Listing 3.1: Model file RBC_mod, Blok 1 and 2
1 %% Perturbation model of Standard RBC model function
2 [MOD] = STND_RBC_mod ()

13

3
4 %% BLOCK 1: Define parameters and variables
5 % Parameters :
6 syms aa bb dd ee nu ch;
7
8 % Variables :
9 syms LC_t LC_n LK_t LK_n LZ_t LZ_n LH_t LH_n;
10
11
12 %% BLOCK 2: MODEL EQUATIONS (excl. stochastic process)
13
14 % Auxiliary variables :
15 LY_t = LZ_t + aa*LK_t + (1-aa)*LH_t;
16 LY_n = LZ_n + aa*LK_n + (1-aa)*LH_n;
17
18 %Euler equation :
19 f1 = bb *exp(-nu*LC_n)*(aa*exp(LY_n -LK_n) + (1-dd))

- exp(-nu*LC_t);
20
21 % Capital accumulation :
22 f2 = exp(LY_t) + (1-dd)*exp(LK_t) - exp(LC_t) - exp(

LK_n);
23
24 % Labour market :
25 f3 = log (1-aa) + LZ_t + aa*(LK_t -LH_t) + -nu*LC_t -

log(ch) - 1/ee*LH_t;

The third block of the model function is shown in Listing 3.2. Note that the
model equations need to be stacked in a column vector, using ‘;’ as separating
symbol, while variables need to stacked in row vectors using ‘,’ as a separating
symbol.

Listing 3.2: Model file RBC_mod, blok 3
1 %% BLOCK 3: ASSIGNMENTS
2
3 %Model equations :
4 MOD.FS = [f1;f2;f3];
5
6 % Endogenous state variables :
7 MOD.XX = LK_t;
8 % Exogenous state variables :
9 MOD.ZZ = LZ_t;
10 % Control variables :
11 MOD.YY = [LC_t ,LH_t];
12
13 MOD.XXn = LK_n;

14

14 MOD.ZZn = LZ_n;
15 MOD.YYn = [LC_n ,LH_n];
16
17 % Variable names (strings):
18 MOD. var_bs_nms = {'LK ','LZ ','LC ','LH '};
19
20 % Parameter names (strings):
21 MOD. par_nms = {'aa ','bb ','dd ','ee ','nu ','ch '};

3.2 Symbolic differentiation
We have defined the model in the previous section. We can differentiate this
model using the function get_deriv_csd, before assigning any numerical values:

1 %% STEP 1: GET SYMBOLIC MODEL & DIFFERENTIATE
2 MOD = STND_RBC_mod ;
3
4 % Differentiate symbolic model:
5 par.opt.order = 3;
6 [MOD] = get_deriv_csd (MOD ,par.opt.order);

After differentiating the model we assign the parameters and steady state
values in Step 2 and Step 3, as in Chapter 2. When we solve the model we
set the optional input excl_der = 1 such that the solver does not calculate the
derivatives again:

1 %% STEP 4: SOLVE MODEL NUMERICALLY
2
3 % exclude calculation of derivates (see STEP 1)
4 excl_der = 1;
5
6 % Solve model numerically :
7 SOL = pert_ana_csd (MOD ,par.rho_z ,par.opt.order ,par.

sigma_z , excl_der);

3.3 Simulation
To simulate the model we use the function eval_sol_csd. This takes the period
t state variables as input. We use the function stnd_rbc_sim_pert to simulate
the model. The crucial part of the simulation is:

1 % loop over time (from T_ini +1 till T_ini + TT):
2
3 for it = T_ini + 1: T_ini + TT

15

4
5 % Get XXn , YY , ZZn using eval_sol_csd :
6 [LK(it +1 ,:) ,YY_t ,LZ(it +1 ,:)] = eval_sol_csd (SOL ,LK(

it ,:) ,LZ(it ,:) ,epsilon (it +1 ,:) ,order);
7
8 %Cons. is first control variable :
9 LC(it ,:) = YY_t (1 ,:);
10
11 %Hours is second control variable
12 LH(it ,:) = YY_t (2 ,:);
13 end

Note how the control variables are stacked vertically in the output Y Y_t.
Similarly if there are two endogenous state variables they have to be stacked
vertically in the input XX, and will be stacked in the same way in the output
XXn of eval_sol_csd. This is shown in the undocumented example
main_housing_pert, in the function housing_sim_pert.

3.4 Non-stochastic models
To solve models without any exogenous shocks the following aspects should be
taken care of:

1. In the symbolic model of Step 3 set the fields MOD.ZZn and MOD.ZZ
to empty:

1 MOD.ZZn = [];

and

1 MOD.ZZ = [];

2. When solving the model in Step 5 set inputs fields Rho and Omega of the
function pert_ana_csd to empty (‘[]’):

1 [SOL] = pert_ana_csd (MOD ,[], order ,[]);

3. When evaluating the model with eval_sol_csd do not use the third
output argument7:

1 [XXn ,YY] = eval_sol_csd (SOL ,XX ,ZZ ,epsilon ,order);

7One can specify the output argument ZZn but it will be assigned the value empty (‘[]’).

16

4. Saddle cycle example
In this chapter we describe and replicate the non-linear risk premium model
by Beaudry, Galizia, and Portier (2020) (BGP). The program that solves this
model is main_repl_bgp_aer2020. To solve saddle cycle models we call
pert_ana_csd_lim instead of the usual pert_ana_csd. The output of
pert_ana_csd_lim is similar, except when multiple candidate solutions exists.
If multiple candidate solutions exists the output SOL will be a cell array with
each cell containing a structure with the same fields as the standard solution
of pert_ana_csd.

The dynamic equations (in deviation from steady state):

Xt+1 = (1 − δ)Xt + ψet (4.1)
et = α1Xt + α2et−1 + α3et+1 − α4r

p
t + α4µt (4.2)

µt = ρµt−1 + σεt (4.3)

And the static equation:

rpt = %1et + %2e
2
t + %3e

3
t (4.4)

The parameters of the non-linear risk premium model are listed in Table 4.1.
The non-stochastic simulation is shown in Figure 4.1 (Figure 9a in BGP), and
the stochastic simulation in Figure 4.2 (Figure 10 in BGP)8.

8We replicate the non-stochastic simulation results almost exactly. There are slight
differences because the starting values of the state variables are unknown, and we plot ‘Hours’
in log deviation, while Beaudry, Galizia, and Portier (2020) compute percentage differences.

17

Table 4.1: Parameters BGP model
Parameter Value
α1 -0.00580
α2 0.0818
α3 0.0317
α4 5.54
%1 -0.162
%2 0.0167
%3 0.593
δ 0.05
ψ 0.40
ρ -3.43 ·10−7

σ 1.57 ·10−4

Figure 4.1: Non-stochastic simulation

0 50 100 150 200 250
-0.07

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

H
o

u
rs

 (
lo

g
 d

e
v
ia

ti
o

n
)

18

Figure 4.2: Stochastic simulation

0 50 100 150 200 250
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

H
o

u
rs

 (
lo

g
 d

e
v
ia

ti
o

n
)

19

Part II

Technical descriptions

20

5. Symbolic model function
The symbolic model should be a function which assigns several fields to the
structure MOD. The model should consists of three blocks:

1. Define parameters and variables;

2. Model equations;

3. Assignment of fields.

Each block is best understood from the examples in Chapter 2 and Chapter 3.
The third block should assign the following fields to the output MOD

structure:

• FS: column vector of all relevant equations, excluding the stochastic
process. The stochastic process is implicitly defined through the input
arguments Rho and Omega of the function pert_ana_csd as explained
in Chapter 6;

• XX: all period t endogenous state variables, including the extension _t
(1 × nx vector);

• ZZ: list all period t exogenous state variables, including the extension _t
(1 × nz vector);

• Y Y : list all period t control or jump variables variables, including the
extension _t (1 × ny vector);

• XXn: list all period t + 1 endogenous state variables, including the
extension _n, in the same order as XX (1 × nx vector);

• ZZn: list all period t+1 exogenous state variables, including the extension
_n, and in the same order as ZZ (1 × nz vector);

• Y Y n: list all period t + 1 control or jump variables variables, including
the extension _n, and in the same order as Y Y (1 × ny vector);

• var_bs_nms: cell array of strings with the names of all variables, without
the extension _t or _n. The cell array has size 1 × (nx+ ny + nz). Each
cell has to contain the name of a variable occurring in XX, ZZ, and Y Y .
For example if there is a variable LC_t in Y Y and LC_n in Y Y n, then
MOD.var_bs_nms should contain a cell with the name 'LC'. The order
in which the variables occur can be random, but the steady state values
assigned later to MOD.SS_vec have to be in the same order (see Section
5.1);

21

• par_nms: cell array of strings with the names of the parameters as they
occur in the model function. The order can be random, but the numerical
values assigned later to the field MOD.par_val have to be in the same
order (see Section 5.1).

In addition there is the requirement that:

• All period t variables should have the extension _t and all period t + 1
variables should have extension _n.

5.1 Assign numerical values
After assigning the symbolic model to the structure MOD the numerical values
of the steady state and the parameters have to be set in order to solve the model.
These values should be assigned to the fields:

• MOD.SS_vec: numerical values of the deterministic or non-stochastic
steady state, in a 1 × (nx+ ny + nz) vector. The order has to be the
same as in MOD.var_bs_nms (see Chapter 5);

• MOD.par_val: numerical values of the parameters in a row vector. The
order has to be the same as in MOD.par_nms (see Chapter 5).

6. Function pert_ana_csd
The function pert_ana_csd solves the model and takes the following inputs:

• MOD: structure with the required fields discussed in Chapter 5;

• Rho: nz × nz autocorrelation matrix of the exogenous variables as
demonstrated in equation (6.1);

• order: the order of the perturbation solution. Note that higher order
solutions do not affect lower order coefficients. When solving the third
order solution the function pert_ana_csd will assign the first, second
and third order coefficients in separate matrices. This allows one to solve
the model once using the third order approximation, and then simulate
either first, second or third order solutions.

• Omega: nz × nz variance-covariance matrix of the exogenous shocks as
demonstrated in equation (6.1);

• excl_der (optional): set this input to excl_der = 1 when the structure
MOD already includes the symbolic derivatives as explained in Section
6.2. This will omit the call to get_deriv_csd inside pert_ana_csd. This
option can save computation time when calibrating a model.

22

The exogenous process is defined as:

Zt+1 = ρZt + Ωεt+1 (6.1)

where Z is an vector of length nz, and both ρ and Ω are nz×nz matrices. The
symbol ρ is the input argument Rho, and Ω is the input argument Omega.

The function pert_ana_csd has the following output arguments:

• SOL: a structure that contains the solution in various fields. These are
briefly described in Section 6.1;

• NUM : a structure that contains the numerical values of first, second
and third order derivatives of the model (in the fields DD, TT , and
HH). This structure also contains the matrices AA and BB used as
input arguments into the function solab_adj_stab. This function is a
slightly modified version of solab developed by Paul Klein to obtain the
first order perturbation solution;

• MOD: the structure with all the fields described in Chapter 5 plus the
symbolic derivatives;

• stab: a scalar which is 1 if the model is saddle path stable, and either -1
or 0 if it is locally explosive or indeterminate, respectively;

6.1 Solution SOL

The solver assigns various fields to the output SOL. The policy functions all
start with H, following by either x or y, referring to the endogenous state
variables or the control variables, respectively. The policies Hx together
determine next period’s endogenous state variables, while the policies Hy

together determine period t control variables.
The policy function are all calculated using W̃t, which we call W_dev in

our code. W̃t is an (nx+ nz) × cols matrix of the state variables in period
t, in deviation of their steady state values. Each row is a state variable, and
each column reflects a datapoint. The state variables are ordered vertically as
[XX;ZZ]. The order within XX and ZZ is defined by the Assignment Block
in the model function as explained in Chapter 5.

The first order policy function for the endogenous variables is:

X1
t+1 = X +Hx.wW̃t (6.2)

where the superscript 1 refers to the order, X is nx × 1 vector, Hx.w is nx ×
(nx+ nz) matrix, and W̃ is (nx+ nz) × cols matrix with data points. The
output Xt+1 is an nx× cols matrix of the endogenous state variables.
The second order policy function for the endogenous variables is:

23

X2
t+1 = X1

t+1 + 1
2Hx,ss + 1

2

(
Inx ⊗ W̃ ᵀ

t

)
Hx,wwW̃t

The third order policy function for the endogenous variables is:

X3
t+1 = X2

t+1 + 1
2

(
Inx ⊗ W̃ ᵀ

t

)
Hx,ssw

+ 1
6

(
Inx ⊗ W̃ ᵀ

t ⊗ W̃ ᵀ
t

)
Hx,wwW̃t + 1

6Hx,sss (6.3)

The policy functions for the control variables have exactly the same format:

Y 1
t = Y +Hy.wW̃t

Y 2
t = Y 1

t + 1
2Hy,ss + 1

2

(
Inx ⊗ W̃ ᵀ

t

)
Hy,wwW̃t

Y 3
t = Y 2

t + 1
2

(
Inx ⊗ W̃ ᵀ

t

)
Hy,ssw (6.4)

+ 1
6

(
Inx ⊗ W̃ ᵀ

t ⊗ W̃ ᵀ
t

)
Hy,wwwW̃t + 1

6Hy,sss (6.5)

The first order terms are:

• Hx_w: first order coefficients for next period’s endogenous variables. The
coefficients are ordered as [XX,ZZ]. Dimensions: nx× (nx+ nz) matrix.
Corresponds to hx (1, :) in Schmitt-Grohé and Uribe (2004);

• Hy_w: first order coefficients for period t control variables. The
coefficients are ordered as [XX,ZZ]. Dimensions: nv × (nx+ nz)
matrix. Corresponds to gx in Schmitt-Grohé and Uribe (2004);

The second order terms are:

• Hx_ww: second order coefficients for next period’s endogenous
variables. Corresponds to [hxx (1, :, 1) ;hxx (2, :, 2)] in Schmitt-Grohé and
Uribe (2004);

• Hx_ss: the second order correction term for the endogenous state
variables. Corresponds to hσσ (1, 1) in Schmitt-Grohé and Uribe (2004);

• Hy_ww: second order coefficients for period t control variables.
Corresponds to [gxx (:, :, 1) ; gxx (:, :, 2)] in Schmitt-Grohé and Uribe
(2004);

• Hy_ss: the second order correction term for the control variables.
Corresponds to gσσ in Schmitt-Grohé and Uribe (2004);

The third order terms are best understood from the policy functions (6.3) and
(6.4). The third order terms are:

24

• Hx_www;

• Hx_ssw;

• Hx_sss.

6.2 Function get_deriv_csd

The function get_deriv_csd constructs the analytical derivatives of the model.
It takes as inputs:

• MOD: the structure with the symbolic model with the properties
explained in Chapter 5;

• order: the order of the derivatives, which is either 1, 2 or 3.

The function assigns the following fields to the structure MOD:

• nx, nz, ny: the number of endogenous state variables, the number of
exogenous state variables, and the number of control variables,
respectively;

• qq: array with the symbolic variables, dimension 1 × 2 (nx+ nz + ny);

• DS, HS, TS: the first, second and third order derivatives, respectively,
of the model equations;

• ord: the order of the symbolic derivatives, set in the input field order.

7. Function eval_sol_csd
To evaluate the policy function for given state variables we use eval_sol_csd.
This function calculates the endogenous variables, the control variables and the
exogenous state variables. The policy functions are described in Section 6.19.
The input and output matrices can contain multiple time series. Each series
is represented by a column, with the total number of series being cols. The
function takes as input:

• SOL: the structure with the policy functions (see Chapter 6);

• XX: the endogenous state variables in period t (nx × cols matrix). The
vertical order of the endogenous state variables should be the same as the
horizontal order in MOD.XX (see Chapter 5);

9The policy functions are calculated using vectorization, such that Matlab can evaluate
multiple datapoints simultaneously.

25

• ZZ: the exogenous state variables in period t (nz × cols matrix). The
vertical order of the exogenous state variables should be the same as the
horizontal order in MOD.ZZ (see Chapter 5);

• epsilon: shocks in period t (nz × cols matrix). The vertical order should
match the order of ZZ;

• order: the order of the solution to evaluate the policy function. The order
for the evaluation should not be higher than the order of the solution;

The output of the function is:

• XXn: the endogenous state variables in period t+ 1 (nx× cols matrix).
The order of the endogenous state variables is the same as in MOD.XX
(see Chapter 5);

• Y Y : the control variables in period t (ny× cols matrix). The order of the
control variables is the same as in MOD.Y Y (see Chapter 5);

• ZZn: the exogenous state variables in period t + 1 (nz × cols matrix).
The order of the exogenous state variables is the same as in MOD.ZZ
(see Chapter 5).

Bibliography
Beaudry, Paul, Dana Galizia, and Franck Portier (2020). “Putting the cycle

back into business cycle analysis”. In: American Economic Review 110.1,
pp. 1–47.

Galizia, Dana (2021). “Saddle cycles: Solving rational expectations models
featuring limit cycles (or chaos) using perturbation methods”. In:
Quantitative Economics 12.3, pp. 869–901.

Schmitt-Grohé, Stephanie and Martın Uribe (2004). “Solving dynamic general
equilibrium models using a second-order approximation to the policy
function”. In: Journal of economic dynamics and control 28.4, pp. 755–775.

26

	I Manual
	Introduction
	Installation
	Peculiarities
	Other remarks
	Copyright and acknowledgements

	Basic Procedure
	Step 1: Symbolic model
	Step 2: Set parameters
	Step 3: Set steady state values
	Step 4: Solve the model numerically
	Step 5: Simulate the model

	Other aspects
	Standard RBC model
	Symbolic differentiation
	Simulation
	Non-stochastic models

	Saddle cycle example

	II Technical descriptions
	Symbolic model function
	Assign numerical values

	Function pert_ana_csd
	Solution SOL
	Function get_deriv_csd

	Function eval_sol_csd
	Bibliography

