-
Notifications
You must be signed in to change notification settings - Fork 3
/
SiamFCANet.py
403 lines (306 loc) · 13.6 KB
/
SiamFCANet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
#!/usr/bin/env python2
# -*- coding: utf-8 -*-
"""
@author: Michael (S. Cai)
"""
import math
import torch
import torch.nn as nn
from torchvision.models import ResNet
from torch.autograd import Variable
import torch.nn.functional as F
#from graphviz import Digraph
###****** FCAM: Feature Context-Based Attention Module ******###
# using multi-scale receptive fields for analyzing contextual info, inspired by CRN and CBAM #
class MulFCAM(nn.Module):
def __init__(self, channel, rate_reduct=16):
super(MulFCAM, self).__init__()
### for channel attention ###
###
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
###
self.conv_down = nn.Conv2d(channel, channel // rate_reduct, kernel_size=1, stride=1, bias=False)
self.relu = nn.ReLU(inplace=True)
self.conv_up = nn.Conv2d(channel // rate_reduct, channel, kernel_size=1, stride=1, bias=False)
self.sigmoid = nn.Sigmoid()
### for spatial attention ###
self.conv_local1 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=3, stride=1, padding=1)
self.conv_local2 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=5, stride=1, padding=2)
self.conv_local3 = nn.Conv2d(in_channels=2, out_channels=1, kernel_size=7, stride=1, padding=3)
self.conv_rw = nn.Conv2d(in_channels=3, out_channels=1, kernel_size=1, stride=1, padding=0)
self.repeatSize = channel
def forward(self, x):
### channel attention ###
y_a = self.avg_pool(x)
y_m = self.max_pool(x)
y_a = self.conv_down(y_a)
y_m = self.conv_down(y_m)
y_a = self.relu(y_a)
y_m = self.relu(y_m)
y_a = self.conv_up(y_a)
y_m = self.conv_up(y_m)
y = y_a + y_m
y = self.sigmoid(y)
x = x*y
###
### spatial attention ###
y_a = x.mean(1,keepdim=True) # avgpool along channels
y_m, _ = x.max(1,keepdim=True) # maxpool along channels
### concat
y = [y_a, y_m]
y = torch.cat(y, 1)
y_b1 = self.conv_local1(y)
y_b1 = self.relu(y_b1)
y_b2 = self.conv_local2(y)
y_b2 = self.relu(y_b2)
y_b3 = self.conv_local3(y)
y_b3 = self.relu(y_b3)
### concat
y = [y_b1, y_b2, y_b3]
y = torch.cat(y, 1)
y = self.conv_rw(y)
y = self.sigmoid(y)
### repeat the channel
y = y.repeat(1,self.repeatSize,1,1)
return x*y
############################# Basic module ###############################
def conv3x3(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False)
### basic block added with FCAM
class FCAMBasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, reduction=16):
super(FCAMBasicBlock, self).__init__()
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = nn.BatchNorm2d(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes, 1)
self.bn2 = nn.BatchNorm2d(planes)
self.FCAM = MulFCAM(planes, reduction)
self.downsample = downsample
self.stride = stride
def forward(self, x):
residual = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
out = self.FCAM(out)
if self.downsample is not None:
residual = self.downsample(x)
out += residual
out = self.relu(out)
return out
##############
######################## for CVUSA data ######################
########################## Siam-FCANet ###########################
################### local context awaring module (a kind of attention)
class ContextAware_CVUSA(nn.Module):
### 512 for basic and 2048 for battleneck
def __init__(self, channel=512):
super(ContextAware_CVUSA, self).__init__()
### provides 3 different size kernel for processing local features
#self.pool_down = nn.AvgPool2d(kernel_size=(3,3), stride=(2,2), padding=0)
self.conv_local1 = nn.Conv2d(in_channels=channel, out_channels=128, kernel_size=3, stride=1, padding=1)
self.conv_local2 = nn.Conv2d(in_channels=channel, out_channels=128, kernel_size=5, stride=1, padding=2)
self.conv_local3 = nn.Conv2d(in_channels=channel, out_channels=128, kernel_size=7, stride=1, padding=3)
#self.conv_rw = nn.Conv2d(in_channels=352, out_channels=1, kernel_size=1, stride=1, padding=0)
### if feat-map's W*H = 7*7
self.conv_rw = nn.Conv2d(in_channels=384, out_channels=1, kernel_size=1, stride=1, padding=0)
self.relu = nn.ReLU(inplace=True)
self.w_prob = nn.Sigmoid()
#self.w_nonlinear = nn.ReLU(inplace=True) ### apply relu to substitute sigmoid
self.repeatSize = channel
def forward(self, x):
### local processing
x_b1 = self.conv_local1(x)
x_b1 = self.relu(x_b1)
x_b2 = self.conv_local2(x)
x_b2 = self.relu(x_b2)
x_b3 = self.conv_local3(x)
x_b3 = self.relu(x_b3)
### concat
y = [x_b1, x_b2, x_b3]
#y = [x_b1, x_b2]
y = torch.cat(y, 1)
### reweighting
y = self.conv_rw(y)
y = self.w_prob(y)
#y = self.w_nonlinear(y)
### repeat the channel
y = y.repeat(1,self.repeatSize,1,1)
return x * y
####################################
class SiamFCANet_Base_CVUSA(nn.Module):
def __init__(self, block, layers, num_classes=1024):
self.inplanes = 64
self.inplanes_p = 64
super(SiamFCANet_Base_CVUSA, self).__init__()
self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.conv1_p = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.bn1_p = nn.BatchNorm2d(64)
self.relu = nn.ReLU(inplace=True)
self.relu_p = nn.ReLU(inplace=True)
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.maxpool_p = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
self.layer1 = self._make_layer(block, 64, layers[0])
self.layer1_p = self._make_layer_p(block, 64, layers[0])
self.layer2 = self._make_layer(block, 128, layers[1], stride=2)
self.layer2_p = self._make_layer_p(block, 128, layers[1], stride=2)
self.layer3 = self._make_layer(block, 256, layers[2], stride=2)
self.layer3_p = self._make_layer_p(block, 256, layers[2], stride=2)
self.layer4 = self._make_layer(block, 512, layers[3], stride=2)
self.layer4_p = self._make_layer_p(block, 512, layers[3], stride=2)
### context awaring module
self.rw_emb_CVUSA = ContextAware_CVUSA(512)
self.rw_emb_CVUSA_p = ContextAware_CVUSA(512)
### original version of NetVLAD
#self.VLADPool_CVUSA = lp.NetVLAD(feature_size=512, max_samples=7*39, cluster_size=64, output_dim=4096, gating=True, add_batch_norm=False, is_training=True, do_dim_reduction=True)
#self.VLADPool_CVUSA_p = lp.NetVLAD(feature_size=512, max_samples=16*16, cluster_size=64, output_dim=4096, gating=True, add_batch_norm=False, is_training=True, do_dim_reduction=True)
self.AttendPool = nn.MaxPool2d(kernel_size=2,stride=2,padding=1) # 7*39 need to pad before maxpool
self.AttendPool_p = nn.MaxPool2d(kernel_size=2,stride=2,padding=0)
self.featVec_CVUSA = nn.Linear(512*4*20, 1024)
self.featVec_CVUSA_p = nn.Linear(512*8*8, 1024)
### layers for orientation regression
self.angle_fc8 = nn.Linear(2*1024, 100)
#self.angle_fc9_CVUSA = nn.Linear(100, 2)
self.angle_fc9 = nn.Linear(100, 2)
### initialize
for m in self.modules():
if isinstance(m, nn.Conv2d):
n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
m.weight.data.normal_(0, math.sqrt(2./n))
elif isinstance(m, nn.BatchNorm2d):
m.weight.data.fill_(1)
m.bias.data.zero_()
elif isinstance(m, nn.Linear):
n = m.weight.shape[0] * m.weight.shape[1]
m.weight.data.normal_(0, math.sqrt(2./n))
m.bias.data.zero_()
self.angle_relu = nn.ReLU(inplace=True)
#self.sigmoid = nn.Sigmoid()
def _make_layer(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample))
self.inplanes = planes * block.expansion
for i in range(1, blocks):
layers.append(block(self.inplanes, planes))
return nn.Sequential(*layers)
def _make_layer_p(self, block, planes, blocks, stride=1):
downsample = None
if stride != 1 or self.inplanes_p != planes * block.expansion:
downsample = nn.Sequential(
nn.Conv2d(self.inplanes_p, planes * block.expansion,
kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(planes * block.expansion),
)
layers_p = []
layers_p.append(block(self.inplanes_p, planes, stride, downsample))
self.inplanes_p = planes * block.expansion
for i in range(1, blocks):
layers_p.append(block(self.inplanes_p, planes))
return nn.Sequential(*layers_p)
def l2_norm(self,Input):
input_size = Input.size()
Buffer = torch.pow(Input, 2)
Normp = torch.sum(Buffer, 1).add_(1e-10)
Norm = torch.sqrt(Normp)
_output = torch.div(Input, Norm.view(-1, 1).expand_as(Input))
output = _output.view(input_size)
return output
###### forward streetview
def forward_SV(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.maxpool(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = self.rw_emb_CVUSA(x)
x = self.AttendPool(x)
###
x = x.view(x.size(0), -1) ### size = W*H*C
x = self.featVec_CVUSA(x)
### fetch the output of fc7
angleVecHalf = x
###########
x = F.normalize(x, p=2, dim=1)
return x, angleVecHalf
###### forward overhead
def forward_OH(self, x):
x = self.conv1_p(x)
x = self.bn1_p(x)
x = self.relu_p(x)
x = self.maxpool_p(x)
x = self.layer1_p(x)
x = self.layer2_p(x)
x = self.layer3_p(x)
x = self.layer4_p(x)
x = self.rw_emb_CVUSA_p(x)
x = self.AttendPool_p(x)
###
x = x.view(x.size(0), -1) ### size = W*H*C
x = self.featVec_CVUSA_p(x)
### fetch the output of fc7
angleVecHalf = x
###########
x = F.normalize(x, p=2, dim=1)
return x, angleVecHalf
### forward
def forward(self, x_grd, x_sat):
global_grd, vecHalf_grd = self.forward_SV(x_grd)
global_sat, vecHalf_sat = self.forward_OH(x_sat)
### for angle regression
angle_fc7 = [vecHalf_grd, vecHalf_sat]
angle_fc7 = torch.cat(angle_fc7, 1)
angle_fc7 = self.angle_relu(angle_fc7)
#angle_ORvec = 0.0
#angle_ORvec = self.angle_fc8(angle_fc7) # for 4096 length vec
angle_ORvec = self.angle_fc8(angle_fc7) # for 1024 lengh vec
angle_ORvec = self.angle_relu(angle_ORvec)
angle_ORvec = self.angle_fc9(angle_ORvec) ### vec length for each instance is 2 (sin(angle) and cos(angle))
#################
angle_ORvec = F.normalize(angle_ORvec, p=2, dim=1)
return global_grd, global_sat, angle_ORvec
### Anchor Positive Negative
def forward_Tri(self, x_A, x_P, x_N):
features_A, vecHalfA = self.forward_SV(x_A)
features_P, vecHalfP = self.forward_OH(x_P)
features_N, _ = self.forward_OH(x_N)
### for angle regression
angle_fc7 = [vecHalfA, vecHalfP]
angle_fc7 = torch.cat(angle_fc7, 1)
angle_fc7 = self.angle_relu(angle_fc7)
#angle_ORvec = 0.0
#angle_ORvec = self.angle_fc8(angle_fc7)
angle_ORvec = self.angle_fc8(angle_fc7) # for 1024 lengh vec
angle_ORvec = self.angle_relu(angle_ORvec)
angle_ORvec = self.angle_fc9(angle_ORvec) ### vec length for each instance is 2 (sin(angle) and cos(angle))
#################
angle_ORvec = F.normalize(angle_ORvec, p=2, dim=1)
return features_A, features_P, features_N, angle_ORvec
#### return OR net split version
######### basic block ##############
def SiamFCANet18_CVUSA( **kwargs):
""".
"""
model = SiamFCANet_Base_CVUSA(FCAMBasicBlock, [2, 2, 2, 2], **kwargs)
return model
def SiamFCANet34_CVUSA( **kwargs):
""".
"""
model = SiamFCANet_Base_CVUSA(FCAMBasicBlock, [3, 4, 6, 3], **kwargs)
return model
####################################