Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Feature Request]: upsert to same pinecone index using different namespace via VectorStoreIndex #13559

Closed
gurdeep101 opened this issue May 17, 2024 · 0 comments
Labels
enhancement New feature or request triage Issue needs to be triaged/prioritized

Comments

@gurdeep101
Copy link

gurdeep101 commented May 17, 2024

Feature Description

Currently VectorStoreIndex does not allow to upsert indexes into Pinecone.
I'm trying to optimise number of indexes created by using different namespaces in the same index. When I try to initialise a vectorsore with the same index but different namespaces I get an AttributeError after the first namespace

This means that either I create separate indexes or write code for chunking, embedding and upserting to pinecone

Sample code and traceback below

This tends to complicate things especially when parsing pdf documents with tables and text. since the node parsers such as MarkdownElementNodeParser generate relationship and hierarchies for nodes and objects which i would now need to define manually and this makes the process difficult to do.

Hence, this re

for doc in doc_names:
print(doc)
documents = doc_dict[doc]
nodes = node_parser.get_nodes_from_documents(documents)
base_nodes, objects = node_parser.get_nodes_and_objects(nodes)

vector_store = PineconeVectorStore(
    pinecone_index=axis_index,
    namespace=doc)
storage_context = StorageContext.from_defaults(vector_store=vector_store)
axis_index = VectorStoreIndex(nodes=base_nodes+objects,
                        storage_context=storage_context,
                        show_progress=True)
print(f'"{doc}" upserted into a separate namespace')

`

`


AttributeError Traceback (most recent call last)
Cell In[42], line 11
7 vector_store = PineconeVectorStore(
8 pinecone_index=axis_index,
9 namespace=doc)
10 storage_context = StorageContext.from_defaults(vector_store=vector_store)
---> 11 axis_index = VectorStoreIndex(nodes=base_nodes+objects,
12 storage_context=storage_context,
13 show_progress=True)
14 print(f'"{doc}" upserted into a separate namespace')

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/core/indices/vector_store/base.py:75, in VectorStoreIndex.init(self, nodes, use_async, store_nodes_override, embed_model, insert_batch_size, objects, index_struct, storage_context, callback_manager, transformations, show_progress, service_context, **kwargs)
68 self._embed_model = (
69 resolve_embed_model(embed_model, callback_manager=callback_manager)
70 if embed_model
71 else embed_model_from_settings_or_context(Settings, service_context)
72 )
74 self._insert_batch_size = insert_batch_size
---> 75 super().init(
76 nodes=nodes,
77 index_struct=index_struct,
78 service_context=service_context,
79 storage_context=storage_context,
80 show_progress=show_progress,
81 objects=objects,
82 callback_manager=callback_manager,
83 transformations=transformations,
84 **kwargs,
85 )

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/core/indices/base.py:94, in BaseIndex.init(self, nodes, objects, index_struct, storage_context, callback_manager, transformations, show_progress, service_context, **kwargs)
92 if index_struct is None:
93 nodes = nodes or []
---> 94 index_struct = self.build_index_from_nodes(
95 nodes + objects # type: ignore
96 )
97 self._index_struct = index_struct
98 self._storage_context.index_store.add_index_struct(self._index_struct)

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/core/indices/vector_store/base.py:308, in VectorStoreIndex.build_index_from_nodes(self, nodes, **insert_kwargs)
300 if any(
301 node.get_content(metadata_mode=MetadataMode.EMBED) == "" for node in nodes
302 ):
303 raise ValueError(
304 "Cannot build index from nodes with no content. "
305 "Please ensure all nodes have content."
306 )
--> 308 return self._build_index_from_nodes(nodes, **insert_kwargs)

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/core/indices/vector_store/base.py:280, in VectorStoreIndex._build_index_from_nodes(self, nodes, **insert_kwargs)
278 run_async_tasks(tasks)
279 else:
--> 280 self._add_nodes_to_index(
281 index_struct,
282 nodes,
283 show_progress=self._show_progress,
284 **insert_kwargs,
285 )
286 return index_struct

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/core/indices/vector_store/base.py:234, in VectorStoreIndex._add_nodes_to_index(self, index_struct, nodes, show_progress, **insert_kwargs)
232 for nodes_batch in iter_batch(nodes, self._insert_batch_size):
233 nodes_batch = self._get_node_with_embedding(nodes_batch, show_progress)
--> 234 new_ids = self._vector_store.add(nodes_batch, **insert_kwargs)
236 if not self._vector_store.stores_text or self._store_nodes_override:
237 # NOTE: if the vector store doesn't store text,
238 # we need to add the nodes to the index struct and document store
239 for node, new_id in zip(nodes_batch, new_ids):
240 # NOTE: remove embedding from node to avoid duplication

File ~/miniconda3/envs/streamchat/lib/python3.12/site-packages/llama_index/vector_stores/pinecone/base.py:393, in PineconeVectorStore.add(self, nodes, **add_kwargs)
391 ids.append(node_id)
392 entries.append(entry)
--> 393 self._pinecone_index.upsert(
394 entries,
395 namespace=self.namespace,
396 batch_size=self.batch_size,
397 **self.insert_kwargs,
398 )
399 return ids

AttributeError: 'VectorStoreIndex' object has no attribute 'upsert'

Reason

this is supported in pinecone here but not in llamaindex for some reason. I think it's probably because all the sample notebooks create separate indexes for each document and don't use namespaces.

Value of Feature

  1. makes it simpler to upsert new documents into an existing index
  2. eliminates the need to create separate indexes for each document and optimises the code.
@gurdeep101 gurdeep101 added enhancement New feature or request triage Issue needs to be triaged/prioritized labels May 17, 2024
@dosubot dosubot bot added the stale Issue has not had recent activity or appears to be solved. Stale issues will be automatically closed label Aug 17, 2024
@dosubot dosubot bot closed this as not planned Won't fix, can't repro, duplicate, stale Aug 24, 2024
@dosubot dosubot bot removed the stale Issue has not had recent activity or appears to be solved. Stale issues will be automatically closed label Aug 24, 2024
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
enhancement New feature or request triage Issue needs to be triaged/prioritized
Projects
None yet
Development

No branches or pull requests

1 participant