AtChem?2
v1l.2.1

User Manual

R. SOMMARIVA
S. Cox

January 18, 2021

Contents

2.3 Dependencies| L
[2.3.1 Required dependencies|.
[2.3.2 Optional dependencies|

[2.5.1 The doc/ and tools/ directories|
[2.5.2 The model/ directory]

(3 Model Setup|
8.1 Chemical Mechanisml

BTZ RO, SUm| . . o o oo
BI3 MCMX@achionl« o« oooee e

CONTENTS

3.4.10 ROOFK

13.5 Photolysis Rates|

[3.5.1 Constant photolysis rates|
13.5.2 Constrained photolysis rates|

[3.5.3 Calculated photolysis rates|

3.0.4 JFAC calculation

[3.6 Config Files|

[3.6.1 environment Variables.config]
[3.6.2 initialConcentrations.config]
13.6.3 outputRates.config|
[3.6.4 outputSpecies.config|
[3.6.5 photolysisConstant.config|
13.6.6 photolysisConstrained.config|
[3.6.7 speciesConstant.config]
13.6.8 speciesConstrained.configl
4__Model Executionl
41 Box-Modell
411 Mechanism filel
[4.1.2 Configuration files|
4.2 Constraintsl
4.2.1 Constrained variables
4.2.2 Constraint files
4.2.3 Interpolation|
B3 Buildl. . . .o 36
B4 Executd
4.5 Output|

[5 Model Development|

b.1 General Information|

o1

5.2.2

Adding new behaviour tests|

5.3 Style Guide]

B.3.1

Style recommendations|

[6 Credits and Acknowledgements|

[References]

Adding new unit tests|

6.2 Acknowledgements|
6.3 Funding

Chapter 1

Introduction

AtChem?2 is an open source modelling tool for atmospheric chemistry. It
is designed to build and run zero-dimensional box-models using the Master
Chemical Mechanism (MCM). The MCM is a near-explicit chemical mech-
anism which describes the gas-phase oxidation of primary emitted Volatile
Organic Compounds (VOC) to carbon dioxide (CO5) and water (HyO). The
MCM protocol is detailed in [Jenkin et al. [1997] and subsequent updates
[Saunders et al., 2003, |Jenkin et al., 2003, Bloss et al., 2005| |Jenkin et al.,
2015|. Although it is meant to be used with the MCM, AtChem2 can use any
other chemical mechanism, as long as it is in the correct format (Sect. [3.1)).

AtChem?2 is a development of AtChem-online, a modelling web tool
created to facilitate the use of the MCM in the simulation of laboratory and
environmental chamber experiments within the EUROCHAMP| community
[Martin), [2009]. AtChem-online runs as a web service — provided by the Uni-
versity of Leeds —and can be accessed at https://atchem.leeds.ac.uk /webapp/:
in order to use AtChem-online, a user needs only a text editor, file compres-
sion software, a web browser, and an internet connection. A tutorial — with
examples and exercises — is available on the MCM |website.

AtChem-online is easy to use even for inexperienced users but has a
number of limitations, mostly related to its nature as a web application.
AtChem2 was developed from AtChem-online with the objective to provide
an offfine modelling tool capable of running long simulations of computa-
tionally intensive models, as well as batch simulations for sensitivity studies.
In addition, AtChem2 implements a continuous integration workflow, cou-
pled with a comprehensive suite of tests and version control software (git),
which makes it robust, reliable and traceable.

The codebase of AtChem?2 is structured into four components (or lay-
ers) — as illustrated in Fig. — and is written mostly in Fortran 90/95.
Installation, compilation and execution of AtChem?2 are semi-automated via
a number of shell and Python scripts that require minimal input from the
user. This document (AtChem2-Manual.pdf) is the AtChem2 user manual

http://mcm.leeds.ac.uk/MCM/
https://www.eurochamp.org/
https://atchem.leeds.ac.uk/webapp/
http://mcm.leeds.ac.uk/MCMv3.3.1/atchem/tutorial_intro.htt
https://git-scm.com/

CHAPTER 1. INTRODUCTION

and contains all the information required to install, set up and use the cur-
rent version of AtChem2. A summary of these instructions, and additional
information, can be found on the wiki.

Chemical Mechanism Afgb_?_"f_'_z_
- fa C B LTI

Processing Layer

- conversion of the chemical mechanism
to Fortran format

- sum of organic peroxy radicals (RO2)

- parametrization of photolysis rates

- dilution mechanism (optional)

- Configuration Layer
Logic Layer - initial conditions
- system of coupled ODE -

e model constraints
- boundary conditions - input and output variables

- model and solver parameters
\ Mathematical Layer

- interpolation of constraints
- integration of the ODE system atchem?2

~_ > executable
OUTPUT

Figure 1.1: Architecture of AtChem2.

1.1 License and citation

AtChem?2 is open source — released under MIT license — and is hosted at
https://github.com/AtChem/AtChem2. A copy of the license can be found
in the LICENSE.md file.

The model is free to use, compatible with the terms of the MIT license;
if used in a publication please include a citation to the following paper:

R. Sommariva, S. Cox, C. Martin, K. Boronska, J. Young, P. K. Jimack,
M. J. Pilling, V. N. Matthaios, B. S. Nelson, M. J. Newland, M. Panagi, W. J.
Bloss, P. S. Monks, and A. R. Rickard. AtChem (version 1), an open-
source box model for the Master Chemical Mechanism. Geoscientific
Model Development, 13, 1, 169-183, 2020. doi: 10.5194/gmd-13-169-2020.

https://github.com/AtChem/AtChem2/wiki/
https://github.com/AtChem/AtChem2
https://doi.org/10.5194/gmd-13-169-2020

Chapter 2

Model Installation

2.1 Requirements

AtChem?2 can be installed on Linux/Unix and macOS operating systems. A
working knowledge of the unix shell and its basic commands is required to
install and use the model. AtChem?2 requires the following tools:

e Fortran — the model compiles with GNU gfortran (version 4.8 and
above) and with Intel ifort (version 17.0)
— default compiler: gfortran

e Python [[]
e make and cmake
e Ruby (optional)

Some or all of these tools may already be present on your operating sys-
tem. Use the which command to find out (e.g., which python, which cmake,
etc. ..); otherwise, check the local documentation or ask the system admin-
istrator. In addition, AtChem?2 has the following dependencies:

e BLAS and LAPACK
e CVODE

e openlibm

e numdiff (optional)

e FRUIT (optional)

For detailed instructions on the installation and configuration of the
dependencies go to Sect.

LAll Python scripts used in AtChem?2 work equally with Python v2 and v3. Support
for Python v2 will be removed in future versions of AtChem?2.

https://swcarpentry.github.io/shell-novice/reference/

CHAPTER 2. MODEL INSTALLATION

2.2 Download

Two versions of AtChem?2 are available for download: the stable version and
the development version, also known as master branch (see Sect. for
details). The source code can be obtained in two ways:

e with git:

1. Open the terminal. Move to the directory where you want to
install AtChem?2.

2. Execute git clone https://github.com/AtChem/AtChem2.git
(if using HTTPS) or git clone git®@github.com:AtChem/AtChem2.git
(if using SSH). This method will download the development ver-
sion and it is recommended if you want to contribute to the model
development.

e with the archive file:

1. Download the archive file (.tar.gz or .zip) of the stable or of the
development version to the directory where you want to install
AtChem?2.

2. Open the terminal. Move to the directory where the archive file
was downloaded.

3. Execute tar -zxfv *.tar.gz or unzip -v *.zip (depending
on which archive file was downloaded) to unpack the archive file.

The AtChem?2 source code is now in a directory called AtChem2 (if
git was used) or AtChem2-1.x (if the stable version was downloaded) or
AtChem2-master (if the development version was downloaded). This direc-
tory, which can be given any name, is the Main Directory of the model.
In this manual, the Main Directory is assumed to be: $HOME/AtChem2.

2.3 Dependencies

AtChem?2 has a number of dependencies (external tools and libraries): some
are required, and without them the model cannot be installed or used, oth-
ers are optional. It is recommended to use the same directory for all the
dependencies of AtChem?2: the Dependency Directory can be located any-
where and given any name. In this manual, the Dependency Directory is
assumed to be: $HOME/atchem-1ib/.

Before installing the dependencies, make sure that a Fortran compiler
(e.g., gfortran), Python, make, cmake and (optionally) Ruby are installed
on the operating system, as explained in Sect.

https://github.com/AtChem/AtChem2/releases/
https://github.com/AtChem/AtChem2/releases/
https://github.com/AtChem/AtChem2/archive/master.zip

CHAPTER 2. MODEL INSTALLATION

2.3.1 Required dependencies
BLAS and LAPACK

BLAS and LAPACK are standard Fortran libraries for linear algebra. They
are needed to install and compile the CVODE library — see below. Usu-
ally they are located in the /usr/1ib/ directory (e.g., /usr/lib/libblas/
and /usr/lib/lapack/). The location may be different, especially if you
are using a High Performance Computing (HPC) system: check the local
documentation or ask the system administrator.

CVODE

AtChem?2 uses the CVODE library which is part of the open source SUN-
DIALS suite [Hindmarsh et al., [2005], to solve the system of ordinary differ-
ential equations (ODE). The version of CVODE currently used in AtChem2
is v2.9.0 (part of SUNDIALS v2.7.0) and it can be installed using the
install cvode.sh script in the tools/install/ directory.

1. Open the terminal. Move to the Main Directory (cd ~/AtChem2).

2. Open the installation script (tools/install/install_cvode.sh) with
a text editor:

e If LAPACK and BLAS are not in the default location (see above),
change the LAPACK_LIBS variable for your architecture (Linux or
macQOS) as appropriate.

e If you are not using the gcc compiler (gfortran), change the line
-DCMAKE_C_COMPILER:FILEPATH=gcc \ accordingly.

3. Run the installation script (change the path to the Dependency Directory
as needed):

./tools/install/install_cvode.sh ~/atchem-1lib/

If the installation is successful, there should be a working CVODE in-
stallation at ~/atchem-1ib/cvode/. Take note of the path to the CVODE
library (~/atchem-1ib/cvode/1ib/), as it will be needed later to complete
the configuration of AtChem?2 (Sect. [2.4).

openlibm

openlibm is a portable version of the open source libm library. Installing
openlibm and linking against it allows reproducible results by ensuring the
same implementation of several mathematical functions across platforms.

The current version of openlibm is 0.4.1 and it can be installed using the
install _openlibm.sh script in the tools/install/ directory.

https://computation.llnl.gov/projects/sundials/
https://computation.llnl.gov/projects/sundials/
https://openlibm.org/

CHAPTER 2. MODEL INSTALLATION

1. Open the terminal. Move to the Main Directory (cd ~/AtChem2).

2. Run the installation script (change the path to the Dependency Directory
as needed):

./tools/install/install_openlibm.sh ~/atchem-1ib/

If the installation is successful, there should be a working openlibm in-
stallation at ~/atchem-1ib/openlibm-0.4.1/. Take note of the path to
openlibm, as it will be needed later to complete the configuration of AtChem?2

(Sect. [2.4)).

2.3.2 Optional dependencies
numdiff

numdiff is an open source [tool used to compare files containing numerical
fields. It is needed only if you want to run the a series of tests used
to ensure that the model works properly and that changes to the code do
not result in unintended behaviour. Installation of numdiff is recommended
if you want to contribute to the development of AtChem?2.

Use which numdiff to check if the program is already installed on your
system. If not, ask the system administrator. Alternatively, numdiff can
be installed locally (e.g., in the Dependency Directory) using the script
install numdiff.sh in the tools/install/ directory.

1. Open the terminal. Move to the Main Directory (cd ~/AtChem2).

2. Run the installation script (change the path to the Dependency Directory
as needed):

./tools/install/install_numdiff.sh ~/atchem-1lib/

3. Move to the $HOME directory (cd ~). Open the .bash_profile file (or
the .profile file, depending on your configuration) with a text editor.
Add the following line to the bottom of the file (change the path to
the Dependency Directory as needed):

export PATH=$PATH:$HOME/atchem-1ib/numdiff/bin

4. Close the terminal.

5. Reopen the terminal. Execute which numdiff to check that the pro-
gram has been installed correctly.

https://www.nongnu.org/numdiff/

CHAPTER 2. MODEL INSTALLATION

FRUIT

FRUIT (FORTRAN Unit Test Framework) is a unit test framework| for
Fortran. It requires Ruby and it is needed only if you want to run the
unit tests (Sect. [5.2)). Installation of FRUIT is recommended if you want to
contribute to the development of AtChem2.

The current version of FRUIT is 3.4.3 and it can be installed using the
install fruit.sh script in the tools/install/ directory.

1. Open the terminal. Move to the $HOME directory (cd ~). Open the
.bash_profile file (or the .profile file, depending on your config-
uration) with a text editor. Add the following lines to the bottom of
the file:

export GEM_HOME=$HOME/.gem
export PATH=$PATH:$GEM_HOME/bin

2. Close the terminal.
3. Reopen the terminal. Move to the Main Directory (cd ~/AtChem2).

4. Run the installation script (change the path to the Dependency Directory
as needed):

./tools/install/install_fruit.sh ~/atchem-1lib/

If the installation is successful, there should be a working FRUIT instal-
lation at ~/atchem-1ib/fruit_3.4.3/. Take note of the path to FRUIT, as
it will be needed later to complete the configuration of AtChem?2 (Sect. .
2.4 Install
To install AtChem?2:

1. Open the terminal. Move to the Main Directory (cd ~/AtChem2).

Install the and take note of the names and paths of
CVODE, openlibm and FRUIT.

2. Copy the example Makefile from the tools/install/ directory to
the Main Directory:

cp ./tools/install/Makefile.skel ./Makefile

https://en.wikipedia.org/wiki/Unit_testing

CHAPTER 2. MODEL INSTALLATION

3. Open the Makefile with a text editor. Set the variables $CVODELIB,
$OPENLIBMDIR, $FRUITDIR to the paths of CVODE, openlibm and
FRUIT, as indicated in Sect. [2.3.1] Use full paths, because using rel-
ative paths may cause compilation errors ﬂ For example (change the
path to the Dependency Directory as needed):

CVODELIB = $(HOME)/atchem-1lib/cvode/lib
OPENLIBMDIR = $(HOME)/atchem-1ib/openlibm-0.4.1
FRUITDIR = $(HOME)/atchem-lib/fruit_3.4.3

If FRUIT has not been installed (it is optional), leave the default value
for $FRUITDIR.

4. Compile AtChem2 with the build_atchem?2.sh script in the build/
directory:

./build/build_atchem2.sh ./mcm/mechanism_test.fac

This command compiles the model and creates an executable (called
atchem?2) using the example mechanism file mechanism test.fac in-
cluded in the mem/ directory.

5. Execute ./atchem2 from the Main Directory. This command runs
the model executable using the default configuration. If the model
run completes successfully, the following message (or similar) will be
printed to the terminal:

No. steps = 546 No. f-s = 584 No. J-s = 912 No. LU-s = 56
No. nonlinear iterations = 581

No. nonlinear convergence failures = 0

No. error test failures = 4

Runtime = 0
Deallocating memory.

When AtChem?2 is run for the first time on a macOS system, it may abort
with an error message concerning rpath: if this happens, see the Note for
macOS users on the wikil for a solution.

2See issue [#364.

10

https://github.com/AtChem/AtChem2/wiki/How-to-install-AtChem2
https://github.com/AtChem/AtChem2/issues/364

CHAPTER 2. MODEL INSTALLATION

AtChem?2 is now ready to be used. Optionally, the Test Suite can be run
to check that the model has been installed correctly: go to Sect. for
more information. The directory structure and the organization of AtChem?2
are described in Sect. (see also Fig. . For detailed instructions on
how to set up, configure, build and execute an AtChem?2 box-model go to
Chapt. 3] and Chapt. [

2.4.1 Tests (optional)

The can be used to verify that AtChem2 has been installed cor-
rectly and works as intended. It is recommended to run the Test Suite if you
want to contribute to the development of the AtChem2 model. Note that in
order to run the Test Suite the [optional dependencies have to be installed.

To run the Test Suite, open the terminal and execute one of the following
commands from the Main Directory:

e make alltests: runs all the tests (requires numdiff and FRUIT).

e make tests: runs only the build and behaviour tests (requires numd-
iff).

e make unittests: runs only the unit tests (requires FRUIT).

The command runs the requested tests, then prints the tests output and
a summary of the results to the terminal.

2.5 Model Structure

AtChem?2 is organized in several directories which contain the source code,
the compilation files, the chemical mechanism, the model configuration and
output, several scripts and utilities, and the Test Suite.

The directory structure of AtChem?2 is derived from the directory struc-
ture of AtChem-online, but it was substantially changed with the release of
version 1.1 (November 2018). Tab. shows the new directory structure
and, for reference, the original one.

In AtChem?2 version 1.1 (and later versions) the directories build/, mcm/,
obj/ and src/ contain the build scripts, the MCM data files, the files gen-
erated by the compiler, the source code; the directory travis/ contains the
files and the scripts necessary to run the

For the majority of the users, the most important directories are doc/,
which contains the user manual and other documents, tools/, which con-
tains the installation and plotting scripts (plus other utilities), and model/,
which contains the model information (configuration, input, output and,
usually, the chemical mechanism). Detailed information on these three di-
rectories can be found in the following sections.

11

CHAPTER 2. MODEL INSTALLATION

Table 2.1: Directory structure of AtChem?2. “Original” refers to version 1.0
and earlier (including AtChem-online); “New” refers to version 1.1 and later.

Original New Description

- build/ scripts to build the model.

- doc/ user manual and other doc-
uments.

- mcm/ MCM data files and example

.fac files.

modelConfiguration/

model/configuration/

chemical mechanism files,
shared library, model and
solver configuration files.

speciesConstraints/

model/constraints/species/

model constraints: chemical
species.

environmentConstraints/

model/constraints/environment/

model constraints: environ-
ment variables.

environmentConstraints/

model/constraints/photolysis/

model constraints: photoly-
sis rates.

modelOutput/

model/output/

model output: chemical
species, environment vari-
ables, photolysis rates,

production and loss rates,
diagnostic information.

instantaneousRates/

model/output/reactionRates/

model output: reaction rates
of every reaction in the
chemical mechanism.

obj/ obj/ files generated by the For-
tran compiler.

src/ src/ Fortran source files.

tools/ tools/ various scripts and plotting
tools.

travis/ travis/ scripts and files for the Test

2.5.1 The doc/ and tools/ directories

Suite.

The doc/ directory contains the pdf file of the AtChem2 user manual (this
document: AtChem2-Manual.pdf), along with the corresponding IATEX files
and figures. An electronic copy of the poster presented at the 2018 Atmo-
spheric Chemical Mechanisms Conference [Sommariva et al., 2018] is also
included (AtChem _poster_ACM2018.pdf).

The tools/ directory contains the script (version.sh, used to update
the version number of AtChem?2 in each [development cycle|), two scripts to
check and correct the Fortran code (fix_style.py and fix_indent.py, see
Sect. [5.3), and the following subdirectories:

e install/: contains the example Makefile (Makefile.skel) and the

scripts to install the

e plot/: contains basic plotting scripts in various programming lan-

guages.

In earlier versions of AtChem?2, the tools/ directory also included the

12

CHAPTER 2. MODEL INSTALLATION

build scripts, which have been moved to the build/ directory in AtChem2
version 1.2.

The plotting scripts in tools/plot/ are very simple and produce iden-
tical outputs. They are only intended to give the user a quick overview of
the model results for validation and diagnostic purposes. It is recommended
to use a proper data analysis software package (e.g., IDL, Igor, MATLAB,
Origin, R, etc...) to process and analyze the model results.

The plotting scripts are written in different programming languages: gnu-
plot, Octave EL Python, and R. One or more of these environments is prob-
ably already installed on your system: check the local documentation or ask
the system administrator. All plotting scripts require one argument — the
directory containing the model output — and produce the same output E}
one file called atchem2_output.pdf in the given directory.

To run a plotting script, open the terminal and execute one of the fol-
lowing commands from the Main Directory (change the path to the model
output directory as needed):

e gnuplot -c tools/plot/plot-atchem2.gp model/output/

e octave tools/plot/plot-atchem2.m model/output/

python tools/plot/plot-atchem2-numpy.py model/output/

python tools/plot/plot-atchem2-pandas.py model/output/

Rscript --vanilla tools/plot/plot-atchem2.r model/output/

2.5.2 The model/ directory

The model/ directory is the most important from the point of view of the
user: it includes the model configuration files, the model constraints and
the model output. Basically, all the information required to set up and run
a box-model with AtChem2, together with the model results, is contained
in this directory. In principle, the chemical mechanism (.fac file) could be
located in another directory but it is good practice to keep it together with
the rest of the model configuration.

The model/ directory can be given any name and can even be located
outside the Main Directory. Moreover, there can be multiple model/ direc-
tories (with different names) in the same location. The paths to the required
model/ directory and/or to the chemical mechanism file are given as an ar-
gument to the build script (build/build_atchem2.sh) and to the atchem2
executable, as explained in Sect. [4.3] and in Sect.

3GNU Octave is an open source implementation of MATLAB. The script
plot-atchem2.m works with both Octave and MATLAB.
4See issue #269 for a list of known problems of the plotting scripts.

13

https://github.com/AtChem/AtChem2/issues/269

CHAPTER 2. MODEL INSTALLATION

This approach gives the user the flexibility to run different versions of the
same model (in terms of configuration and/or chemical mechanism) or dif-
ferent models (e.g., for separate projects) at the same time, without having
to recompile the source code and create a different executable every time.
Sensitivity studies and batch model runs are therefore easy to do, since all
the parts of the model that have to be modified are contained in the same
directory. Further information can be found in Sect.

Important Note: whenever the model/ directory is mentioned in this
manual, it is implied that its name and location may be different than the
default name (model/) and location (Main Directory). All scripts that
require this information, as well as the atchem2 executable, allow the user
to specify the path to the model/ directory and to its subdirectories, as
needed.

14

Chapter 3

Model Setup

3.1 Chemical Mechanism

The chemical mechanism is the core of an atmospheric chemistry model. In
AtChem?2, the chemical mechanism file is written in FACSIMILE format and
has the extension .fac. The format is used to describe chemical reactions
in the commercial FACSIMILE Kinetic Modelling Software; for historical
reasons, the software and the format have often been used in conjunction
with the MCM. The extraction tool on the MCM website can generate
.fac files in FACSIMILE format that can be directly used in AtChem?2

(Sect. [3.1.3).

3.1.1 FACSIMILE format

Chemical reactions are described in FACSIMILE format using the following
notation:

%k : A+B=C+D ;

where k is the rate coefficient, A and B are the reactants, C and D are
the products. A reaction starts with the % character and ends with the ;
character. The : character separates the rate coefficient from the reactants
and products of the chemical reaction. The rate coefficient (k) is a constant
number or, more commonly, is calculated as a function of other variables,
such as temperature (TEMP), air density (M), water vapour (H20) and other
environment variables (Sect. [3.4).

Comments can be inserted in the .fac file to document and annotate
the chemical mechanism: in FACSIMILE format, comments are enclosed
between the * and ; characters and are ignored by the compilation scripts.
A basic chemical mechanism, with comments and calculated rate coefficients,
has the following format:

15

http://mcm.leeds.ac.uk/MCM/extract.htt

CHAPTER 3. MODEL SETUP

* Tropospheric 03-NOx cycle ;
* Kinetic data from Atkinson et al., ACP, 2004 ;

*;

% J_N0O2 : NO2 = NO + O ;

% 5.6D-34*Mx(TEMP/300)0@-2.6 : 0 + 02 = 03 ;

% 1.4D-12%EXP(-1310/TEMP) : NO + 03 = NO2 + 02 ;

The photolysis rate of NO, (J.NO2) in the example above is calcu-
lated by AtChem2 as function of latitude, longitude and solar zenith angle
(Sect. . Complex mathematical expressions can be used to calculate the
rate coefficients, in which case they have to be defined before the chemical
reactions that use them (typically, these are combination and dissociation
reactions). For example:

* Formation of nitric acid (HNO3) in the gas-phase ;
*35

* Rate coefficient (Atkinson et al., ACP, 2004) ;
K80 = 3.3D-30xM*(TEMP/300)0@-3.0 ;

K8I = 4.1D-11 ;

KR8 = K80/KS8I ;

FC8 = 0.4 ;

NC8 = 0.75-1.27x(L0OG10(FC8)) ;

F8 = 10@(LOG10(FC8)/(1+(LOG10(KR8) /NC8)**2)) ;
KMT08 = (K80*K8I)*F8/(K80+K8I) ;
*;

* Chemical Reaction ;
% KMTO8 : OH + NO2 = HNO3 ;

Chemical reactions can be written in FACSIMILE format without reac-
tants or products. This feature can be used to implement simple descriptions
of non-chemical processes in a box-model. For example, dilution (Sect. ,
deposition to a surface, and direct emission of a chemical species can be
parametrized as:

* Deposition velocity of 03 = 1.4 cm s-1 ;
% 1.4/BLHEIGHT : 03 = ;

* Emission rate of NO2 = 1e8 molecule cm-3 s-1 ;
% 1D+8 : = N0O2 ;

More sophisticated approaches to describe non-chemical processes can
be implemented either by defining complex mathematical expressions to
calculate the corresponding “rate coefficients” (as explained above) or by
adding the appropriate Fortran function(s) to the source code.

The .fac file is processed by a Python script (mech_converter.py, see
Sect. , which expects the chemical mechanism to have four sections:

16

CHAPTER 3. MODEL SETUP

Generic rate coefficients : contains the definitions of the generic rate
coefficients used when experimental kinetic data are not available.

Complex reactions : contains the mathematical expressions used to cal-
culate complex rate coefficients (e.g., for combination and dissociation
reactions).

Peroxy radicals : contains the calculation of the RO, sum — go to Sect.
for details.

Reaction definitions : contains the chemical reactions (and the parametrized
non-chemical processes) in FACSIMILE format.

For the mech_converter.py script to work, the beginning of each section
must be delimited by a header constituted by a single comment line. The
header must always be present, even though the corresponding section can be
empty (e.g., if a mechanism other than the MCM is used). A minimal .fac
file (mechanism_skel.fac) and an example chemical mechanism downloaded
from the MCM website (mechanism_test.fac) are included in the mcm/
directory for reference and testing.

3.1.2 RO, sum

The sum of organic peroxy radicals (RO,) is a key feature of the Master
Chemical Mechanism. Organic peroxy radicals react with HO,, with them-
selves and with other organic peroxy radicals: given that there are over 1000
RO, in the MCM, the number of possible self and cross reactions of these
species is of the order of 105, which presents a significant computational
challenge. The RO, sum is used in the MCM to reduce the number of per-
oxy radicals permutation reactions; more information can be found in the
MCM protocol papers [Jenkin et al., 1997, [Saunders et al., [2003].

AtChem?2 is designed primarily to run models based upon the Master
Chemical Mechanism and, therefore, the .fac file must contain the Peroxy
radicals section, as explained in Sect. This section must have a header
and has the following format:

* Peroxy radicals. ;
RO2 = R0O2a + RO2b + RO2c + ... ;

where R02a, R02b, R02c¢, are the organic peroxy radicals in the chemical
mechanism. If there are no organic peroxy radicals in the chemical mech-
anism (or if the mechanism is not based upon the MCM), the RO, sum
section must still be present in the .fac file, but it is left empty:

* Peroxy radicals. ;
RO2 = ;

17

CHAPTER 3. MODEL SETUP

The RO, sum is automatically generated from the chemical mechanism
during the The script mech_converter.py compares the list
of species in the Peroxy radicals section of the .fac file with the list of
RO, extracted from the MCM database. AtChem?2 includes — in the mcm/
directory — the complete list of organic peroxy radicals in version 3.3.1 of
the MCM (peroxy-radicals_v3.3.1), which is the default version used by
AtChem2. Complete lists of organic peroxy radicals for other versions of
the MCM are also included in the mcm/ directory. Instructions on how to
set up AtChem2 to use previous versions of the MCM can be found in the
mcm/INFO.md file.

If a species is included in the Peroxy radicals section of the .fac file,
but is not present in the list of RO, extracted from the MCM database, the
mech_converter.py script prints a warning message to the terminal:

**xxxxx Warning: XYZ NOT found in the reference R0O2 list *¥¥¥xx

The user should then check manually whether that species is an organic
peroxy radical or not, and amend the .fac file accordingly.

It is important to ensure that the RO, sum is accurate, because many
reactions in the MCM depend on this parameter. This means that the RO,
sum must include only organic peroxy radicals E] and that all the organic
peroxy radicals in the chemical mechanism must be included. The RO,y sum
is output, by default, to the file environmentVariables.output (Sect. .

3.1.3 MCM extraction

The MCM website provides a convenient tool that can be used to download
the whole Master Chemical Mechanism — or subsets of it — in FACSIM-
ILE format. Only a brief overview of the process is given here: for more
information go to the MCM website.

First, select the species of interest using the MCM browser and add the
selection to the “Mark List”. Then proceed to the MCM extraction tool and
select the option “FACSIMILE input format, suitable for inserting into a
FACSIMILE model”. Make sure that the following options are selected, so
that all the required headers (Sect. will be included in the generated
.fac file: :

[x] Include inorganic reactions?
[x] Include generic rate coefficients?
FACSIMILE, FORTRAN and KPP formats only

Click on the “Extract” button to download the .fac file into a directory
of choice — such as the model/ directory, as discussed in Sect. The

!The hydroperoxyl radical (HO,) is a peroxy radical but is not an organic molecule,
and therefore it must not be included in the ROy sum.

18

http://mcm.leeds.ac.uk/
http://mcm.leeds.ac.uk/MCM/roots.htt
http://mcm.leeds.ac.uk/MCM/extract.htt

CHAPTER 3. MODEL SETUP

downloaded . fac file is a simple text file and is ready to be used in AtChem2.
If modifications are required (e.g., if some chemical reactions have to be
added, deleted or modified) open the .fac file with a text editor and edit
the chemical mechanism as needed.

3.1.4 The build process

AtChem?2 is built using the scripts in the build/ directory. Here, the build
process is only outlined; detailed instructions on how to build the model can
be found in Sect. [4.3]

The Python script mech_converter.py — automatically called by the
build_atchem2.sh script — converts the chemical mechanism from FAC-
SIMILE format into a format that can be read by the Fortran code. In
doing so, the Python script generates a number of files:

e mechanism.f90 contains the equations, in Fortran code, to calculate
the rate coefficients of each reaction of the chemical mechanism.

e mechanism.so is the shared library, i.e. the pre-compiled version of
the chemical mechanism.

e mechanism.species contains the list of chemical species in the chem-
ical mechanism. The file has no header. The first column is the ID
number of the species, the second column is the name of the species:

10

2 03
3 NO
4 NO2

e mechanism.reac and mechanism.prod contain the reactants and the
products (respectively) in each reaction of the chemical mechanism.
The files have a one line header showing the number of species, the
number of reactions and the number of equations in the Generic rate
coefficients and Complex reactions sections (Sect. [3.1.1)). The first
column is the ID number of the reaction, the second column is the ID
number of the chemical species (from mechanism.species) which are
reactants/products in that reaction:

29 71 139 numberOfSpecies numberOfReactions numberOfGenericComplex

W w N -
N I e e

19

CHAPTER 3. MODEL SETUP

e mechanism.ro2 contains the organic peroxy radicals (RO,). The file
has a one line header formatted as a Fortran comment. The first col-
umn is the ID number of the peroxy radical (from mechanism. species),
the second column is the name of the peroxy radical as a Fortran com-
ment:

! Note that this file is automatically generated by build/mech_converter.py -
Any manual edits to this file will be overwritten when calling build/mech_c

23 'CH302
26 !'C2H502
28 'IC3H702
29 INC3H702

The directory containing the files generated by the build script is, by de-
fault, model/configuration/, but its location can be changed using the
second argument of the build script, as explained in Sect. (see also
Sect. . The shared library mechanism.so is created in the Shared
Library Directory, which usually is the same as the model/configuration/.

3.2 Model Parameters

The model parameters control the general setup of the model; they are set in
the model.parameters file which, by default, is in the model/configuration/
directory.

e number of steps and step size. The duration of the model run is
determined by the number of steps and by the step size (in seconds).
The step size controls the frequency of the model output for the chem-
ical species listed in outputSpecies.config (Sect. [3.6.4)), as well as
for the environment variables, the photolysis rates and the diagnostic
variables. The step size is not related to the integration step which is
controlled by CVODE.

For example: a model run of 2 hours, with output every 5 minutes,
requires 24 steps with a step size of 300 seconds (24 x 300 = 7200 sec
= 2 hours).

e species interpolation method and conditions interpolation method.
Interpolation method used for the constrained chemical species, and
for the constrained environment variables and the photolysis rates, re-
spectively. Two interpolation methods are currently implemented in
AtChem?2: piecewise constant and piecewise linear (Sect. . The
default option is 2 (piecewise linear interpolation).

20

CHAPTER 3. MODEL SETUP

e rates output step size. Frequency (in seconds) of the model output
for the rate of the production and destruction analysis (ROPA/RODA)
of selected chemical species, i.e. those listed in outputRates.config

(Sect. [3.6.3)).

e model start time. Start time of the model (in seconds) calculated
from midnight of the day, month, year parameters — see below. For
example, a start time of 3600 means the model run starts at 1:00 in
the morning and a start time of 46800 means the model run starts at
1:00 in the afternoon (13:00). The model stop time is automatically
calculated by the model as:

stop time = start time 4+ (number of steps * step size)

N.B.: when one or more variables are constrained, the time interval
between the model start time and the model stop time must be equal
to or less than the time interval of the constrained data — see Sect.
and Sect. [£.2.3] for details.

e jacobian output step size. Frequency (in seconds) of the model
output of the Jacobian matrix. If this parameter is set to 0 (default
option), the Jacobian matrix is not output.

N.B.: the jacobian.output file generated by the model can be very
large, especially if the chemical mechanism has many reactions and/or
the model runtime is long.

e latitude and longitude. Geographical coordinates (in degrees). Lati-
tude North is positive and latitude South is negative; longitude East is
negative and longitude West is positive ﬂ Latitude and longitude are
used to calculate the solar angles, which are needed for the calculation

of the photolysis rates (Sect. [3.5.3)).

e day and month and year. Start date of the model simulation. The
model time is in UTC (GMT timezone) and is calculated in seconds
since midnight of the start date.

e reaction rates output step size. Frequency (in seconds) of the
model output for the reaction rates of every reaction in the chemical
mechanism. In previous versions of AtChem2, this output was called
instantaneous rates. By default, the reaction rates are saved in the
directory model/output/reactionRates/ as one file for each model
step, with the name of the file corresponding to the time in seconds.

2The standard geographical convention is that longitude East is positive and longi-
tude West is negative. AtChem?2 uses the opposite convention for backward compatibility
reasons. This may change in future versions of AtChem?2.

21

CHAPTER 3. MODEL SETUP

This parameter is different from rates output step size (see above),
which sets the frequency of a formatted output of the production and
loss rates for a limited number of species of interest. For more infor-
mation, go to Sect.

3.3 Solver Parameters

The solver parameters control the behaviour of the ordinary differential
equations (ODE) solver; they are set in the solver.parameters file which,
by default, is in the model/configuration/ directory. A complete explana-
tion of these parameters can be found in the documentation of (CVODEL

e atol (positive real) and rtol (positive real): absolute and relative tol-
erance values for the solver.

e delta main (positive real): linear convergence tolerance factor of the
GMRES linear solver.

e lookback (positive integer): maximum Krylov subspace dimension of
the GMRES linear solver.

e maximum solver step size (positive real): maximum size of the
timesteps that the solver is allowed to use (in seconds).

e maximum number of steps in solver (positive integer): maximum
number of steps used by the solver before reaching tout, i.e. the next
output time.

e solver type (integer): selection of the linear solver to use: 1 for GM-
RES, 2 for GMRES preconditioned with a banded preconditioner (de-
fault option), 3 for a dense solver.

e banded preconditioner upper bandwidth (integer): only used in
the case that solver type = 2.

e banded preconditioner lower bandwidth (integer): only used in
the case that solver type = 2.

3.4 Environment Variables

The environment variables define the physical parameters of the model, such
as temperature, pressure, humidity, solar angles, boundary layer height.
These variables are set in the environmentVariables.config file which,
by default, is in the model/configuration/ directory.

22

https://computation.llnl.gov/projects/sundials/

CHAPTER 3. MODEL SETUP

The environment variables can have a fixed (constant) value or can be
constrained to measured values (CONSTRAINED), in which case the corre-
sponding data file must be present in the model/constraints/environment/
directory (Sect.[4.2.1]). Some environment variables can be calculated by the
model (CALC) and some can be deactivated if they are not needed (NOTUSED).

By default, the environment variables are set to NOTUSED or to a fixed
value. The environment variables used in AtChem2 are described below,
together with their possible settings, units, and default values.

3.4.1 TEMP
Ambient Temperature (K).
o fixed value
e constrained
Default fixed value = 298.15
3.4.2 PRESS
Ambient Pressure (mbar).
o fixed value
e constrained
Default fixed value = 1013.25

3.4.3 RH

Relative Humidity (%). It is required only if is set to CALC, otherwise it
must be set to NOTUSED.

o fixed value
e constrained

e not used

Default = NOTUSED (-1)

23

CHAPTER 3. MODEL SETUP

3.4.4 H20

Water Concentration (molecule cm™3). If H20 is set to CALC, then RH must
be set to a fixed value or to CONSTRAINED.

o fixed value
e constrained

e calculated

Default fixed value = 3.91e+17

3.4.5 DEC

Sun Declination (radians) is the angle between the center of the sun and
Earth’s equatorial plane.

o fixed value
e constrained
e calculated

Default fixed value = 0.41

3.4.6 BLHEIGHT

Boundary Layer Height. It is required only if the model includes non-chemical
processes, such as emission or deposition of chemical species. The unit is usu-
ally centimetre or metre, depending on how these processes are parametrized
in the chemical mechanism — go to Sect. for details.

e fixed value
e constrained

e not used

Default = NOTUSED (-1)

3.4.7 ASA

Aerosol Surface Area. It is required only if the model includes heterogeneous

chemical reactions. The unit is area (cm?, um? or nm?) per cm?.

e fixed value
e constrainedprobably
e not used

Default = NOTUSED (-1)

24

CHAPTER 3. MODEL SETUP

3.4.8 DILUTE

Dilution rate (s7!). It is required only if the model includes dilution of the
chemical species. When DILUTE is set to a fixed value, the chemical mecha-

nism is automatically modified during the for each species in
the chemical mechanism, a loss “reaction” is added to the mechanism with

a “rate coefficient” equal to the dilution rate H For example, the follow-
ing “reactions” are added to the “Tropospheric O3-NOx cycle” mechanism
shown in Sect. 3.1.1k

% DILUTE : NO2 = ;
% DILUTE : NO = ;
% DILUTE : 0 = ;

% DILUTE : 03 = ;

The new set of reactions E| effectively emulates the dilution of the chem-
ical system. DILUTE cannot be constrained.

o fixed value

e not used

Default = NOTUSED (-1)

3.4.9 JFAC

Correction factor used to adjust the photolysis rates — e.g., to account for
the presence of clouds. JFAC can have a value between 0 (photolysis rates are
set to zero) and 1 (photolysis rates are not corrected). JFAC is not applied
to constant or constrained photolysis rates (Fig. . For more information

go to Sect. [3.54]

o fixed value
e constrained

e calculated

Default = NOTUSED (1)

3The behaviour of DILUTE was changed with the release of version 1.2 (May 2020). In
previous versions of AtChem2, the user had to manually add to the chemical mechanism
a “reaction” using DILUTE for each species for which dilution was required; in addition,
DILUTE could be constrained. The new approach makes the use of DILUTE both more
intuitive and more accurate.

4AtChem?2 treats molecular oxygen (O,) and nitrogen (N3) as model parameters, not
as chemical species, and their concentrations are calculated by the model as a function of
temperature and pressure. Therefore, DILUTE is not applied to O5 and Ns.

25

CHAPTER 3. MODEL SETUP

3.4.10 ROOF

Flag to switch the photolysis rates on/off. It is needed mostly for simulations
of some environmental chamber experiments, where the roof of the chamber
can be opened/closed or the lamps can be turned on/off. When ROOF is set
to CLOSED all the photolysis rates are set to zero, including those that are
constant or constrained: this is different than setting JFAC to 0, which only
applies to the calculated photolysis rates (Fig.[3.1)).

ROOF can be set only to OPEN (default) or CLOSED and cannot be con-
strained.

3.5 Photolysis Rates

The photolysis rates are the rate coefficients of the photolysis reactions, and
are identified in FACSIMILE [ormaf]l with the notation J<i> — where i is
the ID number assigned by the MCM to each photolysis reaction (or to a
group of photolysis reactions). AtChem2 implements the MCM parametriza-
tion (Sect. to calculate the photolysis rates; for a comparison between
calculated and measured photolysis rates, see Sommariva et al. [2020]. Al-
ternatively, the photolysis rates can be set to a constant value or constrained
to measured data. The following rules apply:

1. If a photolysis rate is set as constant, it assumes the given value; the
other photolysis rates are set to zero.

2. If a photolysis rate is constrained, it assumes the values in the corre-
sponding constraint file; the other photolysis rates are calculated.

3. If no photolysis rate is set to constant or constrained, the model cal-
culates all photolysis rates.

Fig. shows how AtChem2 combines constant, constrained and cal-
culated photolysis rates, as well as the usage of the correction factor JFAC
(Sect. . In addition, the environment variable ROOF can be used to turn
the photolysis rates ON or OFF, as explained in Sect.

3.5.1 Constant photolysis rates

The typical scenario for constant photolysis rates is a lamp or solar simu-
lator in an environmental chamber. All the photolysis rates in the chemical
mechanism must be given a value in the photolysisConstant.config file,
otherwise they are automatically set to zero (Fig. . This approach al-
lows the user to model individual photolysis processes and/or to account for
lamps that emit only in certain spectral windows.

26

CHAPTER 3. MODEL SETUP

Set the specified photolysis rates

Is an
photolysi: rate to the given values. JFAC is
constant? The remaining photolysis rates not used.

are set to zero.

Are all
photolysis rates
constrained?

Is any
photolysis rate
constrained?

Set all photolysis
rates to the constrained
values.

N
All photolysis rates are Set the specified photolysis rates
calculated. to the constrained values.
The remaining photolysis rates
are calculated.
JFAC is applied to l
all photolysis rates.
JFAC is applied only to the
calculated photolysis rates.

Figure 3.1: Treatment of photolysis rates in AtChem?2.

The format of photolysisConstant.config is described in Sect.
If the file is empty, the photolysis rates are calculated or constrained — see
below.

3.5.2 Constrained photolysis rates

All photolysis rates can be constrained to measured values. In order to do so,
the name of the constrained photolysis rate (e.g., J2) must be listed in the
photolysisConstrained.config file (Sect. ; a corresponding file with
the constraint data must be present in the model/constraints/photolysis/
directory (Sect. [4.2.1]).

It is not always possible to measure — and therefore to constrain — all
the required photolysis rates. The photolysis rates that are not constrained
(i.e. that are not listed in photolysisConstrained.config) are calculated
using the MCM parametrization, described in the next section.

3.5.3 Calculated photolysis rates

AtChem?2 implements the parametrization of photolysis rates used by the
Master Chemical Mechanism, which is described in detail in the MCM proto-
col papers |Jenkin et al {1997, [Saunders et al. |2003]. Briefly, the photolysis
rate (J) of a reaction is calculated as a function of the solar zenith angle
with the equation:

J=1x (cosX)™ x el7mxseeX) o 7 (3.1)

27

CHAPTER 3. MODEL SETUP

where [, m, n are empirical parameters, cosX is the cosine of the solar
zenith angle, secX is the inverse of cosX (i.e. secX = 1/cosX) and 7 is the
transmission factor. The transmission factor accounts for the loss of natural
or artificial light in some environmental chambers: the default value of 7 is
1 (i.e. perfect trasmittance of the chamber walls).

The empirical parameters are different for each version of the MCM:
by default, AtChem2 uses the empirical parameters of the MCM v3.3.1
(mcm/photolysis-rates_v3.3.1), but it is possible to use the empirical
parameters of other versions of the MCM and to change the value of 7: see
the file mcm/INFO.md for instructions.

The solar zenith angle (SZA) is the angle between the local vertical
(zenith) and the center of the sun. The SZA is measured in radians and is
calculated by the model from latitude, longitude, sun declination and
time of the day. The calculations of the sun declination — if not constrained

or set to a constant values — and of the solar zenith angle are described in
Madronich| [1993].

3.5.4 JFAC calculation

Measurements of ambient photolysis rates typically show short-term vari-
ability due to changing meteorological conditions, such as clouds, rain, aerosol,
etc. .. [Sommariva et al., 2020]. This information is retained in the con-
strained photolysis rates, but it is lost in the calculated ones. To account for
ambient variability the calculated photolysis rates can be scaled by a con-
stant or time-dependent correction factor, the environment variable JFAC

(Sect. |3.4.9)), defined as:

JFAC = J]me“s (3.2)
calc

where jimeqs and jeqre are the measured and calculated (with the MCM
parametrization, Sect. photolysis rates of a reference species. NO,
is often used as a reference because j(NO,) is one of the most frequently
measured photolysis rates, in which case: JFAC = j(N02)/J4.

JFAC is by default set to 1, which means that the calculated photol-
ysis rates are not scaled; JFAC can be set to any value between 0 and 1
(Sect. or it can be constrained (Sect. [4.2.1]). Note that only the pho-
tolysis rates calculated with the MCM parametrization are scaled by JFAC:
the constrained and the constant photolysis rates are never scaled (Fig. (3.1]).

JFAC can be calculated by AtChem2 at runtime. To use this option,
edit the environmentVariables.config file (Sect. and set JFAC to
the name of the photolysis rate used as reference (e.g., J4). In addition,
the reference photolysis rate must be constrained — i.e. it must be listed in
photolysisConstrained.config (Sect. and the corresponding con-

28

CHAPTER 3. MODEL SETUP

straint file must be present in the model/constraints/photolysis/ direc-
tory [ﬂ

3.6 Config Files

The configuration files contain the settings of the environment variables, the
chemical species, the photolysis rates, as well as the model constraints and
the model output. All the configuration files have the extension .config and,
by default, are located in the model/configuration/ directory. This direc-
tory also contains the files with the settings of the model (model.parameters)
and of the solver (solver.parameters), which are described in Sect. and
Sect. 3.3

Usually, the model/configuration/ directory is also the Shared Library
Directory, which contains the chemical mechanism files generated during
the The names and locations of these directories can be mod-
ified by the user, as explained in Sect. The content and the format
of each .config file are described below. Note that the names of some files
have changed with the release of AtChem2 version 1.1 (November 2018).

3.6.1 environmentVariables.config

This file contains the settings of the environment variables (Sect. [3.4)). The
file has three columns: the first two are the ID number and the name of each
environment variable. The third column, which is the only one that should
be modified by the user, contains the settings of the environment variables.
For example:

1 TEMP 293

2 PRESS 1013

3 RH CONSTRAINED
4 H20 CALC

5 DEC CALC

6 BLHEIGHT 8et+4

7 DILUTE NOTUSED

8 JFAC CONSTRAINED
9 ROOF OPEN

10 ASA 2e-5

If an environment variable is constrained, there must be a corresponding
data file in the model/constraints/environment/ directory (Sect. [4.2.1)).

®The calculation of JFAC at runtime does not work well in the current version of
AtChem?2, especially in situations when the reference photolysis rate is very variable.
Therefore, it is recommended to calculate JFAC offline and then to constrain it (see issue

#16).

29

https://github.com/AtChem/AtChem2/issues/16

CHAPTER 3. MODEL SETUP

3.6.2 initialConcentrations.config

This file contains the initial concentrations of the chemical species — in
molecule cm™3. The file has two columns: the first column is the list of
initialized species, the second column is the corresponding concentration at
t = 0. For example:

03 1.213e+12

NO 378473308.14
NO2 86893908168.9
CH4 4.938e+13

Not all chemical species need to be initialized: those that are not listed
in initialConcentrations.config are automatically set to an initial con-
centration of 0.0E4+00 molecule cm™3. It is not necessary to initialize the
chemical species that are set to constant or constrained (i.e. those listed in
speciesConstant.config or in speciesConstrained.config — see below).

3.6.3 outputRates.config

This file lists the chemical species for which detailed production and loss
rates are required. In version 1.0 and earlier, these species were listed in two
files called productionRatesOutput.config and lossRatesOutput.config.
The file has one column, with one species per line. For example:

OH
HO2
CH302

The frequency of this output is controlled by the rates output step size
parameter in model.parameters (Sect. . The corresponding output files
— called productionRates.output and lossRates.output — are designed
to facilitate the rate of production and destruction analysis (ROPA/RODA)
of selected species of interests, rather than processing all the files saved in
the model/output/reactionRates/ directory. For more information go to

Sect.

3.6.4 outputSpecies.config

This file (called concentrationOutput.config in version 1.0 and earlier)
lists the chemical species for which the calculated concentration —in molecule
em ™3 — is required. The file has one column, with one species per line. For
example:

03
NO

30

CHAPTER 3. MODEL SETUP

NO2
CH4
OH
HO2
CH302

The frequency of this output is controlled by the step size parameter
in model.parameters (Sect. [3.2). The constrained chemical species can be
listed in outputSpecies.config, which can be useful for diagnostic and de-
bugging purposes. Note that the photolysis rates, the environment variables
and the RO, sum are always output by the model (Sect. and therefore
there is not an equivalent .config file for the output of these variables.

3.6.5 photolysisConstant.config

This file lists the photolysis rates that are set to constant (Sect. [3.5.1]). The
file has three columns: the first column is the ID number of the photolysis
rate, the second column is the value of the photolysis rate (in s7!), the third
column is the name of the photolysis rate. The ID numbers and the names
of the photolysis rates follow the MCM designation. For example:

1 2.5e-5 J1
4 8.7e-3 J4
7 1.8e-3 J7

The photolysis rates that are not listed in photolysisConstants.config
are automatically set to zero (Fig. [3.1]). If no photolysis rate is set to con-
stant, the file should be empty.

3.6.6 photolysisConstrained.config

This file (called constrainedPhotoRates.config in version 1.0 and earlier)
lists the photolysis rates that are constrained (Sect. . The file has one
column, with one photolysis rate per line. The names of the photolysis rates
follow the MCM designation. For example:

J1
J4
J7

If a photolysis rate is constrained, there must be a corresponding con-
straint file in the model/constraints/photolysis/ directory (Sect.[4.2.1]).
The photolysis rates that are not listed in photolysisConstrained.config
are calculated using the MCM parametrization (Fig. [3.1]). If no photolysis
rate is constrained, the file should be empty.

31

http://mcm.leeds.ac.uk/MCM/parameters/photolysis.htt
http://mcm.leeds.ac.uk/MCM/parameters/photolysis.htt

CHAPTER 3. MODEL SETUP

3.6.7 speciesConstant.config

This file (called constrainedFixedSpecies.config in version 1.0 and ear-
lier) lists the chemical species that are set to constant. The file has two
columns: the first column is the list of constant species, the second column
is the corresponding concentration — in molecule cm™3. For example:

CH4 4.4e+13
Cc0 2.5e+12
H2 1.2e+13

The chemical species that are set to a constant value do not need to be
initialized: the values set in speciesConstant.config override those set in
initialConcentrations.config. If no chemical species is set to constant,
the file should be empty.

3.6.8 speciesConstrained.config

This file (called constrainedSpecies.config in version 1.0 and earlier)
lists the chemical species that are constrained. The file has one column, with
one species per line. If a chemical species is constrained, there must be a
corresponding constraint file in the model/constraints/species/ directory

(Sect. [4.2.1)). For example:

CH4
cO0
H2

The chemical species that are constrained do not need to be initial-
ized: the values set in speciesConstrained.config override those set in
initialConcentrations.config. If no chemical species is constrained, the
file should be empty.

32

Chapter 4

Model Execution

4.1 Box-Model

AtChem?2 is a modelling tool to build and run atmospheric chemistry box-
models [Sommariva et al., 2020]. The structure and organization of AtChem?2
are described in Sect. 2.5] An AtChem2 box-model requires two sets of in-
puts, which are provided by the user: the chemical mechanism file and the
configuration files settings — both are described in the following sections. Ad-
ditionally, the model can be constrained to observational data, as explained
in Sect.

4.1.1 Mechanism file

AtChem?2 is designed to use the MCM as a chemical mechanism; other chem-
ical mechanisms can be used, as long as they are in the correct format.
The chemical mechanism must be provided as a text file in FACSIMILE]
with the extension .fac). The mechanism file can be downloaded
from the MCM website using the [extraction tool| or it can be assembled
manually. The user can modify the .fac file with a text editor, if needed.
The .fac file is converted into a pre-compiled shared library — called
mechanism.so — and several mechanism files in Fortran compatible format.

These files are created during the in the Shared Library
Directory (by default, model/configuration/).

4.1.2 Configuration files

The configuration of the box-model is set via a number of text files, which
can be modified by the user with a text editor. Detailed information on the
configuration files can be found in the corresponding section:

e Model and solver parameters settings— go to [Model Parameters| and

[Solver Parametersl

33

http://mcm.leeds.ac.uk/MCM/

CHAPTER 4. MODEL EXECUTION

e Environment variables settings — go to [Environment Variables|

e Photolysis rates settings — go to [Photolysis Rates|

e Model initialization, input and output — go to

4.2 Constraints

AtChem?2 can be run in two modes:

e Unconstrained: all variables are calculated by the model from the ini-
tial conditions, which are set in the [configuration files|

e Constrained: one or more variables are constrained, meaning that the
solver forces their value to a given value at each time step. The vari-
ables that are not constrained are calculated by the model.

The constraint data must be provided as one file for each constrained
variable, with the format described below. By default, the files with the con-
straint data are located in model/constraints/species/ for the chemical
species, model/constraints/environment/ for the environment variables,
model/constraints/photolysis/ for the photolysis rates H The default
directories can be changed, as explained Sect. (see also Sect. .

4.2.1 Constrained variables
Environment variables

All environment variables, except DILUTE and ROOF, can be constrained. To
do so, set the variable to CONSTRAINED in environmentVariables.config
and create a file with the constraint data (Sect. [£.2.2). The name of the
file must be the same as the name of the variable — e.g., TEMP (without
extension).

Chemical species

Any chemical species in the chemical mechanism can be constrained. To do
so, add the name of the species to speciesConstrained.config and create
a file with the constraint data (Sect. . The name of the file must be
the same as the name of the chemical species — e.g., 03 (without extension).

! Although JFAC is an environment variable, the JFAC constraint file must be in the
constraints/photolysis/ directory.

34

CHAPTER 4. MODEL EXECUTION

Photolysis rates

Any photolysis rate in the chemical mechanism can be constrained. The
photolysis rates are identified as J<i>, where i is the ID number assigned
by the MCM to each photolysis reaction (Sect. . To constrain a photolysis
rate add its name to photolysisConstrained.config and create a file with
the constraint data (Sect. [£.2.2). The name of the file must be the same as
the name of the photolysis rate — e.g., J4 (without extension).

4.2.2 Constraint files

The files with the constraint data are text files with two columns and no
header: the first column is the time in seconds from midnight of the start
date (Sect. , the second column is the value of the variable in the appro-
priate unit. For the chemical species the unit is molecule cm™ and for the
photolysis rates the unit is s~!; for the units of the environment variables,
see Sect. For example:

-900 73.21
0 74.393
900 72.973
1800 72.63
2700 72.73

3600 69.326
4500 65.822
5400 63.83
6300 64.852
7200 64.739

The time in the first column of a constraint file can be negative. AtChem2
interprets negative times as “seconds before midnight of the start date”.
Having data points with negative time can be useful to allow correct inter-
polation of the variables at the beginning of the model run. This is because
the model constraints must cover the same amount of time, or preferably
more, as the intended model runtime (Sect. [4.2.3)).

For example: if the model starts at 41400 seconds (day 1 at 11:30) and
stops at 225900 seconds (day 3 at 14:45), then the first and the last data
points of a constraint file must have a time of 41400 seconds (or lower) and
225900 seconds (or higher), respectively.

4.2.3 Interpolation

Constraints can be provided at different timescales. Typically, the constraint
data come from direct measurements and it is very common for different
instruments to sample with different frequencies. For example, ozone (Os)

35

CHAPTER 4. MODEL EXECUTION

and nitrogen oxides (NO, NO,) can be measured once every minute, but
most hydrocarbons can be measured only once every 30-60 minutes. The
user can average the constraints so that they are all with the same timescale,
or can use the constraint data with the original timescales. Both approaches
have advantages and disadvantages in terms of how much pre-processing
work is required, and in terms of model accuracy and integration speed: for
more information, see the discussion in [Sommariva et al|[2020]. It is up to
the user to decide which approach is more suitable, based on the objectives
of the modelling work and on the available computing resources.

Whether all the constraints have the same timescale or not, AtChem?2
interpolates between data points using the interpolation method selected in
model.parameters (Sect. . The default interpolation method is piece-
wise linear, but piecewise constant interpolation is also available. The pho-
tolysis rates and the environment variables are evaluated by the solver when
needed — each is interpolated individually, only when constrained. This hap-
pens each time the function mechanism rates() is called from FCVFUNQ),
and is controlled by CVODE as it carries out the integration. In a similar
way, the interpolation routine for the chemical species is called once for each
of the constrained species in FCVFUN(), plus once when setting the initial
conditions of each of the constrained species.

As mentioned in Sect. the model start and stop time must be within
the time interval of the constrained data to avoid interpolation errors or
model crashes. If data is not supplied for the entire runtime interval, the
final value of the constrained variable will be used for all times before the
first data point and after the last data point. If this situation occurs, a
warning is printed to the terminal for all data evaluations outside of the
supplied time interval H In any case, and to avoid errors, it is good practice
to always provide constraint data that include a short period before the start
time and a short period after the stop time.

4.3 Build

The script build_atchem?2. sh in the build/ directory is used to process the
chemical mechanism file (.fac) and compile the box-model. The script gen-
erates one Fortran file (mechanism.f90), one pre-compiled shared library
(mechanism.so) and four mechanism files in Fortran compatible format
(mechanism.species, mechanism.reac, mechanism.prod, mechanism.ro2).
The content and the format of these files are described in Sect. [3.1.4l

The build_atchem?2.sh script must be run from the Main Directory
and takes three arguments which must be provided to the script in the ex-

2This behaviour is likely to change in future versions of AtChem2, at least to avoid the
situation where the last value is used for all times before the first data point (see issue
#294).

36

https://github.com/AtChem/AtChem2/issues/294

CHAPTER 4. MODEL EXECUTION

act order indicated below. This means that if — for example — the second
argument needs to be specified, it is also necessary to specify the first argu-
ment, even if it has the default value. To avoid mistakes, the user can choose
to always specify all the arguments. The three arguments, and their default
values, are:

1. the path to the chemical mechanism file — there is no default, but it is
suggested to keep the .fac file in model/ or in model/configuration/.

2. the path to the the directory for the Fortran and mechanism files and
to the Shared Library Directory — default:
model/configuration/.

3. the path to the directory with the MCM data files — default:
mcm/.

For example, if the chemical mechanism file is in the model/ directory,
the model is build using the command:

./build/build_atchem2.sh model/mechanism.fac model/configuration/ mcm/

An installation of AtChem2 can have multiple model/ directories, cor-
responding to different models or different projects; this allows the user to
work with more than one model at the same time and makes it easy to run
batch simulations for sensitivity studies. As mentioned in Sect. the
model/ directory can also be located outside the Main Directory, which
gives the users the flexibility to organize the modelling work as they prefer.

Fig. shows a possible setup: a user directory (e.g., $HOME) contains an
AtChem?2 installation — with the default model/ directory — plus a project di-
rectory (Project_A), which corresponds, for example, to a field campaign or
to a set of related experiments. The project directory contains two different
model/ directories (model_1/ and model_2/), each with their own chemical
mechanism, configuration, constraints and output. In this case, the user can
build each model with the following commands [}

./build/build_atchem2.sh ~/Project_A/model_1/mechanism.fac
~/Project_A/model_1/configuration/

./build/build_atchem2.sh “/Project_A/model_2/mechanism.fac
“/Project_A/model_2/configuration/

There are many different ways in which the model/ directory can be
customized: for example, it is possible to keep all the constraint files re-
lated to a project in one directory, thus avoiding the need to have identical

3The third argument is not specified in this example, so the default value
(/AtChem2/mcm/) will be used.

37

CHAPTER 4. MODEL EXECUTION

Figure 4.1: Example of a modelling setup, with an AtChem?2 installation
and a project directory containing two box-models.

constraints/ directories in each model/ directory. Each user has specific
needs and personal preferences; as long as the correct paths are passed to the
build_atchem2.sh script (and to the executable, see Sect. , the model
will compile and run.

Compilation is required only once for a given .fac file. If the user changes
the configuration files, there is no need to recompile the model. Likewise, if
the constraints files are changed, there is no need to recompile the model.
This is because the model configuration and the model constraints are read
by the executable at runtime. However, if the user changes the .fac file,
then the shared library (mechanism.so) needs to be recompiled by running
the build_atchem?2.sh script again. The user may also want, or need, to
change the Fortran code (src/*.£90), in which case the model needs to be
recompiled. If the .fac file has also been changed, the build_atchem?2.sh
script must be used; otherwise — if only the Fortran code has been changed
— executing the make command from the Main Directory is enough to
recompile the model.

38

CHAPTER 4. MODEL EXECUTION

4.4 Execute

The build process (Sect. and Sect. creates an executable file called
atchem?2 in the Main Directory. The executable file takes up to nine ar-
guments, corresponding to the relative paths (with respect to the Main
Directory) of the model configuration, the shared library, the constraint
files, and the model output:

1. the path to the model directory — default:
model/

2. the path to the directory for the model output — default:
model/output

3. the path to the directory with the configuration files — default:
model/configuration/.

4. the path to the directory with the model constraints — default:
model/constraints/

5. the path to the directory with the data files of constrained environment
variables — default:
model/constraints/environment/

6. the path to the directory with the data files of constrained photolysis
rates — default:
model/constraints/photolysis/

7. the path to the directory with the data files of constrained chemical
species — default:
model/constraints/species/

8. the path to the directory with the MCM data files — default:
mcm/.

9. the path to the shared library — default:
model/configuration/mechanism.so.

AtChem?2 uses a series of input flags to pass the arguments to the exe-
cutable: —~-model, -—output, -—configuration, --constraints, -—env_constraints,
--photo_constraints, ——spec_constraints, —-mcm, ——shared_1ib. In ad-
dition, the input flag —-help displays an help message which shows the usage
of the command line arguments and of the input flags.
AtChem?2 can be run simply by executing the command . /atchem2 from
the Main Directory, in which case the executable will assume that all ar-
guments have the default values. The equivalent command using the input
flags is:

39

CHAPTER 4. MODEL EXECUTION

./atchem2 --model=model/
--output=model/output/
--configuration=model/configuration/
--constraints=model/constraints/
--spec_constraints=model/constraints/species/
--env_constraints=model/constraints/environment/
--photo_constraints=model/constraints/photolysis/
--shared_lib=model/configuration/mechanism.so
—--mcm=mcm/

Not all flags have to be used, and the order in which they are used
does not matter. If a flag is not used, the executable assumes the default
value following a hierarchical directory structure. For example, the following
command assumes that a directory called output/ is present inside the
model/ directory, and that three directories called species/, environment/
and photolysis/ are present inside the model/constraints/ directory:

./atchem2 --model=model/
--configuration=model/configuration/
--constraints=model/constraints/
—--shared_lib=model/configuration/mechanism.so

This approach gives the the user a lot of flexibility in the organization
of the modelling work and makes it possible to run several models using
the same executable with different configurations, constraint sand chemical
mechanisms. For example, the following commands run the same model with
two different configurations and save the corresponding outputs in separate
directories:

./atchem2 --configuration=model/configuration_1/ --output=model/output_1/
./atchem2 --configuration=model/configuration_2/ --output=model/output_1/

It is also possible to use configurations or constraints from different mod-
els: for example, based on the setup shown in Fig. the following command
runs a model constrained to the chemical species and environment variables
of model_1/, but constrained to the photolysis rates of model_2/:

./atchem2 --configuration=model/configuration/
--output=model/output/
--spec_constraints="/Project_A/model_1/constraints/species/
--env_constraints="/Project_A/model_1/constraints/environment/
—--photo_constraints="/Project_A/model_2/constraints/photolysis/

AtChem2 can be installed and run on High Performance Computing
(HPC) systems. This is recommended, especially for models with long run-
times and/or many constraints. Each HPC system has its own rules and

40

CHAPTER 4. MODEL EXECUTION

setup, so it is not possible to give specific advice. Users should check the lo-
cal documentation or ask the system administrator; some information about
running AtChem2 on HPC systems can be found on the wiki.

4.5 Output

The model output is saved by default in the model/output/ directory. The
location can be modified by changing the arguments of the atchem2 exe-
cutable, as explained in Sect. (see also Sect. . The frequency of the
model output is determined by the following model parameters, which are
set in the model.parameters file (Sect. [3.2):

e step size for the chemical species, the environment variables, the pho-
tolysis rates, the diagnostic variables.

e rates output step size for the rate of production and destruction
analysis (ROPA/RODA) of selected species.

e reaction rates output step size (previously called instantaneous
rates) for the reaction rates of all chemical reactions.

All AtChem?2 output files are space-delimited text files with a one line
header containing the names of the variables. The first column of each file
is the model time (t) in seconds since midnight of the start date ﬁ

e Environment variables and RO, sum:
environmentVariables.output

e Concentrations of the chemical species:
speciesConcentrations.output

e Photolysis rates:
photolysisRates.output

e Latitude, longitude, solar angles and related parameters:
photolysisRatesParameters.output

e Loss and production rates of selected species:
lossRates.output
productionRates.output

e Jacobian matrix (optional, see Sect. [3.2):
jacobian.output

4Note that the start date is different than the model start time. The model start
time indicates when the model begins its run and is in seconds since the midnight of the

start date (Sect. .

41

https://github.com/AtChem/AtChem2/wiki/Running-on-HPC

CHAPTER 4. MODEL EXECUTION

e Error messages and diagnostic variables:
errors.output
finalModelState.output
mainSolverParameters.output

In addition to the .output files, the reaction rates of every reaction in
the chemical mechanism are saved in the reactionRates/ directory — called
instantaneousRates/ in previous versions of AtChem (Tab. — as one
file for each model step, with the name of the file corresponding to the output
time in seconds.

The reaction rates files are useful for diagnostic purposes, but can be
cumbersome to process and analyze. In order to make it easier to perform the
rate of production and destruction analysis of chemical species of particular
interest — i.e. those listed in outputRates.config (Sect. — the model
produces the output files productionRates.output and lossRates.output.
These files contain the reaction rates of production and destruction of the
selected species in a human readable format, illustrated in Fig.

OH production rate

at 39600 seconds
OH production rate
at 43200 seconds

HO? production rate
at 39600 seconds
HO2 production rate
at 43200 seconds
Q= - prodyktionRates.output - emacs@athena + X

File Edit Options Buffers

XN ARAWN -

AL, AR DRDWWWWLWW

time speciesNumber speciesName reacticnNumber

.960000E+004
.960000E+004
.960000E+004
.960000E+004
.960000E+004
.960000E+004
.320000E+004
.320000E+004
.320000E+004
.320000E+004
.320000E+004
.320000E+004

productionRates.output

/3

W W W 00O 0 W WO WO

All (1.0)

OH
OH
Ho2
HO2

15
20
27
16
17
18
15
20
27
16
17
18

(Fundamental WS)

rate
.939401E+006
L 2737292E+004
.693455E+006
.£11482E+005
.881757E+001
.556588E+006
.182469E+006
.813181E+004
.093728E+006
.274533E+005
.044432E+002
.328276E+006

reaction
01D=0H+0H
H02+03=0H
HO2+NO=0H+N02
OH+03=H02
OH+H2=H02
OH+C0=H02
01D=0H+0H
HO2+03=0H
HO2+NO=0H+N02
O0H+03=H02
OH+H2=H02
OH+CO=H02

3] Mark set

Format of the
lossRates.output file has a similar format.

Figure 4.2: productionRates.output file. The

While the model is running, diagnostic information is printed to the
terminal: this can be redirected to a log file using standard unix commands.
On HPC systems the submission script can usually take care of redirecting
the terminal printout to a log file (see the related wiki page). A successful
model run completes with a message similar to the one shown in Sect.

42

https://github.com/AtChem/AtChem2/wiki/Running-on-HPC

Chapter 5

Model Development

5.1 General Information
There are two versions of AtChem?2 in the main |[github repository:

1. Stable version: is indicated by a version number (e.g., v1.0), and can
be downloaded from the [Releases pagel

2. Development version — i.e. the master branch: is indicated by a ver-
sion number with the suffix -dev (e.g., vl.1-dev), and can be down-
loaded as an |archive file or obtained via git (Sect. [2.2]).

AtChem?2 is under active development, which means that the master
branch is sometimes a few steps ahead of the latest stable release. Any
modification to the code is automatically run through the before
it is merged into the master branch. The Test Suite is designed to ensure
that changes to the code do not cause unintended behaviour or unexplained
differences in the model results, so the development version is normally safe
to use. However, it is recommended to use the stable version for “produc-
tion runs” and publications since it can be more easily referenced — see the
discussion about traceability and reproducibility of computational models
in [Sommariva et al.| [2020].

Feedback, bug reports, comments and suggestions are welcome: the list
of open issues and known bugs can be found on the related [github page. The
preferred way to contribute to the development of AtChem?2 is to use git:
instructions on how to set up git and submit contributions can be found on
the wiki. The coding guidelines for Fortran are detailed in Sect}5.3

5.2 Test Suite

AtChem2 uses [Travis CI for continuous integration testing. This pro-
gramming approach ensures that changes to the code do not modify the

43

https://github.com/AtChem/AtChem2
https://github.com/AtChem/AtChem2/releases
https://github.com/AtChem/AtChem2/archive/master.zip
https://github.com/AtChem/AtChem2/issues
https://github.com/AtChem/AtChem2/wiki/How-to-contribute
https://travis-ci.org/

CHAPTER 5. MODEL DEVELOPMENT

behaviour and the results of the software in an unintended fashion. The
Test Suite is in the travis/ directory and consists of a series of tests and
short model runs that check the model functionality and calculations against
known outputs. The (Codecov| service is used to verify that the Test Suite
covers a significant fraction of the codebase (>90%) and a wide range of
common configurations.

There are four types of tests, which can be executed from the Main
Directory using the make command (note that the joptional dependencies|
need to be installed):

e Indent and Style tests: check that the indentation and coding style of
the Fortran code are consistent with the guidelines —make indenttest
and make styletest.

e Unit tests: check that individual functions generate the expected out-
puts — make unittests.

e Behaviour tests: build and run a number of models with different
configurations and check that they generate the expected outputs —
make tests.

The command make alltests runs all the tests in the Test Suite in
succession. Each test outputs the results to the terminal and, in case of
failure, a log file (tests/testsuite.log) is generated for the indent, style
and behaviour tests. If all tests are successfully passed the following message
is printed to the terminal:

Style test PASSED
Indent test PASSED
Tests PASSED

(20/20 tests PASSED)
Testsuite PASSED

The Test Suite is automatically run every time a Pull Request (PR) is
created or updated on the main github repository (AtChem/AtChem2). The
Pull Request triggers a build on Travis CI which runs the entire Test Suite on
two architectures (Linux and macOS) with one compiler (GNU gfortran).
The CI tester performs the following tasks on each architecture:

e Install gfortran, CVODE, and numdiff:

— Linux: use apt-get for gfortran, numdiff, and liplapack-dev
(a dependency of CVODE). Install CVODE from source [1]

Lapt-get could also be used to install SUNDIALS, but the repository does not currently
hold CVODE v2.9.

44

https://codecov.io/

CHAPTER 5. MODEL DEVELOPMENT

— macOS: use Homebrew for gfortran and numdiff. Install cvode
from source.

e Build and run the example AtChem?2 model using the default config-
uration. PASS if it exits with 0.

e Build and run the indent and style tests. PASS if all tests pass.
e Build and run the unit tests. PASS if all unit tests pass.

e Build and run the behaviour tests. PASS if no differences from the
reference output files are found, otherwise FAIL.

Every test must pass to allow the full CI to pass. This is indicated by
the message “All checks have passed” on the github PR page. Pull Requests
should only be merged into the master branch once Travis CI has completed
with passes on both architectures.

5.2.1 Adding new unit tests

The unit tests are in the travis/unit_tests directory and require the
FRUIT optional dependency (which requires Ruby, Sect.[2.3.2)). To add new
unit tests, follow the procedure outlined below:

e The unit test files are called *_test.f£90. If the new unit test to be
added fits into an existing test file, edit that file — otherwise, create
a new test file following the same naming pattern. It is suggested
that unit tests covering functions from the source file xFunctions.f90
should be named x_test.£90.

e The unit test file must contain a module with the same name as the
file —i.e. x_test — and it must include the statement use fruit, plus
any other required module.

e The module should contain a number of subroutines with the nam-
ing pattern test_*. These subroutines must take no arguments and,
importantly, must not have any brackets for arguments — subroutine
test_calc is correct, but subroutine test_calc() is wrong.

e Each subroutine should call one or more assert functions: usually,
these are assert_equals(), assert not_equals(), assert_true(),
assert_false(). The assert functions act as the arbiters of pass or
failure of the unit test — each assert must pass for the subroutine to
pass, and each subroutine must pass for the unit tests to pass.

e The assert functions have the following syntax:

45

CHAPTER 5. MODEL DEVELOPMENT

call assert_true(a == , "Test that a and b are equal")

call assert_false(a == b , "Test that a and b are not equal")
call assert_equals(a, b , "Test that a and b are equal")

call assert_not_equals(a, b , "Test that a and b are not equal")

It is useful to use the last argument of the assert function as a unique
and descriptive message. When a unit test fails, it is highlighted in the
FRUIT output summary, and the message of the assert function is printed.
Unique and descriptive messages thus enable faster and easier understanding
of which test has failed, and perhaps why.

If these steps are followed, calling make unittests is enough to run all
the unit tests, including the new ones. To verify that the new tests have
indeed been run and passed, check the output summary — there should be
a line associated to each of the test_x subroutines in each test file.

5.2.2 Adding new behaviour tests

Each behaviour test ($TESTNAME) is contained in its own subdirectory inside
the travis/tests/ directory. A behaviour test requires the following files
and directory structure:

|- model

|- configuration

| |- $TESTNAME.fac
| |- environmentVariables.config

| |- mechanism.reac.cmp

| |- mechanism.prod.cmp

| |- mechanism.species.cmp

| |- mechanism.ro2.cmp

| |- model.parameters

| |- outputSpecies.config

| |- outputRates.config

| |- photolysisConstant.config [*]
| |- photolysisConstrained.config [*]
| |- solver.parameters

|

|

|

|

|- speciesConstrained.config [*]
|- speciesConstant.config [*]
|- initialConcentrations.config

- constraints [x*]

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |- environment/ [**]
| |- photolysis/ [*x*]
| |- species/ [x]
|- output

46

CHAPTER 5. MODEL DEVELOPMENT

|- reactionRates/

|- concentration.output.cmp

|- environmentVariables.output.cmp

|- errors.output.cmp

|- finalModelState.output.cmp

|- initialConditionsSetting.output.cmp
jacobian.output.cmp

|- lossRates.output.cmp

| - mainSolverParameters.output.cmp

|- photolysisRates.output.cmp

|- photolysisRatesParameters.output.cmp
|- productionRates.output.cmp

- $TESTNAME. out.cmp

The files marked with [*] and the directories marked with [*x*] are
optional — depending on the configuration used in the test. If present, the
directories marked with [**] should contain the relevant constraint files,
according to the corresponding configuration files in model/configuration/
(see Sect. for details).

The file $TESTNAME. out.cmp should contain the exact copy of the ex-
pected terminal printout. Each behaviour test is briefly described in the
travis/tests/INFO.md file, which should be updated after a new test is
added. New tests added to the travis/tests/ directory are automatically
picked up by the Makefile when running make test or make alltests
from the Main Directory.

5.3 Style Guide

In order to make the AtChem2 code more readable and easier to maintain,
the source code should follow a consistent style (Sect. [5.3.1)). Two Python
scripts are used to check and correct the Fortran code:

e fix style.py edits a Fortran file in-place to make the code consistent
with the style recommendations.

e fix indent.py works in a similar way, but only looks at the indenta-
tion level of each line of code.

These scripts are in the tools/ directory and can be invoked from the
Main Directory with the following commands:

python tools/fix_style.py src/filename.f90
python tools/fix_indent.py src/filename.f90

47

CHAPTER 5. MODEL DEVELOPMENT

It is important to keep in mind that these scripts are not infallible and,
therefore, it is strongly recommended to always have a backup of the Fortran
file to revert to, in case of wrong edits. This can be done by passing two
arguments to the script instead of one: the second argument sends the script
output to another file, leaving the original file untouched.

Both scripts are also used in the Test Suite to run the style and indent
tests (Sec.[5.2): each script is run over each source file and the output is sent
to a .cmp file. If the .cmp file matches the original file, the test passes.

5.3.1 Style recommendations
General principles

e All code should be organized in a module structure, except the main
program. There is only one exception: due to a complicating factor
with linking to CVODE, the functions FCVFUN() and FCVJTIMES()
are placed within the main file atchem.£90.

e All code should be written in free-form Fortran, and the source files
should have the extension .£90.

e Always use two spaces to indent blocks.

e At the top of each file there should be a header indicating the au-
thor(s), date, and purpose of the code; if necessary, acknowledgements
to other contributors should be added.

e Always comment a procedure with a high-level explanation of what
that procedure does.

e There are no specific guidelines for comments, although common sense
applies and any code within the comments should broadly follow the
rules below.

Specific recommendations

e All keywords should be lowercase, e.g., 1f then, call, module, integer,
real, only, intrinsic. This includes the (kind=XX) and (len=XX)
statements.

e All intrinsic function names should be lowercase, e.g., trim, adjustl,
adjustr.

e The relational operators should use > and == rather than .GE.,
.EQ., and should be surrounded by a single space.

48

CHAPTER 5. MODEL DEVELOPMENT

The = operator should be surrounded by one space when used as assign-
ment — except in the cases of the (kind=XX) and (len=XX) statements,
where no spaces should be used.

The mathematical operators (*, -, +, **) should be surrounded by
one space.

Numbers in scientific notation should have no spaces around the + or
-,e.g., 1.5e-9.

The names of variables should begin with lowercase, while those of
procedures (that is, subroutines and functions) should begin with
uppercase. An exception is third-party functions, which should be
uppercase. Use either CamelCase or underscores to write multiple-
word identifiers.

All modules should include the implicit none statement.
All variable declarations should include the :: notation.

The dummy arguments of a procedure should include an intent
statement in their declaration.

The following rules apply to brackets:

— Opening brackets should not have a space before them, except
for read, write, open, close statements.

— All call statements and the definitions of all procedures should
contain one space before the first argument and one after the last
argument inside the brackets:

call function_name(argl, arg2)
subroutine subroutine_name(argl)

— Functions calls and array indices should not have spaces before
the first argument or after the last argument inside the brackets.

49

Chapter 6

Credits and
Acknowledgements

6.1 Credits

AtChem?2 has been developed at the University of Leicester by:

e Sam Cox

e Roberto Sommariva (also at the University of Birmingham)
Additional code has been contributed by (in alphabetical order):

e Maarten Fabré

e Beth Nelson

e Mike Newland

e Marios Panagi

AtChem?2 is a development of AtChem-online, created at the University
of Leeds by:

e Chris Martin
e Kasia Boronska
e Jenny Young
e Peter Jimack
e Mike Pilling

Model evaluation and testing of AtChem-online was performed by An-
drew Rickard (NCAS/York) and Monica Vazquez Moreno (CEAM/EUPHORE),
and technical support was provided by David Waller (University of Leeds).

50

https://atchem.leeds.ac.uk/webapp/

CHAPTER 6. CREDITS AND ACKNOWLEDGEMENTS

6.2

Acknowledgements

Thanks for their support, feedback, and contributions to (in alphabetical
order):

Bill Bloss

Peter Brauer

Nahid Chowdhury

Vasilis Matthaios

Alfred Mayhew

Paul Monks

Jon Wakelin

Robert Woodward-Massey

Many thanks to Harald Stark (University of Colorado-Boulder, USA) for
providing the observational data used to test the photolysis rates subrou-

tines.

6.3

Funding

Funding provided, at different stages, by:

EUROCHAMP)| project.
National Centre for Atmospheric Science (NCAS).
Natural Environment Research Council (NERC).

University of Leicester ReSET programme.

o1

https://www.eurochamp.org/
https://www.ncas.ac.uk/
https://nerc.ukri.org/

References

C. Bloss, V. Wagner, M. E. Jenkin, R. Volkamer, W. J. Bloss, J. D. Lee,
D. E. Heard, K. Wirtz, M. Martin-Reviejo, G. Rea, J. C. Wenger, and
M. J. Pilling. Development of a detailed chemical mechanism (MCMv3.1)
for the atmospheric oxidation of aromatic hydrocarbons. Atmospheric
Chemistry and Physics, 5(3):641-664, 2005. doi: 10.5194/acp-5-641-2005.

A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R. Serban, D. E.
Shumaker, and C. S. Woodward. SUNDIALS: suite of nonlinear and dif-

ferential /algebraic equation solvers. ACM Transactions on Mathematical
Software, 31(3):363-396, 2005. doi: 10.1145/1089014.1089020.

M. E. Jenkin, S. M. Saunders, and M. J. Pilling. The tropospheric degra-
dation of volatile organic compounds: a protocol for mechanism devel-
opment. Atmospheric Environment, 31(1):81-104, 1997. doi: 10.1016/
S1352-2310(96)00105-7.

M. E. Jenkin, S. M. Saunders, V. Wagner, and M. J. Pilling. Proto-
col for the development of the Master Chemical Mechanism, MCM v3
(Part B): tropospheric degradation of aromatic volatile organic com-
pounds. Atmospheric Chemistry and Physics, 3(1):181-193, 2003. doi:
10.5194 /acp-3-181-2003.

M. E. Jenkin, J. C. Young, and A. R. Rickard. The MCM v3.3.1 degradation
scheme for isoprene. Atmospheric Chemistry and Physics, 15(20):11433~
11459, 2015. doi: 10.5194/acp-15-11433-2015.

S. Madronich. The atmosphere and UV-B radiation at ground level. In A. R.
Young, J. Moan, L. O. Bjorn, and W. Nultsch, editors, Environmental UV
Photobiology, pages 1-39. Springer, Boston, MA, 1993. ISBN 978-1-4899-
2408-7. doi: 10.1007/978-1-4899-2406-3_1.

C. J. Martin. Chemical models for, and the role of data and provenance in,
an atmospheric chemistry community. PhD thesis, School of Chemistry &
School of Computing, University of Leeds, 2009. URL https://etheses.
whiterose.ac.uk/1596/.

92

https://etheses.whiterose.ac.uk/1596/
https://etheses.whiterose.ac.uk/1596/

REFERENCES

S. M. Saunders, M. E. Jenkin, R. G. Derwent, and M. J. Pilling. Protocol
for the development of the Master Chemical Mechanism, MCM v3 (Part
A): tropospheric degradation of non-aromatic volatile organic compounds.
Atmospheric Chemistry and Physics, 3(1):161-180, 2003. doi: 10.5194/
acp-3-161-2003.

R. Sommariva, S. Cox, C. Martin, K. Boronska, J. Young, P. Jimack, M. J.
Pilling, W. J. Bloss, P. S. Monks, and A. R. Rickard. AtChem, an open
source box-model for the Master Chemical Mechanism. In Atmospheric
Chemical Mechanisms Conference, 2018.

R. Sommariva, S. Cox, C. Martin, K. Boroniska, J. Young, P. K. Jimack,
M. J. Pilling, V. N. Matthaios, B. S. Nelson, M. J. Newland, M. Panagi,
W. J. Bloss, P. S. Monks, and A. R. Rickard. AtChem (version 1), an
open-source box model for the Master Chemical Mechanism. Geoscientific
Model Development, 13(1):169-183, 2020. doi: 10.5194/gmd-13-169-2020.

93

	Introduction
	License and citation

	Model Installation
	Requirements
	Download
	Dependencies
	Required dependencies
	Optional dependencies

	Install
	Tests (optional)

	Model Structure
	The doc/ and tools/ directories
	The model/ directory

	Model Setup
	Chemical Mechanism
	FACSIMILE format
	RO2 sum
	MCM extraction
	The build process

	Model Parameters
	Solver Parameters
	Environment Variables
	TEMP
	PRESS
	RH
	H2O
	DEC
	BLHEIGHT
	ASA
	DILUTE
	JFAC
	ROOF

	Photolysis Rates
	Constant photolysis rates
	Constrained photolysis rates
	Calculated photolysis rates
	JFAC calculation

	Config Files
	environmentVariables.config
	initialConcentrations.config
	outputRates.config
	outputSpecies.config
	photolysisConstant.config
	photolysisConstrained.config
	speciesConstant.config
	speciesConstrained.config

	Model Execution
	Box-Model
	Mechanism file
	Configuration files

	Constraints
	Constrained variables
	Constraint files
	Interpolation

	Build
	Execute
	Output

	Model Development
	General Information
	Test Suite
	Adding new unit tests
	Adding new behaviour tests

	Style Guide
	Style recommendations

	Credits and Acknowledgements
	Credits
	Acknowledgements
	Funding

	References

