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Foreword

Welcome to Bayesuvius! a proto-book uploaded to github.
A different Bayesian network is discussed in each chapter. Each chapter title

is the name of a Bnet. Chapter titles are in alphabetical order.
This is a volcano in its early stages. First version uploaded to a github repo

called Bayesuvius on June 24, 2020. First version only covers 2 Bnets (Linear Regres-
sion and GAN). I will add more chapters periodically. Remember, this is a moon-
lighting effort so I can’t do it all at once.

For any questions about notation, please go to Notational Conventions section.
Requests and advice are welcomed.

Thanks for reading this
Robert R. Tucci
www.ar-tiste.xyz

ADDENDA

• August 15, 2021: At this point in time, the book has grown to 67 Chapters
and 433 pages. Today, I am self-publishing it as an ebook at Amazon and
similar outlets. It will still be free.
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Appendix A

Navigating the ocean of Judea Pearl’s
Books

The fields of bnets and causal inference are heavily indebted to Judea Pearl and his
collaborators.

Pearl has written 4 books that I have used in writing Bayesuvius. His 1988
book Ref.[55] dates back to his pre-causal period. That book I used to learn about
topics such as d-separation, belief propagation, Markov-blankets, and noisy-ORs. 3
other books that he wrote later, in his causal period, are:

1. In 2000 (1st ed.), and 2013 (2nd ed.), Pearl published what is so far his most
technical and exhaustive book on the subject of causality, Ref.[57].

2. In 2016, he released together with Glymour and Jewell, a less advanced “primer"
on causality, Ref.[60].

3. In 2018, he released together with Mackenzie his lovely “The Book of Why",
Ref.[61].

Those 3 books I used to learn about causality topics such as Do Calculus, backdoor
and frontdoor adjustment formulae, linear deterministic bnets with exogenous noise,
and counterfactuals.

A micro poem written by me to celebrate Judea Pearl and his work:

I, Robot
Let other robots talk(),
while I,
talk(), do() and imagine().
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Appendix B

CI-2-3 track

Figure B.1: Democritus quote, Acropolis Caryatids background

As discussed in Chapter 12, Judea Pearl has proposed 3 rungs of Causal In-
ference (CI). This book covers all 3 rungs.

Confusingly, it has become common to use the term CI to refer to only the
highest 2 rungs of the CI hierarchy; i.e, rung 2 (do operations) and rung 3 (imag-
ining/counterfactual thinking). Also confusingly, rung 1 uses causal diagrams and
is often referred to as “inference", so it could reasonably have been defined as the
whole of CI, but Pearl has defined the CI hierarchy to include two more rungs. To

21



Figure B.2: CI meme

patch over this linguistic confusion, I sometimes refer to rung 1 as “prediction", or as
“predictive inference" instead of calling it merely “inference". Also, when I want to
be precise, I use the term “CI-2-3" to refer to CI restricted to only rungs 2 and 3.

Here is a subset of chapters that I call the CI-2-3 track, that are devoted
mostly to rungs 2 and 3.

1. Backdoor Adjustment Formula

2. Berkson’s Paradox

3. Counterfactual Reasoning

4. Decisions Based on Rungs 2 and 3: COMING SOON

5. Difference-in-Differences

6. Do Calculus
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Figure B.3: Slide from Pearl talk at IJCAI-2022. Putting the joking of Fig.B.2 aside,
let me emphasize that CI advocates are not trying to vanish NNs from AI. To us,
NNs and bnets are different tools, like hammer and saw. We believe AI should use
both tools. For those who are trying to do CI using a NN instead of a bnet, it looks
to me like you are trying to use a hammer to cut wood. Why don’t you cut with a
saw instead? As Pearl says in this slide, CI elevates Data Science from Deep Learning
(curve-fitting) to Deep Understanding.

7. Do Calculus proofs

8. D-Separation

9. Frisch-Waugh-Lovell (FWL) theorem

10. Frontdoor Adjustment Formula

11. G-formula (Sequential Backdoor Adjustment Formula)

12. Goodness of Causal Fit

13. Granger Causality

14. Identification of do queries via LDEN diagrams

15. Instrumental Inequality and beyond

16. Instrumental Variables

17. LATE (Local Average Treatment Effect)

18. LDEN with feedback loops

19. Linear Deterministic Bnets with External Noise
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20. Mediation Analysis

21. Mendelian Randomization

22. Meta-learners for estimating ATE

23. Modified Treatment Policy

24. Omitted Variable Bias

25. Personalized Expected Utility

26. Personalized Treatment Effects

27. Potential Outcomes and Beyond

28. Regression Discontinuity Design

29. Selection Bias Removal

30. Simpson’s Paradox

31. Survival Analysis

32. Synthetic Controls

33. Targeted Estimator

34. Transportability of Causal Knowledge

35. Uplift Modelling
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Appendix C

Notational Conventions and
Preliminaries

C.1 Some abbreviations frequently used throughout
this book

• AI/ML = Artificial Intelligence/Machine Learning

• bnet= Bnet= Bayesian Network

• CPT = Conditional Probabilities Table, same as TPM

• DAG = Directed Acyclic Graph

• i.i.d.= independent identically distributed.

• RCT= Randomized Controlled Trial, a.k.a. A/B testing.

• TPM= Transition Probability Matrix, same as CPT

C.2 Drawing Bayesian Networks
Most bnets in this book were drawn using the LaTex package xy-pic, or the Python
app texnn (Ref.[90]). texnn is a Python wrapper for xy-pic that I wrote specially
for this book.

C.3 N (!a)

N (!a) will denote a normalization constant that does not depend on a. For example,
P (x) = N (!x)e−x where

∫∞
0
dx P (x) = 1.
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C.4 Indicator function (a.k.a. Truth function)

1(S) =
{

1 if S is true
0 if S is false

(C.1)

For example, δ(x, y) = 1(x = y).

C.5 One hot vector
A one hot vector is a vector with all entries equal to zero with the exception
of a single entry which is one. A one cold vector is a vector with all entries
equal to one with the exception of a single entry which is zero. For example, if
xn = (x0, x1, . . . , xn−1) and xi = δ(i, 0) then xn is one hot.

Two types of sets that one frequently encounters are categorical sets (a.k.a.
“nominal sets", i.e., sets with “named" elements, with elements given a “nomme")
and numerical sets (a.k.a. “ordinal sets", i.e., sets with “ordered" elements). For
example, {1, 2, 5} is a numerical set because its elements have a natural order, and
{cat, dog, bird} is a categorical set because its elements don’t have a natural order.

In Machine Learning (ML), one often encodes categorical sets as one-hot vec-
tors. For example, suppose we have 4 binary registers (i.e., nodes) x3, x2, x1, x0 and
the categorical set {cat, dog, canary}. Then a possible one-hot encoding of the
set is cat=0001, dog=0010 and canary=0100. This differs from a binary encoding
of the set such as cat=0000, dog=0001, canary=0011. Clearly, a binary encoding
requires fewer registers than a one-hot encoding to encode the same set, and the
one-hot encoding of a set with n elements requires n or more registers.

C.6 Lp norm
For p ∈ [0,∞] and x⃗ ∈ Rn or x⃗ ∈ Cn (note that n and p are generally not the same),
the Lp norm ∥ x⃗ ∥p of x⃗ is defined as

∥ x⃗ ∥p=

(
n∑
i=1

|xi|p
) 1

p

(C.2)

For example,

∥ x⃗ ∥0=
n∑
i=1

1(|xi| > 0) = number of non-zero xi (C.3)

∥ x⃗ ∥1=
n∑
i=1

|xi| (C.4)
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∥ x⃗ ∥2=

√√√√ n∑
i=1

(xi)2 (C.5)

∥ x⃗ ∥3=

(
n∑
i=1

|xi|3
) 1

3

(C.6)

∥ x⃗ ∥∞ = lim
p→∞

∥ x⃗ ∥p (C.7)

= lim
p→∞

((max
i
|xi|)p)

1
p (because one |xi|p dominates the rest) (C.8)

= max
i
|xi| (C.9)

Note that as limp→0 ∥ x⃗ ∥p ̸=∥ x⃗ ∥0. In fact, as p→ 0,

∥ x⃗ ∥p → (number of non-zero xi)
1
p (because |x|0 = 1 for x ̸= 0) (C.10)

→ ∥ x⃗ ∥
1
p

0→∞ (C.11)

When n is large and only a few of the n components of x⃗ ∈ Cn are non-zero,
we say x⃗ is sparse. ∥ x⃗ ∥0 is used to measure the sparsity of vectors.

Fig.C.1 shows the unit balls {x⃗ ∈ Rn :∥ x⃗ ∥p≤ 1} for various values of p and
for n = 2. {x⃗ ∈ R2 :∥ x⃗ ∥0≤ 1} is not shown. It equals all the x and y axes, because,
by definition, it contains all (x, y) ∈ R2 such that x = 0 or y = 0 or both (i.e., 0 or 1
non-zero components).

C.7 Special sets
Define Z,R,C to be the integers, real numbers and complex numbers, respectively.

For a < b, define ZI to be the integers in the interval I, where I = [a, b], [a, b), (a, b], (a, b)
(i.e, I can be closed or open on either side).

A>0 = {k ∈ A : k > 0} for A = Z,R.

C.8 Kronecker delta function
For x, y in discrete set S,

δ(x, y) =

{
1 if x = y
0 if x ̸= y

(C.12)
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Figure C.1: Unit Balls {x⃗ ∈ Rn :∥ x⃗ ∥p≤ 1} for various values of p and for n = 2.

C.9 Dirac delta function
For x, y ∈ R, ∫ +∞

−∞
dx δ(x− y)f(x) = f(y) (C.13)

C.10 Majority function
The majority function is defined as follows.

majority(L) = most common element of list L
(ties resolved by chance) (C.14)

Note that the majority function acts on lists, not sets. By definition, all elements of
a set appear only once in the set. majority(L) is usually used when the elements
of L are categorical (i.e., not real numbers). When they are real numbers, it makes
more sense to use, instead of majority(L), a simple average of the elements of L.

C.11 Underlined letters indicate random variables
Random variables will be indicated by underlined letters and their values by non-
underlined letters. Each node of a bnet will be labelled by a random variable. Thus,
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x = x means that node x is in state x.
It is more conventional to use an upper case letter to indicate a random variable

and a lower case letter for its state. Thus, X = x means that random variable X is
in state x. However, we have opted in this book to avoid that notation, because we
often want to define certain lower case letters to be random variables or, conversely,
define certain upper case letters to be non-random variables.

C.12 Probability distributions
Px(x) = P (x = x) = P (x) is the probability that random variable x equals x ∈ Sx.
Sx is the set of states (i.e., values) that x can assume and nx = |Sx| is the size (a.k.a.
cardinality) of that set. Hence, ∑

x∈Sx

Px(x) = 1 (C.15)

Px,y(x, y) = P (x = x, y = y) = P (x, y) (C.16)

Px|y(x|y) = P (x = x|y = y) = P (x|y) = P (x, y)

P (y)
(C.17)

C.13 Discretization of continuous probability distri-
butions

The TPM of a node of a bnet can be either a discrete or a continuous probability
distribution. To go from continuous to discrete, one replaces integrals over states of a
node by sums over new states, and Dirac delta functions by Kronecker delta functions.
More precisely, consider a function f : [a, b] → R. Express [a, b] as a union of small,
disjoint (except for one point) closed sub-intervals (bins) of length ∆x. Name one
point in each bin to be the representative of that bin, and let Sx be the set of all the
bin representatives. This is called discretization or binning. Then

1

(b− a)

∫
[a,b]

dx f(x)→ ∆x

(b− a)
∑
x∈Sx

f(x) =
1

nx

∑
x∈Sx

f(x) . (C.18)

Both sides of last equation are 1 when f(x) = 1. Furthermore, if y ∈ Sx, then∫
[a,b]

dx δ(x− y)f(x) = f(y)→
∑
x∈Sx

δ(x, y)f(x) = f(y) . (C.19)

As usual in this book, let Sx denote the set of values that the random variable
x can take. When Sx ⊂ R, we will assume that Sx for a probability distribution
P (x) can be either a discrete or a continuous subset of R.1 When Sx is a discrete

1By a “continuous set" we mean a finite set of intervals each of which has non-zero length.
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subset of R, P (x) will denote a probability distribution for which
∑

x∈Sx
P (x) = 1,

whereas when Sx is continuous, P (x) will denote a probability density for which∫
x∈Sx

dx P (x) = 1.

C.14 Samples, i.i.d. variables
x⃗ = (x[0], x[1], x[2] . . . , x[nsam(x⃗)− 1]) = x[:] (C.20)

nsam(x⃗) is the number of samples of x⃗. x[σ] ∈ Sx are i.i.d. (independent
identically distributed) samples with

x[σ] ∼ Px (i.e. Px[σ] = Px) (C.21)

P (x = x) =
1

nsam(x⃗)

∑
σ

1(x[σ] = x) (C.22)

Hence, for any f : Sx → R,∑
x

P (x = x)f(x) =
1

nsam(x⃗)

∑
σ

f(x[σ]) (C.23)

If we use two sampled variables, say x⃗ and y⃗, in a given bnet, their number of
samples nsam(x⃗) and nsam(y⃗) need not be equal.

P (x⃗) =
∏
σ

P (x[σ]) (C.24)

∑
x⃗

=
∏
σ

∑
x[σ]

(C.25)

∂x⃗ = [∂x[0], ∂x[1], ∂x[2], . . . , ∂x[nsam(x⃗)−1]] (C.26)

P (x⃗) ≈ [
∏
x

P (x)P (x)]nsam(x⃗) (C.27)

= ensam(x⃗)
∑

x P (x) lnP (x) (C.28)
= e−nsam(x⃗)H(Px) (C.29)

C.15 Expected Value and Variance
Given a random variable x with states Sx and a function f : Sx → R, define

Ex[f(x)] = Ex∼P (x)[f(x)] =
∑
x

P (x)f(x) (C.30)
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V arx[f(x)] = Ex
[
(f(x)− Ex[f(x)])2

]
(C.31)

= Ex[f(x)
2]− (Ex[f(x)])

2 (C.32)

E[x] = Ex[x] (C.33)

V ar[x] = V arx[x] (C.34)

C.16 Conditional Expected Value
Given a random variable x with states Sx, a random variable y with states Sy, and a
function f : Sx × Sy → R, define

Ex|y[f(x, y)] =
∑
x

P (x|y)f(x, y) , (C.35)

Ex|y=y[f(x, y)] = Ex|y[f(x, y)] =
∑
x

P (x|y)f(x, y) . (C.36)

Note that

Ey[Ex|y[f(x, y)]] =
∑
x,y

P (x|y)P (y)f(x, y) (C.37)

=
∑
x,y

P (x, y)f(x, y) (C.38)

= Ex,y[f(x, y)] . (C.39)

C.17 Notation for covariances
Consider two random variables x, y.

• Mean value of x
⟨x⟩ = Ex[x] (C.40)

• Signed distance of x to its mean value

∆x = x− ⟨x⟩ (C.41)
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• Covariance of (x, y)

Cov(x, y) =
〈
x, y
〉
=
〈
∆x∆y

〉
=
〈
xy
〉
− ⟨x⟩

〈
y
〉

(C.42)

〈
x, y
〉

is symmetric (i.e.,
〈
x, y
〉

=
〈
y, x
〉
) and bilinear (i.e.,

〈∑
i αixi, y

〉
=∑

i αi
〈
xi, y

〉
, where αi ∈ R are non-random scalars and xi, y ∈ R are real-

valued random variables.)

• Variance of x
V ar(x) = ⟨x, x⟩ (C.43)

• Standard deviation or x
σx =

√
⟨x, x⟩ (C.44)

• Correlation Coefficient of (x, y)

ρx,y =

〈
x, y
〉√

⟨x, x⟩
〈
y, y
〉 (C.45)

• Partial derivative of y wrt (i.e., with respect to) x

∂xy =
∂y

∂x
=

〈
x, y
〉

⟨x, x⟩
= ρx,y

σy

σx
(C.46)

C.18 Conditional Covariance
Let x, y, a be random variables. The covariance Cov(x, y|a = a) of x and y given
a = a, is defined the same way as Cov(x, y), except that all expected values are
conditioned on a = a.

Cov(x, y|a = a) =
〈
x, y
〉|a

=
〈
(x− ⟨x⟩|a)(y −

〈
y
〉|a

)
〉|a

(C.47)

where

⟨x⟩|a = Ex|a[x] . (C.48)

In this book, we will use the following notation for conditional averages. For
any random variables x, y, a, let

E|a[x] = ⟨x⟩|a (mean) (C.49)

〈
x, y
〉|a

=
〈
xy
〉|a − ⟨x⟩|a 〈y〉|a (covariance) (C.50)
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σ|a
x =

√
⟨x, x⟩|a (standard deviation) (C.51)

ρ|ax,y =

〈
x, y
〉|a

σ
|a
x σ

|a
y

=

[〈
x, y
〉

σxσy

]|a
(correlation) (C.52)

∂|ax y =

[
∂

∂x

]|a
y =

〈
x, y
〉|a

⟨x, x⟩|a
= ρ|ax,y

σ
|a
y

σ
|a
x

=

[
ρx,y

σy

σx

]|a
(partial derivative) (C.53)

“|a" means that the variable a is held fixed to a when taking all averages.

C.19 Normal Distribution
For x, µ, σ ∈ R, σ > 0, we define the Normal Distribution (see Fig.C.2) by

N (x;µ, σ2) =
1

σ
√
2π
e−

1
2(

x−µ
σ )

2

. (C.54)

For a standard deviation σ, the precision τ is defined as τ = 1
σ2 .

Claim 1 If

x1 ∼ N (µ1, σ
2
1) (C.55)

and

x2 ∼ N (µ2, σ
2
2) (C.56)

then
x = x1 + x2 ∼ N (µ1 + µ2, σ

2
1 + σ2

2) . (C.57)

proof:

P (x = x) = N (!x)

∫ +∞

−∞
dx2 P (x1 + x2 = x|x2 = x2)P (x2) (C.58)

= N (!x)

∫ +∞

−∞
dx2 N (x− x2;µ1, σ

2
1)N (x2;µ2, σ

2
2) (C.59)

= N (x;µ1 + µ2;σ
2
1 + σ2

2) (C.60)

QED
The Standard Normal Distribution PSND(x) and its cumulative distribu-

tion Φ(x) are defined by
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Figure C.2: Normal Distribution N (x;µ, σ2).

PSND(x) = N (x;µ = 0, σ = 1) (C.61)

Φ(x) =

∫ x

−∞
dx′ PSND(x

′) (C.62)

The error function erf : R→ [−1, 1] is defined by

erf(x) =
2√
π

∫ x

0

du e−
u2

2 (C.63)

Note that

Φ(x) =
1

2
+

1

2
erf(x) (C.64)

Eq.(C.64) is interpreted geometrically in Fig.C.3.

Figure C.3: Plot of Standard Normal Distribution PSND(x). Values of erf(x) and
Φ(x) equal indicated areas.
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C.20 Uniform Distribution
For a < b, x ∈ [a, b]

U(x; a, b) = 1

b− a
(C.65)

C.21 Softmax function (a.k.a. Boltzmann Distribu-
tion)

The Softmax function is defined by

P (xi|x.) =
exi∑
i e
xi

= softmax(x.)(i) (C.66)

The Boltzmann distribution is defined as

P (Ea = Ea) =
exp(− Ea

kT
)∑

a exp(−
Ea

kT
)
= P (

−Ea
kT
|E.) (C.67)

for a system with energies Ea and temperature T , where k is Boltzmann’s constant.
The function softmax() is called softmax because if we approximate the expo-

nentials, both in the numerator and denominator of Eq.(C.66), by the largest one of
them or zero, we get

softmax(x.)(i) ≈ δ(i, argmax
k

xk) . (C.68)

Thus, softmax(x.)(i) returns a continuous function that approximates a Kronecker
delta function. The softmax function doesn’t really return the soft maximum of a
finite set, so its name is a bit of a misnomer. A better name for it would have been
“soft Kronecker delta function".

Note that

∂ lnP (xi|x)
∂xa

=
∂

∂xa
ln

[
exi∑
i e
xi

]
= δ(a, i)− P (xa|x) (C.69)

For 2 variables x0, x1,

P (x0|x.) =
ex0

ex0 + ex1
(C.70)

= smoid(x0 − x1) , (C.71)

P (x1|x.) = smoid(x1 − x0) . (C.72)
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C.22 Sigmoid and log-odds functions
The sigmoid (a.k.a. exp-it, logistic) function smoid:R→ [0, 1] is defined by

smoid(x) =
1

1 + e−x
(C.73)

smoid() is monotonically increasing with smoid(−∞) = 0, smoid(0) = 1/2 and
smoid(+∞) = 1. Note that for x << 0, smoid(x) ≈ ex, which is why “smoid" is
also called “expit".

smoid(x) + smoid(−x) =
1

1 + e−x
+

1

1 + ex
(C.74)

=
2 + ex + e−x

2 + ex + e−x
(C.75)

= 1 (C.76)

The log-odds (a.k.a. log-it) function lodds:[0, 1]→ R is defined by

lodds(p) = ln
p

1− p
(C.77)

Note that for 0 < p << 1, lodds(x) ≈ ln p, which is why “lodds" is also called “logit".
Note that for x << 1, smoid(x) ≈ ex << 1, so lodds(ex) ≈ ln(ex) = x. More

generally, it is easy to check that for any p ∈ [0, 1] and x ∈ R,

lodds[smoid(x)] = x (C.78)

smoid[lodds(p)] = p (C.79)

Hence, lodds() is the inverse of smoid() and vice-versa.

Claim 2
smoid′(x) = smoid(x)[1− smoid(x)] (C.80)

smoid′′(x) = smoid′(x)[1− 2smoid(x)] (C.81)

proof:
In this proof, we will abbreviate smoid(x) by s(x).

1− s(x) = 1− 1

1 + e−x
=

e−x

1 + e−x
(C.82)

s′(x) =
e−x

(1 + e−x)2
= s(x)[1− s(x)] (C.83)
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s′′(x) = s′(x)[1− s(x)] + s(x)(−1)s′(x) (C.84)
= s′(x)[1− 2s(x)] (C.85)
= s(x)[1− s(x)][1− 2s(x)] (C.86)

QED

C.23 Estimand, Estimator (curve-fit), Estimate, Bias

For an estimand θ, an estimator (a.k.a. curve-fit) θ̂ gives estimate E[θ̂(θ)] =
θ + b with bias b. We say this estimate is an unbiased estimate if b = 0.

Note that, strictly speaking, an estimator is a function waiting to be averaged
over and denoted by a letter with a hat, whereas an estimate is a real number denoted
by a letter without a hat. Unfortunately, the words “estimator" and “estimate" are
often used interchangeably, as if they were synonyms. And often the estimate θ + b
is denoted by a letter with a hat too. In some sense, an estimator is an estimate of
a curve, so it’s understandable that the terms “estimator" and “estimate" are used
synonymously. In this book, we will bow to traditional practice and also use the terms
“estimator" and “estimate" synonymously, and use a letter with a hat to denote either
of them. This is not ambiguous as long as we don’t use the same letter with a hat to
denote two different quantities, of course. When we need to distinguish semantically
between the real value and the function, we will call the function a curve-fit, and the
real value the estimate.

C.24 Maximum Likelihood Estimate, Likelihood Ra-
tio Test

Given a bnet, let P (x|θ) be its full joint probability distribution, where x denotes the
joint state of all the nodes and θ denotes all the parameters. P (x|θ) is often called
the likelihood function of θ and is denoted by

L(θ) = P (x|θ) (C.87)

It’s called a likehood of θ because, even though it’s a probability, it isn’t the proba-
bility of θ, but rather of x.

The value of θ that we obtain by maximizing L(θ) over θ is called the maxi-
mum likelihood estimate (MLE) of θ. Let us denote it by θ̂. Note that2

2“sup" stands for supremum. It’s a generalization of the function max() to arbitrary sets that
might not be discrete or finite. If S is a finite set, then supθ∈S f(θ) = maxθ∈S f(θ) for any function
f : S → R. Likewise, “inf" stands for infimum, and it generalizes the min() function.
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sup
θ∈S

L(θ) = L(θ̂) (C.88)

Let S0, S1 be disjoint sets such that S = S0∪S1. We’ll say the null hypothesis
H0 holds if θ ∈ S0, and the alternative hypothesis H1 holds if θ ∈ S1. The
likelihood ratio (LR) test statistic is defined by

R = −2 ln
(
supθ∈S0

L(θ)

supθ∈S L(θ)

)
(C.89)

R ≥ 0 and R = 0 if S0 = S. For some small c > 0, if R < c, then we reject the
alternative hypothesis, and if R > c, we accept it.

If S0 = {θ0}, then

R = −2[lnL(θ0)− lnL(θ̂)] (C.90)

C.25 Mean Square Error (MSE)
Suppose we are given nsam samples yσ ∈ R labeled by an index σ, and a curve-fit
ŷσ(a) ∈ R that depends on a parameter a ∈ R. Define the Mean Square Error
(MSE) by

MSE(a) =
1

nsam

∑
σ

(yσ − ŷσ(a))2 . (C.91)

For example, in Linear Regression (LR), we have ŷσ = a0 + a1x
σ where a = (a0, a1)

is a deterministic parameter. If the samples yσ are i.i.d, then we can also write

MSE(a) = E|a[(y − ŷ(a))2] . (C.92)

and for LR, ŷ(a) = a0 + a1x.
Define the residual ∆y by:

∆y(a) = y − ŷ(a) (Hence y = ŷ +∆y) (C.93)

In the rest of this section, we will discuss the case that ŷσ(a) is independent of
xσ. I call this the deterministic MSE (D-MSE) model. Note that this is different
from the LR case where ŷσ(a) does depend on xσ. In LR, we are trying to fit a line to
a cigar-shaped 2-D scatter plot. Here, we are just trying to estimate the mean value
(center of mass) of a scatter plot.

Claim 3 MSE is minimized over all functions ŷ if

ŷ = E|a[y] (C.94)
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proof:

MSE = E|a[y
2]− 2ŷE|a[y] + ŷ2 (C.95)

0 =
d

dŷ
MSE = 2(−E|a[y] + ŷ) (C.96)

Hence,
ŷ = E|a[y] (C.97)

QED
Sometimes, we will use the notation

ŷMSE = E|a=aMSE
[y] . (C.98)

Claim 4 Suppose f(a) is a function of a. If ŷ = E|a[y], then

E|a[∆y] = E[∆y] = 0 (C.99)

E|a
[
∆yf(a)

]
= E

[
∆yf(a)

]
= 0 (C.100)

proof:

E|a[∆y] = E|a
[
y − E|a[y]

]
= E|a[y]− E|a[y] = 0 (C.101)

E[∆y] = Ea[E|a[∆y]] = 0 (C.102)

E|a
[
∆yf(a)

]
= f(a)E|a[∆y]︸ ︷︷ ︸

=0

(C.103)

E[∆yf(a)] = Ea[E|a[∆yf(a)]] = 0 (C.104)

QED

Claim 5 If ŷ = E|a[y], then 〈
∆y, ŷ

〉
|a = 0 (C.105)

V ar|a[y] = V ar|a[ŷ] + V ar|a[∆y] (C.106)

The same results hold without the conditioning on a.
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proof:

〈
∆y, ŷ

〉
|a = E|a[∆y ŷ︸︷︷︸

f(a)

]

︸ ︷︷ ︸
=0

−E|a[∆y]︸ ︷︷ ︸
=0

E|a[ŷ] (C.107)

V ar|a[y] =
〈
ŷ +∆y, ŷ +∆y

〉
|a (C.108)

= ⟨ŷ, ŷ⟩|a +
〈
∆y,∆y

〉
|a (by Eq.(C.105)) (C.109)

= V ar|a[ŷ] + V ar|a[∆y] (C.110)

The same proof holds if we remove all the |a subscripts.
QED

Fig.C.4 illustrates how y = ŷ +∆y and the variances of these quantities add.

Figure C.4: y = ŷ+∆y and the variances (not standard deviations) of these quantities
add.

C.26 Cramer-Rao Bound
This discussion of the Cramer-Rao (CR) bound is based on Ref.[117].

Suppose x is a random variable with values x ∈ Sx and θ ∈ R is a parameter.
For any function fx,θ : Sx × R→ R, define

⟨fx,θ⟩ =
∑
x

P (x|θ)fx,θ (C.111)

∆fx,θ = fx,θ − ⟨fx,θ⟩ (C.112)

⟨fx,θ, fx,θ⟩ = ⟨∆fx,θ ∆fx,θ⟩ (C.113)
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Define the log likelihood function by

LLθ = lnP (x|θ) (C.114)

Define the Fisher information by

Iθ = ⟨∂θLLθ, ∂θLLθ⟩ (C.115)

Note that LLθ ≤ 0. Let θ∗ be the value of θ that maximizes LLθ.
Note that Iθ ≥ 0 and Iθ = 0 when θ = θ∗ because ∂θLLθ|θ=θ∗ = 0. This

suggests that Iθ measures the distance between θ and θ∗.
Note that

⟨∂θLLθ⟩ =
∑
x

P (x|θ) 1

P (x|θ)
∂θP (x|θ) (C.116)

= ∂θ
∑
x

P (x|θ) (C.117)

= 0 (C.118)

Therefore

Iθ =
〈
[∂θLLθ]

2
〉
− ⟨∂θLLθ⟩2 (C.119)

=
〈
[∂θLLθ]

2
〉

(C.120)

Claim 6
Iθ = −

〈
∂2θLLθ

〉
(C.121)

proof:

Iθ =
〈
[∂θLLθ]

2
〉

(C.122)

=
∑
x

P (x|θ) 1

P (x|θ)
∂θP (x|θ)∂θ lnP (x|θ) (C.123)

= −
∑
x

P (x|θ)∂2θ lnP (x|θ) + ∂θ
∑
x

P (x|θ)∂θ lnP (x|θ) (C.124)

= −
〈
∂2θLLθ

〉
+ ∂2θ

∑
x

P (x|θ) (C.125)

= −
〈
∂2θLLθ

〉
(C.126)

QED
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Claim 7 If x = [xi]i=1,2,...ν ∈ Rν are i.i.d., then

Iθ = ν
〈
[∂θLLθ,i]

2
〉

(C.127)

where

LLθ,i = lnP (xi|θ) (C.128)

proof:

LLθ = ln
∏
i

P (xi|θ) (C.129)

=
∑
i

LLθ,i (C.130)

Iθ =
∑
i

∑
j

⟨∂θLLθ,i∂θLLθ,j⟩ (C.131)

=
∑
i

〈
[∂θLLθ,i]

2
〉

(C.132)

= ν
〈
[∂θLLθ,i]

2
〉

(C.133)

QED
A function tx : Sx → R is called a test statistic of random variable x.

Claim 8 (Cramer-Rao bound for single parameter θ ∈ R)

⟨tx, tx⟩ Iθ ≥ [∂θ ⟨tx⟩]2 (C.134)

proof:
Cauchy-Schwartz inequality
For two vectors a⃗, b⃗ ∈ Rn:

a⃗ · b⃗ = |⃗a||⃗b| cosϕ ≤ |⃗a||⃗b| (C.135)

For two real valued random variables a, b:

⟨a, a⟩ ⟨b, b⟩ ≥ | ⟨a, b⟩ |2 (C.136)

Replace

a→ tx, b→ ∂θLLθ (C.137)
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Then

⟨tx, ∂θLLθ⟩ = ⟨tx∂θLLθ⟩ − ⟨tx⟩ ⟨∂θLLθ⟩︸ ︷︷ ︸
=0

(C.138)

=
∑
x

P (x|θ)tx
1

P (x|θ)
∂θP (x|θ) (C.139)

= ∂θ
∑
x

txP (x|θ) (C.140)

= ∂θ ⟨tx⟩ (C.141)

QED
See Fig.C.5 for a pictorial representation of Eq.(C.134).

Figure C.5: In this drawing, θ∗ is the value of θ that maximizes LLθ. According
to the CR bound, the product of the variance ⟨tx, tx⟩ and the distance Iθ must be
greater or equal to [∂θ ⟨tx⟩]2. At fixed [∂θ ⟨tx⟩]2, if the variance increases, the distance
decreases, and vice versa.

Now suppose the test statistic tx equals an estimator θ̂ of θ with bias bx :
Sx → R.

tx = θ̂(x) = θ + bx (C.142)

θ̂ is said to be a biased estimator if bx ̸= 0 and an unbiased estimator if bx = 0.

Claim 9 〈
θ̂
〉
= θ + ⟨bx⟩ (C.143)

〈
θ̂, θ̂
〉
≥

[1 + ∂θ ⟨bx⟩]2

Iθ
(C.144)

〈
[θ̂ − θ]2

〉
≥

[1 + ∂θ ⟨bx⟩]2

Iθ
+ ⟨bx⟩2 (C.145)
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proof:

∂θ ⟨tx⟩ = ∂θ ⟨θ + bx⟩ (C.146)
= ∂θ [θ + ⟨bx⟩] (C.147)
= 1 + ∂θ ⟨bx⟩ (C.148)

Eq.(C.144) follows from Eq.(C.134) once we replace tx by θ̂.
Let

∆θ̂ = θ̂ −
〈
θ̂
〉
= (θ̂ − θ)︸ ︷︷ ︸

ξ

−⟨bx⟩ (C.149)

Then

0 =
〈
∆θ̂
〉
= ⟨ξ⟩ − ⟨bx⟩ (C.150)

[1 + ∂θ ⟨bx⟩]2

Iθ
≤

〈
[∆θ̂]2

〉
(C.151)

=
〈
ξ2 − 2ξ ⟨bx⟩+ ⟨bx⟩2

〉
(C.152)

=
〈
ξ2
〉
− ⟨bx⟩2 (C.153)

QED
Multi-dimensional case: parameter θ = [θ1, θ2, . . . , θn]

T ∈ Rn and test statistic
tx = [tx,1, tx,2, . . . , tx,n]

T ∈ Rn are column vectors.
Define Fisher information matrix by

[Iθ]i,j =
〈
∂θiLLθ, ∂θjLLθ

〉
=
〈
∂θiLLθ ∂θjLLθ

〉
(C.154)

CR bound for multi-dimensional parameter θ ∈ Rn:

matrix [⟨tx,i, tx,j⟩] ≥ matrix
[
∂θi ⟨tx,a⟩ [Iθ]−1

a,b∂θj ⟨tx,b⟩
]

(C.155)

where we are using the Einstein summation convention (repeated indices are summed
over). For two matrices A,B ∈ Rn, A ≥ B means A−B has non-negative eigenvalues.

C.27 Bayes Rule, Bayesian Updating And Conju-
gate Priors

Bayes Rule says:

P (θ|x)P (x) = P (x|θ)P (θ) (C.156)
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Expressed diagramatically3, we have for x ∈ R:

θ xoo = θ // x (C.157)

and for x = (x1, x2) ∈ R2:

x1
ww

��
θ

x2

gg
=

x1

��
θ

77

''
x2

(C.158)

Note how Bayes rule allows us to reverse the direction of the arrows impinging on θ.
We see from Bayes Rule that even though the directions of the arrows in a bnet can
have causal motivation, a bnet with arrows reversed from their causally motivated
directions can still be very useful as a calculation tool.

Another way of stating Bayes Rule is

P (θ|x)︸ ︷︷ ︸
posterior

= N (!θ) P (x|θ)︸ ︷︷ ︸
likelihood

P (θ)︸︷︷︸
prior

. (C.159)

If, for a given likelihood, the prior and posterior distributions belong to the
same family (for instance, they are both Beta distributions), then we say that the
prior is the conjugate prior of that likelihood.

For example, Beta ∼ Bernoulli*Beta. Hence, the Beta distribution4 is the
conjugate prior of the Bernoulli distribution5. More explicitly, if

p1 ∼ Beta(p1;α, β) (C.160)

and

x|p1 ∼ Bernoulli(x; p1) , (C.161)

where p1 = P (x = 1), then

p1|x ∼ Beta(p1;α
′, β′) (C.162)

where

α′ = α + x (C.163)
3Two bnets are equated if their full probability distributions (i.e., their full instantiations) are

equal numerically. For example,

a→ b→ c = P (c|b)P (b|a)P (a) = a← b← c

4See Ref.[105] for a discussion of the Beta distribution.
5See Ref.[103] for a discussion of the Bernoulli distribution
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β′ = β + (1− x) (C.164)

Ref.[115] has a table of conjugate priors.
Conjugate priors facilitate Bayesian updating of the prior to posterior in a

feedback loop(see Fig.C.6).

xt

��
Bernoulli

P (xt|θ)

��
Beta

P (θ|x≤t)

((

Beta

P (θ|x≤t−1)

pp

t→ t+ 1 for t = 0, 1, 2, . . .

BB

Figure C.6: Bayesian updating facilitated by conjugate prior. In this figure, x≤t =
(x0, x1, . . . , xt−1, xt).

C.28 Linear regression, Ordinary Least Squares (OLS)
Wikipedia articles

1. Linear Regression (LR)

• linear regression, Ref.[146]

• simple linear regression, Ref.[165]

• errors in variable, Ref.[121]

2. Least squares (LS)

• least squares, Ref.[143]

• ordinary least squares (OLS), Ref.[158]

Some nomenclature: In LR, the data consists of independent x-variables
xσ1 , x

σ
2 , . . . x

σ
n and a dependent y-variable yσ. We find a linear fit ŷσ = β0 +∑n

i=1 βix
σ
i to the data. ŷσ is called the estimate of yσ. The coefficients β0, βi are

called regression coefficients. yσ − ŷσ = ϵσ are called the residuals. E =
∑

σ(ϵ
σ)2
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is called the error or cost. We choose the regression coefficients so as to minimize
the error.

Below, we consider two types of LR:

1. LR in which the independent x-variables are non-random.

2. LR in which the independent x-variables are random and i.i.d.

The term OLS is often used to refer to LR of type 1.
For LR of type 2, there is randomness in y coming from the randomness in x

and in the residuals. For LR of type 1, there is randomness in y too, but it comes
from the residuals only.

Once one assumes that certain variables are random, a “model" (i.e., a bnet,
with probabilities expressed as TPMs) must be specified.

C.28.1 LR, assuming xσ are non-random

Let
σ ∈ {0, 1, 2, . . . , nsam− 1} : sample index
i0 ∈ {0, 1, 2, . . . , n} : index that can assume values 0 to n
i ∈ {1, 2, . . . , n} : index that can assume values 1 to n. i is never equal to 0.
yσ ∈ R: dependent y-variables
xσi ∈ R: independent x-variables
ϵσ ∈ R: residuals
β0, βi ∈ R: regression coefficients

yσ = β0 +
n∑
i=1

xσiβi + ϵσ (C.165)

If we define
xσ0 = 1 (C.166)

for all σ, then

yσ =
n∑

i0=0

xσi0βi0 + ϵσ . (C.167)

If y and ϵ are nsam dimensional column vectors and β is an n+1 dimensional column
vector, and X is an nsam× (n+ 1) matrix, then we can write the previous equation
in matrix form as:

y = Xβ + ϵ . (C.168)
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Derivation of LR From Minimization of Error

LetW = [Wσ,σ′ ] be a symmetric matrix with non-negative diagonal elementsWσ,σ ≥ 0
for all σ. W is called the weight matrix. The following claim describes the method
of Weighted LR when W ̸= 1 and of simple LR when W = 1.

Claim 10 Assume the Einstein summation convention; i.e., implicit sum over re-
peated indices. The error function E given by

E = (yσ −Xσ,j0βj0)︸ ︷︷ ︸
residual ϵσ

Wσ,σ′ (yσ′ −Xσ′,k0βk0)︸ ︷︷ ︸
ϵσ′

, (C.169)

is minimized over βk0 for all k0 ∈ {0, 1, . . . , n}, if βk0 is given by:

β̂ = (XTWX)−1XTWy . (C.170)

When W = 1,

β̂ = (XTX)−1XTy . (C.171)

proof:
At the minimum of E , the variation δE must vanish:

0 = δE = −2Xσj0(δβj0)Wσ,σ′(yσ′ −Xσ′k0βk0) . (C.172)

Thus,

XTWy −XTWXβ = 0 (C.173)

which implies Eq.(C.170).
QED

Geometry of LR with non-random xσ.

Recall that

y = Xβ + ϵ . (C.174)

Define the projection matrices

IX = X(XTX)−1XT , AX = 1− IX (C.175)

A square matrix M is symmetric if MT = M and is idempotent if M2 = M . IX is
symmetric and idempotent and so is AX . Note that IX and AX also satisfy:

AXIX = IXAX = 0 (C.176)

and
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IXX = X , AXX = 0 . (C.177)

IX acts as the identity on X, and AX annihilates X.
One has

β = (XTX)−1XT (y − ϵ) . (C.178)

Define

β̂ = (XTX)−1XT︸ ︷︷ ︸
B

y , (C.179a)

ŷ = Xβ̂ = IXy , (C.179b)

and

ϵ̂ = y −Xβ̂ = y − ŷ = (1− IX)y = AXy . (C.179c)

IX is sometimes called the hat matrix, because it gives y a hat.
Given any function f = f(y,X, ϵ) and a scalar factor ξ ∈ R, suppose f(ξy, ξX, ξϵ) =

ξOf(y,X, ϵ). Then we will say that f(·) is of order O under scaling. Note that
{ŷ, ϵ̂} are all of order 1 under scaling, {β, β̂, IX , AX} are all of order 0 under scaling,
and B is of order −1 under scaling. Thus, each curve-fit (i.e., symbol with a hat)
scales the same way as its estimand (i.e., same symbol without a hat). Furthermore,
β, its curve-fit β̂, and the projection matrices IX , AX are invariant (O = 0) under
scaling.

Note that y can be expressed as a sum of 2 orthogonal estimates:

y = ŷ︸︷︷︸
IXy

+ ϵ̂︸︷︷︸
AXy

. (C.180)

Fig.C.7 shows triangles representing y = Xβ + ϵ and y = ŷ + ϵ̂.

Figure C.7: Triangles representing y = Xβ + ϵ and y = ŷ + ϵ̂.
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LR Goodness of Fit, R2

Assume the components of ϵ are random with zero mean:

E[ϵ] = ⟨ϵ⟩ = 0 (C.181)

AssumeX and β are not random. This makes y = Xβ+ϵ and β̂ = (XTX)−1XTy
random. One finds that 〈

y
〉
= Xβ (C.182a)

〈
ŷ
〉
= IX

〈
y
〉︸︷︷︸

Xβ

=
〈
y
〉

(C.182b)

⟨̂ϵ⟩ = AX
〈
y
〉︸︷︷︸

Xβ

= 0 (C.182c)

〈
β̂
〉
= β (C.182d)

So far, we have assumed a zero mean value for ϵ. Next, assume “homoscedas-
ticity" (homo-spread)6, which means that〈

ϵ, ϵT
〉
= ξ2Insam (C.182e)

where ξ ≥ 0, and Insam is the nsam× nsam identity matrix. It follows that〈
y, yT

〉
=
〈
ϵ, ϵT

〉
= ξ2Insam , (C.183a)

〈̂
ϵ, ϵ̂T

〉
= AX

〈
y, yT

〉
ATX = ξ2AX , (C.183b)

〈
ŷ, ŷT

〉
= IX

〈
y, yT

〉
ITX = ξ2IX (C.183c)

and 〈
β̂, β̂

T
〉
= B

〈
y, yT

〉
BT = ξ2(XTX)−1 . (C.183d)

For any random column vector a, let

∥ a ∥2= aTa = tr(aaT ) (C.184)

and
6I find the word “homoscedasticity" unnecessarily long, cryptic and easy to misspell so I like to

replace it by “homo-spread". The opposite of “homoscedasticity" is “heteroscedasticity", which I like
to replace with “hetero-spread".

50



〈
∥ a− ⟨a⟩ ∥2

〉
=
〈
aTa
〉
−
〈
aT
〉
⟨a⟩ = tr

〈
a, aT

〉
. (C.185)

Define the following sums of squares (SS):

SSy =
〈
∥ y −

〈
y
〉
∥2
〉
=
〈
yTy
〉
−
〈
yT
〉 〈
y
〉
= tr

〈
y, yT

〉
(C.186a)

SSŷ =
〈
∥ ŷ −

〈
ŷ
〉
∥2
〉
=
〈
ŷT ŷ
〉
−
〈
ŷT
〉 〈
ŷ
〉
= tr

〈
ŷ, ŷT

〉
(C.186b)

SSres =
〈
∥ y − ŷ ∥2

〉
=
〈
∥ ϵ̂ ∥2

〉
= tr

〈
ϵ̂, ϵ̂T

〉
(C.186c)

Claim 11 The following is true without homo-spread:

tr
〈
y, yT

〉︸ ︷︷ ︸
SSy

= tr
〈
ŷ, ŷT

〉︸ ︷︷ ︸
SSŷ

+tr
〈̂
ϵ, ϵ̂T

〉︸ ︷︷ ︸
SSres

(C.187)

This is like the Pythagorean Theorem for the magenta right triangle in Fig.C.7.

proof:
From Eqs.C.183 and C.186, we see that

SSy = tr
〈
y, yT

〉
(C.188)

SSŷ = tr
〈
ŷ, ŷT

〉
= tr

〈
IXy, y

T
〉

(C.189)

SSres = tr
〈̂
ϵ, ϵ̂T

〉
= tr

〈
AXy, y

T
〉

(C.190)

Now use IX + AX = 1.
QED

The goodness of fit for this model is often measured using the coefficient of
determination R2. R2 is defined by

R2 = 1− SSres
SSy

=
SSŷ
SSy

=
tr
〈
ŷ, ŷT

〉
tr
〈
y, yT

〉 (C.191)

If homo-spread holds, then R2 reduces to

R2 =
tr IX
nsam

. (C.192)

See Fig.C.8 for a pictorial explanation of R2.
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Figure C.8: Pictorial explanation of R2.

C.28.2 LR, assuming xσ are random

Let
i0 ∈ {0, 1, 2, . . . , n} : index that can assume values 0 to n
i ∈ {1, 2, . . . , n} : index that can assume values 1 to n. i is never equal to 0.
y ∈ R: true value of dependent y-variable
ŷ ∈ R: curve-fit of dependent y-variable
ϵ ∈ R: residual
xi ∈ R: independent x-variables for i ∈ {1, . . . , n}
β0, βi ∈ R: regression coefficients

ŷ = β0 +
n∑
j=1

βjxj (C.193)

=
n∑

j0=0

βj0xj0 (Assume x0 = 1.) (C.194)

y = ŷ + ϵ (C.195)

52



Fitting y with a hyperplane in the variables xn = (xi)
n
i=1 (i.e., finding the best

coefficients βn = (βi)
n
i=1) is called regressing y on xn.

Transforming expressions from non-random to random xσ

Define the following population averages:

Eσ[x
σ] =

1

nsam

∑
σ

xσ , (C.196)

Eσ[x
σyσ] =

1

nsam

∑
σ

xσyσ , (C.197)

⟨xσ, yσ⟩σ = Eσ[x
σyσ]− Eσ[xσ]Eσ[yσ] . (C.198)

Claim 12 If the xσ are i.i.d. random variables,

Eσ[x
σ] = ⟨x⟩ (C.199)

Eσ[x
σyσ] =

〈
xy
〉

(C.200)

⟨xσ, yσ⟩σ =
〈
x, y
〉

(C.201)

proof:

1

nsam

∑
σ

xσ =
1

nsam

∑
x∈Sx

x
∑
σ

1(xσ = x)︸ ︷︷ ︸
N(xσ=x)

(C.202)

=
∑
x

x P (x) (C.203)

= ⟨x⟩ (C.204)

1

nsam

∑
σ

xσyσ =
1

nsam

∑
x∈Sx

∑
y∈Sy

xy
∑
σ

1(xσ = x, yσ = y)︸ ︷︷ ︸
N(xσ=x,yσ=y)

(C.205)

=
∑
x,y

xy P (x, y) (C.206)

=
〈
xy
〉

(C.207)

Eq.(C.201) follows from Eq.(C.199) and Eq.(C.200).
QED
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Recall that

Yσ = β0 +
n∑
j=1

Xσ,jβj + ϵσ . (C.208)

Assume
Eσ[Xσ,kϵσ] = Eσ[Xσ,k]Eσ[ϵσ]︸ ︷︷ ︸

=0

= 0 . (C.209)

Then we have

Eσ[Xσ,kYσ] = Eσ[Xσ,k]β0 +
n∑
j=1

Eσ[Xσ,kXσ,j]βj + Eσ[Xσ,kϵσ]︸ ︷︷ ︸
=0

(C.210)

and

Eσ′ [Xσ′,k]Eσ[Yσ] = Eσ′ [Xσ′,k]β0 +
n∑
j=1

Eσ′ [Xσ′,k]Eσ[Xσ,j]βj + Eσ′ [Xσ′,k]Eσ[ϵσ]︸ ︷︷ ︸
=0

.

(C.211)
Subtracting Eq.(C.211) from Eq.(C.210), we get

⟨Xσ,k, Yσ⟩σ =
n∑
j=1

⟨Xσ,k, Xσ,j⟩σ βj . (C.212)

Define the n dimensional covariance matrix C by

Ck,j = ⟨Xσ,k, Xσ,j⟩σ . (C.213)

Then Eq.(C.212) implies

βj =
n∑
k=1

C−1
j,k ⟨Xσ,k, Yσ⟩σ (C.214)

for all j = 1, 2, . . . , n.
If we assume that the xσ are i.i.d., then, by virtue of Claim 12, the matrix C

tends to

Ck,j →
〈
xk, xj

〉
(C.215)

and Eq.(C.214) implies

βj =
n∑
k=1

C−1
j,k

〈
xk, y

〉
. (C.216)
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LR with random xσ, expressed in derivative notation

Recall our notation for conditional averages. For any random variables x, y, a, let

E|a[x] = ⟨x⟩|a (mean) (C.217)

〈
x, y
〉|a

=
〈
xy
〉|a − ⟨x⟩|a 〈y〉|a (covariance) (C.218)

σ|a
x =

√
⟨x, x⟩|a (standard deviation) (C.219)

ρ|ax,y =

〈
x, y
〉|a

σ
|a
x σ

|a
y

=

[〈
x, y
〉

σxσy

]|a
(correlation) (C.220)

∂|ax y =

[
∂

∂x

]|a
y =

〈
x, y
〉|a

⟨x, x⟩|a
= ρ|ax,y

σ
|a
y

σ
|a
x

=

[
ρx,y

σy

σx

]|a
(partial derivative) (C.221)

“|a" means that the variable a is held fixed to a when taking all averages.
Recall that

y = β0 +
n∑
j=1

βjxj︸ ︷︷ ︸
ŷ

+ϵ . (C.222)

Assume

⟨ϵ⟩ = 0 (C.223)

and 〈
xj, ϵ

〉
= 0 (C.224)

for all j.
For k = 1, . . . , n, 〈

xk, y
〉
=

n∑
j=1

βj
〈
xk, xj

〉
. (C.225)

Define the linear operator

∂·
∂a

=
⟨a, ·⟩
⟨a, a⟩

(C.226)

for any random variable a. Then Eq.(C.225), after dividing both of its sides by
⟨xk, xk⟩, can be written as
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∂y

∂xk
=

n∑
j=1

βj
∂xj
∂xk

(C.227)

Let xn and βn be n-dimensional column vectors. If we further define the gradient

∇xny =

[
∂y

∂x1
,
∂y

∂x2
, . . . ,

∂y

∂xn

]T
(C.228)

and the Jacobian matrix
Jj,k =

∂xj
∂xk

(C.229)

then

∇xny = JTβn (C.230)

so
βn = (JT )−1∇xny (C.231)

Note that Jk,k = 1 for all k. Eq.(C.216) and Eq.(C.231) are equivalent. Whereas
the matrix C has the nice property that it is symmetric, the matrix J has the nice
property that its diagonal entries are 1.

Next, we will write Eq.(C.231) for the special cases n = 1, 2, 3, where n is the
number of independent x-variables xj.

1. n = 1 (y fitted by a line)

y = β0 + β1x+ ϵ (C.232)

Eq.(C.231) becomes

β1 =
∂y

∂x
=

〈
x, y
〉

⟨x, x⟩
= ρx,y

σy

σx
(C.233)

2. n = 2 (y fitted by a plane)

y = β0 + β1x1 + β2x2 + ϵ (C.234)

Eq.(C.231) becomes7

[
β1
β2

]
= (JT )−1

[
∂x1y
∂x2y

]
(C.235)

=
1

det JT

[
J22 −J21
−J12 J11

] [
∂x1y
∂x2y

]
(C.236)

7Recall that if M =

[
a b
c d

]
then M−1 = 1

detM

[
d −b
−c a

]
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Hence,

β1 =
J22∂x1y − J21∂x2y
J11J22 − J21J12

=
∂x1y − J21∂x2y
1− J21J12

(C.237)

We can express Eq.(C.237) in terms of variances and correlations as follows.

β1 =

[
1

⟨x1, x1⟩

] 〈
x1, y

〉
− ⟨x2, x1⟩

〈
x2, y

〉
⟨x2, x2⟩

−1

1− ρ2x1,x2
(C.238)

=

[
1

σ2
x1

]
ρx1,yσyσx1 − ρx1,x2ρx2,yσx1σy

1− ρ2x1,x2
(C.239)

=

[
σy

σx1

]
ρx1,y − ρx1,x2ρx2,y

1− ρ2x1,x2
(C.240)

Eq.(C.240) agrees with the value of βY X,Z in Ref.[51] by Pearl, if we replace in
Pearl’s formulae X → x1, Y → y, Z → x2.

Note that Eq.(C.237) can also be written as

β1 =
∂x1y − J21∂x2y
1− J21J12

(C.241)

= ∂x1y +
J21J12∂x1 − J21∂x2

1− J21J12︸ ︷︷ ︸
−Ax1

y (C.242)

The linear operator Ax1 satisfies

Ax1(x1) = 0 (Ax1 annihilates x1) (C.243)

and
Ax1(x2) = J21 = ∂x1x2 (C.244)

Therefore

Ax1 = ∂|x1x1
(C.245)

and

β1 = ∂x1y − ∂
|x1
x1
y (C.246)

If we define

Ix1 = 1− Ax1 (C.247)
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then

β1 = ∂x1(Ix1y) (C.248)

3. n = 3 (y fitted by a volume)

x1

��

  

β1

��

ϵ

��
x2

β2 // y

x3

>>

β3

AA

Figure C.9: Bnet for Linear Regression of y with a 3 dimensional feature vector
x = (x1, x2, x3).

〈
xj, ϵ

〉
= 0 because the path from xj to ϵ is blocked by a collider

node. Note that even though node y is deterministic, nodes xj may be probabilistic.
Hence, this is only a partial LDEN (LDEN are discussed in Chapter 48)

x3 = [x1, x2, x3]
T (C.249)

β3 = [β1, β2, β3]
T (C.250)

y = [β3]Tx3 + ϵ (C.251)

Ji,j =
∂xi
∂xj

(C.252)

β3 = (JT )−1∇x3y (C.253)

JT =

 1 a12 a13
a21 1 a23
a31 a32 1

 = A (C.254)

ai,j =
∂xj
∂xi

(C.255)

Using Figs.C.10 and C.11, we get
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β1 =
1

detA

(
det

[
1 a23
a32 1

]
∂x1y + det

[
a13 a12
1 a32

]
∂x2y + det

[
a12 a13
1 a23

]
∂x3y

)
(C.256)

Figure C.10: Arbitrary 3 dimensional matrix A

Figure C.11: Inverse of the 3 dimensional matrix A given by Fig.C.10.

Double regression of y

Recall that

y = β0 +
n∑
j=1

xjβj + ϵ . (C.257)

Therefore,

〈
xi, y

〉
=

n∑
j=1

〈
xi, xj

〉
βj (C.258)

= ⟨xi, xi⟩ βi +
n∑
j=1

1(j ̸= i)
〈
xi, xj

〉
βj . (C.259)

Hence,
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βi =

〈
xi, y

〉
⟨xi, xi⟩

−
n∑
j=1

1(j ̸= i)

〈
xi, xj

〉
⟨xi, xi⟩

βj . (C.260)

Eq.(C.260) can be expressed in derivative notation as:

βi =
∂y

∂xi
−

n∑
j=1

1(j ̸= i)
∂xj
∂xi

βj (C.261)

Note that, because of the linearity of the derivative operator, Eq.(C.261) implies:

βi =
∂

∂xi

y −
n∑
j=1

1(j ̸= i)xjβj︸ ︷︷ ︸
y−xiβi

 (C.262)

=
[
∂xi − ∂

|xi
xi

]
y . (C.263)

Eq.(C.263) can be used to find β̂i in two steps:
STEP 1: Regress y−xiβi on (xj)j∈{1,2,...,n}−{i}. Get estimates (β̂j)j∈{1,2,...,n}−{i}.
STEP 2: Regress y −

∑
j ̸=i xjβ̂j on xi. Get estimate β̂i.

Of course, one can also find β̂i by regressing y on (xj)j∈{1,2,...,n}, to get estimates
(β̂j)j∈{1,2,...,n}.

R2 with random xσ

Recall that

y = β0 +
n∑
j=1

βjxj︸ ︷︷ ︸
ŷ

+ϵ . (C.264)

Assume

⟨ϵ⟩ = 0 (C.265)

and 〈
xj, ϵ

〉
= 0 (C.266)

for all j.

ŷ = y − ϵ (C.267)
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〈
ŷ, ŷ
〉

=
〈
ŷ, y − ϵ

〉
(C.268)

=
〈
ŷ, y
〉

(C.269)

〈
y, y
〉

=
〈
ŷ − ϵy, ŷ − ϵy

〉
(C.270)

=
〈
ŷ, ŷ
〉
+ ⟨ϵ, ϵ⟩ (C.271)

The goodness of fit measure R2 for this model is defined by

R2
y∼ŷ =

〈
ŷ, ŷ
〉〈

y, y
〉 = 1− ⟨ϵ, ϵ⟩〈

y, y
〉 (C.272)

where we are using Eq.(C.271). By Eq.(C.269), we also have

R2
y∼ŷ =

〈
y, ŷ
〉〈

y, y
〉 =

∂ŷ

∂y
= ρy,ŷ

σŷ

σy
(C.273)

R2
y∼ŷR

2
ŷ∼y = ρ2y,ŷ (C.274)

C.29 Logistic Regression (LoR)
Suppose xσ ∈ Rn, yσ ∈ R, and Σ is a population of individuals σ. In general, a
regression is when we curve-fit a dataset {(xσ, yσ) : σ ∈ Σ} with a function ŷ = f(x).
In Linear Regression (LR), which we discussed earlier, f(x) is a hyperplane in x.
On the other hand, in Logistic Regression (LoR), yσ ∈ [0, 1] and f(x) is the
sigmoid of a hyperplane in x.

More specifically, for LR we have Eq.(C.165) which reads as follows:

yσ = β0 +
n∑
i=1

xσiβi︸ ︷︷ ︸
ŷσ

+ϵσ (LR) . (C.275)

For LoR, we have instead

pσ = smoid

(
β0 +

n∑
i=1

xσiβi + ϵσ

)
(LoR) , (C.276)

or, equivalently,

lodds(pσ)︸ ︷︷ ︸
ln pσ

1−pσ

= β0 +
n∑
i=1

xσiβi︸ ︷︷ ︸
ŷσ

+ϵσ (LoR) , (C.277)
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where we have used the fact that lodds() is the inverse function of smoid(). Hence, an
LoR fit can be calculated by collecting a dataset {(xσ, pσ) : σ ∈ Σ}, transforming that
dataset to the dataset {(xσ, lodds(pσ)) : σ ∈ Σ}, and fitting the latter dataset with a
hyperplane. Let P (Y σ = 1) = pσ ∈ [0, 1]. LoR can be used for binary classification if
we define the binary class variable cσ ∈ {0, 1} by

cσ = 1(P (Y σ = 1) > α) (C.278)

for some 0 < α < 1.

C.30 Entropy, Kullback-Leibler divergence, Cross-
Entropy

For probability distributions p(x), q(x) of x ∈ Sx

• Entropy:
H(p) = −

∑
x

p(x) ln p(x) ≥ 0 (C.279)

• Kullback-Leibler divergence:

DKL(p ∥ q) =
∑
x

p(x) ln
p(x)

q(x)
≥ 0 (C.280)

• Cross entropy:

CE(p ∥ q) = −
∑
x

p(x) ln q(x) (C.281)

= H(p) +DKL(p ∥ q) (C.282)

C.31 Definition of various entropies used in Shannon
Information Theory

• (plain) Entropy of x

H(x) = −
∑
x

P (x) lnP (x) (C.283)

This quantity measures the spread of Px. H(x) ≥ 0 and it vanishes iff P (x) =
δ(x, x0) (deterministic case)
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• Conditional Entropy of y given x

H(y|x) = −
∑
x,y

P (x, y) lnP (y|x) (C.284)

= H(y, x)−H(x) (C.285)

This quantity measures the conditional spread of y given x. H(y|x) ≥ 0.

• Mutual Information (MI) of x and y.

H(y : x) =
∑
x,y

P (x, y) ln
P (x, y)

P (x)P (y)
(C.286)

= H(x) +H(y)−H(y, x) (C.287)

This quantity measures the correlation between x and y. H(y : x) ≥ 0 and it
vanishes iff P (x, y) = P (x)P (y).

• Conditional Mutual Information (CMI)8 of x and y given λ

H(y : x|λ) =
∑
x,y,λ

P (x, y, λ) ln
P (x, y|λ)

P (x|λ)P (y|λ)
(C.288)

= H(x|λ) +H(y|λ)−H(y, x|λ) (C.289)

This quantity measures the conditional correlation of x and y given λ. H(y :
x|λ) ≥ 0 and it vanishes iff P (x, y|λ) = P (x|λ)P (y|λ).
An interesting special case occurs when P (λ) = δ(λ, λ0) (the frequentist case of
no λ prior.) In that case CMI reduces to

H(y : x|λ0) =
∑
x,y

P (x, y|λ0) ln
P (x, y|λ0)

P (x|λ0)P (y|λ0)
≥ 0 (C.290)

• Kullback-Leibler Divergence from Px to Py.

Assume random variables x and y have the same set of states Sx = Sy. Then

DKL(Px ∥ Py) =
∑
x

Px(x) ln
Px(x)

Py(x)
(C.291)

This quantity measures a non-symmetric distance between the probability dis-
tributions Px and Py. DKL(Px ∥ Py) ≥ 0 and it equals zero iff Px = Py.

8CMI can be read as “see me".
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C.32 Mean log likelihood asymptotic behavior
Define the log likelihood by

LLy|θ = lnP (y|θ) . (C.292)

In this section, we will represent averages over y|θ by angular brackets:

⟨f(y)⟩ =
∑
y

P (y|θ)f(y) = Ey|θ[f(y)] . (C.293)

Note that the mean log likelihood equals minus the entropy:

H(y|θ) = −
〈
LLy|θ

〉
(C.294)

Claim 13 〈
∂θLLy|θ

〉
= 0 (C.295)

〈
∂2θLLy|θ

〉
= −

〈
(∂θLLy|θ)

2
〉

(C.296)

proof:

〈
∂θLLy|θ

〉
=

∑
y

P (y|θ)∂θ lnP (y|θ) (C.297)

=
∑
y

∂θP (y|θ) (C.298)

= 0 (C.299)

〈
∂2θLLy|θ

〉
=

∑
y

P (y|θ)∂θ
[

1

P (y|θ)
∂θP (y|θ)

]
(C.300)

= −
∑
y

P (y|θ) 1

P (y|θ)2
[∂θP (y|θ)]2 +

∑
y

∂2θP (y|θ)︸ ︷︷ ︸
=0

(C.301)

= −
∑
y

P (y|θ)[∂θ lnP (y|θ)]2 (C.302)

= −
〈
(∂θLLy|θ)

2
〉

(C.303)

QED
Define

∆θ = θ′ − θ (C.304)
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and

−∆H(y|θ) = ∆
〈
LLy|θ

〉
=
〈
LLy|θ′

〉
−
〈
LLy|θ

〉
(C.305)

If we expand
〈
LLy|θ′

〉
as a Taylor series to second order about the point θ′ = θ, we

get

〈
LLy|θ′

〉
=
〈
LLy|θ

〉
+∆θ

〈
∂θLLy|θ

〉︸ ︷︷ ︸
=0

+
(∆θ)2

2

〈
∂2θLLy|θ

〉︸ ︷︷ ︸
−⟨(∂θLLy|θ)2⟩

+O((∆θ)3) (C.306)

−∆H(y|θ) = ∆
〈
LLy|θ

〉
= − (∆θ)2

2

〈
(∂θLLy|θ)

2
〉
+O((∆θ)3) (C.307)

Thus, θ′ = θ maximizes the mean log likelihood
〈
LLy|θ

〉
(and minimizes the entropy

H(y|θ)).
Note that

∆
〈
LLy|θ

〉
=

〈
ln
P (y|θ′)
P (y|θ)

〉
. (C.308)

If we approximate the ratio of these 2 probabilities by a Gaussian,

P (y|θ′)
P (y|θ)

≈ exp

(
− (∆θ)2

2σ2
θ

)
, (C.309)

then

σ2
θ =

〈
(∂θLLy|θ)

2
〉−1

. (C.310)

C.33 Arc Strength (Arc Force)
Given a bnet with an arc (i.e., arrow) x→ y, we define the arc strength or arc force
of arc x→ y to beH(x : y) (i.e., the mutual information between x and y). Evaluation
of H(x : y) requires knowing P (y|x), P (x) and P (y). P (y|x) is the TPM of node y, so
it is immediately available from the specification of the bnet. Calculating P (x) and
P (y) is more involved, and requires marginalizing the full probability distribution
of the bnet. Such marginalizations can be done using the junction tree algorithm
described in Chapter 43.
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C.34 Pearson Chi-Squared Test
The Pearson divergence (a.k.a. Pearson Chi-squared test statistic) for two
probability distributions PO(x) and PE(x), where x ∈ Sx, is defined as follows:

Dχ2 =
∑
x

[PO(x)− PE(x)]2

PE(x)
=
∑
x

PO2(x)

PE(x)
− 1 . (C.311)

Usually PO is the observed probability distribution and PE is the expected, theo-
retical one.

As the following claim shows, the Pearson divergence is closely related to the
Kullback-Leibler divergence.

Claim 14 If
∣∣∣PO(x)
PE(x)

− 1
∣∣∣ << 1 for all x ∈ Sx, then

DKL(PO ∥ PE) ≈ Dχ2 . (C.312)

proof:

DKL(PO ∥ PE) =
∑
x

PO(x) ln
PO(x)

PE(x)
(C.313)

=
∑
x

PO(x) ln

(
1 +

PO(x)

PE(x)
− 1

)
(C.314)

≈
∑
x

PO(x)

(
PO(x)

PE(x)
− 1

)
(C.315)

=
∑
x

PO2(x)

PE(x)
− 1 (C.316)

= Dχ2 (C.317)

QED
Let nx = |Sx|. Let Pχ2(y) be the χ2 (with nx− 1 degrees of freedom) proba-

bility distribution, and let Fχ2(α) be its cumulative distribution. Find α such that

95% =

∫ α

0

dy Pχ2(y) = Fχ2(α) (C.318)

If Dχ2 < α, then we say that PO = PE to 95% significance level (SL), whereas if
Dχ2 > α, we say that PO ̸= PE to 95% SL (i.e., SL= 95%). The higher SL becomes,
the higher α becomes, and the bigger the divergence Dχ2 has to be, before we are
willing to declare that PO ̸= PE.
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C.35 Demystifying Population and Sample Variances
Let x[σ] = xσ. Given i.i.d.real variables (xσ)σ=0,1,...,n−1, let9

µ̂ = x =
1

n

∑
σ

xσ (C.319)

(σ̂2)∞ =
1

n

∑
σ

(xσ − µ)2 (C.320)

σ̂2 =
1

n− 1

∑
σ

(xσ − µ̂)2 (C.321)

Statisticians10 call (σ̂2)∞ the “population variance". I will call it the pop-
ulation variance for fixed µ. Note that it depends on the fixed parameter µ.
Statisticians call σ̂2 the “sample variance". Instead, I will call σ̂2 the population
variance for random µ.

If one treats xσ as a random variable, then one must treat µ̂ as a random
variable too. Let

E[xσ] = µ (C.322)

and 〈
xσ, xσ

′
〉
= δ(σ, σ′)σ2 . (C.323)

Then one can show that

E[(σ̂2)∞] =
1

n
E

[∑
σ

(xσ − µ)2
]

(C.324)

= σ2 (C.325)

and

E[σ̂2] =
1

n− 1
E

[∑
σ

(xσ − µ̂)2
]

(C.326)

= σ2 (C.327)
9Do not confuse the sample index σ and the standard deviation σ.

10In the language of Statisticians, a “population" is supposed to be so large that its µ does not
fluctuate, and a “sample" is supposed to be a small subset of that population for which the µ is
assumed to fluctuate. In this book, I use the word “population" to mean a set of any size containing
individuals, I use the word “sub-population" to refer to a subset of the population, and I use the word
“sample" (a.k.a. individual, observation, unit, record) to mean a single individual of the population.
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This is the reason why we use an n − 1 instead of an n in σ̂2. Because it makes
E[σ̂2] = σ2 so σ̂2 is an unbiased estimator of the single individual variance σ2.

The intuitive reason for why σ̂2 is divided by n−1 instead of n is that whereas
µ in (σ̂2)∞ is kept fixed and is “quiet", the µ̂ in σ̂2 is a random variable, noisy instead
of quiet. The fluctuations in µ̂ are strongly correlated with the fluctuations of the xσ,
so they decrease the fluctuations in σ̂2 compared to those in (σ̂2)∞. By dividing by
n−1 instead of n, we compensate for this decrease in fluctuations so that the ratio of
the numerator and denominator of σ̂2 equals σ2, instead of something smaller than
σ2, as would happen if were to divide by n instead of n − 1. In terms of “degrees of
freedom"(DOFs), (σ̂2)∞ has n DOFs (namely one for each xσ), whereas σ̂2 has n− 1

DOFs. (the presence of µ̂ subtracts one DOF). In both (σ̂2)∞ and σ̂2, one divides by
the number of DOFs.

C.36 Independence of µ̂ and σ̂2

Let x[σ] = xσ. Consider i.i.d.real variables (xσ)σ=0,1,...,n−1 such that11

E[xσ] = µ (C.328)

〈
xσ, xσ

′
〉
= δ(σ, σ′)σ2 . (C.329)

µ̂ = x =
1

n

∑
σ

xσ (C.330)

(σ̂2)∞ =
1

n

∑
σ

(xσ − µ)2 (C.331)

σ̂2 =
1

n− 1

∑
σ

(xσ − µ̂)2 (C.332)

Claim 15 Let
∆σ = xσ − µ . (C.333)

For any σ1, σ2, σ3,
⟨∆σ1∆σ2 ,∆σ3⟩ = 0 . (C.334)

proof:
Suppose σ2 ̸= σ3. Then

⟨∆σ1∆σ2 ,∆σ3⟩ = ⟨∆σ2⟩︸ ︷︷ ︸
0

⟨∆σ1 ,∆σ3⟩ = 0 . (C.335)

11Do not confuse the sample index σ and the standard deviation σ.
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So assume σ2 = σ3 = σ and evaluate ⟨∆σ1∆σ,∆σ⟩.
Suppose σ1 ̸= σ. Then

⟨∆σ1∆σ,∆σ⟩ = ⟨∆σ1⟩︸ ︷︷ ︸
0

⟨∆σ,∆σ⟩ = 0 . (C.336)

So suppose σ1 = σ and evaluate ⟨(∆σ)2,∆σ⟩.〈
(∆σ)2,∆σ

〉
=
〈
(∆σ)3

〉︸ ︷︷ ︸
0

−
〈
(∆σ)2

〉
⟨∆σ⟩︸︷︷︸

0

= 0 . (C.337)

QED

Claim 16 〈
σ̂2, µ̂

〉
= 0 . (C.338)

proof:

〈
σ̂2, µ̂

〉
=

1

n(n− 1)

∑
σ,σ′

〈(
xσ − 1

n

∑
σ′′

xσ
′′

)2

, xσ
′

〉
(C.339)

=
1

n(n− 1)

∑
σ,σ′

〈(
xσ − 1

n

∑
σ′′

xσ
′′

)2

,∆σ′

〉
(C.340)

=
1

n(n− 1)

∑
σ,σ′

〈(
∆σ − 1

n

∑
σ′′

∆σ′′

)2

,∆σ′

〉
(C.341)

= 0 by Claim 15 . (C.342)

QED

C.37 Chi-square distribution
This section is based on Ref.[112].

q z.oo

Figure C.12: Bnet used to define the Chi-square distribution.
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Let q ∈ R and z. = {zi}i=0,1,...,ν−1 where zi ∈ R. Consider the bnet of Fig.C.12.
The TPMs, printed in blue, for that bnet, are as follows:12

P (zi) = N (zi;µ = 0, σ2 = 1) . (C.343)

We want

q =
ν−1∑
i=0

(zi)
2 (C.344)

so P (q|z.) is a Dirac delta function:

P (q|z.) = δ(q −
ν−1∑
i=0

(zi)
2) . (C.345)

Therefore

P (q) =
ν−1∏
i=0

{∫
dzi P (zi)

}
P (q|z.) (C.346)

= N (!q)q
ν
2
−1e−q/2 = χ2(q; ν) , (C.347)

whereN (!q) is a constant that does not depend on q and is adjusted so that
∫∞
0
dq P (q) =

1.

C.38 Student’s t-distribution
This section is based on Ref.[168].

Let x[σ] = xσ. Consider i.i.d.real variables (xσ)σ=0,1,...,n−1 such that13

E[xσ] = µ (C.348)〈
xσ, xσ

′
〉
= δ(σ, σ′)σ2 . (C.349)

µ̂ = x =
1

n

∑
σ

xσ (C.350)

(σ̂2)∞ =
1

n

∑
σ

(xσ − µ)2 (C.351)

12Don’t confuse the q independent constant N (!q) with the normal probability distribution
N (x;µ, σ2).

13Do not confuse the sample index σ and the standard deviation σ.
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σ̂2 =
1

n− 1

∑
σ

(xσ − µ̂)2 . (C.352)

If we define

z =
µ̂− µ

σ√
n

, (C.353)

then z has a Standard Normal Distribution (SND):

P (z) =
1√
2π
e−

x2

2 = N (z;µ = 0, σ2 = 1) (C.354)

But what if we allow the standard deviation σ to fluctuate in the expression Eq.(C.353)
for z? Define

t =
µ̂− µ√

σ̂2

n

. (C.355)

Then one can show that t has the Student’s t-distribution Stud(t; ν = n−1) given
by:

P (t) = N (!t)(1 +
t2

ν
)−

ν+1
2 = Stud(t; ν = n− 1) (C.356)

Note that if we use the approximation ex ≈ 1 + x+O(x2), we can show that
Stud(t) tends to the SND when n >> 1:

P (t) = N (!t)(1 +
t2

ν
)−

ν+1
2 (C.357)

≈ N (!t)e−
t2

2
ν+1
ν (C.358)

≈ N (t;µ = 0, σ2 = 1) . (C.359)

Partial derivation of the explicit form of Stud(t).
Note that the z definition Eq.(C.353) and the t definition Eq.(C.355), imply

that

t = z

√
σ2

σ̂2︸ ︷︷ ︸
ϱ

, (C.360)

In the expression t = zϱ, the random variables z and ϱ are independent because, as
shown in Section C.36, µ̂ and σ̂2 are independent. Therefore, the random variable t
can be defined using the bnet of Fig.C.13.

The TPMs, printed in blue, for the bnet Fig.C.13, are as follows:
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ϱ

��
t zoo

Figure C.13: Bnet used to define the Student’s t-distribution.

P (t|z, ϱ) = δ(t− zϱ) (Dirac delta function) (C.361)

P (z) = N (z;µ = 0, σ2 = 1) (C.362)

P (ϱ) = given by Eq.(C.375) below. (C.363)

Note that

P (t = t) = P (zϱ = t) (C.364)

=

∫
dϱ P (z =

t

ϱ
|ϱ)P (ϱ) (C.365)

=

∫
dϱ N (

t

ϱ
; 0, 1)P (ϱ) (C.366)

=

∫
dϱ

1√
2π
e−

1
2
( t
ϱ
)2P (ϱ) . (C.367)

If we define q by

q =
n− 1

ϱ2
, (C.368)

then

q =
(n− 1)σ̂2

σ2
=

1

σ2

n−1∑
σ=0

(xσ − µ̂)2 . (C.369)

As a consequence of “Cochran’s Theorem" (see Ref.[114]), q given by Eq.(C.369) must
have a Chi-square probability distribution with ν = n− 1 degrees of freedom:14

14Note that this q is a quadratic form q = x⃗TMx⃗, where x⃗ is an n dimensional column vector
with components xσ, and M is an n × n matrix. Cochran’s Theorem diagonalizes M and replaces
the vectors x⃗ by equivalent ones in a new basis. Then the number of DOF s (degrees of freedom) of
the chi-square distribution is the number of non-zero diagonal elements in the diagonalized M (this
number is called the rank of M). In the particular case of Eq.(C.369), DOF = n− 1.
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P (q) = χ2(q; ν = n− 1) (C.370)

Henceforth, let ν = n− 1. From the definition Eq.(C.368) of q, we get

dq =
−2ν
ϱ3

dϱ . (C.371)

Therefore,

P (ϱ)dϱ = P (q)dq (C.372)

= χ2(
ν

ϱ2
; ν)

(−2ν)
ϱ3

dϱ (C.373)

= N (!ϱ)

(
ν

ϱ2

) ν
2
−1

e
− ν

2ϱ2
dϱ

ϱ3
(C.374)

= N (!ϱ)
dϱ

ϱν+1
e
− ν

2ϱ2 . (C.375)

Hence,

P (t) = N (!t)

∫ ∞

0

dϱ

ϱν+1
e
− ν

2ϱ2 e−
1
2
( t
ϱ
)2 (C.376)

= N (!t)

∫ ∞

0

dϱ

ϱν+1
e
− 1

2
t2+ν

ϱ2 . (C.377)

C.39 Hypothesis testing and 3 classic test statistics
(Likelihood, Score, Wald)

Suppose we have data x⃗ = [xσ]σ=0,1,...,nsam−1 which is distributed according to a proba-
bility distribution P (x⃗; θ) which depends on some parameters θ = (θi)i=0,1,...,n−1 ∈ Rn.
We define the

• Likelihood of θ by

L(θ) = P (x⃗|θ) , (C.378)

• the Maximum Likelihood estimate of θ by

θ̂ = argmax
θ

L(θ) , (C.379)

• the log likelihood of θ by

LL(θ) = lnL(θ) , (C.380)
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• the Score or Lagrange Multiplier vector15 of θ by

sc(θ) = [sci(θ)] ∈ Rn , (C.381)

where

sci(θ) = ∂θiLL(θ) , (C.382)

• and the Fisher Information Matrix of θ by

FI(θ) = [FIi,j(θ)] ∈ Rn×n (C.383)

where

FIi,j(θ) = −Ex⃗|θ[∂θi∂θj

LL(θ)︷ ︸︸ ︷
lnP (x⃗|θ)] . (C.384)

Note that if

LL(θ) = lnP (x|θ) = −(θ − θ̂)
2

2σ2
+N (!θ) , (C.385)

then

sc(θ) =
−(θ − θ̂)

σ2
(C.386)

and

FI(θ) =
1

σ2
(C.387)

In hypothesis testing, one has a null hypothesis H0: θ = θ∗, and an alter-
native hypothesis H1: θ ̸= θ∗. We use a test statistic λ(θ∗, θ̂) ≥ 0 which measures
a kind of distance or separation between the estimate θ̂ and the value θ∗ for the null
Hypothesis H0. For some confidence level C > 0, if λ(θ∗, θ̂) > C, H0 is rejected,
whereas if λ(θ∗, θ̂) ≤ C, H0 is accepted.

α = 1 − C is called the significance level. Usually α << 1 represents the
area under both tails of a Normal distribution, and C ≈ 1 represents all the area
except the tails of a Normal distribution.

Henceforth in this section, we will occasionally use the Einstein summation
convention; i.e., implicit sum over repeated indices.

Three classic test statistics are (See Fig.C.14):
15sci(θ) = ∂θiLL(θ) is called a Lagrange multiplier because to maximize LL(θ) over θ subject to

the constraint θ = θ∗, we maximize the Lagrangian L = LL(θ)−
∑

i αi[θi − θ∗i ] over (θi, αi) for all
i. The latter gives αi = ∂θiLL(θ

∗) and θ = θ∗. For a general constrained optimization problem,
L = LL(θ)−

∑
i αici(θ) for some constraint functions ci(θ). Hence, αi = ∂θiLL/∂θici and ci(θ) = 0

for all i. So, in general, a Lagrange multiplier is a ratio of two partial derivatives.
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Figure C.14: For n = 1 and θ ∈ R, this figure shows the geometrical significance
of certain quantities that characterize the 3 classic test statistics (Likelihood, Score,
Wald) for hypothesis testing.

1. Likelihood Ratio test statistic (Ref.[145].)

λLi = 2 ln

[
L(θ̂)

L(θ∗)

]
= 2[LL(θ̂)− LL(θ∗)] (C.388)

2. Score (a.k.a. Lagrange multiplier) test statistic (Ref.[163].)

λSc = ∂θiLL(θ
∗)
[
FI(θ∗)−1

]
i,j
∂θjLL(θ

∗) (C.389)

=
[∂θLL(θ

∗)]2

FI(θ∗)
if n = 1 (C.390)

Doesn’t depend on θ̂.

3. Wald test statistic (Ref.[179].)

λWa = (θ̂ − θ∗)i
[〈
θ̂, θ̂

T
〉−1
]
i,j

(θ̂ − θ∗)j (C.391)

=
(θ∗ − θ̂)2〈
θ̂, θ̂
〉 if n = 1 (C.392)

More generally, one can replace θ∗ → Rθ∗ and θ̂ → Rθ̂ in Eq.(C.391), where
θ∗ and θ̂ are n dimensional column vectors, and R ∈ Rν×n. The null and
alternative hypotheses become: H0 : Rθ = Rθ∗ and H1 : Rθ ̸= Rθ∗. Note that
ν is the number of constraints imposed by the null hypothesis. R is called a
reparametrization of θ. The Wald test is not reparametrization invariant (i.e.,
R invariant), but the Likelihood Ratio test is.
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Note that if LL(θ) is given by Eq.(C.385), then
〈
θ̂, θ̂
〉
= σ2 = 1

FI(θ)
. Hence,

λLi = λSc = λWa =
(θ̂ − θ∗)2

σ2
(C.393)

Many other commonly used test statistics (or their squares) are special cases
of one of the 3 classic test statistics. For example, the z-statistic used with normal
distributions, the t-statistic used with the Student t-distribution, the F-statistic used
in linear regression, the chi-squared statistic used to do Pearson’s chi-squared test.

Asymptotic Behavior
If the data x⃗ is i.i.d.,

P (x⃗|θ) =
nsam−1∏
σ=0

P (xσ|θ) (C.394)

Hence, as nsam→∞,

LL(θ) = lnP (x⃗|θ) (C.395)

=
∑
σ

lnP (xσ|θ) (C.396)

→ nsam
∑
x

P (x|θ) lnP (x|θ) (C.397)

= −nsam H(x|θ) (C.398)

Thus, maximizing the log likehood LL(θ) and minimizing the entropy H(x|θ) give
the same estimate θ̂.

When the data is i.i.d. and nsam → ∞, it is also possible to prove that the
3 test statistics defined above all tend to the same probability distribution, namely
X 2(θ∗; ν), the chi-square distribution with ν degrees of freedom, where θ ∈ Rn, R ∈
Rν×n, and ν = n if R = 1.

C.40 Error Bars
Never report measurements without error bars!!

Assume a distribution with mean µ and standard deviation σ for a subpopu-
lation with n samples.

SE = σ√
n

is called the standard error.
Some popular types of error bars:

• Box and Whiskers plot (a.k.a. Boxplot)

See Fig.C.15. IQR stands for Intermediate Quantile Range. Sometimes,
the endpoints of the error bars are taken to be the minimum and maximum
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samples instead of Q1 − 1.5 ∗ IQR and Q3 + 1.5 ∗ IQR. The points that fall in
the intervals [min, Q1−1.5∗IQR] and [Q3+1.5∗IQR,max] are called outliers.

Figure C.15: Boxplot plot for Normal distribution N (µ = 0, σ). Q1 and Q3 are the
first and third quantiles, and M is the median (i.e., half-way point). For a non-normal
skewed distribution, Q1 and Q3 are not equidistant from the median, and the median
is not exactly equal to the mean.

• Standard Deviation

Error bar endpoints are located one standard deviation away from the mean.

µ− σ < µ < µ+ σ (C.399)

• Confidence Interval

µ− |z∗|SE < µ < µ+ |z∗|SE (C.400)

|z∗| = 1.96 for a confidence level of 95%.

The origin of Eq.(C.400) is explained in the next section entitled “Confidence
Intervals". Confidence intervals are derived from the Gaussian in Fig.C.16,
which should not be confused with the Gaussian of Fig.C.15. They are different!

C.41 Confidence Interval
Normal distribution with mean µ and standard deviation σ:
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N (x;µ, σ2) =
1

σ
√
2π
e−

(x−µ)2

2σ2 . (C.401)

Standard Normal Distribution (SND):

P (z) = N (z; 0, 1) (C.402)

Cumulative distribution for P (z):

Φ(z) =

∫ z

−∞
dz′ P (z′) . (C.403)

Figure C.16: Interpretation of confidence level C and p-value as areas under curve of
the Standard Normal Distribution (SND).

Confidence Level C and corresponding |z∗| value (see Fig.C.16):

C =

∫ |z∗|

−|z∗|
dz P (z) = Φ(|z∗|)− Φ(−|z∗|) = 2

(
Φ(|z∗|)− 1

2

)
(C.404)

Equivalent definition:

C = P

 |x− µ|σ√
n︸ ︷︷ ︸

|z|

< |z∗|

 (C.405)

For C = 95%, |z∗| = 1.960 ≈ 2. For C = 99%, |z∗| = 2.576.
Area of each tail in Fig.C.16 is usually called α, and the area of both tails is

called the p-value:
C + 2α︸︷︷︸

p−value

= 1 . (C.406)
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Estimators16 of mean µ and standard deviation σ from measurements xσ of a
sub-population Σ1 of size n = |Σ1|:

µ̂ = x =
1

n

∑
σ∈Σ1

xσ (C.407)

σ̂2 =
1

n− 1

∑
σ∈Σ1

(xσ − x)2 (C.408)

We get from Eq.(C.405), the Error bars (a.k.a. confidence intervals) and
Error E (a.k.a. margin of error):

estimate of x with error bars = x± |z∗| σ̂√
n︸ ︷︷ ︸

E

(C.409)

n =

(
|z∗|σ̂
E

)2

(C.410)

So far, we have assumed that the sub-population (a.k.a. sample population) is
normally distributed. This might be false for several reasons. Some red flags: (1) n is
too small (according to a rule of thumb derived from Central Limit Theorem, n should
be larger than 30 to insure a Normal Distribution). (2) Sub-population not truly
random (i.i.d.) because was taken without replacement. In many cases, especially
when n < 30, the Student’s t-distribution models the sub-population statistics much
better than the Normal distribution.

The Student’s t-distribution Stud(t; ν = n − 1), depends on a parameter ν
called the number of degrees of freedom. In the case being considered here, ν equals
the sub-population size n minus one. When fitting the data with Stud(), variable t
replaces variable z, and Stud(t; ν = n− 1) replaces the Standard Normal distribution
(SND) N (z;µ = 0, σ = 1). Stud() is symmetric about the origin like SND, but its
tails are fatter. When fitting the data with Stud(), the |z∗| value is replaced by a |t∗|
value. Eq.(C.404) is replaced by

C =

∫ |t∗|

−|t∗|
dt Stud(t) = ΦS(|t∗|)− ΦS(−|t∗|) = 2

(
ΦS(|t∗|)−

1

2

)
, (C.411)

where ΦS() is the cumulative distribution for Stud(). Also, Eq.(C.409) is replaced by

estimate of x with error bars = x± |t∗| σ̂√
n︸ ︷︷ ︸

E

. (C.412)

Tables of |t∗|(C, ν = n − 1) are available. Note that |t∗| depends on both C and ν,
whereas |z∗|(C) depends only on C.

16Don’t confuse the sample index σ with the standard deviation σ.
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C.42 Score p-value
When defining error bars and confidence intervals in Fig.C.16, we defined a triplet of
values (z, C, p) where C + p = 1. In this section, we will consider a different triplet
of those values. We will refer to the triplet (zth, Cth, pth) used in error bars as the
threshold triplet, and to the triplet (zsc, Csc, psc) introduced in this section as the
score triplet. When we do hypothesis testing, if |zsc| > |zth| (i.e., if zsc falls outside
the error bars), we say that the null hypothesis is violated. Equivalently, we say the
null hypothesis is violated if psc < pth = 1 − Cth = 0.05 typically. Most statistics
books do a poor job at distinguishing between the threshold and score triplets, and
seldom use distinguishing subscripts like th and sc. In this book, we will often drop
the sc subscripts, but we will try not to drop the th subscripts. Often, instead of a th
subscript, we will use an asterisk superscript. For instance, instead of zth, we might
use z∗. When statisticians use the term “p-value", they are usually referring to the
score p-value, although not always.

Given a parameter θ, call θ = θ0 (or θ < θ0 or θ > θ0) the null hypothesis
h0, and call the negation of h0 (i.e., θ ̸= θ0 (or θ ≥ θ0 or θ ≤ θ0)) the alternative or
opposite hypothesis h1. Assume we are given data x⃗ = {xσ|σ ∈ Σ}. Assume also
that we are given distributions P (x = x|h) for h ∈ {h0, h1}, and P (x = x). Now let

P (x⃗|h) =
∏
σ

P (x = xσ|h) (C.413)

P (x⃗) =
∏
σ

P (x = xσ) (C.414)

(so the xσ are i.i.d.).
A Bayesian would assume that there is a prior P (h), and use it to calculate

P (h|x⃗) = P (x⃗|h)P (h)
P (x⃗)

. P (h = h0|x⃗) is the probability that the null hypothesis is true.
A p-value is a monotonically increasing function of P (h = h0|x⃗), so Bayesians have
no trouble saying that a p-value is a measure of P (h = h0|x⃗), i.e., a measure of the
probability that the null-hypothesis is true.

Frequentists, on the other hand, believe that h is a “parameter" which has
an priori value; therefore, it’s not a random variable, so P (h = h0|x⃗) is undefined.
To circumvent this objection, a frequentist would conduct a bunch of experiments to
decide whether h equals h0 or h1. Then he/she would say the p-value is the fraction
of those experiments that claim h = h0.

Next, we explain in more detail the correct way of thinking about p-values,
according to Frequentists. p-values were invented by Frequentists, so it’s worth hear-
ing what they have to say about them. The Frequentist definition is not against
Bayesianism, and Bayesians, unlike Frequentists, don’t accuse Frequentists of having
a sinfully incorrect definition of p-values. A Bayesian would just say: our definition of
p-values (shown in red above) is not incorrect, but the Frequentist definition is more
precise than ours, and doesn’t assume a particular form for a prior. We welcome it.
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Call the random variable t the test or score statistic and let t∗ be a user
defined parameter. t and t∗ are defined so that when t = t∗, the h0 hypothesis is on
the threshold between being and not being satisfied. Frequentists define the p-value
p as

p =


P (t ≥ t∗|h0) right-sided-tail, if h0 is θ < θ0
P (t ≤ t∗|h0) left-sided-tail, if h0 is θ > θ0
P (|t| > |t∗| |h0) double-sided-tail, if h0 is θ = θ0

(C.415)

Thus, for a Frequentist, a p-value is a probabilistic weight of the region where the h0
hypothesis is defined (by the user) to be violated. If that weight is large, then the
region where the h0 hypothesis is defined to be satisfied is small, which means the h0
hypothesis is expected to be close to the truth. The larger the p-value, the closer h0
is expected to be near the truth, just like the Bayesian definition says. Note that the
p-value is a probability so it ranges in value from 0 to 1.

Suppose we are given a sub-population with n samples, mean x and variance
σ̂. Let θ0 = µ0. Define

t = z =
x− µ0

σ̂√
n

. (C.416)

For n > 30,

P (z ≥ z∗|h0) = 1− Φ(z∗) = Φ(−z∗) if h0 is µ < µ0 (C.417a)
P (z ≤ z∗|h0) = Φ(z∗) if h0 is µ > µ0 (C.417b)

P (|z| ≥ |z∗| |h0) = 2Φ(−|z∗|) if h0 is µ = µ0 (C.417c)

where Φ(x) is the cumulative distribution for the Standard Normal Distribution
N (x;µ = 0, σ = 0). For n < 30, Φ() is replaced by ΦS(), where ΦS() is the cu-
mulative distribution for the Student t-distribution Stud(x; ν = n − 1). Note that
Eq.(C.417c) agrees with Eq.(C.405).

The quantity

ẑsc =
x− µ0

σ̂√
n

(C.418)

is called the z score estimator. If |ẑsc| > |z∗|, then the h0 hypothesis is defined to
be violated (for the double sided case).

C.43 Convex/Concave functions, Jensen’s Inequal-
ity

Suppose f : R → R. f(x) is a concave function if looks like a cave (∩) (i.e.,
f ′′(x) > 0 if differentiable) and it’s a convex function if it looks like a valley (∪)
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(i.e., f ′′(x) < 0 if differentiable). More generally, if f : Ra → R, f(x) is said to be
concave if f(αx + βy) ≥ αf(x) + βf(y) and convex if f(αx + βy) ≤ αf(x) + βf(y)
for α, β ∈ R and x, y ∈ Ra.

Figure C.17: Jensen’s inequality for sum of 2 terms, when f : R→ R is convex.

Suppose f : Ra → R is a convex function. Let α, β be non-negative numbers
that sum to 1, and x, y ∈ Ra. From the definition of convexity, it follows that (see
Fig.C.17 for a geometrical representation of this when a = 1)

f(αx+ βy) ≤ αf(x) + βf(y) (C.419)

Jensen’s inequality is a simple generalization of this inequality to sums of more
than 2 terms. Let {pi}ni=0 be non-negative numbers that sum to one. Also assume
that {xi}ni=0 are elements of Ra. Then

f

(
n∑
=1

pixi

)
≤

n∑
=1

pif(xi) (C.420)

or, written in terms of expected values,

f(E[x]) ≤ E[f(x)] (C.421)

The same result is true if f is concave instead of convex and we reverse the inequality
signs.

C.44 Chebyshev’s inequality
Chebyshev’s inequality (CI) gives an upper bound for the area under the 2 tails (left
and right ones) of a probability distribution.

Below, we follow the common practice of proving CI as a corollary of Markov’s
Inequality (MI).
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Claim 17 (Markov’s Inequality) Let x be a non-negative random variable and let
a > 0. Then

P (x ≥ a) ≤ E[x]

a
(C.422)

proof:

E[x]

a
=

∫∞
0
dx xP (x)

a
(C.423)

≥
∫∞
a
dx xP (x)

a
(C.424)

≥
∫∞
a
dx aP (x)

a
(C.425)

= P (x ≥ a) (C.426)

QED

Claim 18 (Chebyshev’s inequality) Let x be a random variable with mean µ and
variance σ2. Then for any real number k > 0,

P (|x− µ| ≥ kσ) ≤ 1

k2
(C.427)

proof:

P (|x− µ| ≥ kσ) = P (|x− µ|2 ≥ k2σ2) (C.428)

≤ σ2

k2σ2
(by MI) (C.429)

=
1

k2
(C.430)

QED
See Fig.C.18 for a pictorial representation of CI. Note that the CI approx-

imation is always a bad approximation for small k, and might not become good
even for large k. For example, if the x distribution is a box centered at µ, then
P (|x − µ| ≥ kσ) = 0 for kσ larger than the width of the box, so 1/k2 is a terrible
approximation for large k too.

A (1 dimensional) Center of Mass (CM) for a unit mass object is an expectation
value where the probability distribution is a mass distribution. Hence, it’s not too
surprising that MI can be interpreted in terms of CMs.

Physics Intuition for MI in terms of CMs:
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Figure C.18: Pictorial representation of Chebyshev’s Inequality (CI). Markov’s In-
equality (MI) has a similar representation, but k is proportional to

√
a, so the upper

bound for MI goes as 1/a instead of 1/k2.

∫ ∞

0

dx xP (x)︸ ︷︷ ︸
E[x]=CM

=

∫ a
0
dx xP (x)

P (x < a)︸ ︷︷ ︸
Ex<a[x]=CM−

P (x < a)︸ ︷︷ ︸
f−

+

∫∞
a
dx xP (x)

P (x > a)︸ ︷︷ ︸
Ex>a[x]=CM+

P (x > a)︸ ︷︷ ︸
f+

(C.431)

CM (f+ + f−)︸ ︷︷ ︸
=1

= CM−f− + CM+f+ (C.432)

≥ CM+f+ (C.433)
≥ af+ (because CM+ ≥ a) (C.434)

You can think of CM+f+ as a torque with moment arm= CM+ and force=f+. In
this picture, MI is the approximation of a torque with moment arm=CM and force=1,
by a smaller torque with moment arm= any real a > 0 and force=f+ ≤ 1.

C.45 Short Summary of Boolean Algebra
See Ref.[108] for more info about this topic.

Suppose x, y, z ∈ {0, 1}. Define

x or y = x ∨ y = x+ y − xy , (C.435)

x and y = x ∧ y = xy , (C.436)

and

not x = x = 1− x , (C.437)
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Associativity x ∨ (y ∨ z) = (x ∨ y) ∨ z
x ∧ (y ∧ z) = (x ∧ y) ∧ z

Commutativity x ∨ y = y ∨ x
x ∧ y = y ∧ x

Distributivity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z)
x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)

Identity x ∨ 0 = x
x ∧ 1 = x

Annihilator x ∧ 0 = 0
x ∨ 1 = 1

Idempotence x ∨ x = x
x ∧ x = x

Absorption x ∧ (x ∨ y) = x
x ∨ (x ∧ y) = x

Complementation x ∧ x = 0
x ∨ x = 1

Double negation (x) = x

De Morgan Laws x ∧ y = (x ∨ y)
x ∨ y = (x ∧ y)

Table C.1: Boolean Algebra Identities

where we are using normal addition and multiplication on the right hand sides.17

Actually, since x∧y = xy, we can omit writing the symbol ∧. The symbol ∧ is
useful to exhibit the symmetry of the identities, and to remark about the analogous
identities for sets, where ∧ becomes intersection ∩ and ∨ becomes union ∪. However,
for practical calculations, ∧ is an unnecessary nuisance.

Since x ∈ {0, 1},
P (x) = 1− P (x) . (C.438)

Clearly, from analyzing the simple event space (x, y) ∈ {0, 1}2,

P (x ∨ y) = P (x) + P (y)− P (x ∧ y) . (C.439)

C.46 Laplace transform
This section is a watered down version of the Wikipedia entry for Laplace Transforms
(Ref.[142]), which we highly recommend.

Let 0− = 0− ϵ, 0+ = 0 + ϵ for some ϵ ∈ R such that 0 < ϵ << 1.
Let s = σ + iω for σ, ω ∈ R. σ is called the decay constant and ω is called

the angular frequency.
17Note the difference between ∨ and modulus 2 addition⊕. For⊕ (a.k.a. XOR): x⊕y = x+y−2xy.
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The Laplace Transform (LT) of f : [0,∞]→ C is defined as

L[f ](s) = f̃(s) =

∫ ∞

0−
dt e−stf(t) (C.440)

Note that the LT is a linear functional18 because

L[af + bg](t) = aL[f ](t) + bL[g](t) (C.441)

for f, g : [0,∞]→ C and a, b ∈ C.
The Inverse Laplace Transform is defined so that

L−1[L[f ]︸︷︷︸
f̃

](t) = f(t) (C.442)

For LTs, we assume functions f(t) that vanish for t < 0−. They can jump to
a finite value (with a step function) or an infinite value (with a Dirac delta function)
at t = 0, but must vanish for t < 0−. LTs are ideally suited for solving ordinary
differential equations with initial conditions such as x(0) = 5, ∂tx(0) = 10.

name formula comment

Bilateral Laplace
transform (BLT) B[f ](s) =

∫∞
−∞ dt e−stf(t)

same as LT but
with −∞ < t <∞
instead of t > 0

Fourier transform (FT) F [f ](ω) =
∫∞
−∞ dt e−iωtf(t)

Same as BLT but
with s = iω ∈ iR

Star Transform (ST) L∗[f ](s) =
∑∞

n=0 e
−snTf(nT )

Same as LT but
it samples only
discrete points at
t = nT

Moment Generating
Function

Ex[e
−sx] =

∫∞
0
dx e−sxP (x)

⟨xn⟩ = [(−∂s)nEx[e−sx]]s=0

Same as LT but
for probability
distribution
P : [0,∞]→ [0, 1]

Table C.2: Transforms that are akin to the Laplace transform. Don’t be intimidated
by all these transforms. They are all just fancy dot products like a⃗ · b⃗.

Table C.2 is a table of transforms that are akin to the LT. If the function f(t)
does not vanish for t < 0, we can use the Bilateral Laplace Transform (BLT).
The BLT becomes the Fourier transform (FT) when s = iω. In this section, we
will only discuss the LT.

18A functional F [f ] is a function of a function f , or, equivalently, a function of a vector with
possibly infinitely many components given by [f(x)]∀x.
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The following intuition about LTs might be helpful to the reader. A LT is
like a dot product of two vectors, e−st and f(t), except that in this case the index
t for their components is an uncountable set [0,∞). As with all dot products, its
maximum is achieved if the two vectors point in the same direction (this is what
the Cauchy Schwartz inequality a⃗ · b⃗ = |⃗a||⃗b| cos θ ≤ |⃗a||⃗b| says). In this case, if we
substitute f(t) = f̃(s0)e

s0t on the right hand side of Eq.(C.440), we get

f̃(s) = f̃(s0)

∫ ∞

0−
dt e−(s−s0)t (C.443)

= f̃(s0)δ+(s− s0) (C.444)

So our intuition is this: whenever you see an equation involving LTs, replace each
f(t) by the special case f(t) = esotf̃ (this is called a phasor when s0 = iω0), and
convince yourself that that the equation is valid in the special case of phasors.

Define the Dirac delta function by

δ(t) =

∫ ∞

−∞
dω eiωt =

{
∞ if t = 0
0 otherwise (C.445)

and the Heaviside step function by

Ha(t) = 1(t− a > 0) (C.446)

Next, we will list some examples and properties of LTs. Henceforth, we will
use the following notation:

a, b ∈ C
f, g : [0,∞]→ C
f(t)

L
// f̃(s) means L[f ](s) = f̃(s)

C.46.1 Examples

• Dirac delta function

δ(t− a)
L
// e−sa (C.447)

• Heaviside step function

Ha(t) L
// 1

s
e−sa (for Re(s) > 0, a > 0) (C.448)

• box

H0(t)−Ha(t) L
// 1

s
(1− e−sa) (for Re(s) > 0, a > 0) (C.449)
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• ramp

t H0(t) L
// 1

s2
(for Re(s) > 0) (C.450)

• curved ramp

tn

n!
H0(t) L

// 1

sn+1
(for Re(s) > 0 and n ≥ 0) (C.451)

• sine, cosine

sin(at)H0(t) L
// a

s2 + a2
(C.452)

cos(at)H0(t) L
// s

s2 + a2
(C.453)

• polynomial rise, exponential drop

tn

n!
e−at H0(t) L

// 1

(s+ a)n+1
(for Re(s) > −a) (C.454)

• Exponential approach to steady state

(1− e−at)H0(t) L
// a

s(s+ a)
(for Re(s) > 0, Re(s) > −a) (C.455)

C.46.2 Properties

• Taylor series of f(t) ∫ ∞

0

dx e−x
xn

n!
= 1 (C.456)

∫ ∞

0

dt e−st
tn

n!
=

1

sn+1
(C.457)

tn

n!
H0(t) L

// 1

sn+1
(C.458)

f(t)H0(t) = H0(t)
∞∑
n=0

tn

n!
∂nt f(0) (C.459)

L
//

∞∑
n=0

1

sn+1
∂nt f(0) (C.460)
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• derivatives of f̃(s)

(−t)f(t)
L
// ∂sf̃(s) (C.461)

(−t)kf(t)
L
// (∂s)

kf̃(s) (C.462)

• derivatives of f(t)

Define

f≥1(t) = f(t)− f(0+)H0(t) (C.463)

f≥2(t) = f(t)− f(0+)H0(t)− tf ′(0+)H0(t) (C.464)

∂tf(t) L
// sf̃≥1(s) (C.465)

= sf̃(s)− f(0+) (a.k.a. f(t) differentiator) (C.466)

For example, for f(t) = tn

n!
H0(t), we have f̃(s) = 1

sn+1 , so Eq.(C.466) becomes

tn−1

(n− 1)! L
// 1

sn
(C.467)

(∂t)
2f(t)

L
// s2f̃≥2(s) (C.468)

= s2f̃(s)− sf ′(0+)− f(0+) (C.469)

• integral of f(t) (a.k.a. f(t) integrator)∫ t

0

dτ f(τ)
L
// 1

s
f̃(s) (C.470)

For example, for f(t) = tn

n!
H0(t), we have f̃(s) = 1

sn+1 , so Eq.(C.470) becomes

tn+1

(n+ 1)!
H0(t) L

// 1

sn+2
(C.471)

Note that
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∫ t

0

dτ f(τ) =

∫ ∞

−∞
dτ f(τ)H0(τ)H0(t− τ) (C.472)

= ((fH0)⊛H0)(t) (C.473)

• integral of f̃(s)

1

t
f(t)

L
//
∫ ∞

s

dσ f̃(σ) (C.474)

• shifting f̃(s) (frequency shifting)

eatf(t)
L
// f̃(s− a) (for a > 0) (C.475)

• shifting f(t) (time shifting).

f(t− a) Ha(t) L
// e−asf̃(s) (for a > 0) (C.476)

• time scaling

f(at)
L
// 1

a
f̃
(s
a

)
(for a > 0) (C.477)

• multiplication

f(t)g(t)
L
// 1

2πi
lim
T→∞

∫ c+iT

c−iT
ds′ f̃(s′)g̃(s− s′) (C.478)

• convolution

The convolution of f : R→ C and g : R→ C is defined by

(f ⊛ g)(t) =

∫ ∞

−∞
dτ f(τ)g(t− τ) (C.479)

If f(t) = g(t) = 0 for t < 0,

(f ⊛ g)(t) =

∫ t

0

dτ f(τ)g(t− τ) (see Fig.C.19.) (C.480)

It’s not hard to show that

f ⊛ g = g ⊛ f (C.481)
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Figure C.19: Pictorial representation of the convolution (f ⊛ g)(t).

and that

(f ⊛ g)(t)
L
// f̃(s)g̃(s) (C.482)

Eq.(C.482) is easy to check with phasors. Indeed, if we substitute f(τ) = eiω0τ f̃
and g(t − τ) = eiω0(t−τ)g̃, on the right hand side of Eq.(C.480), the right hand
side becomes eiω0tf̃ g̃, and the LT of that is f̃ g̃.

A common question is how does one evaluate convolutions in practice. If one
can sample and remember the waveforms f(τ) and g(τ) for all τ ∈ [0, t], then
it’s just a matter of multiplication and addition of samples. Sometimes, even
if we have no memory resources, it’s possible to calculate a convolution. For
example, if g(t) = estH0(t)

(f ⊛ g)(t) =

∫ t

0

dτ f(τ)es(t−τ) (C.483)

= est︸︷︷︸
g(t)

f̃(s) (C.484)

so convolving this g(·) merely evaluates it at t and multiplies it by a constant
f̃(s).

• circular convolution

If fT , gT are periodic functions with period T , their circular convolution is
defined as

(fT ⊛C gT )(t) =

∫ T

0

dτ fT (τ)gT (t− τ) (C.485)
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One can show that

(fT ⊛C gT )(t) L
// f̃T (s)g̃T (s) (C.486)

• complex conjugation
f ∗(t)

L
// f̃ ∗(s∗) (C.487)

• cross correlation

The cross correlation of functions f, g : [0,∞]→ C is defined as

(f, g)CC =

∫ ∞

0

dτ f ∗(τ)g(t+ τ) (C.488)

One can show that

(f, g)CC L
// f̃ ∗(−s∗)g̃(s) (C.489)

• LT of periodic function

If fT (t) is a periodic function with period T , then

fT (t)H0(t) L
// 1

1− e−sT

∫ T

0

dt e−stfT (t) (C.490)

To show this, define

Iba =
∫ b

a

dt e−stfT (t) (C.491)

Then

f̃T (s) = IT0 + I2TT + I3T2T + · · · (C.492)
= IT0 (1 + e−sT + e−s2T + · · · ) (C.493)

=
1

1− e−sT
IT0 (C.494)

• periodic summation

∞∑
n=0

f(t− nT )H0(t− nT ) L
// 1

1−e−Ts
f̃(s) (C.495)

∞∑
n=0

(−1)nf(t− nT )H0(t− nT ) L
// 1

1+e−Ts
f̃(s) (C.496)
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• limits of f(t)

lim
s→∞

sf̃(s) = lim
s→∞

s

∫ ∞

0

dt e−stf(t) (C.497)

≈ f(0+) lim
s→∞

s

∫ ∞

0

dt e−st︸ ︷︷ ︸
=1

(C.498)

= f(0+) (C.499)

lim
s→0

sf̃(s) = f(∞) (a.k.a. steady state) (C.500)

• Inverse LT

The inverse LT of a function f̃(s) can be calculated by performing the following
complex contour integral:

L−1[f̃(s)](t)︸ ︷︷ ︸
f(t)

=
1

2πi
lim
T→∞

∫ γ+iT

γ−iT
ds estf̃(s) (C.501)

where γ, T ∈ R and all singularities of f̃(s) must be located on the left side of
the contour of integration. Another way of calculating the inverse LT of f̃(s),
is to express f̃(s) as a linear combination of functions for which the inverse LT
is known from LT tables. For instance,

L−1

[
1

s(s− 1)

]
=L−1

[
1

s
− 1

s+ 1

]
(partial fractions expansion) (C.502)

=L−1

[
1

s

]
− L−1

[
1

s+ 1

]
(C.503)

=H0(t)[1− e−t] (C.504)

• Bode, Nyquist plots

Let s = σ + iω.

Bode plot: plot of
(log10(ω), log10 |f̃(iω)|)

and, right below it, plot of

(log10(ω), phase{f̃(iω)})
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.

Nyquist plot: plot of
(Ref̃(iω), Imf̃(iω))

or, equivalently, plot of

(|f̃(iω)|, phase(f̃(iω)))

on polar graph paper.

Usually, f̃(iω) is a gain (i.e., LT of output divided by LT of input).

• uncertainty principle

Here is some “Heisenberg uncertainty principle" type intuition about the rela-
tionship between a function f(t) and its LT f̃(s) for s = iω ∈ iR.

f(t) f̃(iω) |f̃(iω)| phase(f̃(iω))

δ(t) 1 1 0
H0(t)

1
iω

1
|ω| −π

2

t H0(t)
1

(iω)2
1
ω2 −π

t2

2
H0(t)

1
(iω)3

1
|ω|3

π
2

(C.505)

Hence, the narrower f(t) is, the broader |f̃(iω)| is. Also, the more f(t) is a high
pass filter, the more |f̃(iω)| is a low pass filter.

C.47 Z-transform
This section is a watered down version of the Wikipedia entry for Z-transforms
(Ref.[180]), which we highly recommend. Before reading this section, we recommend
that the reader read Section C.46 on Laplace transforms, as those are the continuous
in time version of Z-transforms.

Suppose x[n] ∈ C for all n ∈ Z≥0 (Z≥0 =non-negative integers), and z ∈ C.
Then we define the Z-transform (ZT) by

Z[x](z) = x̃(z) =
∞∑
n=0

x[n]z−n (C.506)

Note that the ZT is a linear functional because

Z[ax[n] + by[n]] = aZ[x[n]] + bZ[y[n]] (C.507)

for x[n], y[n] ∈ C for all n ∈ Z≥0, and a, b ∈ C.
The Inverse Z-transform is defined so that
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Z−1[Z[x[n]]︸ ︷︷ ︸
x̃(z)

][n] = x[n] (C.508)

name formula comment

Bilateral
ZT (BZT) x̃(z) =

∑∞
n=−∞ x[n]z−n

Same as ZT but
with n ∈ Z
instead of
n ∈ Z≥0

Discrete time Fourier
transform (DTFT) x̃2π(ω) =

∑∞
n=−∞ x[n]e−iωn

same as BZT but
with z = eiω

Discrete Fourier
transform (DFT) x̃[k] =

∑N−1
n=0 x

[n]e−i
2πkn
N

Same as ZT but a
finite (N) number of
x[n] components, and
with z = ei

2πk
N for

k = 0, 1, . . . , N − 1
(N roots of unity
on unit circle)

Probability
Generating Function P̃ (z) =

∑∞
n=0 P

[n]zn

same as ZT but
with n→ −n and
P [n] : Z≥0 → [0, 1]
is a discrete prob.
distribution. If
z = e−T , get moment
genetating function.

Table C.3: Transforms that are akin to the Z-transform. Don’t be intimidated by all
these transforms. They are all just fancy dot products like a⃗ · b⃗.

Table C.3 is a table of transforms that are akin to the ZT.
For models that are continuous in time (i.e., analog) we use Laplace transforms

(LTs), and for models that are discrete in time (i.e., digital), we use Z-transforms
(ZTs). Digital models are often obtained by sampling analog models at discrete times
separated by a time interval T . Hence, it is useful to know how LTs and ZTs are
related. To find out, let

e−st = z−n (C.509)

and

t = nT (C.510)

Hence, we arrive at the very useful formula
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z = esT (C.511)

Figure C.20: Relationship between the s-plane (for Laplace transform) and z-plane
(for Z-transform.).

If

s = σ + iω, z = reiθ (C.512)

then

r = eσT , θ = ωT (C.513)

The map given by Eqs.(C.513) is illustrated by Fig.C.20. As shown in Fig.C.20, the
map from the s-plane (for LTs) to the z-plane (for ZTs) maps:

• left half plane (LHP) → inside of the unit circle

• imaginary axis → unit circle. In particular, the s-plane origin s = 0 and points
with σ = 0, ω = 2πk

T
, where k ∈ Z, are all mapped to z = 1.

• right half plane (RHP) → outside of unit circle

Define the the Kronecker delta function by

δ
[n]
j = 1(n = j) (C.514)

and the discrete Heavyside step function by

H
[n]
j = 1(n ≥ j) (C.515)

Note that
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H
[n]
0 =

∞∑
k=0

δ
[n]
k (C.516)

Next, we will list some examples and properties of ZTs. Henceforth, we will
use the following notation:

x[n], x
[n]
1 , x

[n]
2 ∈ C are defined only for n ∈ Z≥0

x[n]
Z
// x̃(z) means Z[x[n]] = x̃(z)

The Region Of Convergence (ROC) for a ZTs is very important (Without
knowing the ROC, you can’t invert a ZT x̃(z)). We won’t list ROCs here, but they
can be found in ZT tables like those in Ref.[180].

Note that ZT formulae can be “sanity checked" by replacing z = esT and checking
that for 0 < T << 1,

Z[x](esT ) ≈ 1

T
L[f ](s) (C.517)

Note also that for T << 1:

z ≈ 1, z∂z = ∂ln z = ∂sT , (z − 1)n ≈ (sT )n (C.518)∫∞
0− dt δ(t) = 1 =

∑∞
n=0 δ

[n]
0 so by dimensional analysis, δ[n]0 ≈ Tδ(t).

H
[n]
0 ≈ H0(t)

C.47.1 Examples

• Kronecker delta function

δ[n]n0 Z
// z−n0 (C.519)

Compare this with

δ(t− t0) L
// e−st0 (C.520)

with t0 = n0T and z = esT .
Note that

Z[H[n]
0 ] =

∞∑
k=0

Z[δ[n]k ] (C.521)

=
∞∑
k=0

z−k (C.522)

=
1

1− 1/z
(C.523)
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• unit step

For a ∈ C,

anH
[n]
0 Z

// 1

1− az−1
for |z| > |a| (C.524)

−anH[−n−1]
0 Z

// 1

1− az−1
for |z| < |a| (C.525)

Compare this with

H0(t) L
// 1

s
(for Re(s) > 0) (C.526)

for a = 1, z = esT ≈ 1 + sT .

• ramp

For a ∈ C,

nanH
[n]
0 Z

// az−1

(1− az−1)2
for |z| > |a| (C.527)

−nanH[−n−1]
0 Z

// az−1

(1− az−1)2
for |z| < |a| (C.528)

• sine, cosine

For a ∈ C,

an sin(ω0n)H
[n]
0 Z

// az−1 sinω0

1− 2az−1 cosω0 + a2z−2
(C.529)

an cos(ω0n)H
[n]
0 Z

// 1− az−1 cosω0

1− 2az−1 cosω0 + a2z−2
(C.530)

C.47.2 Properties

• time expansion

x[n/K]
1(n/K ∈ Z)

Z
// x̃(zK) (C.531)

• decimation

x[Kn]
Z
// 1

K

K−1∑
p=0

x̃
(
z

1
K e−i2π

p
K

)
(C.532)
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• time delay

x[n−k]
Z
// z−kx̃(z) (for k > 0) (C.533)

• time advance

x[n+k]
Z
// zk

(
x̃(z)− zk

k−1∑
n=0

x[n]z−n

)
(for k > 0) (C.534)

• first difference backwards

x[n] − x[n−1]

Z
// (1− z−1)x̃(z) (C.535)

• first difference forward

x[n+1] − x[n]
Z
// z
(
(1− z−1)x̃− x[0]

)
(C.536)

• time reversal

x[−n]
Z
// x̃(z−1) (C.537)

• scaling in z-domain

For a ∈ C,

anx[n]
Z
// x̃(a−1z) (C.538)

• complex conjugation

(x[n])∗
Z
// x̃∗(z∗) (C.539)

Re(x[n])
Z
// 1

2
(x̃(z) + x̃∗(z∗)) (C.540)

Im(x[n])
Z
// 1

2i
(x̃(z)− x̃∗(z∗)) (C.541)

• x̃(z) differentiation

nx[n]
Z
// − z∂zx̃(z) (C.542)
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• convolution

Define the (discrete) convolution of x[n]1 and x[n]2 by

x
[n]
1 ⊛ x

[n]
2 =

n∑
k=0

x
[k]
1 x

[n−k]
2 (C.543)

One can show that

x
[n]
1 ⊛ x

[n]
2 Z

// x̃1(z)x̃2(z) (C.544)

• cross-correlation

(x
[−n]
1 )∗ ⊛ x

[n]
2 Z

// x̃1
∗
(

1

z∗

)
)x̃2(z) (C.545)

• accumulation

∞∑
k=−∞

x[k]
Z
// 1

1− z−1
x̃(z) (C.546)

• multiplication

x
[n]
1 x

[n]
2 Z

// 1

2πi

∮
C

dw

w
x̃1(w)x̃2

( z
w

)
(C.547)

• Parseval’s theorem

∞∑
k=−∞

x
[n]
1 (x

[n]
2 )∗ =

1

2πi

∮
C

dw

w
x̃1(w)x̃

∗
2

(
1

w∗

)
(C.548)

• limits of x[n]

initial value theorem

x[0] = lim
z→∞

x̃(z) (C.549)

final value theorem

x[∞] = lim
z→1

(z − 1)x̃(z) (C.550)
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• Inverse ZT

Z−1[x̃(z)]︸ ︷︷ ︸
x[n]

=
1

2πi

∮
C

dz x̃(z)zn−1 (C.551)

where C is a counterclockwise closed path containing the origin and all singu-
larities of x̃(z).

C.48 Legendre Transformation (dual functions)
This section is a watered down version of the Wikipedia article Ref.[144], which we
highly recommend.

Figure C.21: The line y = xp goes through the origin and has arbitrary slope p. p∗ is
the special slope at x for which the line y = xp∗, if displaced parallelly, can be made
tangential (kissing) to the curve y = f(x).

Let x, p ∈ Rn. If f : Rn → R is a concave function, we define its dual (a.k.a.
conjugate) function f̃ : Rn → R by

f̃(p) = min
x

(pTx− f(x)) . (C.552)

This definition also applies if one replaces the words “concave" by “convex" and “min"
by “max".19 f̃(p) is also called the Legendre transformation (or Legendre trans-
form) (LT) of f(x).

In Physics, x is the position vector and p is the momentum vector of a system.
See Figs. C.21 and C.22 for a pictorial representation of LT.

19This book does not try to be mathematically rigorous beyond the level of applied math. To
be truly rigorous and general, replace “max" by “supremum" and “min" by “infimum". Pure math-
ematicians use min and max only over finite sets, but physicists and engineers often discretize to
obtain a max or min over a finite set with N points, and then, afterwards, take the limit N → ∞.
Not perfect, but good enough for most applied work.
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Figure C.22: The dual function f̃(p) of a concave or convex function f(x) is the
osculating (kissing) locus of the family of lines y = px− f̃(p), where p is the slope at
x of the curve y = f(x).

Note that the right hand side of Eq.(C.552) implies that∑
i

(pi − ∂xif(x))δxi = 0 (C.553)

for all variations δxi. If minimization is achieved when x = x∗, then

p = ∇x∗f(x
∗), x∗ = (∇x∗f)

−1(p) (C.554)

C.48.1 Examples

1. Find the dual function of
f(x) = ex . (C.555)

p = ∂x∗f (C.556)
= ex

∗
(C.557)

x∗ = ln p (C.558)

f(x∗) = p (C.559)

f̃(p) = x∗p− f(x∗) (C.560)
= p ln p− p (C.561)
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2. Find the dual function of

f(x) = f + f ′x+
1

2
f ′′x2 . (C.562)

p = ∂x∗f (C.563)
= f ′ + f ′′x∗ (C.564)

x∗ =
p− f ′

f ′′ (C.565)

f(x∗) = f + f ′
[
p− f ′

f ′′

]
+

1

2
f ′′
[
p− f ′

f ′′

]2
(C.566)

=

[
f − (f ′)2

2f ′′

]
+ p2

[
1

2f ′′

]
(C.567)

f̃(p) = px∗ − f(x∗) (C.568)

= p

[
p− f ′

f ′′

]
− f(x∗) (C.569)

=

[
−f +

(f ′)2

2f ′′

]
+ p

[
−f ′

f ′′

]
+ p2

[
1

2f ′′

]
(C.570)

Note that when f = f ′ = 0, we get

f(x) =
f ′′x2

2
, f̃(p) =

p2

2f ′′ (C.571)

Note that if f is convex (resp., concave), f̃ is convex too (resp., concave too).

3. Find the dual function of

f(x) = ln(1− e−x) . (C.572)

p = ∂x∗f(x
∗) (C.573)

=
e−x

∗

1− e−x∗
(C.574)
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p = (1 + p)e−x
∗

(C.575)

x∗ = ln
1 + p

p
(C.576)

f(x∗) = ln

(
1− p

1 + p

)
= − ln(1 + p) (C.577)

f̃(p) = px∗ − f(x∗) (C.578)

= p ln
1 + p

p
+ ln(1 + p) (C.579)

= −p ln p+ (1 + p) ln(1 + p) (C.580)

Figure C.23: f(x) = ex and its dual.

C.48.2 Properties

Claim 19 If f(x) is a concave function with dual f̃(p), then

f(x) = min
p
(pTx− f̃(p)) (C.581)

∇pf̃(p(x)) = (∇xf)
−1(x) (C.582)

Eqs.(C.552) and (C.581) are also true if we replace the words “concave" with “convex"
and “min" with “max".
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Figure C.24: f(x) = ln(1− e−x) and its dual.

proof:
Let x∗ be the value of x which minimizes y = pTx − f(x) with respect to x.

Hence,
f̃(p) = pTx∗ − f(x∗) . (C.583)

Rearranging terms in Eq.(C.583), we get

f(x∗) = pTx∗ − f̃(p) (C.584)

Let p∗ be the value of p which minimizes y = pTx − f̃(p) with respect to p.
Hence,

f(x) = (p∗)Tx− f̃(p∗) (C.585)

Replacing p∗ by p and x by x∗ in Eq.(C.585) yield Eq.(C.584).
Note that minimization with respect to x is achieved if

pi = ∂xif(x), p = ∇xf(x) (C.586)

whereas minimization with respect to p is achieved if

xi = ∂pi f̃(p), x = ∇pf̃(p) (C.587)

Hence,

x = ∇pf̃(∇xf(x)) (C.588)

QED
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Claim 20 If f(x) is concave (resp., convex), then f̃(p) is also concave (resp., convex)

proof:

f̃(p) = x∗p− f(x∗) (C.589)

df̃

dp
= x∗ + (p− f ′(x∗))︸ ︷︷ ︸

=0

dx∗

dp
= x∗ (C.590)

d2f̃

dp2
=
dx∗

dp
(C.591)

p = f ′(x∗), x∗ = (f ′)−1(p) (C.592)

dp = f ′′(x∗)dx∗,
dx∗

dp
=

1

f ′′(x∗)
(C.593)

d2f̃

dp2
=

1

f ′′(x∗)
(C.594)

QED

Claim 21 LT is its own inverse (i.e., LT is a self-inverse or involution transforma-
tion) ˜̃

f(x) = f(x) (C.595)

proof: x = x1, p = x2

f̃(x2) = x2x
∗
1 − f(x∗1), x2 = f ′(x∗1) (C.596)

˜̃
f(x3) = x3x

∗
2 − f̃(x∗2), x3 = (f̃)′(x∗2) (C.597)

˜̃
f(x3) = x3x

∗
2 − x∗2x∗1 + f(x∗1) (C.598)

= f(x∗1) ( for x∗1 = x3) (C.599)

x = x3 = (f̃)′(x∗2) = (f̃)′(f ′(x∗1)) = x∗1 (C.600)

QED
Additional properties
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• Scaling
ag(bx)

LT
// ag̃(

p

ab
) (C.601)

for a, b > 0

• Translation

g(x+ y) + b
LT
// g̃(p)− pTy − b (C.602)

• Frenchel’s inequality

pTx ≤ f(x) + f̃(p) (C.603)

C.48.3 Connection to Fourier transform and Quantum Me-
chanics

Recall how Fourier transforms (FTs) arise in Quantum Mechanics. Suppose x, p ∈ R
and

ψ(x) = ⟨x|ψ⟩ , ψ̃(p) = ⟨p|ψ⟩ , ⟨p|x⟩ = e−ipx√
2π

(C.604)

Then

ψ̃(p) =

∫ ∞

−∞
dx ⟨p|x⟩ ⟨x|ψ⟩ (C.605)

=

∫ ∞

−∞

dx√
2π

e−ipxψ(x) (C.606)

and

ψ(x) =

∫ ∞

−∞
dp ⟨x|p⟩ ⟨p|ψ⟩ (C.607)

=

∫ ∞

−∞

dp√
2π

eipxψ̃(p) (C.608)

Define a convolution of two wave functions ψ1, ψ2 : R→ C by

(ψ1 ⊛ ψ2)(x) =

∫ ∞

−∞
dy ψ1(y)ψ2(x− y) (C.609)

Then

(ψ1 ⊛ ψ2)
∼(p) = ψ̃1(p)ψ̃2(p) (C.610)
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If, in the definition of LT, we replace the minimum over x of an arbitrary
function Γ : R→ R by

min
x

Γ(x)→ i ln

∫ ∞

−∞

dx√
2π

exp{−iΓ(x)} (C.611)

then we get the definition of a FT:

e−if̃(p)︸ ︷︷ ︸
ψ̃(p)

=

∫ ∞

−∞

dx√
2π

e−ip
T x eif(x)︸ ︷︷ ︸

ψ(x)

(C.612)

Define the infimal convolution of two functions f, g : Rn → R by

(f ⊛inf g)(x) = min
y
{f(y) + g(x− y)} (C.613)

Then

(f ⊛inf g)
∼(p) = f̃(p) + g̃(p) (C.614)

Eq.(C.614) requires a proof that we leave to the reader, but note that it’s just what
would be expected from our “mapping" of LT to FT.

C.49 Numpy tensor methods
Numpy contains excellent documentation which we highly recommend. So why this
appendix? The purpose of this appendix is to compare the tensor operations used in
Physics20 to the tensor operations used in Machine Learning (ML) as exemplified by
Numpy.

But first, some notation.
For integers m > n, let

[n : m] = [n, n+ 1, . . . ,m− 2,m− 1] (C.615)

and
[n] = [0 : n] (C.616)

[n : m] acts the the same way as the function range(n,m) in Python.
We will use

A[n] =


A0

A1

...
An−1

 = A[n],[1] (C.617)

20Elasticity, Fluid Mechanics, General Relativity and Quantum Mechanics all use tensors. Tensors
in various guises are ubiquitous in Physics.
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to denote column vector,

A[n]T = [A0, A1, · · · , An−1] = A[1],[n] (C.618)

to denote a row vector and

A =

 A0,0 · · · A0,m−1

...
...

...
An−1,0 · · · An−1,m−1

 = A[n],[m] (C.619)

to denote an n×m matrix.
Let

pow(a, r) = [a, a, . . . , a]︸ ︷︷ ︸
r repetitions

(C.620)

For increased clarity, we will use Greek letters to denote tensor indices.
For scalars a, b ∈ R, the linear combination of tensors T, S is defined by

[Tα,β,γ, Sα,β,γ]→ aTα,β,γ + bSα,β,γ (C.621)

The Kronecker (K) delta function is defined by

δβα = δα,β = 1(α = β) (C.622)

Upper indices can be lowered by means of the K delta function :

Sβ =
∑
α

Sαδα,β (C.623)

In this case, since the metric δα,β is the K delta function, Sα = Sα.
The Einstein implicit summation convention is the practice of omitting

the summation sign and assuming that repeated indices are summed over if one index
is covariant (upper) and the other is contravariant (lower).

SαTα =
∑
α

SαTα (C.624)

Sums between a lower and an upper index are called contractions.
dim refers to the positions of indices in a tensor (e.g., dim = 0 for α, dim = 1

for β and dim = 2 for γ in Tα,β,γ). axis ∈ [n] refers to the values of an index along
a particular dimension (e.g., we say axis = α along dim = 0 in Tα,β,γ). For a 2-dim
array: (1) swapping axes along dim = 0 (resp., dim = 1) refers to swapping rows
(resp., columns). (2) swapping dimensions 0 and 1 means transposing the array.

Numpy contains a huge number of tensor methods. Among those, there are 3
broad types of methods that concern us here:
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1. tensor algebra methods. These include element-wise (i.e., entry-wise) sum-
mation, subtraction, multiplication and division (+,−, ∗, /) of 2 tensors of the
same shape, or a tensor and a scalar.

2. methods for permuting the entries of a tensor. These entry permutation
methods can be of 3 kinds (1) methods that permute entries by permuting the
locations of indices of a tensor (2) methods that permute entries by permuting
the axes of a tensor along a particular dimension (e.g., row permutation and
column permutation for 2-dim arrays) (3) methods that are neither pure 1 or
pure 2.

3. methods for adding or removing tensor entries.

Out of these three categories, ML uses all three frequently. Physics uses all three too,
but it often favors (1). 21 This is probably due to the fact that Physicists always
assume linearity first, because it’s simpler to solve than the non-linear case, plus it
often describes the weak interaction case well.

Next I will discuss in a visual manner22, a random assortment of Numpy
methods that I find interesting, and difficult to understand to the beginner (like
me). This discussion in no way pretends to be a substitute for the excellent Numpy
documentation.

Besides the usual Physics notation discussed at the beginning of this appendix,
I will use below my own way of visualizing Numpy tensor methods. Specifically, I will
use a graphical box (what I call a “box of puzzle pieces") to indicate a box containing
all the pieces of information from which a tensor is constructed. If you don’t like my
graphical box, just replace it by f(X), where X is the contents of the box and f is
some function.

Below, let α ∈ [a], β ∈ [b], γ ∈ [c], ν ∈ [n], µ ∈ [m], νi ∈ [ni].

1. broadcasting

Tα,0 + S0,β → Y α,β = Tα,0 + S0,β (C.625)

2. concatenate() along dim = 0

[T
[n0],β,γ
0 , T

[n1],β,γ
1 , T

[n2],β,γ
2 ]→

T
[n0],β,γ
0

T
[n1],β,γ
1

T
[n2],β,γ
2

[n],β,γ

(C.626)

21Category (1) echoes the Linear Algebra and category (2) the Group Representation Theory used
in Quantum Mechanics to describe lossless, reversible physical phenomena. Category (3) echoes the
Information Theory, Thermodynamics, Renormalization Group Theory, Noise Theory and Fluid
Turbulence Theory used to describe lossy, irreversible phenomena.

22The Numpy methods in this list are discussed here visually and analytically only; that is, without
numerical examples. For numerical examples, see the excellent Numpy docs.
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where n = n0 + n1 + n2.

3. expand_dims() (same as unsqueeze()) along dim = 0

T [b],[c] → Y 0,[b],[c] (C.627)

T β,γ → Y 0,β,γ = T β,γ (C.628)

4. flatten()

T [n0],[n1],[n2] → Y [n] (C.629)

where n0n1n2 = n. A more fine grained description is

Tα,β,γ → Y ν(α,β,γ) (C.630)

where n0n1n2 = n and ν : [n0]× [n1]× [n2]→ [n] is a 1-1 onto function.

5. gather()23 along dim = 0

S[a],[n1],[n2] → Y [b],[n1],[n2] (C.631)

Sα,ν1,ν2 → Y β,ν1,ν2 = Sβ(α,ν1,ν2),ν1,ν2 (C.632)

Iα,ν1,ν2 = β(α, ν1, ν2) (C.633)

source= S[a],[n1],[n2], index= I [a],[n1],[n2]

6. max() and argmax() along dim = 0

max : T [a],[b] → Tα0,[b] (C.634)

argmax : T [a],[b] → α0 (C.635)

where Tα0,β = max{Tα,β : α ∈ [a]}
23This operation is available in PyTorch. So far Numpy doesn’t have it in direct form.
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7. repeat() with r = [r0, r1, . . . , rn−1] along dim = 0

T [n],β,γ →

pow(T 0,β,γ, r0)
pow(T 1,β,γ, r1)
...
pow(T n−1,β,γ, rn−1)

[R],β,γ

(C.636)

where R =
∑n−1

i=0 ri. note that concatenate() along dim = 0 and repeat() with
r = pow(1, n) along dim = 0, are the same thing. So repeat() is a souped up
version of concatenate().

8. reshape() from shape (n0, n1, n2) to shape (n,m)

T [n0],[n1],[n2] → Y [n],[m] (C.637)

where n0n1n2 = nm. A more fine grained description is

Tα,β,γ → Y µ(α,β,γ),ν(α,β,γ) (C.638)

where n0n1n2 = nm and µ : [n0]×[n1]×[n2]→ [n] and ν : [n0]×[n1]×[n2]→ [m]
are 1-1 onto functions. flatten() is clearly a special case of reshape().

9. split() along dim = 0

T
[n0],β,γ
0

T
[n1],β,γ
1

T
[n2],β,γ
2

[n],β,γ

→ [T
[n0],β,γ
0 , T

[n1],β,γ
1 , T

[n2],β,γ
2 ] (C.639)

where n = n0 + n1 + n2

10. squeeze() dim = 0

T 0,[b],[c] → Y [b],[c] (C.640)

T 0,β,γ → Y β,γ = T 0,β,γ (C.641)

11. stack() along dim = 0

[Tα,β,γ0 , Tα,β,γ1 , Tα,β,γ2 ]→
Tα,β,γ0

Tα,β,γ1

Tα,β,γ2

[3],α,β,γ

(C.642)
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Compare this to concatenate(). stack() creates a new dimension whereas con-
catenate() doesn’t. concatenate() just increases the range of an existing dimen-
sion.

12. sum() along dim = 0

T [a],[b] →
∑
α

Tα,[b] (C.643)

13. tensordot() (i.e., contraction) along dim = 0

[T [n],β, S[n],β]→ Tα,βδα,α′Sα
′,β =

∑
α

Tα,βSα,β (C.644)

14. tile()24

reps = [2, 3] (C.645)

T [a],[b] → T [a],[b] T [a],[b] T [a],[b]

T [a],[b] T [a],[b] T [a],[b]

[2a],[3b]

(C.646)

Tα,β → T [a],[b] T [a],[b] T [a],[b]

T [a],[b] T [a],[b] T [a],[b]

A(α,β),B(α,β)

(C.647)

15. transpose() by a permutation σ : [3]→ [3]. 25

Tα,β,γ → Tα1,β1,γ1δ
σ(α,β,γ)
α1,β1,γ1

(C.648)

For example,

Tα,β,γ → Tα1,β1,γ1δγ,β,αα1,β1,γ1
(C.649)

24tile() in Numpy corresponds to repeat() in PyTorch.
25a permutation σ : [n]→ [n] is a bijection, i.e., a 1-1 onto map.
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Appendix D

Definition of a Bayesian Network

A directed graph G = (V,E) consists of two sets, V and E. V contains the vertices
(nodes) and E contains the edges (arrows). An arrow a → b is an ordered pair
(a, b) where a, b ∈ V .

The parents of a node x are those nodes a such that there are arrows a→ x.
The children of a node x are those nodes b such that there are arrows x → b. A
root node is a node with no parents. A leaf node is a node with no children. The
neighbors of a node x is the set of parents and children of x.

A path is a set of nodes that are connected by arrows, so that all nodes have
1 or 2 neighbors, but only two nodes (open path) or zero nodes (closed path) have
only one neighbor. A directed path is a path in which all the arrows point in the
same direction. A loop is a closed path;i.e., a path in which all nodes have exactly
2 neighbors. A cycle is a directed loop. A Directed Acyclic Graph (DAG) is a
directed graph that has no cycles.

A fully connected directed graph is a directed graph in which every node
has all other nodes as neighbors. Figs.D.1 and D.2 show 2 different ways of drawing
the same directed graph, a fully connected graph with 4 nodes. Note that a convenient
way to label the nodes of a fully connected directed graph with N nodes is to point
arrows from xk to xj where j = 0, 1, 2, . . . , N − 1 and k = j − 1, j − 2, . . . , 0.

x3 x2oo x1oovv
x0oo��zz

Figure D.1: Fully connected directed graph with 4 nodes, drawn as a line.

A connected graph is a graph for which there is no way of separating the
nodes into two sets so that there is no arrow from one set to the other. A tree is a
directed graph in which all nodes have a single parent except for a single node called
the “root" node which has no parents. A polytree is a DAG with no loops.

A Bayesian network (bnet) consists of a DAG and a Transition Prob-
ability Matrix (TPM) associated with each node of the graph. A TPM is often

114



x0 //

��   

x1

��~~
x2 // x3

Figure D.2: Fully connected directed graph with 4 nodes, drawn as a square.

called a Conditional Probability Table (CPT). The structure of a bnet is its
DAG alone, sans the TPMs. The skeleton of a bnet is the undirected graph beneath
the bnet’s DAG.

In this book, random variables are indicated by underlined letters and their
values by non-underlined letters. We use Sx to denote the set of states (i.e., values)
that a random variable x can assume. Each node of a bnet is labelled by a random
variable. Thus, x = x means that node x is in state x.
Some sets of nodes associated with each node a of a bnet

• ch(a) = children of a.

• pa(a) = parents of a.

• nb(a) = pa(a) ∪ ch(a) = neighbors of a.

• de(a) = ∪∞n=1ch
n(a) = ch(a) ∪ ch ◦ ch(a) ∪ . . ., descendants of a.

• an(a) = ∪∞
n=1pa

n(a) = pa(a) ∪ pa ◦ pa(a) ∪ . . ., ancestors of a.

In this book, we will use a. to indicate a multi-node (node set, node array)
a. = (aj)j=0,1,...,na−1. We will often treat multinodes as if they were sets, and combine
them with the usual set operators. For instance, for two multinodes a. and b., we
define a.∪b., a.∩b., a.−b. and a. ⊂ b. in the obvious way. We will indicate a singleton
set (single node multi-node) a. = {a} simply by a. = a. For instance, a.−b = a.−{b}.

The TPM of a node x of a bnet is a matrix of probabilities P (x = x|pa(x) = a.),
where x ∈ Sx and a. ∈ Spa(x).

A deterministic node is a node such that its TPM is of the form

P (x = x|pa(x) = a.) = δ(x, f(a.)) (D.1)

for some function f : Spa(x) → Sx, where δ(x, y) is the Kronecker delta function.
A bnet with nodes x. represents a probability distribution

P (x.) =
∏
j

P (xj = xj|(xk = xk)k:xk∈pa(xj)) . (D.2)

Note that for a fully connected bnet with N nodes, Eq.(D.2) becomes
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P (x.) =
N−1∏
j=0

P (xj|(xk)k=j−1,j−2,...,0) . (D.3)

For example, if N = 4, Eq.(D.3) becomes

P (x0, x1, x2, x3) = P (x3|x2, x1, x0)P (x2|x1, x0)P (x1|x0)P (x0) . (D.4)

We see that Eq.(D.3) is just the chain rule for conditional probabilities.
Of course, not all bnets are fully connected. So what determines whether in a

bnet with nodes x and y, we draw or not draw, an arrow connecting the two nodes?
Recall that two random variables x, y are (probabilistically) independent

(denoted by x ⊥ y) if P (y|x) = P (x). Let us denote the correlation between x and y
by
〈
x, y
〉
=
〈
xy
〉
−⟨x⟩

〈
y
〉
. It’s easy to show that x ⊥ y implies

〈
x, y
〉
= 0. However,

the converse is not true: it’s possible for x and y to be uncorrelated but dependent.
For example, if y = x−⟨x, x⟩, we get

〈
x, y
〉
= 0, but P (y|x) ̸= P (x). However, x ⊥ y

if and only if
〈
f(x), g(y)

〉
for all functions f, g.

Consider the bnet x → m → y. In this case, x and y are dependent, but
there is no arrow connecting them. Henceforth, we will say that there is a direct
dependence between nodes x and y if there is an arrow connecting them. Note
that x and y are not directly dependent iff1 P (y|do(x)) = P (y) (i.e., no x → y) and
P (x|do(y)) = P (x) (i.e., no y → x). x and y can be dependent but not directly
dependent.

In this book, we use the following conventions for bnet diagrams:
Random variables are underlined and their values are not. For example, a =

a means the random variable a takes the value a. A diagram with all its nodes
underlined represents a Bayesian Network (bnet), whereas the same diagram with the
letters not underlined represents a specific instantiation of that bnet. For example
a → b → c represents the bnet with full probability distribution P (c|b)P (b|a)P (a),
whereas a → b → c represents P (c|b)P (b|a). Note that, for convenience, we define
a→ b→ c to exclude the priors of root nodes such as P (a).

If a is a root node, then
∑
a signifies a weighted sum

∑
a P (a). For example,∑

a→ b→ c =
∑
a

P (c|b)P (b|a)P (a) (D.5)

If a is not a root node, then
∑
a signifies a simple unweighted sum

∑
a. For example,

x→
∑

a→ y =
∑
a

P (y|a)P (a|x) (D.6)

1As will be defined in Chapter 12, P (y|do(x)) equals P (y|x) for the bnet in which all arrows
entering node x have been amputated and node x has been set to state x.
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Two bnets are equated if their full probability distributions (i.e., their full
instantiations) are equal numerically. For example,

a→ b→ c = P (c|b)P (b|a)P (a) = a← b← c (D.7)

Unobserved (a.k.a. hidden, latent) nodes are indicated in a bnet by enclosing
their label in a dashed circle. For example, u . Alternatively, they are indicated by
using dashed arrows for all arrows emanating from the unobserved node.

In Chapter 34, we define a measure of goodness (G) of causal fit (CF) for each
bnet of a finite set of bnets G.

Given a dataset of samples for the random variables (xi)i=0,1,...,N−1, and a finite
set of possible bnets G, set G may contain several bnets (differing in the direction of
some arrows) that fit the data well causally. However, the one with the highest GCF
is most likely to be used by Nature. In this book, we will refer to that single one as
the best CF bnet. We will also refer to a bnet in G that has a high (resp., low)
value of GCF, though not necessarily the highest (resp., lowest), as a good (resp.,
bad) CF bnet.2

It’s important to realize that bnets that are not a good CF are far from use-
less; they are frequently used as intermediate calculational tools. They are incorrect
causally, but they aren’t incorrect numerically. For instance, in Bayes rule, we switch
from a good CF bnet P (x|θ)P (θ) = x ← θ to a bad CF bnet P (θ|x)P (x) = x → θ,
where x is the data and θ are the parameters.

2In this book, the term “causal bnet" will mean a good CF bnet. Pearl is fond of using the term
“causal bnet", but he uses it in a different sense that does not allude to a measure of goodness of
causal fit.
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Appendix E

Bayesian Networks, Causality and the
Passage of Time

This chapter is based on a blog post (see Ref.[79]) from my blog “Quantum Bayesian
Networks".

E.1 Unifying Principle of this book
The unifying principle of this book is Bayesian Networks (bnets). The main goal of
this book is to explain as much of Artificial Intelligence (AI) and Machine Learning
(ML) as possible using bnets.

Bayesian Networks are a graphical representation of the chain rule for con-
ditional probabilities. They are not a “heuristic algorithm” like XGBoost or Neural
Nets. They are a very simple, intuitive, basic and general definition. I would say that
the definition of a Bayesian Network is as important to Probability Theory as the
definition of a Group is to Abstract Algebra. Algebraic groups are never going to go
out of fashion and neither are B nets.

An Artificial Neural Net can be defined as a Bayesian Network with a layered
structure, and such that all its nodes are deterministic1. A decision tree is not exactly
a Bayesian Network, but it can be trivially replaced by an equivalent B net that has
the same tree structure (for more details about this equivalence, see the Chapter 16
on decision trees). The SCM diagrams favored by Pearl are just bnets whose internal
nodes are deterministic and external ones are probabilistic. In fact, as I show in this
book, most methods in AI can be understood in terms of B nets—just like many
theorems in Abstract Algebra can be understood in terms of groups.

1Neural Nets (NNs) are DAGs, but they contain a lot of spurious arrows whose direction or very
existence has no causal motivation, and they could be missing other arrows which would have a
causal motivation. So I like to say that NNs are acausal DAGs.
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E.2 You say tomato, I say tomato
In this chapter, I will use the terms Bayesian Network (bnet), causal model and DAG
as if they were synonymous. My justification for doing this is as follows.

A Bayesian Network is a DAG + probability tables. One can easily compute
the probability tables from DAG + Dataset. Therefore,

You say DAG+Dataset, I say Bayesian Network.
The use of the terms “causal model” and “DAG”, as an alternative to the

term “Bayesian Network”, has become popular in the last decade among economists,
epidemiologists, AI researchers and even Judea Pearl himself. It seems some people
think “causal models” and “DAGs” are revolutionary, whereas Bayesian Networks are
a concept that was tried 25 years ago, and has been replaced since then by stuff
that works better. But any time you have a Dataset, which is almost always true in
practice in Economics, Epidemiology and AI, a DAG implies a Bayesian Network and
vice versa.

E.3 A dataset is causal model free
Time and time again, Judea Pearl makes the point on Twitter to neural net advocates
that they are trying to do a provably impossible task, to derive a causal model from
data. I could be wrong, but this is what I think he means.

When Pearl says “data”, he is referring to what is commonly called a dataset.
A dataset is a table of data, where all the entries of each column have the same
units, and measure a single feature, and each row refers to one particular sample or
individual. Datasets are particularly useful for estimating probability distributions
and for training neural nets. When Pearl says a “causal model", he is referring to
a DAG (directed acyclic graph) or a bnet (Bayesian Network= DAG + probability
table for each node of DAG).

Sure, you can try to derive a causal model from a dataset, but you’ll soon find
out that you can only go so far.

The process of finding a partial causal model from a dataset is called structure
learning (SL). SL can be done quite nicely with Marco Scutari’s open source program
bnlearn. There are 2 main types of SL algorithms: score-based and constraint based.
The first and still very competitive constraint-based SL algorithm was the Inductive
Causation (IC) algorithm proposed by Pearl and Verma in 1991. So Pearl is quite
aware of SL. The problem is that SL often cannot narrow down the causal model to
a single one. It finds an undirected graph (UG), and it can determine the direction
of some of the arrows in the UG, but it is often incapable, for well understood fun-
damental —not just technical— reasons, of finding the direction of ALL the arrows
of the UG. So it often fails to fully specify a DAG model.

Let’s call the ordered pair (dataset, causal model) a dataset++ . Then what
I believe Pearl is saying is that a dataset is causal model-free or causal model-less
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(although sometimes one can find a partial causal model hidden in there). A dataset
is not a dataset++.

Caveat to this section: Define a time-series table (TST) to be a table
of data, where all the entries of each column have the same units, and measure a
single feature at different times with time increasing down the table. Hence, the rows
of a TST are chronologically ordered (they specify a time series) whereas those of
a dataset aren’t. Whereas it is not possible to fully specify a DAG from a dataset
alone, it is possible to do so from a TST. See the python app CausalFit (Ref.[81]) for
a possible way extracting a causal DAG from a Fitbit TST.

E.4 What is causality?
What is Causality, really, and how do Bayesian Networks (a.k.a. Causal Models,
DAGs) encode it? For me, Causality is a time-induced ordering between two events,
the transmission of information (and its accompanying energy) from the earlier of
the two events to the later one, and the physical response of the later event to the
reception of that information.

Note that this definition of causality does not mention correlation. It is often
assumed that even though correlation does not imply causation, causation implies
correlation. But the latter statement is false; there are scenarios, albeit unusual, “fine
tuned" ones, in which there is causation without correlation. For example, consider
a bnet with arrows x → y and x → c → y. When we amputate the arrows entering
x, a dependence between x and y persists, so we say x causes y. Even though x
causes y, it’s possible to tune the probabilities of the bnet so that the effect of the
path x − c − y and the effect of the direct path x − y cancel each other out and
produce zero correlation between x and y. As a trivial example, suppose c = 2x,
y = c− 2x = 0. Since y = 0, it’s uncorrelated with x.

The nodes of a bnet represent random variables. Some of those random vari-
ables are clearly events (i.e., they occur at a definite time). For example, let D=0
if a patient is not given a drug, D=1 if he/she is given it. D occurs at a definite
time. But other random variables represent qualities which do not occur at a definite
time. For example, G=gender=male, female. G does not occur at a definite time.
But even in the case of a quality like G, its value is first decided at birth, so one can
ascribe to G a particular, albeit fuzzy time interval during which it is decided. If
M=0(single), 1(married), then we can assign to M the day of the marriage. Both the
time interval assigned to G and to M are somewhat ambiguous, but still, most people
would say that G occurs before M (if a marriage occurs at all). Saying the opposite,
that M occurs before G, seems pretty hard to understand. If two nodes A and B of a
bnet have time intervals ascribed to them such that the time interval of A does not
clearly occur before or after the time interval of B, and if also there is a large causal
correlation between A and B, then it probably does not matter much whether one
draws an arrow from A to B, or the opposite.
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Now that we understand that the arrows in a bnet really do encode the di-
rection of time, it becomes clear why a dataset does not fully specify a bnet. By a
dataset (think of a dataframe in Pandas or R), I mean an array of numbers where the
columns refer to features and the rows refer to individuals in a population. The col-
umn labels of the dataset become the node names of the bnet. Nowhere in a dataset
is there any indication of the time ordering of the features. Hence, it’s impossible
to create, from a dataset alone, a bnet, because bnets do carry such time-ordering
information.

Chapter 36 discusses Granger Causality (GC). The critics of GC point out that
it assumes, somewhat erroneously, that if event A precedes B and the two events are
correlated, A must cause B. I agree. Most roosters crow in response to the stimulus of
the sunrise light. A rooster could crow before sunrise if, for example, he had an alarm
clock that woke him up 30 minutes before sunrise, but such cases are uncommon,
and seem to involve other intermediate events. The moral is that time ordering and
correlation are not sufficient conditions for causality. To establish causality with more
certainty, one also needs a pinch of prior expert knowledge, or one must gain that
expert knowledge through “do” operator experimentation.

E.5 Bayesian Networks and the passage of time
Now that we understand that a bnet’s arrows are encoding roughly the passage of
time, it becomes possible to glean from this insight a simple method, which, although
not very rigorous, is really helpful to me. I will illustrate said method with the famous
“Asia” bnet in Fig.E.1. In this bnet, all nodes have two possible values, 0 and 1.

Figure E.1: Asia bnet. Dyspnea=trouble breathing

Given a dataset for this bnet, one can calculate the correlation between every
2 features of the dataset. The feature names become the node names, and links
are drawn between any 2 nodes whose correlation is causal and greater in absolute
value to some threshold value. This gives an undirected graph that can be obtained
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from bnet Fig.E.1 by erasing the directions of the arrows. So how can we guess the
directions of the arrows? Well, one uses a little bit of “expert knowledge” to conclude
that

time(Visited Asia) < time(Tuberculosis) < time(Or) < time(X-Ray, Dyspnea)
Also
time(smokes) < time(LungCancer, Bronchitis) < time(Or) < time(Dyspnea)
If time(A) < time(B), then A → B. Like I said before, the times we ascribe

to these events are somewhat fuzzy and open to debate, so this algorithm is far from
being rigorous. But often, saying that time(A)<time(B) makes much more sense
than saying that time(B)<time(A). When in doubt about the best direction to give
to an arrow of an undirected graph, I recommend calculating a Goodness of Causal
Fit metric (see Chapter 34) which makes use of “do” operator experimentation.

A dataset cannot fully specify a bnet because it lacks time ordering info. A
dataset also cannot do the harder task of specifying a bnet that is a good causal fit to
the problem, because it lacks time ordering info AND prior expert knowledge AND
expert knowledge gained from posterior “do” operator experimentation.

E.6 Advice for the DAG-phobic
DAGs are your friends. DAGs should be easy and fun to dream up. After all, I am
convinced that DAGs are an integral part of how humans think, so they should come
naturally to us. Nevertheless, many people are scared of, or detest, DAGs. I think
it’s because they fail to grasp the following 3 things:

1. DAGs are not unique. Stop thinking that you have to find the unique DAG
for the situation being considered. You just have to find a DAG that is a good causal
fit for the situation. If a DAG is too complicated, you can always simplify it by
merging several nodes into a single more abstract one, or by summing over unwanted
nodes.

2. The nodes of a DAG are roughly ordered from past to present. The arrows
of a DAG roughly reflect the passage of time.

3. DAGs represent scientific hypotheses that can and should be tested with
do experiments. Causal Inference is an application of the scientific method, which
consists of the following steps: formulate hypothesis (DAG), devise experiment to
test it, test it.
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Chapter 1

AdaBoost

This chapter is based on Ref.[97].
Adaptive Boosting (AdaBoost) is a method of constructing a strong classifier

function as a linear combination of an ensemble of weak classifier functions.
Below, we will abbreviate “ensemble classifiers" by “e-classifiers" and “weak

classifiers’ by “w-classifiers".
Chapter 16 defines decision trees (dtrees) and explains how to construct them.

A tree stump is a dtree with only one parent and 2 children nodes. Usually the
w-classifier functions for AdaBoost come from tree stumps (because tree stumps are
w-classifiers and simple to compute), but the core AdaBoost algorithm is oblivious to
where the w-classifier functions came from.

Boosting (see this chapter on AdaBoost and Chapter 104 on XGBoost) and
bagging (see Chapter 74 on Random Forest) are two methods of building a classifier
function from an ensemble of classifier functions. These two methods are most com-
monly applied to dtrees: Boosting for an ensemble of small dtrees, and Bagging for a
random forest (which is an ensemble of dtrees that are usually much more complicated
than small dtrees).

1.1 AdaBoost for general ensemble of w-classifiers
In this section we discuss the core AdaBoost algorithm, valid for a generic ensemble
of w-classifiers.

Let L = [0, 1, 2, . . . , nsam−1] be a list of individuals (samples) in a population.
In this chapter, we will use the notation Aσ = A[σ] and A⃗ = [Aσ : σ ∈ L] for a list
(vector, 1-D array) indexed by L. We will refer to DS = (x⃗, y⃗) where xσ ∈ Sx,
yσ ∈ Sy, as a dataset. Let T = {0, 1, . . . , nt − 1}. Let xσ = (xσ0 , x

σ
1 , . . . , x

σ
nt−1) ∈

Sx0 × Sx1 × . . .× Sxnt−1
= Sx.

AdaBoost assumes that the classifier class set Sy and all the feature sets Sxt
are binary: Sy = Sxt = {−1, 1} for all t ∈ T .

Suppose that we are given an ensemble of nt w-classifiers Yt : Sx → {−1, 1},
where t ∈ T . Suppose we want to find intermediate e-classifiers Yt : Sx → R given
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by

Yt(xσ) =
t∑

t′=0

αt′Yt′(x
σ) ∈ R (1.1)

for t ∈ T and a final e-classifier given by

Yfin(xσ) = sign(Ynt−1(x
σ)) ∈ {−1, 1} . (1.2)

The AdaBoost algorithm yields a set of coefficients αt for which the final e-classifier
is much stronger (i.e., less error prone) than any of the w-classifiers of the ensemble.

Note that
Yt(xσ) = Yt−1(x

σ) + αtYt(x
σ) (1.3)

for t ∈ T if we define Y−1 = 0. Hence

e−y
σYt(xσ)︸ ︷︷ ︸

Ztwσ
t+1

= e−y
σYt−1(xσ)︸ ︷︷ ︸
Zt−1wσ

t

e−αtyσYt(xσ) (1.4)

where the weights wσt and and the partition function Zt are defined by

wσt+1 =

{
1/nsam for t = −1
exp(−yσYt(xσ))

Zt
for t ≥ 0

(1.5)

and

Zt =
∑
σ

e−y
σYt(xσ) . (1.6)

Note that the probability distribution P (σ|t + 1) = wσt+1 of weights at time t + 1
emphasizes (i.e., gives higher probability to) the errors (i.e., occurrences of yσYt(xσ) =
−1 for some population individual σ) of the previous (i.e., at time t) intermediate
e-classifier Yt. In other words, every new intermediate e-classifier Yt+1 concentrates
on those individuals σ on which the previous e-classifier Yt performed poorly.

Note also that the partition function Zt is a good measure of the classification
error (i.e., occurrences of yσYt(xσ) = −1) of Yt. We will therefore use Zt for that
purpose, as an error measure.

For t > 1, we have

Zt =
∑
σ

e−y
σYt(xσ) (1.7)

=
∑
σ

e−y
σYt−1(xσ)︸ ︷︷ ︸
Zt−1wσ

t

e−αtyσYt(xσ) (1.8)

= Zt−1Eσ[e
−αtyσYt(xσ)] (1.9)
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Define the success rate by

St =
∑
σ

wσt 1(y
σYt(x

σ) = 1) (1.10)

= Eσ[1(y
σYt(x

σ) = 1︸ ︷︷ ︸
iff yσ=Yt(xσ)

)] (1.11)

and the failure rate by

Ft =
∑
σ

wσt 1(y
σYt(x

σ) = −1) (1.12)

= Eσ[1(y
σYt(x

σ) = −1︸ ︷︷ ︸
iff yσ ̸=Yt(xσ)

)] . (1.13)

Note that

St + Ft = 1 , (1.14)

and

Zt = Zt−1(e
−αtSt + e+αtFt) . (1.15)

Figure 1.1: Plot of function αt = 1
2
ln 1−Ft

Ft
.

We can find the αt values that minimize the classification error Zt, and then
evaluate Zt at those optimum αt values:

dZt
dαt

= Zt−1(−e−αtSt + eαtFt) = 0 (1.16)

e2αt =
St
Ft

(1.17)
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αt =
1

2
ln
St
Ft

=
1

2
ln

1− Ft
Ft

(1.18)

Zt
Zt−1

= 2
√
StFt = 2

√
(1− Ft)Ft ≤ 1 (1.19)

f(x) = 2
√

(1− x)x for x ∈ [0, 1] is dome shaped and its maximum is 1, which is
achieved iff x = 1

2
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Figure 1.2: Bnet for AdaBoost with 5 w-classifiers, nt = 5. All nodes labelled (x⃗, y⃗)
are the same node.

The AdaBoost algo described in this chapter is summarized by the bnet of
Fig.1.2. The TPMs, printed in blue, for that bnet, are as follows:

P (wσ0 ) =
1

nsam
(1.20)

for all σ.

P (w⃗t+1|w⃗t, αt, Yt, x⃗, y⃗) =
∏
σ

1( wσt+1 =
wσt e

−αtyσYt(xσ)∑
σ numerator

) (1.21)

for t ≥ 0.

P (αt|w⃗t, x⃗, y⃗) = 1( αt =
1

2
ln

1− Ft
Ft

where Ft = Ft(w⃗t, x⃗, y⃗) ) (1.22)

for t ∈ T .

P (Yt|Yt−1, αt, Yt) = 1( Yt = Yt−1 + αtYt ) (1.23)

for t ∈ T , where Y−1 = 0.
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1.2 AdaBoost for ensemble of tree stumps
Keep in mind that AdaBoost assumes Sy = Sxt = {−1, 1} for all t ∈ T = {0, 1, . . . , nt−
1}. In order to implement AdaBoost, we need to specify nt w-classifiers Yt : {−1, 1}nt →
{−1, 1} for t ∈ T . One can either specify the nt w-classifiers a priori or build them
on-the-fly.

• w-classifiers specified a priori

Define a classifier for each feature xt where t ∈ T by:

Yt(x
σ) = xσt ∈ {−1, 1} (1.24)

Hence, for this classifier, yσYt(xσ) = yσxσt .

• w-classifiers built on-the-fly

Recall dataset (x⃗, y⃗) = [(xσ, yσ) : σ ∈ L] is indexed by the list L = [0, 1, . . . , nsam−
1]. If Lj is a list (possibly with duplicate items) such that set(Lj) ⊂ set(L),
then define DSj = (x⃗, y⃗)Lj

= ((xσ)σ∈Lj
, (yσ)σ∈Lj

). We will refer to DSj as the
restriction of (x⃗, y⃗) to Lj.

The idea behind on-the-fly w-classifiers is to choose Yt(xσ) = xσt , where xt is the
feature with the lowest Gini in the current dataset (x⃗, y⃗)Lt . To build (x⃗, y⃗)Lt ,
we select at random from L = [0, 1, . . . , nsam− 1], a list Lt of the same length
as L, using the probability distribution w⃗t−1. By choosing Lt with probabilities
w⃗t−1, we emphasize individuals σ that are failing. Then we define (x⃗, y⃗)Lt as
the restriction of (x⃗, y⃗) to Lt.

Perhaps a causal diagram will make all these new steps clearer to the reader.
The bnet Fig.1.3 is a modification of the bnet Fig.1.2 to include these new steps.
The TPMs, printed in blue, for new or changed nodes, are as follows:

P (Yt|(x⃗, y⃗)Lt) = 1( Yt(x
σ) = xσt where xt is feature in (x⃗, y⃗)Lt the with lowest Gini. )

(1.25)

P (Lσt+1 = σ′|w⃗t) = wσ
′

t (1.26)

P ((x⃗, y⃗)Lt |Lt, (x⃗, y⃗)) = 1( (x⃗, y⃗)Lt = restriction of (x⃗, y⃗) to Lt ) (1.27)
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Figure 1.3: Modification of the bnet of Fig.1.2 to include on-the-fly generation of the
w-classifiers.
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Chapter 2

ANOVA

ANOVA stands for “Analysis of Variance".

2.1 Law of Total Variance
Claim 22 (Law of Total Variance) Suppose P : Sx × Sy → [0, 1] is a probability
distribution. Suppose f : Sx × Sy → R and f = f(x, y). Then

V arx,y(f) = Ey[V arx|y(f)] + V ary(Ex|y[f ]) . (2.1)

In particular,
V arx(x) = Ey[V arx|y(x)] + V ary(Ex|y[x]) . (2.2)

proof:
Let

A =
∑
y

P (y)

(∑
x

P (x|y)f

)2

. (2.3)

Then

V arx,y(f) =
∑
x,y

P (x, y)f 2 −

(∑
x,y

P (x, y)f

)2

(2.4)

=


∑

x,y P (x, y)f
2 − A

+

(
A−

(∑
x,y P (x, y)f

)2) (2.5)

Ey[V arx|y(f)] =
∑
y

P (y)

∑
x

P (x|y)f 2 −

(∑
x

P (x|y)f

)2
 (2.6)

=
∑
x,y

P (x, y)f 2 − A (2.7)
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V ary(Ex|y[f ]) =
∑
y

P (y)

(∑
x

P (x|y)f

)2

−

(∑
y

P (y)
∑
x

P (x|y)f

)2

(2.8)

= A−

(∑
x,y

P (x, y)f

)2

(2.9)

QED

2.2 Sum of Squares Estimates
Consider a population Σ partitioned into groups Σg such that Σ = ∪ngg=1Σg, where the
Σg are mutually disjoint.

Let
dof stand for “degrees of freedom"
SS stand for “Sum of Squares"
MS stand for “Mean Square"
xΣg = {xσ|g}σ∈Σg

Define the total and group mean values by

x =
1

|Σ|

ng∑
g=1

∑
σ∈Σg

xσ|g (2.10)

xg =
1

|Σg|
∑
σ∈Σg

xσ|g (2.11)

Define the SS Total by

SST =

ng∑
g=1

∑
σ∈Σg

(xσ|g − x)2 (2.12)

= |Σ|V arx(x) (2.13)

with dof and MS given by

dofT = |Σ| − 1, MST =
SST
dofT

(2.14)

Define the SS Within by
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SSW =

ng∑
g=1

∑
σ∈Σg

(xσ|g − xg)2 (2.15)

= |Σ|
ng∑
g=1

|Σg|
|Σ|

 1

|Σg|
∑
σ∈Σg

(xσ|g − xg)2
 (2.16)

= |Σ|Eg[V arx|g(x)] (note this is a mean value) (2.17)

with dof and MS given by

dofW = |Σ| − ng, MSW =
SSW
dofW

(2.18)

Define the SS Between by

SSB =

ng∑
g=1

|Σg|(xg − x)2 (2.19)

= |Σ|
ng∑
g=1

|Σg|
|Σ|

( xg︸︷︷︸
Ex|g [x]

−x)2 (2.20)

= |Σ|V arg(Ex|g[x]) (note this is a variance) (2.21)

with dof and MS given by

dofB = ng − 1, MSB =
SSB
dofB

(2.22)

Claim 23
SST = SSW + SSB (2.23)

dofT = dofW + dofB (2.24)

proof: By the just proven Law of Total Variance,

V arx(x)︸ ︷︷ ︸
SST /|Σ|

= Eg[V arx|g(x)]︸ ︷︷ ︸
SSW /|Σ|

+V arg(Ex|g[x])︸ ︷︷ ︸
SSB/|Σ|

. (2.25)

QED
Fig.2.1 shows a bnet for calculating SST , SSW and SSB, The TPMs, printed

in blue, for the bnet Fig.2.1, are as follows.

P (x|{xΣg}
ng
g=1) = 1

x =
1

|Σ|

ng∑
g=1

∑
σ∈Σg

xσ|g

 (2.26)
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Figure 2.1: Bnet for calculating SST , SSW and SSB.

P (xg|xΣg) = 1

xg = 1

|Σg|
∑
σ∈Σg

xσ|g

 (2.27)

P (Vg|xΣg , xg) = 1

Vg = 1

|Σg|
∑
σ∈Σg

(xσ|g − xg)2
 (2.28)

P (SST |{xΣg}
ng
g=1, x) = 1(SST = SST ({xΣg}

ng
g=1, x)) (2.29)

P (SSB|{xg}ngg=1, x) = 1(SSB = SSB({xg}ngg=1, x)) (2.30)

P (SSW |{Vg}ngg=1) = 1(SSW = SSW ({Vg}ngg=1)) (2.31)

2.3 F-statistic and hypothesis testing
The F-statistic for ANOVA is defined by

F =
MSB
MSW

(
=

variance

mean value

)
(2.32)

(Note that F is the ratio of two chi-square distributions)
Consider ng = 3 for definiteness. Let
h0 = hypothesis that µ1 = µ2 = µ3 (null hypothesis)
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Figure 2.2: Probability distribution P (F ) for the F-statistic, at fixed dofB and dofW .
See Wikipedia article Ref.[123] for more info about P (F ).

h1 = opposite of h0 (alternative, opposite hypothesis)
It’s not hard to find on the Internet, tables and software calculators that give

the score p-value1

psc =

∫ ∞

F

dF ′ P (F ′; dofB, dofW ) (2.33)

of the F statistic, for a given dofB and dofW . See Fig.2.2 for a portrait of P (F )
and psc. In Bayesian language, psc measures the probability that h0 is true. Assume
pth = 0.05.2 To determine if the difference between group means is “statistically
significant", we compare psc with pth. If psc < pth = 0.05, we reject the null hypothesis.
Otherwise, we fail to reject (accept) the null hypothesis.

If h0 is rejected, we can perform post-hoc tests to determine how much the
groups differ from each other. There are several popular post-hoc tests, such as the
Tukey test, Bonferroni test, and Scheffe test.

1Some tables give F = F (psc, dofB , dofW ) instead of psc = psc(F, dofB , dofW ), but note that
there is a 1-1/onto invertible map between F and psc. Some tables refer to psc as α.

2The difference between threshold (th) and score (sc) p-values is discussed in Section C.42.
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Chapter 3

ARACNE structure learning

This chapter is based on Ref.[40].
The ARACNE algo is an algo for learning the structure of a bnet from data.

The algo considers data samples for n random variables (xi)i=0,1,...,n−1, and estimates
the mutual information MIi,j = H(xi : xj) between every pair of nodes. The set UG
is initialized to contain all the edges of a fully connected undirected graph. Next the
algo removes from UG every edge withMIi,j < ϵ for some threshold 0 < ϵ << 1. Then
the algo examines every triplet of edges in UG, and marks for removal the edge of the
triplet with the smallest MI. Finally, the algo removes from UG all edges marked for
removal. Each triplet is analyzed irrespective of whether its edges have been marked
for removal when considering a prior triplet. Thus the network constructed by the
algorithm is independent of the order in which the triplets are examined. Some of
the unoriented edges in UG can be given an orientation using the same techniques
used to orient edges in constraint based structure learning (see Chapter 89).

Ref.[40] incorrectly claims that removing the smaller of 3 MI’s is “an applica-
tion" of the Data Processing Inequality (DPI) of Shannon Information Theory. See
Chapter 52 for more info about DPI. Note that DPI is only valid for a Markov chain,
and not all triplets of random variables are in a Markov chain. Removing the smaller
of 3 numbers does not require DPI.

Fig.3.1 gives an example of the application of the ARACNE algo.
See Chapter 9 on Chow-Liu trees (CLT). A CLT is just a maximum spanning

tree where the weights are mutual informations MIi,j estimated from data.
Sometimes, the outcome of the ARACNE algo is a CLT. For example, Fig.3.1

(a) was considered in Chapter 9 on CLTs, and the CLT algo also gave Fig.3.1 (c) as
the final structure.

According to Ref.[40], the ARACNE algo sometimes yields a polytree (i.e., a
connected graph with no loops). It may even yield a structure with loops. Hence, it
does not always yield a CLT.

By breaking all cliques (i.e., fully connected subgraphs) with 3 edges and 3
nodes, ARACNE breaks all cliques with 3 or more nodes. However, cliques are not
uncommon in Nature, especially 3 node cliques. Cliques become less likely in Nature
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Figure 3.1: An example where the ARACNE algo gives a Chow-Liu tree. (a) Fully
connected undirected graph with weights MIi,j along the edges. (b) All 4 possible
triplets of edges with nonzero weights. Edges marked for removal have their weights
printed in red.(c) Final structure.

the bigger the number of nodes they have after 3. Therefore, a nice generalization of
ARACNE would be to list all 4 node cliques, and break each of them by eliminating
their edge with the smallest MI. This will have the effect of breaking all cliques with 4
or more nodes but keeping 3 node cliques. One could also break some, not all, of the
3 node cliques, by consecutively removing the clique-breaking-edge with the smallest
MI of all edges of all 3 node cliques. Let β stand for banned clique number of nodes.
Then the current ARACNE has β = 3. We are suggesting that a β of 4 might be
more likely to occur in Nature.
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Chapter 4

Backdoor Adjustment Formula

The backdoor (BD) adjustment formula is proven in Chapter 21 from the rules of Do
Calculus. The goal of this chapter is to give examples of the use of that theorem. We
will restate the theorem in this chapter, sans proof. There is no need to understand
the theorem’s proof in order to use it. However, you will need to skim Chapter 21 in
order to familiarize yourself with the notation used to state the theorem. This chapter
also assumes that you are comfortable with the rules for checking for d-separation.
Those rules are covered in Chapter 23.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x., y., z.). Hence, the variables x., y., z. are ALL observed (i.e, not
hidden). Then we say that the backdoor z. satisfies the backdoor adjustment
criterion relative to (x., y.) if

1. All backdoor paths from x. to y. are blocked by conditioning on z..

2. z. ∩ de(x.) = ∅.

Claim 24 Backdoor Adjustment Formula
If z. satisfies the backdoor criterion relative to (x., y.), then

P (y.|Dx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (4.1)

=
∑
z.

!!
x. // y.

(4.2)

where
∑
z. means node z. is summed over.

proof: See Chapter 21.
QED
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4.1 Examples
1.

z

��
x //

@@

y

(4.3)

BD criterion satisfied if x. = x, y. = y, z. = ∅. No adjustment necessary.

P (y|Dx = x) = P (y|x) (4.4)

2.
z

x //

@@

y

^^ (4.5)

BD criterion satisfied if x. = x, y. = y, z. = ∅. No adjustment necessary.

P (y|Dx = x) = P (y|x) (4.6)

3.
z

�� ��
x // y

(4.7)

BD criterion satisfied if x. = x, y. = y, z. = z.
Note that here the backdoor formula adjusts the parents of x..

4.
z

�� ��
x //m // y

(4.8)

BD criterion satisfied if x. = x, y. = y, z. = z.

5.
z1

�� ��

��
z2

�� ��
x // y

(4.9)
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BD criterion satisfied if x. = x, y. = y, z. = (z1, z2).

6.
z1

��

  

z3

��

~~
z2

x // y

(4.10)

BD criterion satisfied if x. = x, y. = y and z. = one of the following.

• ∅
• z1

• z3

• z1, z2

• z2, z3

• z1, z3

• z1, z2, z3

7.
z

�� ��
x //m // y

(4.11)

BD criterion is impossible to satisfy if x. = x, y. = y. However, the frontdoor
criterion can be satisfied. See Chapter 29.

8.
w

��

// z

��
x // y

(4.12)

BD criterion satisfied if x. = x, y. = y, z. = z. We are able to block the backdoor
path by conditioning on z.

9.
e

��

// z

�� ��

a

��

oo

x // y

(4.13)

Conditioning on z blocks backdoor path x−z−y, but opens path x−e−z−a−y
because z is a collider for that path. That path is blocked if we also condition
on a, which is possible because a is observed. In conclusion, the BD criterion
is satisfied if x. = x, y. = y and z. = (z, a).

138



Conditioning on the parents of x. is often enough to block all backdoor paths.
However, sometimes some of the parents are unobserved and one must condition
on other nodes that are not parents of x. in order to satisfy the BD criterion.

10.
z

��

too

��
w x //oo y

(4.14)

No need to control anything because only possible backdoor path is blocked by
not conditioning on collider w. Hence,

P (y|Dx = x) = P (y|x) . (4.15)

However, if for some reason we want to control t, we can do so. We can’t
control w though, because w ∈ de(x). Thus, the BD criterion is satisfied if
x. = x, y. = y and z. = t. Therefore,

P (y|Dx = x) =
∑
t

P (y|x, t)P (t) . (4.16)

11. Discuss what to do if several sets z. satisfy the BD criterion.

• Can evaluate P (y.|Dx. = x.) multiple ways and compare the results. This
is a test that the causal bnet is correct.

• It might be easier or less expensive to get data for some z. more than for
others.

12. (Taken from online course notes Ref.[25])

Consider the bnet

x2

��

// x3 x4

��

oo

x1

��

// x6

��

// x5

��

x7oo

x8 x9 x10

(4.17)

If x. = x1 and y. = x5, find all possible adjustment multinodes z. that satisfy
the BD criterion. Ans:
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• ∅
• x2

• x4

• x2, x4

• x2, x3

• x3, x4

• x2, x3, x4

Add x7 to each of the previous 7 possible z.. This gives a total of 14 possible
adjustment multinodes z..
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Chapter 5

Back Propagation (Automatic
Differentiation)

5.1 Toy Example
This example comes from Ref.[49].

Consider the following system of 4 equations:
b = w1a
c = w2a
d = w3b+ w4c
L = 10− d

(5.1)

To calculate ∇wL where w = (w1, w2, w3, w4), we can use the the chain rule
for partial derivatives. This yields

∂L

∂w4

=
∂L

∂d

∂d

∂w4

= (−1)(c) (5.2a)

∂L

∂w3

=
∂L

∂d

∂d

∂w3

= (−1)(b) (5.2b)

∂L

∂w2

=
∂L

∂d

∂d

∂c

∂c

∂w2

= (−1)(w4)(a) (5.2c)

∂L

∂w1

=
∂L

∂d

∂d

∂b

∂b

∂w1

= (−1)(w3)(a) (5.2d)

Now note that the system of equations Eq.(5.1) can be represented graphically
by the bnet (with deterministic nodes) of Fig.5.1. The calculation of ∇wL can also
be represented graphically with the aid of the defining bnet Fig.5.1. This is done
in Fig.5.2. As illustrated by that figure, the derivative ∂wi

L for i = 1, 2, 3, 4 is the
product of the derivatives along the arrows from wi to L.
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GG
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w3

OO

Figure 5.1: bnet for which we want to calculate ∇wL where w = (w1, w2, w3, w4)

w2

∂w2c

��
c

∂cd

��

w4

∂w4d
��

a
∂ab

//

∂ac

GG

b
∂bd

// d
∂dL

// L

w1

∂w1b

OO

w3

∂w3d

OO

=

w2

a

��
c

w4

��

w4

c
��

a w1

//

w2

GG

b w3

// d −1
// L

w1

a

OO

w3

b

OO

Figure 5.2: bnet of Fig. 5.1 with derivatives along each arrow.

5.2 General Theory

5.2.1 Jacobians

Suppose f : Rnx → Rnf and

y = f(x) . (5.3)
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Then the Jacobian ∂y
∂x

is defined as the matrix with entries1[
∂y

∂x

]
i,j

=
∂yi
∂xj

. (5.4)

Jacobian of function composition. Suppose f : Rnx → Rnf , g : Rnf → Rng. If

y = g ◦ f(x) , (5.5)

then

∂y

∂x
=
∂g

∂f

∂f

∂x
. (5.6)

Right hand side of last equation is a product of two matrices so order of matrices is
important.

5.2.2 Bnets for function composition, forward propagation and
back propagation

Let
y = f 4 ◦ f 3 ◦ f 2 ◦ f 1(x) . (5.7)

This function composition chain can be represented by the bnet Fig.5.3(a) with TPMs

P (fµ|fµ−1) = 1(fµ = fµ(fµ−1)) (5.8)

for µ = 1, 2, 3, 4.
Note that

∂y

∂x
=

∂y

∂f 3

∂f 3

∂f 2

[
∂f 2

∂f 1

∂f 1

∂x

]
(5.9)

=
∂y

∂f 3

[
∂f 3

∂f 2

∂f 2

∂x

]
(5.10)

=

[
∂y

∂f 3

∂f 3

∂x

]
(5.11)

=
∂y

∂x
. (5.12)

This forward propagation can be represented by the bnet Fig.5.3(b) with node TPMs

P (
∂fµ+1

∂x
| ∂f

µ

∂x
) = 1(

∂fµ+1

∂x
=
∂fµ+1

∂fµ
∂fµ

∂x
) (5.13)

1Mnemonic for remembering order of indices: i in numerator/j in denominator becomes index
i/j of Jacobian matrix.
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(a) Composition

∂f4

∂x
∂f3

∂x
oo ∂f2

∂x
oo ∂f1

∂x
oo 1oo

(b) Forward-p

1 // ∂y
∂f3

// ∂y
∂f2

// ∂y
∂f1

// ∂y
∂f0

(c) Back-p

Figure 5.3: bnets for function composition, forward propagation and back propagation
for nf = 5 nodes.

for µ = 1, 2, 3.
Note that

∂y

∂x
=

[
∂y

∂f 3

∂f 3

∂f 2

]
∂f 2

∂f 1

∂f 1

∂x
(5.14)

=

[
∂y

∂f 2

∂f 2

∂f 1

]
∂f 1

∂x
(5.15)

=

[
∂y

∂f 1

∂f 1

∂x

]
(5.16)

=
∂y

∂x
. (5.17)

This back propagation can be represented by the bnet Fig.5.3(c) with node TPMs

P (
∂y

∂fµ
| ∂y

∂fµ+1
) = 1(

∂y

∂fµ
=

∂y

∂fµ+1

∂fµ+1

∂fµ
) (5.18)

for µ = 2, 1, 0.
∂fµ+1

∂fµ
is a Jacobian matrix so the order of multiplication matters. In forward

prop, it pre-multiplies, and in back prop it post-multiplies.
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5.3 Application to Neural Networks

5.3.1 Absorbing bλi into wi|j.

x //

��

h02 //

��

h12 //

��

Y2

h01 //

@@

h11 //

??

Y1

h00

OO

HH

h10

OO

HH

Y 0

OO

HH

Figure 5.4: Nodes h00, h
1
0, Y 0 are all set to 1. They allow us to absorb bλi into the first

column of wλi|j.

The TPMs, printed in blue, for a NN bnet, as given in Chapter 64, are as
follows.

For all hidden layers λ = 0, 1, . . . ,Λ− 2,

P (hλi | hλ−1
. ) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j + bλi )

)
(5.19)

for i = 0, 1, . . . , nh(λ)− 1. For the output visible layer λ = Λ− 1:

P (Yi | hΛ−2
. ) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j + bΛ−1
i )

)
(5.20)

for i = 0, 1, . . . , ny − 1.
For each λ, replace the matrix wλ·|· by the augmented matrix [bλ., wλ·|·] so that

the new wλ·|· satisfies

wλi|0 = bλi (5.21)

Let the nodes hλ0 for all λ and Y 0 be root nodes (so no arrows pointing into
them). For each λ, draw arrows from hλ0 to all other nodes in that same layer. Draw
arrows from Y 0 to all other nodes in that same layer.

After performing the above steps, the TPMs, printed in blue, for the NN bnet,
are as follows:

For all hidden layers λ = 0, 1, . . . ,Λ− 2,

P (hλ0) = δ(hλ0 , 1) , (5.22)
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and

P (hλi | hλ−1
. , hλ0 = 1) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j )

)
(5.23)

for i = 1, . . . , nh(λ)− 1. For the output visible layer λ = Λ− 1:

P (Y0) = δ(Y0, 1) , (5.24)

and

P (Yi | hΛ−2
. , Y0 = 1) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j )

)
(5.25)

for i = 1, 2, . . . , ny − 1.

5.3.2 Bnets for function composition, forward propagation and
back propagation for NN

A3 B3oo A2oo B2oo A1oo B1oo A0oo B0oo xoo

(a)

∂A3

∂x
∂B3

∂x
oo ∂A2

∂x
oo ∂B2

∂x
oo ∂A1

∂x
oo ∂B1

∂x
oo ∂A0

∂x
oo ∂B0

∂x
oo 1oo

(b)

1 // ∂Y
∂B3

// ∂Y
∂A2

// ∂Y
∂B2

// ∂Y
∂A1

// ∂Y
∂B1

// ∂Y
∂A0

// ∂Y
∂B0

// ∂Y
∂x

(c)

Figure 5.5: bnets for (a) function composition, (b) forward propagation and (c) back
propagation for a neural net with 4 layers (3 hidden and output visible).
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.
From here on, we will rename y above by Y = ŷ and consider samples y[i] for i =
0, 1, . . . , nsam− 1. The Error (a.k.a. loss or cost function) is

E =
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

|Yi − yi[σ]|2 (5.26)

To perform simple gradient descent, one uses:

(wλi|j)
′ = wλi|j − η

∂E
∂wλi|j

. (5.27)

One has

∂E
∂wλi|j

=
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

2(Yi − yi[σ])
∂Y

∂wλi|j
. (5.28)

Define Bλi thus

Bλi (hλ−1) =
∑
j

wλi|jh
λ−1
j . (5.29)

Then

∂Y

∂wλi|j
=

∂Y

∂Bλi
∂Bλi
∂wλi|j

(5.30)

=
∂Y

∂Bλi
hλ−1
j (5.31)

∂E
∂wλi|j

=
∂E
∂Bλj

∂Bλj
∂wλi|j

(5.32)

=
∂E
∂Bλj

hλ−1
j . (5.33)

This suggest that we can calculate the derivatives of the error E with respect to the
weights wλi|j in two stages, using an intermediate quantity δλj :{

δλj = ∂E
∂Bλ

j
∂E
∂wλ

i|j
= δλj h

λ−1
j

(5.34)

To apply what we learned in the earlier General Theory section of this chapter,
consider a NN with 4 layers (3 hidden, and the output visible one). Define the
functions fi as follows:
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f 0
i = xi (5.35)

Layer 0: f 1
i = B0

i (xi), f 2
i = A0

i (B0
i ) (5.36)

Layer 1: f 3
i = B1

i (A0
i ), f 4

i = A1
i (B1

i ) (5.37)
Layer 2: f 5

i = B2
i (A1

i ), f 6
i = A2

i (B2
i ) (5.38)

Layer 3: f 7
i = B3

i (A2
i ), f 8

i = A3
i (B3

i ) (5.39)

See Fig.5.5. The TPMs, printed in blue, for the bnet (c) for back propagation,
are as follows:

P (
∂Y

∂Bλ
| ∂Y

∂Bλ+1
) = 1(

∂Y

∂Bλ
=

∂Y

∂Bλ+1

∂Bλ+1

∂Aλ
∂Aλ

∂Bλ
) . (5.40)

One has

∂Aλi
∂Bλj

= DAiλ(Bλi )δ(i, j) (5.41)

where DAλi (z) is the derivative of Aλi (z).
From Eq.(5.29)

Bλ+1
i (Aλ) =

∑
j

wλ+1
i|j A

λ
j (5.42)

so

∂Bλ+1
i

∂Aλj
= wλ+1

i|j . (5.43)

Therefore, Eq.(5.40) implies

P (
∂Y

∂Bλj
| ∂Y

∂Bλ+1
j

) = 1(
∂Y

∂Bλj
=
∑
i

∂Y

∂Bλ+1
i

DAλj (Bλj )wλ+1
i|j ) , (5.44)

P (
∂E
∂Bλj

| ∂E
∂Bλ+1

j

) = 1(
∂E
∂Bλj

=
∑
i

∂E
∂Bλ+1

i

DAλj (Bλj )wλ+1
i|j ) , (5.45)

P (δλj | δλ+1
j ) = 1(δλj =

∑
i

δλ+1
i DAλj (Bλj ))wλ+1

i|j ) . (5.46)

First delta of iteration, belonging to output layer λ = Λ− 1:
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δΛ−1
j =

∂E
∂BΛ−1

j

(5.47)

=
1

nsam

nsam−1∑
σ=0

ny−1∑
i=0

2(Yi − yi[σ])DAΛ−1
i (BΛ−1

i )δ(i, j) (5.48)

=
1

nsam

nsam−1∑
σ=0

2(Yj − yj[σ])DAΛ−1
j (BΛ−1

j ) (5.49)

Cute expression for derivative of sigmoid function:

Dsmoid(x) = smoid(x)(1− smoid(x)) (5.50)

5.4 General bnets instead of Markov chains induced
by layered structure of NNs

P (δx | (δa)a∈ch(x)) = 1(δx =
∑

a∈ch(x)

δaDAx(Bx))wa|x) (5.51)

Reverse arrows of original bnet and define the TPM of nodes of “time reversed"
bnet by

P (δx | (δa)a∈pa(x)) = 1(δx =
∑

a∈pa(x)

δaDAx(Bx))wTx|a) (5.52)
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Chapter 6

Bell and Clauser-Horne Inequalities
in Quantum Mechanics

λ

����
xα1
1 xα2

2

Figure 6.1: bnet used to discuss Bell and Clauser-Horne inequalities in Quantum
Mechanics.

I wrote an article about this in 2008 for my blog “Quantum Bayesian Net-
works". See Ref.[80].
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Chapter 7

Berkson’s Paradox

For more information about Berkson’s Paradox (BP), see Ref.[102]

a

��

b

��
x

Figure 7.1: Bnet used to discuss Berkson’s Paradox (BP). a and b are both causes of
collider x.

Consider the bnet of Fig.7.1. For that bnet, we have

P (a, b, x) = P (a)P (b)P (x|a, b) . (7.1)

Summing Eq.(7.1) over x, we get

P (a, b) = P (a)P (b) (7.2)

so a and b are independent. It follows that a can be ignored in calculating the
probability of b; i.e.,

P (b|a) = P (b) . (7.3)

However, a cannot be ignored in calculating the probability of b, if x is being held
fixed; i.e.,

P (b|a, x) ̸= P (b|x) . (7.4)

Indeed,

P (b|a, x) = P (b)P (x|a, b)∑
b P (b)P (x|a, b)

(7.5)
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whereas

P (b|x) =
∑

a P (a)P (b)P (x|a, b)∑
a,b P (a)P (b)P (x|a, b)

. (7.6)

The two boxed equations are what is referred to as BP.
BP is also called collider bias because x is a collider.
BP is also called explaining away in the special case that a, b, x ∈ {false =

0, true = 1}. In that case, if x is fixed to true, and the cause a is known to be
true, then the cause b is less likely to be true. For example, suppose a car engine
fails (x = 1) and the two most likely causes of the failure are alternator (a) and
battery (b). Once we know that the alternator has failed (a = 1), it is less likely
that the battery is failing (b = 1) than when the status of a was not known; i.e.,
P (b = 1|x = 1, a = 1) < P (b = 1|x = 1).

Figure 7.2: Example of Berkson’s paradox (BP).

Fig.7.2 presents an example of BP. The figure consists of a scatter plot with
axes a =her attractiveness, b =her intelligence, for a female population of possible
dates for you, assuming you are a male person. Let x ∈ {false = 0, true = 1} = she
goes out on a date with you. For the full population,

(a, b) ∼ P (a, b) = P (a)P (b) (7.7)

whereas for the population in the white swath,

(a, b) ∼ P (a, b|x) = P (b|a, x)P (a|x) ̸= P (b|x)P (a|x) . (7.8)

As shown by Fig.7.2, BP is an example of selection bias. Selection bias
happens when a non-representative subset of the total population is considered (i.e.,
selected).

152



Chapter 8

Binary Decision Diagrams

Figure 8.1: Binary decision tree and truth table for the function f(x1, x2, x3) =
x̄1(x2 + x̄3) + x1x2

Figure 8.2: BDD for the function f of Fig.8.1.
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This chapter is based on Wikipedia article Ref.[107].
Binary Decision Diagrams (BDDs) can be understood as a special case of

Decision Trees (dtrees). We will assume that the reader has read Chapter 16 on
dtrees before reading this chapter.

Both Figs.8.1 and 8.2 were taken from the aforementioned Wikipedia article.
They give a simple example of a function f : {0, 1}3 → {0, 1} represented in Fig.8.1 as
a binary decision tree and in Fig.8.2 as a binary decision diagram (BDD). It
is possible to find, for each of those two figures, a bnet with the same graph structure.
We show how to do this next.

We begin by noting that the function f : {0, 1}3 → {0, 1} is a special case
of a probability distribution P : {0, 1}3 → [0, 1]. In fact, if we restrict P to be
deterministic, then Pdet : {0, 1}3 → {0, 1} has the same domain and range as f .
Henceforth, we will refer to f(x1, x2, x3) as P (x1, x2, x3), keeping in mind that we are
restricting our attention to deterministic probability distributions.

If we apply the chain rule for conditional probabilities to P (x1, x2, x3), we get

P (x1, x2, x3) = P (x3|x1, x2)P (x2|x1)P (x1) , (8.1)

which can be represented by the bnet:

x1

��

��

x2

��
x3

Figure 8.3: Most general 3 node bnet.

But in Chapter 16, we learned how to represent the dtree of Fig.8.1 as the
image bnet Fig.8.4. The TPMs, printed in blue, for the image bnet Fig.8.4, are as
follows. Note that the TPMs for Fig.8.4 can be constructed from the TPMs for the
bnet Fig.8.3. If x1, x2, x3, x4 ∈ {0, 1, null} and a, b, c ∈ {0, 1}, then

P (x1 = x1) =

{
Px1(x1) if x1 ∈ {0, 1}
0 if x1 = null

(8.2)

P (x2|a = x2 | x1 = x1) =

{
Px2|x1(x2|a) if x1 = a
1(x2 = null) otherwise (8.3)
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x1

�� **
x2|0

�� $$

x2|1

�� $$
x3|00

��

  

x3|01

��

  

x3|10

��

  

x3|11

��

  

x4|000 x4|010 x4|100 x4|110

x4|001 x4|011 x4|101 x4|111

Figure 8.4: Image bnet for binary dtree of Fig.8.1.

P (x3|a, b = x3 | x2|a = x2) =

{
Px3|x1,x2(x3|a, b) if x2 = b
1(x3 = null) otherwise (8.4)

P (x4|a, b, c = x4 | x3|a, b = x3) =

{
δ(x4, c) if x3 = c
1(x4 = null) otherwise (8.5)

Note that if Px3|x1,x2 = Px3|x2 in Eq.(8.4), then the bnet Fig.8.3 reduces to a
Markov chain x1 → x2 → x3.

The BDD shown in Fig.8.2 emphasizes the fact that

P (x1, x2, x3|x1 = 1) = P (x2|x1 = 1) = x2 . (8.6)

The BDD of Fig.8.2 has as image bnet Fig.8.5. Define

pa(0) = pa(1) = (x2|1, x3|00, x3|01) . (8.7)

Let pa(0) = abc mean the same as pa(0) = (a, b, c). The TPMs of the image bnet
Fig.8.5 are the same as those for the image bnet Fig.8.4 except for the TPMs of the
nodes 0 and 1. For those two nodes, the TPMs, printed in blue, are as follows.

P (0 = x|pa(0)) =
{
δ(x, 0) if pa(0) = 011
δ(x, null) otherwise (8.8)

P (1 = x|pa(1)) =
{
δ(x, 1) if pa(1) = 101
δ(x, null) otherwise (8.9)
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Figure 8.5: Image bnet for BDD of Fig.8.2.
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Chapter 9

Chow-Liu Trees and Tree Augmented
Naive Bayes (TAN)

This chapter is mostly based on chapter 8 of Pearl’s 1988 book Ref.[55]. See also
Ref.[113] and references therein.

This chapter uses various Shannon Information Theory entropies. Our nota-
tion for these entropies is described in Chapter C.

9.1 Chow-Liu Trees
Chow-Liu trees refers to an algorithm for finding a bnet tree that fits an a priori given
probability distribution as closely as possible.

Consider a bnet with n nodes xn = (x0, x1, . . . , xn−1) such that xi ∈ Sxi for all
i. Let its total probability distribution be Pxn . For simplicity, we will abbreviate Pxn
by P . Hence

P (xn) = Pxn(x
n) . (9.1)

Suppose we want to fit Pxn by a tree bnet with nodes tn = (t0, t1, . . . , tn−1)
such that ti ∈ Sti = Sxi for all i. For simplicity, we will abbreviate Ptn by PT . Hence

PT (x
n) = Ptn(x

n) . (9.2)

Throughout this chapter, let V = {0, 1, . . . , n−1}, the set of vertices. Suppose
µ is a function µ : V → V such that µ(i) < i. Let Tµ = {tµ(i) → ti : i ∈ V − {0}}.
Then Tµ is a tree that spans ( i.e., it includes all nodes) tn. Its root node is t0, because
t0 has no parents. All other nodes ti have exactly one parent, namely tµ(i). Let PT ,
the total probability distribution for the tree, be parameterized by the function µ as
follows:

PT (x
n) =

n−1∏
i=0

PT (xi|xµ(i)) , (9.3)
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where, for the root node 0, PT (x0|xµ(0)) = PT (x0).

Claim 25 DKL(P ∥ PT ) is minimized over all probability distributions PT that are
expressible as Eq.(9.3) iff

PT (xi|xµ(i)) = P (xi|xµ(i)) (9.4)

for all i, and ∑
i

H(xi : xµ(i)) (9.5)

is maximized over all µ.

proof:

DKL(P ∥ PT ) =
∑
xn

P (xn) ln
P (xn)

PT (xn)
(9.6)

= −
∑
xn

∑
i

P (xn) lnPT (xi|xµ(i)) +
∑
i

P (xn) lnP (xn) (9.7)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i)) lnPT (xi|xµ(i))−H(xn) (9.8)

= −
∑
i

∑
xµ(i)

P (xµ(i))

[∑
xi

P (xi|xµ(i)) lnPT (xi|xµ(i))

]
−H(xn) . (9.9)

Now note that ∑
xi

P (xi|xµ(i)) ln
P (xi|xµ(i))
PT (xi|xµ(i))

≥ 0 (9.10)

and this inequality becomes an equality iff

P (xi|xµ(i)) = PT (xi|xµ(i)) . (9.11)

Therefore

DKL(P ∥ PT ) ≥ −
∑
i

∑
xµ(i)

P (xµ(i))

[∑
xi

P (xi|xµ(i)) lnP (xi|xµ(i))

]
︸ ︷︷ ︸

=H(xi|xµ(i))=H(xi:xµ(i))−H(xi)

−H(xn) , (9.12)

and this inequality becomes an equality iff Eq.(9.11) is satisfied.
Note from the last equation that
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argmin
µ

DKL(P ∥ PT ) = argmax
µ

∑
i

H(xi : xµ(i)) . (9.13)

QED

Claim 26
argmin

µ
H(xn) = argmax

µ

∑
i

H(xi : xµ(i)) (9.14)

proof:

H(xn) = −
∑
xn

P (xn)
∑
i

lnP (xi|xµ(i)) (9.15)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i)) lnP (xi|xµ(i)) (9.16)

= −
∑
i

∑
xi,xµ(i)

P (xi, xµ(i))

[
ln
P (xi|xµ(i))
P (xi)

+ lnP (xi)

]
(9.17)

= −
∑
i

[
H(xi : xµ(i))−H(xi)

]
(9.18)

=
∑
i

H(xi)−
∑
i

H(xi : xµ(i)) (9.19)

QED
The meaning of Claims 25 and 26 is as follows. If DKL(P ∥ PT ) is minimized

over all PT , then

1. PT inherits its TPMs from P , and

2. PT gets its structure, which is being parameterized by the function µ, by max-
imizing the score given by

score =
∑
i

H(xi : xµ(i)) . (9.20)

(mutual information H(a : b) measures correlation between a and b). Maximiz-
ing the score is the same as minimizing the entropy H(xn) over all the structures
µ. (i.e., finding least complex structure).

So far, we have studied the properties of those probability distributions PT for
a tree bnet that best approximates an a priori given probability distribution P , but
we haven’t yet described how to build a Chow-Liu tree based on empirical data. Next
we give Chow-Liu’s algorithm for doing so.
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1. Find MST using Kruskal’s algorithm1. (see Fig.9.1)
Calculate weights wi,j = H(xi : xj) for all i, j ∈ V and store them in a dictionary
D that maps edges to weights.
Order D by weight size.
Let T be a list of the edges in the tree. Initialize T to empty.
Repeat this until T has n− 1 elements:

Remove largest weight w from D and corresponding edge e.
Add e to T if {e} ∪ T has no loops. Otherwise discard e and w.

2. Give directions to edges in T . (see Fig.9.2)
Let DT be a list of directed edges. Initialize DT to empty.
Choose any node as root node.
Point arrows along edges in T , away from root node.
Add new arrows to DT .
Repeat this until DT has n− 1 elements:

Point arrows along edges in T , away from leaf nodes of current DT .
Add new arrows to DT .

Figure 9.1: Example of finding MST (maximum spanning tree)

Figure 9.2: Example of giving directions to edges of spanning tree.

Nodes in a Chow-Liu tree can be rated in terms of their relative importance.
Here are 2 possible metrics for measuring the importance of a node a:

Nnb(a) = number of neighbors of a (9.21)
1Kruskal’s algorithm is one several famous algorithms (Prim’s algo is another one) for finding an

MST (maximum or minimum spanning tree). An MST algorithm takes an undirected graph with
weights along its edges as input. It then finds a tree subgraph (i.e., subset of the edges of the graph
with no loops) that (1) spans the graph (i.e., includes every vertex of the graph) and (2) maximizes
(or minimizes) the sum of weights among all possible tree subgraphs. For more information, see
Ref[150] and references therein, or any other of numerous explanations of MST in the Internet.

160



traffic(a) =
∑

n∈nb(a)

H(a : n) (9.22)

For example, to get a tree with low depth, one can choose as the root node the node
which has largest Nnb, and if there are several with the same largest Nnb, choose out
of those the one with the largest traffic.

9.2 Tree Augmented Naive Bayes (TAN)
Recall from Chapter 63 that a Naive Bayes bnet consists of a class node c with n
children nodes xn, called the feature nodes. A Tree Augmented Naive Bayes (TAN)
bnet is a Naive Bayes bnet with a tree grafted onto it like a chimera. More precisely,
one starts with a Naive Bayes bnet and adds arrows between the feature nodes. The
arrows are added in such a way that the TAN bnet sans node c constitutes a tree.
It’s not the most well motivated bnet in human history, but at least it adds a bit
of correlation between the feature nodes of the Naive Bayes bnet. Those nodes are
independent at fixed c in the Naive Bayes bnet, but are no longer so in the TAN bnet.
See Figs.9.3 and 9.4 for an example of a TAN bnet.

c

��   (( **x0 x1 x2 x3

x0 x1 x2oohh x3oo

Figure 9.3: bnet for Naive Bayes with 4 feature nodes and another bnet for a tree
made of the same feature nodes.

c

��   (( **x0 x1 x2oohh x3oo

Figure 9.4: TAN bnet constructed by merging Naive Bayes bnet and tree bnet of
Fig.9.3.

The total probability distribution PTAN for a TAN bnet can be parameterized
as follows.
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PTAN(x
n, c) = PTAN(c)

n−1∏
i=0

PTAN(xi|xµ(i), c) . (9.23)

As with Chow Liu trees, we can attempt to find a TAN bnet whose total
probability PTAN = Ptn,c best approximates an a priori given probability distribution
P = Pxn,c.

Note that

Claim 27
argmin

µ
H(xn, c) = argmax

µ

∑
i

H(xi : xµ(i)|c) (9.24)

proof:

H(xn, c) = −
∑
xn,c

P (xn, c)

[
lnP (c) +

∑
i

lnP (xi|xµ(i), c)

]
(9.25)

= −
∑
xn,c

P (xn, c)

[
lnP (c) +

∑
i

ln

(
P (xi, xµ(i)|c)

P (xi|c)P (xµ(xi)|c)
P (xi|c)

)]
(9.26)

=
∑
i

H(xi, c)−
∑
i

H(xi : xµ(i)|c) (9.27)

QED
Following the same line of reasoning that we followed for Chow-Liu trees, we

conclude that:
If DKL(P ∥ PTAN) is minimized over all PTAN , then

1. PTAN inherits its TPMs from P , and

2. PTAN gets its structure, which is being parameterized by the function µ, by
maximizing the score defined by

score =
∑
i

H(xi : xµ(i)|c) (9.28)

One can build a TAN bnet from empirical data as follows:
Calculate a Chow-Liu Tree for each c ∈ Sc. For each of those trees, create a

TAN bnet, and calculate its score given by Eq.(9.28). Keep the TAN bnet with the
largest score.

162



Chapter 10

Control Theory (linear, deterministic)

This chapter is based on Ref.[96] and [164].
We will assume that the reader has read Section C.46 on Laplace Transforms

and Section C.47 on Z-transforms.
By discrete time or discretizing time, we mean sampling all signals at

discrete times separated by a finite time interval T called the sampling time.
Control Theory (CT) studies the optimal control of systems with feedback.

The systems studied can be

• linear or non-linear,

• deterministic or stochastic,

• continuous time (analog) or discrete time (digital).1.

This chapter will deal with linear deterministic systems of either the analog or digital
kind.

As explained in Chapter 25, dynamical bnets and feedback are two ways of
viewing the same physical phenomenon. Also, there are numerous examples of dy-
namical bnets in this book: Kalman filters, Hidden Markov Models, Reinforcement
Learning, Recursive Neural Nets, to name a few. Hence, a chapter on CT is very
pertinent to this book.

Two acronyms commonly used in CT books are: SISO (single input single
output) and MIMO (multiple input multiple output). We will consider both SISO
and MIMO systems in this chapter.

Another distinction commonly made in CT books is between time-variant
and time-invariant systems. We will explain what those terms mean later on in
this chapter. This chapter will consider both types of systems.

1A signal x(t) is a function of time t. We can discretize t (∆t, sampling), or discretize x (∆x,
quantization), or both. We will use the word “digital" or “sampled’ to describe a theory with
discretized t, but continuous x. Sometimes, the word “digital" is used instead to describe a theory
with both x and t discretized.
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10.1 Basic feedback model
CT uses feedback to control a system or process. Fig.10.1 shows a very basic
feedback model, represented with 3 equivalent diagrams.

r(t)��
Controller

F1

u(t)

Process

F2

y(t)

r[k]

��

r[k+1]

��
u[k]

��

u[k+1]

��
y[k] //

==

y[k+1]

r(t)

��
u(t)

��
y(t)
		

dd

(a) (b) (c)

Figure 10.1: Basic feedback model represented as: (a) a wired time-dependent boxes
diagram, (b) two time-slices of a dynamical bnet (see Chapter 25), and (c) a “rolled"
dynamical bnet with feedback cycles.

The diagrams of Fig.10.1 represent graphically the following system of equa-
tions. Here t ∈ [0,∞] is time and r, u, y : [0,∞]→ C.{

u(t) = F1(y(t), r(t), t)
∂ty(t) = F2(y(t), u(t), t)

(10.1)

If we approximate the time derivative of y(t) by

∂ty(t) ≈
y(t+∆t)− y(t)

∆t
(10.2)

and we set
tk = t, tk+1 = t+∆t, 0 < ∆t << 0,
f(tk) = f [k] for f = r, y, u,

then we get Fig.10.1
The TPMs, printed in blue, of the bnet in Fig.10.1(b), are as follows:

P (r[k]) = given (10.3)

P (u[k]|y[k], r[k]) = δ( u[k] − F1(y
[k], r[k], tk) ) (10.4)
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P (y[k+1]|y[k], u[k]) = δ( y[k+1] − y[k] −∆tF2(y
[k], u[k], tk) ) (10.5)

10.2 Classical model (analog)

r(t) +
��∑

e(t)

−
f(t)

Controller

C

u(t)

Filter

F

Process

Π
y(t)

y(t)

��

f [k]

��

f [k+1]

��

r[k]

��

r[k+1]

��
e[k]

�� $$

e[k+1]

��
u[k]

�� $$

u[k+1]

��
y[k]

II

y[k+1]

f(t)

��

r(t)

��
e(t)

����
u(t)

����
y(t)

WW

(a) (b) (c)

Figure 10.2: Classical Model represented with the same 3 types of diagrams as
Fig.10.1. Bnet (b) doesn’t show all the arrows. In reality, for any arrow a[k] → b[k+1]

that points from the time-slice tk to the time-slice tk+1, there should be arrows
a[j] → b[k+1] for j ∈ {0, 1, 2, · · · , k}. That’s because the classical model is defined
in terms of convolutions, and a convolution at time t requires memory for all times
between 0 and t.

A classical model is a bunch of wired convolution boxes. See Fig.10.2 for 3
graphical representations of the classical model.

Let t ∈ [0,∞] =time and f, e, r, u, y : [0,∞] → C. The diagrams of Fig.10.2
represent graphically the following system of equations.

f(t) = (F ⊛ y)(t)
e(t) = r(t)− f(t)
u(t) = (C ⊛ e)(t)
y(t) = (Π⊛ u)(t)

(10.6)

where (f ⊛ g)(t) denotes a covolution, as defined in Section C.46 on Laplace trans-
forms.
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The TPMs, printed in blue, of the bnet in Fig.10.2, are as follows:

P (r(t)) = given (10.7)

P (f(t)|y(·)) = δ( f(t)− Π[y](t) ) (10.8)

P (e(t)|r(t), f(t)) = δ( e(t)− [r(t)− f(t)] ) (10.9)

P (u(t)|e(·)) = δ( u(t)− C[e](t) ) (10.10)

P (y(t)|u(·)) = δ( y(t)− Π[u](t) ) (10.11)

If we take the Laplace transform of Eqs.(10.6, we get
f̃(s) = F̃ (s)ỹ(s)

ẽ(s) = r̃(s)− f̃(s)
ũ(s) = C̃(s)ẽ(s)

ỹ(s) = Π̃(s)ũ(s)

(10.12)

Thus

H̃y|e =
ỹ

ẽ
= Π̃C̃ (10.13)

ỹ = H̃y|e[r̃ − F̃ ỹ] (10.14)

[1 + H̃y|eF̃ ]ỹ = H̃y|er̃ (10.15)

H̃y|r(s) =
ỹ(s)

r̃(s)
(output/input) (10.16)

=
H̃y|e

1 + H̃y|eF̃
(10.17)

H̃y|e and H̃y|r(s) are both called gain or transfer functions. H̃y|e is called
the open loop gain and H̃y|r(s) is called the closed loop gain. If |Hy|r| is less
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than (resp., more than) 1, we say that there is negative feedback (resp., positive
feedback) because the r̃ signal is reduced (resp., magnified). If the open loop gain
|H̃y|e| >> 1, then the closed loop gain |H̃y|r| ≈ 1

|F̃ |
. So negative (resp., positive)

feedback occurs if |F̃ | > 1 (resp., |F̃ | < 1)
A common type of controller box C̃(s) called the Proportional-Integral-

Derivative (PID) Controller is defined as

u(t) = KΠe(t) +KI

∫ t

0

dτ e(τ) +KD∂te(t) (10.18)

The Laplace transform of the PID controller is

ũ(s) = KΠẽ(s) +KI
ẽ(s)

s
+KD(sẽ(s)− e(0+)) (10.19)

=

 KΠ︸︷︷︸
proportinal

controller

+
KI

s︸︷︷︸
integrator

controller

+ KDs︸︷︷︸
differentiator
controller


︸ ︷︷ ︸

C̃(s), PID controller

ẽ(s) (assume e(0+) = 0) (10.20)

Claim 28 A PID controller has unit gain (H̃y|r(s) = 1) if:

KΠ = 2K, KD = KT, KI =
K

T
(10.21)

Π̃(s) =
1

K(1 + sT )
(10.22)

and

F̃ (s) =
1

1 + sT
(10.23)

proof:

C̃ =
K

sT

(
2sT + 1 + (sT )2

)
(10.24)

=
K

sT
(1 + sT )2 (10.25)

so

167



1 + Π̃C̃F̃ = 1 +
1

sT
(10.26)

=
1

sT
(1 + sT ) (10.27)

= Π̃C̃ (10.28)

Hence,

H̃y|r(s) = 1 (10.29)

QED

10.3 Modern model (analog)

u(t)

��

u(t)

u(t)

FAB

x(t)

FCD
y(t)

��

u[k]

D

��

B

&&

u[k+1]

��

x[k]

C
��

A // x[k+1]

��
y[k] y[k+1]

u(t)

��

��
x(t)

��

		

y(t)

(a) (b) (c)

Figure 10.3: Modern Model represented with the same 3 types of diagrams as Fig.10.1.

A modern model (a.k.a. state space model) is a bunch of wired time-
dependent boxes, some with first order time derivatives. See Fig.10.3 for 3 graphical
representations of the modern model.

Let
t ∈ [0,∞] =time
u : [0,∞]→ Cnu

x : [0,∞]→ Cnx

y : [0,∞]→ Cny

for some integers nu, nx, ny. The diagrams of Fig.10.3 represent graphically the
following system of equations.
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{
∂tx(t) = FAB(x(t), u(t), t)
y(t) = FCD(x(t), u(t), t)

(10.30)

These equations are called the state space equations and x(t) is called the state
of the system. The equation for ∂tx(t) is called the state equation and the one for
y(t) is called the output equation.

The TPMs, printed in blue, of the bnet in Fig.10.3(b), are as follows:

P (u[k]) = given (10.31)

P (x[k+1] | x[k], u[k]) = δ( x[k+1] − x[k] −∆tFAB(x
[k], u[k], tk) ) (10.32)

P (y[k] | x[k], u[k]) = δ( y[k] − FCD(x[k], u[k], tk) ) (10.33)

Henceforth, assume FAB and FCD are as follows. This is called the linear
case. {

FAB(x(t), u(t)) = A(t)x(t) +B(t)u(t)
FCD(x(t), u(t)) = C(t)x(t) +D(t)u(t)

(10.34)

for some matrices A(t), B(t), C(t), D(t). In the linear case, the modern model is
described by the following equations:{

∂tx(t) = Ax(t) +Bu(t)
y(t) = Cx(t) +Du(t)

(10.35)

If the matrices A(t), B(t), C(t), D(t) depend on (resp., are independent of)
time t, we say the system is time-variant (resp., time-invariant). Next, we solve
the differential equation for x(t), for both the time-invariant and variant cases.

• time-invariant case

Taking the Laplace transform of the first equation of Eqs.(10.35), we get

sx̃(s)− x(0) = Ax̃(s) +Bũ(s) (10.36)

Hence, the Laplace transform of Eqs.(10.35) is{
x̃(s) = (sI − A)−1x(0) + (sI − A)−1Bũ(s)
ỹ(s) = Cx̃(s) +Dũ(s)

(10.37)
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If we define the transfer function H̃y|u(s) by

ỹ(s)︸︷︷︸
output

= H̃y|u(s) ũ(s)︸︷︷︸
input

(10.38)

then, assuming x(0) = 0,

H̃y|u(s) = C(sI − A)−1B +D (10.39)

Note from the last equation that the set of poles of H̃y|u(s) is a subset of the
set of eigenvalues of A.

If we set

A =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
−b0 −b1 −b2 · · · −bn−1

 (10.40)

B =


0
0
...
1

 (10.41)

C =
[
a0 a1 · · · am−1

]
(10.42)

D = 0 (10.43)

then one can show that (the laborious part is inverting s− A algebraically)

H̃y|u(s) = C(sI − A)−1B +D (10.44)

=
sm + am−1s

m−1 + · · ·+ a0
sn + bn−1sn−1 + · · ·+ b0

(10.45)

This makes it possible to start with a desired transfer function, and build an
analog modern model that achieves it.
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Claim 29

x(t) = eA(t−t0)x(t0) + eA(t−t0)
∫ t

t0

dτ e−A(τ−t0)Bu(τ) (10.46)

where

eAt =
∞∑
k=0

tk

k!
Ak (10.47)

Hence, setting t ≥ t0 = 0,

eAt = L−1[(sI − A)−1] (10.48)

eAt
∫ t

0

dτ e−AτBu(τ) = L−1[(sI − A)−1Bũ(s)] (10.49)

proof: To check Eq.(10.46), just take the time derivative of both sides and use
∂t
∫ t
dτ f(τ) = f(t)

QED

• time-variant case

Claim 30

x(t) = E(t, t0)x(t0) +
∫ t

t0

dτ E(t, τ)B(τ)u(τ) (10.50)

where the state transition matrix (a.k.a. evolution matrix) E(t, t0) sat-
isfies

∂tE(t, t0) = A(t) (10.51)

and

E(t, t) = 1 (10.52)

proof: To prove Eq.(10.50), just differentiate both sides of it with respect to t,
and use ∂t

∫ t
dτ f(τ) = f(t)

QED

In the time-invariant case,

E(t, t0) = eA(t−t0) (10.53)
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10.4 Classical model (digital)
In this section, we will define the classical model with discrete rather than continuous
time.

If we discretize time, then the equivalent of Eqs.(10.6) is
f [n] = (F ⊛ y)[n]

e[n] = r[n] − f [n]

u[n] = (C ⊛ e)[n]

y[n] = (Π⊛ u)[n]

(10.54)

where (x ⊛ y)[n] denotes a discrete convolution, as defined in Section C.47 on Z-
transforms. And if we take the Z-transform of Eqs.(10.54), we get

f̃(z) = F̃ (z)ỹ(z)

ẽ(z) = r̃(z)− f̃(z)
ũ(z) = C̃(z)ẽ(z)

ỹ(z) = Π̃(z)ũ(z)

(10.55)

The digital PID controller box C̃(z) is given by

ũ(z) =

 KΠ︸︷︷︸
proportinal

controller

+KI
T

2

(
z + 1

z − 1

)
︸ ︷︷ ︸

integrator

controller

+KD
1

T

(
z − 1

z

)
︸ ︷︷ ︸

differentiator
controller


︸ ︷︷ ︸

C̃(z), PID controller

ẽ(z) (assume e(0+) = 0)

(10.56)

10.5 Modern model (digital)
In this section, we will define the modern model with discrete rather than continuous
time. We will do this 2 different ways. First, we will approximate the time derivatives
in all differential equations with a discrete approximation. This approach is interesting
and instructive but not perfect, because it’s an approximation (i.e., it assumes the
sampling time T = ∆t is very small). Second, we will replace all differential equations
by difference equations, and solve the latter exactly. The second approach is better
for most purposes, because it gives exact results (i.e., correct to all orders in T ),
instead of approximations.
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10.5.1 Discretizing derivatives

If we approximate ∂tx(t) by

∂tx(t) = lim
∆t→0

x(t+∆t)− x(t)
∆t

(10.57)

then Eqs.(10.35) reduce to{
x(t+∆t) = (1 + ∆tA)x(t) + ∆tBu(t)
y(t) = Cx(t) +Du(t)

(10.58)

Using the new notation

Â = eA∆t ≈ 1 + ∆tA, (10.59)

B̂ ≈ ∆tB (10.60)

∆t = T, t = nT (10.61)

X(t) = X(nT ) = X [n] for X = x, u, y (10.62)

we get {
x[n+1] = Âx[n] + B̂u[n]

y[n] = Cx[n] +Du[n]
(10.63)

Setting t = t0 + T in Eq.(10.46), we get

x(t0 + T ) = eATx(t0) + eAT
∫ t0+T

t0

dτ e−A(τ−t0)Bu(τ) (10.64)

= eATx(t0) + eAT
∫ T

0

dτ e−AτBu(τ + t0) (substitute τ → τ + t0)

(10.65)

Now setting

t0 = nT (10.66)

and

u(τ + t) ≈ u(t) for τ ∈ [0, T ] (10.67)

we get
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x[n+1] = eAT︸︷︷︸
Â

x[n] + eAT
[∫ T

0

dτ e−Aτ
]
B︸ ︷︷ ︸

B̂

u[n] (10.68)

where

Â = eAT (10.69)

and

B̂ = eAT
[∫ T

0

dτ e−Aτ
]
B (10.70)

= eAT (−A)−1(e−AT − I)B (10.71)
= A−1(Â− 1)B (10.72)

When T << 1, Â− 1 ≈ AT so A−1(Â− 1)B ≈ BT .

10.5.2 Solving Difference Equation

• time-invariant case

Consider the following difference equation taken from Eqs.(10.63)

x[n+1] = Âx[n] + B̂u[n] (10.73)

To solve this difference equation, we notice that

x[1] = Âx[0] + B̂u[0] (10.74)

x[2] = Âx[1] + B̂u[1] (10.75)
= Â2x[0] + ÂB̂u[0] ++B̂u[1] (10.76)

x[3] = Âx[2] + B̂u[2] (10.77)
= Â3x[0] + Â2B̂u[0] + ÂB̂u[1] + B̂u[2] (10.78)

The general pattern is clear. In general,
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x[n] = Ânx[0] +
n−1∑
k=0

Ân−k−1B̂u[k] (10.79)

It is also possible to solve Eqs.(10.63) using Z-transforms (See Section C.47).
The Z-transform of the first of those two equations is

z(x̃(z)− x[0]) = Âx̃(z) + B̂ũ(z) (10.80)

Therefore, the Z-transform of Eqs.(10.63) is2

{
x̃(z) = (zI − Â)−1zx[0] + (zI − Â)−1B̂ũ(z)
ỹ(z) = Cx̃(z) +Dũ(z)

(10.81)

From this we can get the transfer matrix H̃y|u(z). Assuming x[0] = 0,

ỹ(z) =
(
Ĉ(zI − Â)−1B̂ + D̂

)
︸ ︷︷ ︸

H̃y|u(z)

ũ(z) (10.82)

As for the analog modern model, it is possible to find for the digital modern
model, matrices Â, B̂, Ĉ, D̂ that produce a transfer function of a desired form.

• time-variant case
We can also give a discrete version of Claim 30

Claim 31

x[n] = E [n,n0]x[n0] +
n−1∑
k=0

E [n,k+1]B[k]u[k] (10.83)

where

E [n+1,n0] = Â[n]E [n,n0] (10.84)

and

E [n0,n0] = I (10.85)

Hence

E [n,n0] = Â[n−1]Â[n−2]Â[n−3] · · · Â[n0] (10.86)

=
∏

k∈Z[1,n−n0]

Â[n−k] (10.87)

2Notice the z factor multipying x[0]. There is no counterpart s factor multiplying x(0) in the
analog case. That’s because z = esT .
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proof: Left to reader.
QED

10.6 Higher than first order differential (or differ-
ence) equations

If in the analog, time-invariant modern model, we express x(t) in terms of y(t) and
u(t)

x(t) = C−1[y(t)−Du(t)] (10.88)

and then we plug this into the equation for ∂tx(t), we get

∂t

C−1[y(t)−Du(t)]︸ ︷︷ ︸
x(t)

 = AC−1[y(t)−Du(t)]︸ ︷︷ ︸
x(t)

+Bu(t) (10.89)

Hence, it appears that this model can only accommodate a first order time derivative
of the output y(t). Next we give a transformation whereby a model with y(t) deriva-
tives that are higher than 1st order, can be re-expressed in a form that only has 1st
order time derivatives. We will also give an analogous result for the digital (instead of
analog) time-invariant modern model; that is, we will show that those digital models
can accommodate higher than 1st order time differences.

10.6.1 Differential Equations

Let
Ω = ∂3t + a2∂

2
t + a1∂t + a0 (10.90)

where a0, a1, a2 ∈ C are independent of time t, and consider the linear, constant
coefficients (LCC) ordinary differential equation (ODE):

Ωy(t) = u(t) (10.91)

Assume f(t) satisfies

Ωf(t) = 0 (10.92)

Let

∂3t y(t)︸ ︷︷ ︸
∂tx2+∂3t f

+a2 ∂
2
t y(t)︸ ︷︷ ︸
x2+∂2t f

+a1 ∂ty(t)︸ ︷︷ ︸
x1+∂tf

+a0 y(t)︸︷︷︸
x0+f

= u(t) (10.93)

and
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x(t) =

 x0(t)
x1(t)
x2(t)

 (10.94)

Then

∂tx(t) =

 0 1 0
0 0 1
−a0 −a1 −a2


︸ ︷︷ ︸

A

x(t) +

 0
0
1


︸ ︷︷ ︸

B

u(t) (10.95)

y(t) = x0(t) + f(t) =
[
1 0 0

]︸ ︷︷ ︸
C

x(t) + f(t) (10.96)

If Ωu = 0, we can define f = Du. Otherwise, define f = 0.
What’s going on here, from a dynamical bnet perspective, is that we are defin-

ing the slices to have enough variables so that there only needs to be memory from
one slice to the previous slice, instead of, to the previous 3 slices.

10.6.2 Difference Equations

Let

y[n+3]︸ ︷︷ ︸
x
[n+1]
3

+a2 y
[n+2]︸ ︷︷ ︸
x
[n]
2

+a1 y
[n+1]︸ ︷︷ ︸
x
[n]
1

+a0 y
[n]︸︷︷︸
x
[n]
0

= u[n] (10.97)

and

x[n] =

 x
[n]
0

x
[n]
1

x
[n]
2

 (10.98)

Then

x[n+1] =

 0 1 0
0 0 1
−a0 −a1 −a2


︸ ︷︷ ︸

A

x[n] +

 0
0
1


︸ ︷︷ ︸

B

u[n] (10.99)

y[n] = x
[n]
0 =

[
1 0 0

]︸ ︷︷ ︸
C

x[n] (10.100)
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10.7 Time-Invariance, Causality, Stability
A linear system with input r(t) and output y(t) has a kernel function H(t, τ) such
that

y(t) =

∫ Λ

0

H(t, τ)r(τ) (10.101)

In general, r and y are vectors, so H(t, τ) is a matrix.
A system is time-invariant if H(t, τ) = H(t−τ). For time-invariant systems,

H(t) is called the impulse response (because y(t) = H(t) when r(τ) = δ(τ) ) and
its Laplace transform H̃(s) is called the transfer function.

A system is causal if Λ = t (i.e., the output y(t) depends only on the input
r(τ) for τ < t.).

A system is stable if a bounded input r(·) implies a bounded output y(·).
(BIBO=Bounded Input, Bounded Output).

Consider the analog time-invariant modern model. Suppose its transfer func-
tion is3

H̃y|u(s) = K
N (s)

D(s)
(10.102)

where K ∈ C is some constant independent of s,

N (s) =
A∏
a=1

(s− αa)ma (10.103)

and

D(s) =
B∏
b=1

(s− βb)nb (10.104)

and where the polynomials N (s) and D(s) have no common factors. The {αa}Aa=1 are
called the zeros of the transfer function, and the {βb}Bb=1 are called the poles of the
transfer function. This system is

• stable if the zeros of the transfer function fall on the left half of the s-plane
(i.e., if Re(βb) < 0 for all b)

• marginally stable if Re(βb) = 0 for some b and Re(βb) < 0 for the others.
Marginally stable systems sustain undamped oscillations. They may become
unstable if perturbed.

3We are assuming that the transfer function is a scalar 1 × 1 matrix. If it has row or column
dimensions larger than one, one analyzes each entry of the transfer function matrix as if it were a
scalar transfer function.
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• unstable if Re(βb) > 0 for some b.

To get some intuition as to why this is so, let’s look at the inverse Laplace
transform of 1/(s− βb):

lim
t→∞

∫ γ+iT

γ−iT
ds

est

s− βb
= Keβbtu0(t) (10.105)

where K ∈ C, γ, T ∈ R and Re(βb) < γ. At the pole, s = βb, so

est = eβbt = eRe(βb)teiIm(βb)t (10.106)

As t → ∞, the integral blows up if Re(βb) > 0 and converges if Re(βb) < 0. As
t → ∞, integration under poles in the left half plane doesn’t blow up because it is
ultimately dampened by a decaying exponential.

An analogous result holds for the digital time-invariant modern model, except
that in that case, the transfer function H̃y|u(z) is a Z-transform (instead of a Laplace
transform), and stability occurs if the poles of the transfer function fall inside the
unit circle of the z-plane (instead of the left half plane of the s-plane.)

10.8 Controllability, Observability
Suppose x, u, y : T → X . where T = [0,∞).

• a ∈ X is controllable at time t0 ∈ T if there exist a time t1 ∈ T and an
input u(·) such that x(t0) = a and x(t1) = 0.

• x(·) is controllable at time t0 ∈ T if, for all a ∈ X , a is controllable at time
t0 ∈ T .

• a ∈ X is observable at time t0 ∈ T if there exists a t1 ∈ T such that x(t0) = a
and a can be determined from the values of y(t) for t ∈ [t0, t1].

• x(·) is observable at time t0 ∈ T if, for all a ∈ X , a is observable at time
t0 ∈ T .

10.9 Signal Flow Graph
This section on Signal Flow (SF) graphs is based on Ref.[164]. According Ref.[164], SF
graphs were invented by Shannon in 1942 to model “differential equation machines".
They were later extended and promoted by Mason circa 1955.

SF graphs are very similar to LDEN (Linear Deterministic with External
Noise) bnets discussed in Chapter 48. However, there are some important differ-
ences between the two, such as: (1) SF graphs have no external random nodes (2)
unlike the LDEN considered in Chapter 48, SF graphs can have feedback cycles.
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In SF graphs, the multiplicative factors carried by the arrows are called “gains".
In SF graphs, the gains are always Laplace transforms (for the analog case) or Z-
transforms (for the digital case). In this section, we will only discuss SF graphs for
the analog case, but keep in mind that the digital case is very similar.

Next we will discuss the analog classical and analog (time-invariant) modern
models in terms of SF graphs.

• classical model

r̃ +
��∑

ẽ

−̃
f

Controller

C̃

ũ

Filter

F̃

Process

Π̃
ỹ

ỹ

��

f̃

−1

��

r̃

+1
��
ẽ

C̃
��
ũ

Π̃
��
ỹ

F̃

WW

(a) (c)

Figure 10.4: This figure is the Laplace transform of classical model Figs.10.2 (a) and
(c).

Fig.10.4 is the Laplace transform of Figs.10.2 (a) and (c). Fig.10.4 (c) is an SF
graph.

The SF graph of Fig.10.4 implies the following system of equations:
ẽ = r̃ − f̃
ũ = C̃ẽ

ỹ = Π̃ũ

f̃ = F̃ ỹ

(10.107)

• time-invariant modern model

Fig.10.5 is the Laplace transform of Figs.10.3 (a) and (c) for the time-invariant
case. Fig.10.5 (c) is an SF graph.
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ũ

D

��

B
s

��
x̃

C

��

A
s
��

ỹ

ũ

B
��

D

��

∑
1
��

∂̃tx

1
s

��
x̃

A

\\

C
��
ỹ
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Figure 10.5: This figure is the Laplace transform of modern model Figs.10.3 (a) and
(c), for the time-invariant case. Figure (c′) is a more detailed version of figure (c).

The SF graph of Fig.10.5 implies the following system of equations:{
x̃ = 1

s
(Ax̃+Bũ)

ỹ = Cx̃+Dũ
(10.108)

Next, we shall discuss some properties of the feedback cycles of SF graphs.
An approach that I like is to re-express an SF graph with feedback cycles by

one without them that is easier to understand.

Claim 32 Eliminating bubbles (i.e., self-feedback cycles)

a

α
��

b

β
��

x

µ

�� =

a

α
1−µ ��

b

β
1−µ��

x

(10.109)

proof: From the left hand diagram,

x = µx+ αa+ βb (10.110)

Hence,

x =
α

1− µ
a+

β

1− µ
b (10.111)

QED
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Claim 33 Eliminating 2-node cycles

a

α

��

b

β

��
x

µ

��
y

ν

aa
=

a
α

1−µν

��

µα
1−µν

''

b

β
1−µν

��

νβ
1−µν

ww
x y

(10.112)

proof: From the left hand diagram,{
νy ++αa = x
βb+ µx = y

(10.113)

Hence, [
1 −ν
−µ 1

] [
x
y

]
=

[
αa
βb

]
(10.114)

But [
1 −ν
−µ 1

]−1

=
1

1− µν

[
1 ν
µ 1

]
(10.115)

so [
x
y

]
=

1

1− µν

[
1 ν
µ 1

] [
αa
βb

]
(10.116)

QED
We could continue by showing how to eliminate cycles with 3, 4 . . . cycle nodes,

but the pattern is clear. If there are N cycle nodes l1, l2, · · · , lN , then any arrow
a → lk0 in the feedback graph is replaced by N arrows a → lk for k = 1, 2, . . . , N in
the non-feedback graph. Let Gcycle be the product of the gains in the cycle. If αk0 is
the gain of arrow a→ lk0 in the feedback graph, then the gain of a→ lk in the non-
feedback graph equals the product of the gains in the path a αk0

// lk0 → · · · → lk

divided by 1−Gcycle.
SF graphs with feedback cycles can be used to represent a general system of

N linear equation with N unknowns (i.e. y = Cx, where C is an N × N matrix).
Fig.10.6 shows an SF graph that does this for N = 3.

In Fig.10.6,

x1 = (c11 + 1)x1 + c12x2 + c13x3 − y1
x2 = c21x1 + (c22 + 1)x2 + c23x3 − y2
x3 = c31x1 + c32x2 + (c33 + 1)x3 − y3

(10.117)

so
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Figure 10.6: SF graph that represents a general system of 3 linear equations with 3
unknowns.

 y
1

y
2

y
3

 =

 c11 c12 c13
c21 c22 c23
c31 c32 c33

 x1
x2
x3

 (10.118)

y = Cx (10.119)

Note that the self-feedback cycles in Fig.10.6 can be eliminated using the technique
described in Claim 32.
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Chapter 11

Copula

This chapter is based on Refs.[116] and [7].
A copula in architecture is a domed roof. Here we will discuss a copula in

Statistics. Copulas are probably called this in Statistics because their probability
density resembles a dome when their domain is the real plane R2. Furthermore,
the word “copula" means “connector" or “coupler" in Latin, and both, the copula in
Architecture and the one in Statistics, connect the sides (or marginals in the Statistics
case) of a geometrical shape.

Let x = [xi]
n
i=1 ∈ R be an n dimensional column vector. Given a probability

distribution (actually, a density) P (x), we will refer to P (xi = xi) for all i as its
marginals and to P (xi ≤ xi) for all i as its cumulative marginals or c-marginals
for short. This is normally referred to as the CDF (cumulative distribution
function) of xi.

Suppose you know the marginals P (xi) of P (x), but you don’t know P (x)
itself. There are infinitely many possible P (x)’s with those marginals. Informally
speaking, a copula is one of those P (x), a smooth one. The dimension n of the
domain of the copula, is referred to as the copula dimension. See Figs. 11.1 and
11.2 for examples of 2-dimensional copulas.

Let x = [xi]
n
i=1 ∈ Rn and u = [ui]

n
i=1 ∈ Rn be n dimensional column vectors.

Henceforth, will denote the c-marginals of xi by Φxi

Φxi
(xi) = P (xi ≤ xi) (11.1)

and the generalization of this map to vector arguments by Φx:

x =


x1
x2
· · ·
xn

 , Φx(x) =


Φx1

(x1)
Φx2

(x2)
· · ·

Φxn
(xn)

 (11.2)

More precisely, a copula in Statistics is defined as follows. A copula density
is a probability density P (u) such that (see Fig.11.3)
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Figure 11.1: Contour plot of a 2-
dimensional copula with uniform
marginals

Figure 11.2: Contour plot of a 2-
dimensional copula with skewed bell-
shaped marginals.

u1 x1
Φx1oo

��
u2 x2

Φx2oo

P (x1)

= P (u, x) =

P (u1) u1

��

Φ−1
x1

// x1

u2
Φ−1

x2

// x2

Figure 11.3: Graphical representation of Eq.(11.4) for n = 2. Φxi
(xi) = P (xi ≤ xi) is

the CDF of xi, and we define ui = Φxi
(xi)

P (u|x)︸ ︷︷ ︸∏n
i=1 δ(ui−Φxi (xi))

P (x) = P (u, x) = P (x|u)︸ ︷︷ ︸∏n
i=1 δ(xi−Φ−1

xi
(ui))

P (u) (11.3)

P (x = x) =

 P (u = u)︸ ︷︷ ︸
copula density


u= Φx(x)︸ ︷︷ ︸

c-marginals

(11.4)

A copula C(u) is defined as the CDF of its copula density.
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C(u) =
n∏
i=1

{∫ ui

−∞
du′i

}
P (u = u′) (11.5)

= P (∀i : ui ≤ ui)︸ ︷︷ ︸
def
= P (u≤u)

(11.6)

∂u1∂u2 . . . ∂unC(u) = P (u) (11.7)

There are copulas that are well-defined by Eq.(11.6), but not differentiable, so,
technically, without smoothing, their copula density does not exist. For this reason, if
possible, it is always best and most general to state copula results in terms of CDFs,
instead of probability densities. For example, the boxed Eq.(11.4) stated in terms of
CDFs, is

P (x ≤ x) =

P (u ≤ u)︸ ︷︷ ︸
copula


u= Φx(x)︸ ︷︷ ︸

c-marginals

(11.8)

Claim 34 ui = Φxi
(xi) implies that the marginal P (ui) = 1 is a uniform distribution

on [0, 1].

proof:
ui = Φxi

(xi) = P (xi ≤ xi) = 1 (11.9)

If that doesn’t convince you, here is another proof.

P (ui ≤ ui) = P (Φxi
(xi) ≤ ui) (11.10)

= P (xi ≤ Φ−1
xi
(ui)) (11.11)

= Φxi

(
Φ−1
xi
(ui)

)
(11.12)

= ui (11.13)

Hence,

P (ui = ui) =
∂

∂ui

∫ ui

−∞
du′i P (ui = u′i) (11.14)

=
∂P (ui ≤ ui)

∂ui
(11.15)

= 1 (11.16)

QED
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11.1 Examples
In the following examples, n = 2, and we sometimes substitute (u1, u2) = (u, v),
(x1, x2) = (x, y).

1. x1 and x2 are independent

If x1 and x2 are independent, u1 and u2 are too. Hence,

C(u1, u2) = P (u1 ≤ u1, u2 ≤ u2) (11.17)
= P (u1 ≤ u1)P (u2 ≤ u2) (11.18)
= u1u2 (11.19)

C(Φx(x)) = Φx1
(x1)Φx2

(x2) (11.20)

∂x1∂x2C(Φx(x)) = ∂x1∂x2Φx1
(x1)Φx2

(x2) (11.21)

P (x) = P (x1)P (x2) (11.22)

2. x2 = αx2 for some α > 0

If x2 = αx1 for some parameter α > 0, then

u1 = Φx1
(x1) (11.23)

= P (x1 ≤ x1) (11.24)
= P (αx1 ≤ αx1) (11.25)
= P (x2 ≤ x2) (11.26)
= Φx2

(x2) (11.27)
= u2 (11.28)

C(u1, u2) = P (u1 ≤ u1, u2 ≤ u2) (11.29)
= P (u1 ≤ u1, u1 ≤ u2) (11.30)
= P (u1 ≤ min(u1, u2)) (11.31)
= min(u1, u2) (11.32)
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3. x2 = −αx2 for some α > 0

If x2 = −αx1 for some parameter α > 0, then

u1 = Φx1
(x1) (11.33)

= P (x1 ≤ x1) (11.34)
= P (−αx1 > −αx1) (11.35)
= P (x2 > x2) (11.36)
= 1− Φx2

(x2) (11.37)
= 1− u2 (11.38)

C(u1, u2) = P (u1 ≤ u1, u2 ≤ u2) (11.39)
= P (u1 ≤ u1, 1− u1 ≤ u2) (11.40)
= P (1− u2 ≤ u1 ≤ u1)) (11.41)
= max(u1 − (1− u2), 0) (Area of rectangle [1− u2, u1]× [0, 1])

(11.42)

The Fréchet–Hoeffding bounds are lower and upper bounds for any n-dim cop-
ula. For n = 2, these bounds are

max(u1 + u2 − 1, 0)︸ ︷︷ ︸
case x2=−αx1

≤ C(u1, u2) ≤ min(u1, u2)︸ ︷︷ ︸
case x2=αx1

(11.43)

4. Gaussian copula

Recall that the n-dimensional multivariate Normal Distribution has a probabil-
ity density

N (x;µ,Σ) =
exp

(
− 1

2
(x− µ)TΣ−1(x− µ)

)√
(2π)n det(Σ)

(11.44)

where µ = E[x] and Σ =
〈
xT , x

〉
. For n = 2,

Σ =
〈
xT , x

〉
(11.45)

=

[
σ2
x1

ρσx1σx2
ρσx1σx2 σ2

x2

]
(σxi =

√
⟨xi, xi⟩ and ρ =

⟨x1, x2⟩
σx1σx2

) (11.46)

=

[
1 ρ
ρ 1

]
︸ ︷︷ ︸

def
= Σρ

(Assume σx1 = σx2 = 1) (11.47)
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Σ−1
ρ =

1

1− ρ2

[
1 −ρ
−ρ 1

]
(11.48)

N (x;µ = 0,Σ = Σρ) =

exp

(
− 1

2(1−ρ2)x
T

[
1 −ρ
−ρ 1

]
x

)
√

(2π)2(1− ρ2)
(11.49)

=
exp

(
− 1

2(1−ρ2)(x
2
1 + x22 − 2ρx1x2)

)
√
(2π)2(1− ρ2)

(11.50)

For each i, assume the marginal of xi is a Normal distribution with zero mean
and unit variance:

P (xi) = N (xi;µ = 0, σ = 1) =
exp

(
− x2i

2

)
√
2π

(11.51)

Then
Φxi

(xi) = P (xi ≤ xi) =
1

2

[
1 + erf

(
x√
2

)]
(11.52)

and

Φ−1
xi
(ui) =

√
2 erf−1(1− 2ui) (11.53)

Besides assuming Gaussian marginals, we will assume a Gaussian copula density

C(u) =
2∏
i=1

{∫ ui

−∞
du′i

}
P (u′) (11.54)

where

P (u) = N (x = Φ−1
x (u);µ = 0,Σ = Σρ) (11.55)

Hence,

P (x) = P (u = Φx(x)) (11.56)
= N (x;µ = 0,Σ = Σρ) (11.57)
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Chapter 12

Counterfactual Reasoning

12.1 The 3 Rungs of Causal AI
According to Judea Pearl, there are 3 rungs in the ladder of causal AI. These are (as
I see them):

1. Observing Passively. Answering “What next?": Collecting data and
fitting curves to it, without any plan designed to investigate Nature’s causal
connections. Predicting the future.

2. Doing causal experiments. Answering “Why?": Doing experiments con-
sciously designed to elucidate Nature’s causal connections. Even cats do this!,
but current AI doesn’t.

3. Imagining counterfactual situations, Analogizing. Answering “What
if?": Imagining gedanken experiments to further understand Nature’s causal
connections, and to decide what future courses of action are more likely to
succeed, even if those courses of action are unprecedented, and have never
been taken before. Making predictions about events that have never happened
(“counterfactuals") is a very Bayesian concern, well out of the purview of fre-
quentists. Nevertheless, humans do such “analogizing" all the time to great
advantage. It becomes possible if there is some foreign but similar data that
can be transported (transplanted, applied) to the situation of interest.

We will use the term intervention operator (or simply “intervention")
to refer to an operator that maps a bnet to another bnet. In Chapter 21, we intro-
duced an intervention operator called the do operator Dx=x (this is our notation for
what Pearl symbolizes by do(x) = x). The study of counterfactuals requires that we
introduce a new kind of intervention operator that we will call an imagine opera-
tor, and denote by Ix→y. These 2 types of intervention operators will be defined in
subsequent sections of this chapter. Usage of the do operator characterizes rung 2,
and usage of the imagine operator characterizes rung 3.
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Chapter 56 on message passing is about rung 1. Chapter 21 on Do Calculus
is about rung 2. This chapter is dedicated to rung 3.

Judea Pearl is fond of discussing rung 3 solely in terms of SCM.1 In this
chapter, we define rung 3 without using SCM, using solely bnets. This gives a more
general version of rung 3, because SCM are a subset of bnets.

12.2 Do operator

Figure 12.1: Action of “do" operator Dx=5 on node x.

The do operator Dx=5 is defined graphically in Fig.12.1. The TPM, printed in
blue, for node x̃ of Fig.12.1, is as follows.2

P (x̃; 5) = δ(5, x̃) (12.1)

The do operator Dx=5 amputates the incoming arrows of node x and sets the
TPM of the new root node x̃ to a delta function δ(x̃, 5) (or some state of x other than
5). Sometimes we call the new node Dx instead of x̃.

The uses of the do operator are discussed in detail in Chapter 21.

12.3 Imagine operator
The imagine operator Ix→y(5) is defined graphically in Fig.12.2. Note that Fig.12.2
actually defines two types of imagine operators, the one with an argument: Ix→y(5),
and the one without an argument: Ix→y. The TPMs, printed in blue, for various
nodes in Fig.12.2, are as follows.

• For Ix→y(x̃)G

P (y|x̃, a.) = P (y|x = x̃, a.) (12.2)

1SCM are what we call DEN. DEN (deterministic systems with external noise) are discussed in
Chapter 48.

2The “ ; 5" in the distribution indicates that 5 is a frequentist parameter of the distribution.
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Figure 12.2: Action of “imagine" operators Ix→y(5) and Ix→y on arrow x → y. In
this figure, ynx = [y(x)]∀x∈Sx , where nx = |Sx| and Sx is the set of states of node x.

P (x̃; 5) = δ(x̃, 5) (12.3)

• For Ix→yG

P (ynx|a.) =
∏
x̃

P (y(x̃) = y(x̃)|a.) (12.4)

P (y|ynx, x) = δ(y, y(x)) (12.5)

The imagine operators Ix→y(5) and Ix→y operate on an arrow whereas the D operator
operates on a node. Ix→y(5) deletes arrow x→ y and creates a new root node x̃ and
a new arrow x̃→ y. Sometimes we call the new node Iyx instead of x̃. Ix→y creates
a new node ynx and an arrow ynx → y.

Fig.12.3 shows how the imagine operator arises in Potential Outcomes (PO)
theory. PO theory is discussed extensively in Chapter 72. As you can see, PO theory
only uses a limited version of the 3 rungs of causal inference, because it doesn’t
use the do-operator, and it only uses one of 2 possible types of imagine operators.
Furthermore, it assumes a very limited triangular DAG.
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Figure 12.3: How imagine operator arises in Potential Outcomes (PO) theory.

Figure 12.4: Dx=5Ix→yG gives a connection between do and imagine operators.

Fig.12.4 gives a connection between do and imagine operators. We see from
that figure that for Dx=x̃Ix→yG, we have3

P (y|Dx = x̃, a.) = P (y(x̃) = y|a.) (12.6)

One can define a do-imagine-calculus whose objective is to express proba-
bilities such as P (y|Dr = r, Ibs = s, t) in terms of observable probabilities that do not
contain any do or imagine operators in them. As with Do Calculus, this reduction
is not always possible, and we say a probability is D-identifiable, I-identifiable or
DI-identifiable if it can be expressed without do, imagine or both operators.

In causal inference, we often consider “counterfactual" random variables y(0) ∈
{0, 1} and y(1) ∈ {0, 1}. They are called counterfactual variables because one of the
2 variables refers to an event that has occurred, whereas the other variable refers to
a “counterfactual event", i.e., an event that has never occurred. For some patients,
y(0) has a value but y(1) doesn’t. For other patients, the opposite is the case. There
is some disagreement in the community as to which algorithms perform rung 3 op-
erations, and which don’t. This is the convention used in this book. We will say

3In the notation favored by Pearl, Eq.(12.6) would be

P (y|do(X) = x̃, a.) = P (Yx̃ = y|a.)
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rung 3 operations are being performed if the counterfactual variables y(0) and y(1)
are being used, or, equivalently, if a bnet is being used that includes nodes y(0), and
y(1) that were produced by an imagine operator. Potential Outcomes (PO) theory
(see Chapter 72) qualifies as rung 3 according to this convention. However, note that
PO theory only does the bare minimum to reach rung 3. In PO theory, one usually
evaluates ATE = E[y(1)] − E[y(0)], which entails calculating P (y(0)) and P (y(1)).
Pearl has extended the reach of rung 3 much further by calculating expected values
that require knowledge of the joint distribution P (y(0), y(1)).
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Chapter 13

Cross-Validation

This chapter is based on Ref.[118].
Cross-Validation (CV) is a method of calculating the “out-of-training-set"

(OOTS) error for a classifier. What this means is that the classifier is trained on a
training set, and its propensity to err is evaluated on a set different from the training
set.

In k-fold CV, the most common CV method, and the only one we will discuss
in this chapter, one partitions a dataset into k disjoint datasets of equal length. One
uses k − 1 of those sub-datasets to train a model, and saves the last sub-dataset to
validate the model just trained. One actually rotates which of the k sub-datasets is
used for validation purposes, and calculates k validation errors Ej for j = 0, 1, . . . , k−
1. Then one averages over the Ej to obtain a final OOTS error E .

CV strongly resembles Jackknife Resampling (JR) (see Chapter 42), but in JR
the validation sub-dataset is never used for anything, whereas in CV, it is used for
validation purposes, to calculate an OOTS error.

Next, we will explain k-fold CV more explicitly, using equations and a bnet.
Let L = [0, 1, 2, . . . , nsam−1] be a list of individuals (samples) in a population.

In this chapter, we will use the notation Aσ = A[σ] and A⃗ = [Aσ : σ ∈ L] for a list
(vector, 1-D array) indexed by L. We will refer to DS = (x⃗, y⃗) where xσ ∈ Sx,
yσ ∈ Sy, as a dataset. If Lj is a list (possibly with duplicate items) such that
set(Lj) ⊂ set(L), then define DSj = (x⃗, y⃗)Lj

= ((xσ)σ∈Lj
, (yσ)σ∈Lj

). We will refer to
DSj as the restriction of (x⃗, y⃗) to Lj.

Let J = {0, 1, 2, . . . , nj − 1}.
Define a training list(TL), validation list(VL) pair (TL, V L) to be a pair

of lists such that set(TL) and set(V L) are disjoint subsets of set(L). Let (TLj, V Lj)
for j ∈ J be nj such TL-VL pairs.

Fig.13.1 shows the TL-VL pairs that are used when doing k-fold CV. In that
figure, k = nj = 4. As you can see, in k-fold CV, one chooses nj = k list pairs
(TLj, V Lj) such that all individuals σ ∈ L appear exactly once, in either TLj or TVj,
but not in both.

We will refer to a function Y : Sx → Sc as a classifier. It maps a vector of
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Figure 13.1: 4-fold CV with |L| = 12. For all j, |V Lj| = 3 and |TLj| = 9. All
individuals σ ∈ L appear exactly once, in either TLj or TVj, but not in both.

features x to a class c. Let Yj for j ∈ J denote nj classifiers.
If Yj : Sx → Sc and Sc is a discrete set (“categorical"), then define the OOTS

error for the jth classifier as:

Ej =
1

|V Lj|
∑
σ∈V Lj

1(yσ ̸= Yj(x
σ)) . (13.1a)

On the other hand, if Sc = R, it makes more sense to define Ej as a mean square
error:

Ej =
1

|V Lj|
∑
σ∈V Lj

(yσ − Yj(xσ))2 . (13.1b)

Finally, define the final OOTS error as

E =
1

|J |
∑
j∈J

Ej . (13.2)

Fig.13.2 gives a bnet that represents the CV algorithm. The TPMs, printed
in blue, for the bnet Fig.13.2, are as follows:

P ((x⃗, y⃗)TLj
|(x⃗, y⃗)) = 1( (x⃗, y⃗)TLj

= restriction of (x⃗, y⃗) to TLj. ) (13.3)

P ((x⃗, y⃗)V Lj
|(x⃗, y⃗)) = 1( (x⃗, y⃗)V Lj

= restriction of (x⃗, y⃗) to V Lj. ) (13.4)

P (Yj|(x⃗, y⃗)TLj
) = 1( Yj = classifier trained with (x⃗, y⃗)TLj

) (13.5)
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Figure 13.2: Bnet for 3-fold CV.

P (Ej|Yj, (x⃗, y⃗)V Lj
) = 1( Ej = defined by Eqs.(13.1). ) (13.6)

P (E|(Ej)j∈J) = 1( E = defined by Eq.(13.2). ) (13.7)
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Chapter 14

DAG Extraction From Text (DEFT)
or Time-Series

To see how to extract a causal DAG from chronologically ordered text, see the github
repo for Mappa-Mundi Ref.[84].

To see how to extract a causal DAG from a FitBit time-series table (TST),
see the github repo for CausalFitbit Ref.[81].
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Chapter 15

Dataset Shift and Batch
Normalization

In this chapter, we will represent Linear Regression (LR) as follows. We list a dataset;
i.e., a set of tuples indexed by the individuals σ of a population Σ such that |Σ| =
nsam. The independent variables of the LR (i.e., xσ) are unboxed and the dependent
variable (a.k.a. target feature) (i.e., yσ) is shown inside a box. Then we show an arrow
with the superscript “LR-fit", followed by the fit function obtained by performing the
LR.

{(σ, xσ = [xσi ], y
σ ) : σ ∈ Σ} LR−fit−−−−→ ŷ(x) = α +

∑
i

xiβi (15.1)

Analogously, we represent Supervised Machine Learning (ML) as follows.

{(σ, xσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(x) (15.2)

When doing ML, we partition the full population Σfull into two disjoint sets,
the training set Σtrain = Σ(s = 0) = Σ and the testing set Σtest = Σ(s = 1) = Σ∗.
Then we do two ML fits:

training: {(σ, xσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(x)

testing: {(σ, xσ, yσ ) : σ ∈ Σ∗} ML−fit−−−−→ ŷ∗(x)
(15.3)

Ideally, ŷ(x) and ŷ∗(x), will be almost equal for all x. Dataset shift occurs when this
is not the case. Equivalently, let

Ptrain(x, y) = P (x, y|s = 0) = P (x, y)
Ptest(x, y) = P (x, y|s = 1) = P ∗(x, y)

(15.4)

We say there is a dataset shift if

P (x, y) ̸= P ∗(x, y) (15.5)
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Figure 15.1: For Linear Regression, 2 types of dataset shift: covariate shift and
concept shift.

15.1 Covariate Shift
We say there is a covariate shift if (see Fig.15.1)

P (y|x) = P ∗(y|x) but P (x) ̸= P ∗(x) (15.6)

This can be represented in terms of bnets as follows1

s = 0

��
x // y︸ ︷︷ ︸

=

s = 0

x

OO

// y

̸=

s = 1

��
x // y

(15.7)

15.2 Concept Shift
We say there is a concept shift if (see Fig.15.1)

P (y|x) ̸= P ∗(y|x) but P (x) = P ∗(x) (15.8)

This can be represented in terms of bnets as follows2

1See See Chapter 83.
2See See Chapter 83.
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s = 0

!!
x // y︸ ︷︷ ︸

=

s = 0

x

OO

// y

aa

̸=

s = 1

!!
x // y

(15.9)

15.3 Batch Normalization
Batch Normalization (BN) is a technique that is used to diminish dataset shift in
Neural Nets.

Let hλ,σi be the output, for individual σ ∈ Σ, of the ith node of layer λ of a
Neural Net (NN). Using the notation of Chapter 64,

hλ,σi = Aλi (z
λ,σ
i ) (15.10)

where

zλ,σi =
∑
j

wλi|jh
λ−1,σ
j + bλi (15.11)

Activation functions Aλi : R→ R for NNs are discussed in Section 64.1. Suppose the
population Σ is partitioned into disjoint batches Σ(b) for b = 1, 2, . . . , B. Let the set
of points {zλ,σi : σ ∈ Σ(b)} have mean µλ(b)i and standard deviation σλ(b)i . For any zλ,σi
with σ ∈ Σ, define the BN activation function Aλi,BN(·) by

Aλi,BN(z
λ,σ
i ) = γλi

[
zλ,σi − µ

λ(b)
i

σ
λ(b)
i

]
+ βλi if σ ∈ Σ(b) , (15.12)

where the real valued parameters γλi and βλi are learned during the optimization
process. If node hλi of the NN has activation function Aλi : R → R, defined a new
activation function Aλi,new : R→ R by the composition of functions

Aλi,new = Aλi ◦ Aλi,BN (15.13)

Hence, the BN activation function is applied after the linear transformation Eq.(15.11),
but before the nonlinear transformation Aλi .

Intuition on why BN diminishes dataset shift: We discussed in Section 64.1
how nonlinear activation functions have a range that is smaller than their domain.
Presumably, BN helps to make the range of the activation functions even more con-
centrated.
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Chapter 16

Decision Trees

This chapter is based mainly on Ref.[74].

Figure 16.1: Example of dtree taken from Ref.[74]

Fig.16.1 shows a typical decision tree (dtree). This example was taken from
Ref.[74], where it is analyzed in detail. As you can see, a dtree contains two main
types of nodes: the non-leaf nodes, and the leaf nodes. The non-leaf nodes pose
questions. In general, the answers1 to those questions can be multiple choices with
two or more choices. For each of those choices, a tree branch labeled by the choice
comes down from the question node. The leaf nodes represent endpoints, goals, final
conclusions, etc. Dtrees can be viewed as classifiers. They take in a large amount of
information about a population and compress that information to just a few classes.
If Sc is the set of distinct leaf node labels, then we call each c ∈ Sc a class of the
classifier. In the case of Fig.16.1, Sc = {False, True}.

1The question-answer pairs in dtrees are also called attribute-value pairs. Attributes are
also called features.
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Figure 16.2: Fig.16.1 with abridged labels.

Figure 16.3: Fig.16.2 converted to a bnet.

Dtrees can be used with probabilities attached to each node, or without prob-
abilities (as a plain undirected graph(UG)). This is analogous to bnets, which can
be used with probabilities attached to each node (as DAGs with TPMs specified for
each node) or without probabilities (as plain DAGs). Dtrees differ from bnets in that
their tree branches are labelled, whereas bnet arrows aren’t labelled. Also, whereas
the nodes of a bnet carry a matrix of probabilities (the TPM), the nodes of a dtree
carry just a column vector of probabilities which represents a single probability dis-
tribution. Henceforth, we will refer to the column vector of probabilities carried by
each node of a dtree as its Transition Probability Vector (TPV). Without the
TPVs, a dtree can be used as a deterministic classifier, to classify inputs. With the
TPVs, it can be used as a probabilistic sampler (to generate random samples.)
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P (x|a) a = a0 a ∈ S−
a − {a0} null

0 p0 0 0
1 p1 0 0
...

... 0 0
N−
x − 1 pNx−1 0 0

null 0 1 1

Table 16.1: TPM of a node of a dtree image bnet.

16.1 Transforming a dtree into a bnet
A trivial observation that is seldom made in the dtree pedagogical literature is that
every dtree maps into a special bnet, let’s call it its “image" bnet, in a very natural
way. We use the dtree of Fig.16.1 as an example to show how to do this. As a first
step, we go from Fig.16.1 to Fig.16.2 by replacing all the labels of the nodes and of the
branches of the dtree by abridged symbols. Next, we go from Fig.16.2 to Fig.16.3, by
replacing all tree branches by arrows pointing down, and by moving the tree branch
labels down so that they become a suffix to the question that the tree branch leads
to. At this point, we have created Fig.16.3, which constitutes the DAG of the image
bnet. It remains for us to define a TPM for each node of this DAG.

Table 16.1 gives the TPM P (x|a) for a node x with single parent a of a dtree
image bnet. Say node x has a set S−

x of possible tree branches coming out of it. Let
N−
x = |S−

x |. Let Sx = S−
x ∪{null} and Nx = |Sx| = N−

x +1. Define S−
a , N−

a , Sa and Na

analogously for node a. In Table 16.1, S−
x = {0, 1, . . . , N−

x − 1} and a0 is the value of
node a which labels the tree branch connecting nodes a and x. p⃗ = (p0, p1, . . . , pNx−1)
is a probability distribution associated with node x, its TPV. TPVs can be learned
from a dataset following the dtree Structure Learning (SL) algorithm discussed in
Section 16.2.

Table 16.1 also applies when node x is a leaf node, except that for leaf nodes,
p⃗ is one hot (i.e., all components are zero except for one component which is 1). Also,
all leaf nodes x have the same S−

x , namely Sc.
Adding a null state to the set of states (SOS) of each node of the image bnet

is necessary because, once null is added to the SOS of any node, it must be added
to the SOS of all descendant nodes. null must be added to the SOS of the children
of the root node to take care of the situations when those first children don’t receive
the state they were expecting from their parent, i.e., the root node.

When drawing dtrees, some people put info like explanations and probabilities
on the branches of the dtree. That info can all be preserved in the TPM and the node
names and node state names of the image bnet nodes. One can also place info inside
tool tips attached to the node name and node state names. Often, the pedagogical
literature states that dtrees are more explicit and carry more info than their image
bnets, but if one follows the above prescriptions, both can carry the same info.
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A naive Bayes (NB) bnet (see Chapter 63) consists of a single “class node"
with states Sc that fans out with arrows pointing to the “feature nodes". If each leaf
node of a NB bnet fans out into a set of new leaf nodes, and those new leaf nodes also
fan out and so on, we get a generalized NB bnet. Let’s call this type of tree bnet an
NB∗ bnet. An NB∗ bnet has the same graph structure as the image bnet of a dtree,
but it’s more general, because its TPMs are more general. Each TPM of a NB∗ bnet
can have several non-trivial columns instead of just one TPV= p⃗.

16.2 Structure Learning for Dtrees
Let

J0 = {0, 1, . . . , nj − 1}
Σ = {0, 1, 2, . . . , nsam− 1}
DS = {(σ, xσ, cσ) : σ ∈ Σ} be a dataset
σ ∈ Σ be an individual (a sample) from a population,
xσ ∈ Sx be the feature (attributes, questions) vector. Sx = Sx0 × Sx1 ×

. . .× Sxnj−1
, x = (x0, x1, . . . , xnj−1) ∈ Sx, xj ∈ Sxj

cσ ∈ Sc be a classification class
We will assume Sx and Sc are finite sets.
Building a classifier Y (curve fit) for a dtree means finding a deterministic

function Y : Sx → Sc such that cσ ≈ Y (xσ) for all σ ∈ Σ. If we divide the population
Σ into two large disjoint sets, a training set Σtrain and a validation set Σvali, and
if cσ ≈ Y (xσ) very closely for σ ∈ Σtrain but fits poorly for σ ∈ Σvali, then we say
the classifier Y suffers from overfitting. We can learn the structure and TPVs of a
dtree from a dataset DS, by using the dtree Structure Learning (SL) algorithm
that we will discuss in detail later. However, that algorithm is prone to produce a
classifier Y that overfits. Two techniques commonly used to reduce the effects of
overfitting are pruning and Random Forest (RF) (see Chapter 74). Pruning just
means somehow removing nodes that are too specific. An RF is an ensemble of dtrees
that one averages over. In this chapter, we will only deal with a single dtree, not an
ensemble of them.

Dtree SL was invented in 1984-1986 so it is fairly old. Many in the AI com-
munity consider dtrees old fashioned compared to neural nets. But dtrees are inter-
pretable whereas neural nets aren’t.2 Bnets are interpretable too.

Below, we give the standard algorithm for SL of a dtree, in the form of pseudo-
code. But first, we define two quantities, Information Gain and Gini, that are used
in that pseudo-code.

2To be precise, only plain dtrees without boosting or bagging are interpretable. Dtrees used within
boosting (see Chapter 1 on AdaBoost and Chapter 104 on XGBoost) or bagging (see Chapter 74 on
Random Forest) gain much accuracy but lose interpretability.
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16.2.1 Information Gain, Gini

This section uses various Shannon Information Theory entropies. Our notation for
those entropies is described in Chapter C.

Call a separation ability measure (SAM) a measure used to decide, when
constructing a dtree from a dataset, in what order to ask the questions about the
feature vector x. The question order is decided by searching over all so far unused
questions for the question with the largest SAM.3

xj xj=xj
//

xj=x
′
j

22

{Nj(c, xj)}c∈Sc,xj∈Sxj

∑
c∈Sc

Nj(c, xj) = Nj(xj)

∑
xj∈Sxj

Nj(c, xj) = Nj(c)
∑

c∈Sc
Nj(c) =

∑
xj∈Sxj

Nj(xj) = Nj

Figure 16.4: Some population numbers associated with the nodes of a dtree. Nj(c, xj)
is the number of individuals σ in the population that reaches node j, belonging to
class c and having xj = xj.

j // &&
xj // c

Figure 16.5: Bnet derived from population numbers in Fig.16.4

Fig.16.4 defines some population numbers associated with the nodes of a dtree.
From these population numbers, we can define the bnet in Fig.16.5. The TPMs,
printed in blue, for the (non-root) nodes of this bnet, are as follows

P (c|xj, j) =
Nj(c, xj)

Nj(xj)
(16.1)

3SAM is also called, somewhat confusingly, the splitting criterion and Gain.
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P (xj|j) =
Nj(xj)

Nj

(16.2)

where j ∈ J0 xj ∈ Sxj , and c ∈ Sc is a class node.
One can define the following information theory quantities4 associated with

the bnet Fig.16.5.

INFO_finj = −
∑
c

P (c|j) lnP (c|j) (16.3)

= H(c|j) (16.4)
(16.5)

INFO_initj =
∑
xj∈Sxj

P (xj|j)H(c|xj, j) (16.6)

= H(c|xj, j) (16.7)

IGj = INFO_finj − INFO_initj (16.8)
= H(c|j)−H(c|xj, j) (16.9)
= H(c : xj|j) (16.10)

IGj is called the information gain for node xj. Maximizing this mutual informa-
tion produces a node xj that has a large correlation to a class c. If the goal is to reach
a point where each leaf node is closely correlated to a different class, then maximizing
the Information Gain of each new node is a greedy move towards that goal. Thus,
Information Gain is a good SAM for dtree SL.

Note that if we approximate

lnP (c|xj) ≈ ln[1 + P (c|xj)− 1] (16.11)
≈ P (c|xj)− 1 (16.12)

in H(c|xj), we get what is called the Gini (or Gini Index) for node xk:
4The average of H(c : b) over b is H(c : b) =

∑
b P (b)H(c : b). Likewise, the average of H(c|b)

over b is H(c|b) =
∑

b P (b)H(c|b). H(c : b) becomes H(c : b) and H(c|b) becomes H(c|b) when there
is no b−prior (i.e., P (b) is a delta function).
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H(c|xj) = −
∑
c

P (c|xj) lnP (c|xj) (16.13)

≈ 1−
∑
c∈Sc

P (c|xj)2
def
= Ginixj (16.14)

Ginixj is a fairly good polynomial approximation to H(c|xj). It is computationally
much less expensive than H(c|xj), because it does not require computing a log.

We say a probability distribution Px, is pure (i.e., deterministic) if Px(x) =
δ(x, x0). Ginixj and H(c|xj) are both always non-negative. They both vanish iff
P (c|xj) is pure. Thus, Ginixj andH(c|xj) are both good measures of class impurity.

The average Gini of node xj is defined as

AGinij =
∑
xj∈Sxj

P (xj|j)Ginixj . (16.15)

It measure the average impurity of the children of node xj.

In practice, the SL algorithm is done recursively. Each recursion step decides
which feature xj will be the root node of the current tree. For all “candidate"
features (i.e., all xj that haven’t been used yet as tree nodes), one calculates IGj,
either exactly or approximately via Gini’s, using the following formula:

IGj = H(c|j)︸ ︷︷ ︸
≈Ginij

−
∑
xj∈Sxj

P (xj|j)H(c|xj)︸ ︷︷ ︸
≈Ginixj

(16.16)

One then chooses j = argmax
j

IGj. This maximizes the c− xj correlation.

Alternatively, some software programs use the average Gini AGinij as
their SAM. They choose as root node j = argmin

j
AGinij. This minimizes the

average impurity of the children of node j. Since IGj differs from AGinij by
H(c|j), maximizing IGj and minimizing AGinij might lead to different results.

Example of calculation of AGinij and IGj

Suppose we deduce from a dataset the numbers in the yellow cells in Table
16.2. These numbers are repeated in Fig.16.6. Then we can calculate the white cells
as follows:

• Gini(hot)= 1− (3/4)− (1/4) = 0.375

• Gini(med)= 1− (3/5)2 − (2/5)2 = 0.48

• Gini(cold)= 1− (3/5)2 − (2/5)2 = 0.48

• AGini = (4/14)(0.375) + (5/14)(0.48) + (5/14)(0.48) = 0.45
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j = temp? xj = hot xj = med xj = cold
c = play 3 3 3
c = stay 1 2 2
Gini 0.375 0.48 0.48
AGini = 0.45
H(c|xj) ≈ 0.375 ≈ 0.48 ≈ 0.48
IG ≈ 0

Table 16.2: Evaluating AGini and IG for node temp.

Figure 16.6: Tree stump corresponding to Table 16.2.

• IG ≈ [1− (6/9)2 − (3/9)2]− AGini = 0.44− 0.45 ≈ 0

This gives the AGini and IG for just one candidate root node. We would have
to calculate AGini (or IG) for all possible candidates and choose the candidate with
the lowest AGini (or highest IG).

16.3 Information Gain Ratio
The Information Gain Ratio (IGR) is an alternative SAM.

IGRj =
IGj

H(xj|j)
(16.17)

=
H(c : xj|j)
H(xj|j)

(16.18)

=
H(xj|j)−H(xj|c, j)

H(xj|j)
(16.19)

= 1−
H(xj|c, j)
H(xj|j)

(16.20)

0 ≤ IGRj ≤ 1
IGRj = 0 iff H(xj|c, j) = H(xj|j).
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16.3.1 Pseudo-code

Below, we give the standard algorithm for SL of a dtree, in the form of pseudo-code.
The strategy employed by the algo is to assume an incoming population into the
current root node, then determine the feature xj that best separates that incoming
population. The feature xj is chosen so as to maximize IGj (or minimize AGinij).
This process is repeated by nominating the end of each new branch to be the current
root node. Features can appear as a node more than once, so the order in which nodes
are split does not matter. In essence, what we are doing is performing a top-down,
greedy search through the space of possible dtrees.

The pseudo-code below describes the following historically important software
programs:

• CART (Classification and Regression Trees), invented by Breiman et al in 1984.
Uses AGinij as SAM.

• ID3 (Iterative Dichotomiser 3) invented by Quinlan in 1986. Uses IGj as SAM.
C4.5/C5.0 are successors to ID3.

Thus, CART and ID were invented independently around the same time. The
main difference between them is the SAM being used.

The pseudo-code below uses the majority function defined in Chapter C.
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Algorithm 1: Pseudo-code for learning a dtree from a dataset
Input :

• dataset DS = {(σ, xσ, cσ) : σ ∈ Σ}

• set of currently available node indices J , where J ⊂ J0

Output:

• tree T ,

• population numbers {(r, c, xr, Nr(c, xr)) : r ∈ J0, c ∈ Sc, xr ∈ Sxr} stored
globally

From DS, calculate J0, Sc, Sxi for each i
cσ is called the target feature/attribute.
J ← J0
Function learn_dtree(DS, J):

Σ← set of all σ in DS
if {cσ : σ ∈ Σ} = {c} then

T ← one node tree with leaf node label= c

else if J = ∅ then
T ← one node tree with leaf node label= majority([cσ : σ ∈ Σ])

else
r ← argmax

j∈J
IGj(DS) // or replace argmax

j∈J
IGj by argmin

j∈J
AGinij

from DS, calculate {(r, c, xr, Nr(c, xr)) : c ∈ Sc, xr ∈ Sxr} and store it
globally

for v ∈ Sxr do
/* Notice that J is the same every time repeat this loop, so

order in which v ∈ Sxr are called does not matter.
Furthermore, this means that multiple tree nodes may be
labeled by same feature. */

On current tree T , add a branch below xr with label “xr = v"
DS|xr=v ← subset of DS with xr = v
if DS|xr=v = ∅ then

below the new branch add a
leaf node labeled = majority([cσ : σ ∈ Σ])

else
below the new branch add
subtree =learn_dtree(DS|xr=v, J − {r})

return T
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Chapter 17

Decisions Based on Rungs 2 and 3:
COMING SOON

212



Chapter 18

Difference-in-Differences

This chapter is based on Ref.[12].
The Difference-in-Differences (DID) method was first used by John Snow in

an 1854 report that argued that cholera in London was being transmitted by sewage
polluted water rather than, as others at the time believed, by air (in fetid vapors
called miasmas). In general, one can apply DID to discover causal effects in historical
data. By historical data (a.k.a. a natural experiment. See Ref.[156]) we mean
data that is collected long after the treatment (rather than during it) and is thus not
subject to active intervention by the experimenter.

This chapter assumes that the reader has read Chapter 72 on Potential Out-
comes (PO). The DID method applies the basic single-time PO theory described in
Chapter 72, to 2 well separated times in which different conditions prevail.

18.1 John Snow, DID and a cholera transmission
pathway

Let
d ∈ {0, 1}
t ∈ {t0, t1}, t0 < t1
y = f(d, t) ∈ R.
Define

∆tf(d, t) = f(d, t1)− f(d, t0) , (18.1)

∆df(d, t) = f(1, t)− f(0, t) , (18.2)

DID = δ = ∆d∆tf(d, t) . (18.3)

DID is illustrated in Fig.18.1.
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Figure 18.1: Pictorial representation of Difference-in-differences (DID) as a difference
of two differences (i.e., a difference of two slopes).

A time series is any function of time for which the domain is a discrete set
of times.

Figure 18.2: DID = δ expressed as difference of slopes or difference of vectors.

Note that, as shown Fig.18.2, DID = δ can also be expressed as a difference
of 2 slopes times ∆t = t1 − t0. Let ŷ be a unit in the y direction. δ can also be
expressed as the dot product of a difference of 2 vectors dotted with ŷ.

A condensation of the data collected by John Snow in 1854 is given in Table
18.1. From that data, we find that

δ = ∆d∆tf(d, t) = (19− 85)− (147− 135) = −66− 12 = −78 (18.4)
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t = t0 (1849) t = t1 (1854)

d = 1 (town 1) 85 deaths, polluted DW 19 deaths, unpolluted DW

d = 0 (town 0) 135 deaths, polluted DW 147 deaths, polluted DW

Table 18.1: A condensation of the data collected by John Snow in 1854, to test the
hypothesis that cholera in London was being spread by polluted drinking water (DW).

18.2 PO analysis
In this section, we show how to analyze the DID method using the formalism of PO
theory.

We will speak of a treatment outcome yσ
t,gσ

(cσ, xσ) for individual σ that de-
pends, not just on the treatment dose cσ ∈ {0, 1} and the confounder state xσ, but
also on a group parameter (i.e., which population or town) gσ ∈ {0, 1} and on a time
parameter t ∈ {t0, t1} (note t is independent of σ). Actually, we will assume gσ = cσ,
so we will just speak of yσ

t
(cσ, xσ) with no explicit gσ dependence. As usual for PO

theory, we will consider expected values of yσt :

Eσ|d,x[y
σ
t (c)] = Ey

t
(c)|d,x[yt(c)] = Yc|d,x(t) (18.5)

To calculate these expected values, we need a “model" with probability dis-
tributions. In this case, the needed model and probability distributions are provided
by the bnets depicted in Fig.18.3. The TPMs, printed in blue, for the bnet Gt,+ in
Fig.18.3, are as follows. Note that the TPMs for the bnet Gt,+ are defined in terms
of the TPMs for the bnet Gt.

x

�� ��
d // y

t

x

��

}}

[y
t
(0), y

t
(1)]

��
d // y

t

Gt Gt,+

Figure 18.3: t ∈ {t0, t1}. Bnet Gt,+ is obtained by adding two new nodes y
t
(0) and

y
t
(1) to bnet Gt.

P (x) = Px(x) (18.6)
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P (d|x) = Pd|x(d|x) (18.7)

P (yt|yt(0), yt(1), d) = 1(yt = yt(d)) (18.8)

P (yt(c)|x) = P (yt(c)|d, x) = given (18.9)

Figure 18.4: Four different time-dependent expected values Yc|d(t) of yσt for bnet Gt,+

The 4 magenta stars represents the 4 DID measurements.

We define the function c(t) for t = t0, t1 by

c(t) =

{
0 if t = t0
d if t = t1

(18.10)

Now we claim that the DID δ calculated in the previous section for John Snow’s data,
can be expressed in PO formalism as follows:

δ = ∆d∆tYc(t)|d(t) . (18.11)

Fig.18.4 depicts the four functions Yc|d(t) for t in the interval [t0, t1] and for c, d ∈
{0, 1}. The Y coordinates of the four magenta stars in Fig.18.4 can be calculated
using bnet Gt.

Define the parallel trends (PT) by

PT = ∆d∆tY0|d(t) . (18.12)
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We will say the parallel trends assumption (PTA) holds if PT = 0.
Next we prove that the DID δ equals the sum of an ATT1 and PT.

δ = ∆d∆tYc(t)|d(t) (18.13)
=
[
∆tYc(t)|1(t)−∆tYc(t)|0(t)

]
(18.14)

= Y1|1(t1)− Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)} (18.15)
= Y1|1(t1)− Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)}+ {Y0|1(t1)− Y0|1(t1)}︸ ︷︷ ︸

zero

(18.16)

= Y1|1(t1)− Y0|1(t1)︸ ︷︷ ︸
ATT (t1)

−Y0|1(t0)− {Y0|0(t1)− Y0|0(t0)}+ Y0|1(t1) (18.17)

= ATT (t1)−∆tY0|0(t) + ∆tY0|1(t) (18.18)
= ATT (t1) + ∆d∆tY0|d(t)︸ ︷︷ ︸

zero if PTA holds

(18.19)

18.3 Linear Regression
In this section, we show how to apply linear regression (LR) to the PO analysis of
DID.

As before, let yσt (cσ) be the treatment outcome for individual σ, who receives
a treatment dose cσ at times t ∈ {t0, t1}. yσt (cσ) can be fitted as follows. Here ϵσ is
the residual for individual σ, and b0,m0, b1,m1 ∈ R are the fit parameters.

yσt = [b0 +m0(t− t0)](1− cσ) + [b1 +m1(t− t0)]cσ + ϵσ . (18.20)

Note that Eq.(18.20) yields a straight line in the yσt − t plane for cσ = 0, and another
straight line for cσ = 1. We are using the standard symbols b to denote the y-intercept,
and m to denote the slope of a straight line.

Taking the expected value of Eq.(18.20), we get

Yc|d(t) = [b0 +m0(t− t0)](1− c) + [b1 +m1(t− t0)]c . (18.21)

If ∆t = t1 − t0, then

Yd|d(t1) = [b0 +m0∆t](1− d) + [b1 +m1∆t]d , (18.22)

and

Y0|d(t0) = b0 . (18.23)

1ATT stands for the average treatment effect of the treated. ATT is defined in Chapter 72
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Thus,

δ = ∆d∆tYc(t)|d(t) (18.24)
= ∆d[Yd|d(t1)− Y0|d(t0)] (18.25)
= (m1 −m0)∆t . (18.26)

Figure 18.5: We use Linear Regression to fit a straight line between points U0 and U1,
and between points T0 and T1. (U=untreated, T=treated, subscript refers to times
t0, t1). U0, T0, U1, T1 are the measurement points. Point I is an image of point U1.

t = t0 t = t1

d = 1 Y(T0) = Y0|1(t0) Y(T1) = Y1|1(t1)

d = 0 Y(U0) = Y0|0(t0) Y(U1) = Y0|0(t1)

Table 18.2: Y coordinates of points U0, T0, U1, T1 in Figs.18.4 and 18.5.

Figs.18.4 and 18.5 define points U0, T0, U1, T1, I, A. The Y coordinates of points
U0, T0, U1, T1 are given by Table 18.2. The Y coordinates of points A, I are given by
Eqs.18.27.

Y(A) = Y0|1(t1) (18.27a)

Y(I) = Y(U1) + [Y(T0)− Y(U0)] (18.27b)

We can express ATT and the δ for DID in terms of the Y of the points
U0, T0, U1, T1, I, A. Indeed,
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δ = Y(T1)− Y(I) (18.28)
= Y(T1)− Y(U1)− [Y(T0)− Y(U0)] (18.29)

ATT = Y(T1)− Y(A) (18.30)

Hence,

δ = ATT ⇐⇒ Y(I) = Y(A) ⇐⇒ PTA holds (18.31)
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Chapter 19

Diffusion Models

This chapter is based on Ref.[95]
Diffusion Models (DM) are a way of generating fake images from an original

image. They are a competitor to GANs (see Chapter 33), and are used in DALL-E
(OpenAI’s computer program that generates images from text).

DM works by subjecting each degree of freedom of the image to a forward
Markov chain of transformations labeled t = 0, 1, 2, . . . , T and a reverse Markov chain
of transformations labeled t = T − 1, T − 2, . . . , 0. Each step of the forward chain
multiplies each degree of freedom of the image by a constant and adds white noise to
it. The last image (t = T ) of the forward chain is changed to the point that it looks
like a normal distribution. The reverse chain tries to undo, as well as possible, the
alterations to the original image done by the forward chain. Full, faithful restoration
is impossible because the forward chain is an irreversible process.

Of course, a DM is only a small part of the magic of DALL-E. I haven’t studied
DALL-E’s algorithm, but my guess is that it works roughly as follows. Given a text
description of an image, such as “A hedgehog using a calculator painted in the style of
Vincent van Gogh", it uses a neural net trained on a vast corpus of words and images,
to match separate words in the description with an image for each word. Then it uses
a second neural net to create a pastiche/superposition from the set of images created
in the first stage. Then, it uses a DM to smooth the transitions of the pastiche or
assign different weights to the elements of the superposition. Finally, it modifies the
image at this point by passing it through a photoshop-like stylistic filter that can be
specified in the initial description.

19.1 Bnet for DM
For t ∈ 1, 2, . . . , T , let

0 < αt < 1, βt = 1− αt (19.1)
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πt1α =
t∏

τ=1

ατ (19.2)

Let
xt, x̃t ∈ Rdf for t = 0, 1, 2, . . . , T be column vectors describing an image. Here

df is the number of degrees of freedom of the image. x0 will denote the initial Original
image, xT = x̃T will denote an image which is very close to a normal distribution,
and x̃0 will denote the final Fake image.

I ∈ Rdf×df is the identity matrix
wt, at, ntθ ∈ Rdf

Fig.19.1 shows a bnet for DM, and 19.2 shows the same bnet in more detail.1

Original

Fake

w0

√
β1

$$

w1

√
β2

$$

w2

√
β3

&&

x0 √
α1

// x1 √
α2

// x2 √
α3

// x3(= x̃3)

xx
x̃0 x̃1oo x̃2oo

Normal Dist.

Figure 19.1: Bnet for DM with T = 3. See Chapter 48 for an explanation of LDEN
notation.

The TPMs, printed in blue, for the bnet of Fig.19.1 are as follows:

P (x0) = δ(x0, X0) (original image) (19.3)

P (xt|xt−1, wt) = 1( xt =
√
αt xt−1 +

√
βt wt−1 ) (19.4)

P (wt) = N (wt;µ = 0, σ2 = I) (white noise) (19.5)

1Ref.[95] uses zt instead of wt for white noise. Note that the time index of wt often does not
matter because wt ∼ N (0, I) for all t. This does not mean that we can drop the time index of
wt, because wt1 and wt2 are uncorrelated for t1 ̸= t2, so we can get into trouble if we assume
wt1 = wt2 = w .
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P (x̃t−1 = xt−1|x̃t = xt) = P̃θ(x
t−1|xt) (19.6)

= N (xt−1;µ =M t−1
θ (xt), σ2 = Σt−1

θ (xt)) (19.7)

We will assume that

Σt−1
θ (xt) = (σt−1)2I (19.8)

where σt−1 ∈ R.

Original

Fake

w0

√
β1

""

w1

√
β2

""

w2

√
β3

$$

x0 √
α1

// x1 √
α2

// x2 √
α3

// x3(= x̃3)

��

��

x̃0 x̃1

||

��

x̃2

||

��

a0

1

OO

a1

1

OO

a2

1

OO

n0
θ

−1

UU

n1
θ

−1

UU

n2
θ

−1

UU

Normal Dist.

Figure 19.2: The bnet of Fig.19.1 shown in more detail.

The TPMs, printed in blue, for the bnet of Fig.19.2 are as follows:

P (ntθ) = N (ntθ;µ =M t
θ(x

t+1), σ = σt) (19.9)

P (at|x̃t+1 = xt+1) = 1( at =M t(xt+1) ) (19.10)

P (x̃t = xt|at, ntθ) = 1( xt = at − ntθ ) (19.11)

Note that these TPMs for the bnet Fig.19.2 imply that

P (x̃t = xt|x̃t+1 = xt+1)︸ ︷︷ ︸
call this P̃θ(xt|xt+1)

= N (xt;µ =M t(xt+1)−M t
θ(x

t+1), σ = σt) (19.12)
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19.2 Mean Values M t−1(xt) and M t−1
θ (xt)

Claim 35
xt =

√
πt1α x

0 +
√

1− πt1α wt (19.13)

wt

√
1−πt

1α

��
x0 √

πt
1α

// xt

(19.14)

proof:
Suppose x1 and x2 are independent random variables with variances V1 and

V2, respectively. Then the variance V of x = x1 + x2 is

V = ⟨x, x⟩ (19.15)
= ⟨x1 + x2, x1 + x2⟩ (19.16)
= ⟨x1, x1⟩+ ⟨x2, x2⟩ (19.17)
= V1 + V2 (19.18)

By similar reasoning, the mean of x equals the sum of the means of x1 and x2. It’s
also true that if both x1 and x2 are normally distributed, then x is too. We will refer
to a sum of independent normals as a SIN.

Let w ∼ N (0, I).

xt =
√
αtxt−1 +

√
1− αt wt−1 (19.19)

=
√
αt[
√
αt−1xt−2 +

√
1− αt−1 wt−2] +

√
1− αt wt−1 (19.20)

=
√
αtαt−1 xt−2 + [

√
αt(1− αt−1) wt−2 +

√
1− αt wt−1] (19.21)

=
√
αtαt−1 xt−2 +

√
1− αtαt−1 w (because it’s a SIN) (19.22)

= · · · (19.23)
=

√
πt1α x

0 +
√

1− πt1α w (19.24)

Now replace w by wt. This is justified because they are both N (0, I), and, when
t1 ̸= t2, we want the w for xt1 to be independent from the w for xt2 .

QED
Solving Eq.(19.13) for x0, we get

x0 =
1√
πt1α

xt −
√
1− πt1α√
πt1α

wt (19.25)
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wt
−

√
1−πt

1α√
πt
1α

zz
x0 xt

1√
πt
1α

oo

(19.26)

Claim 36

P (xt−1|xt, x0) = P (xt|xt−1)
P (xt−1|x0)
P (xt|x0)

(19.27)

proof:
This is a simple consequence of Bayes rule. We will prove this in two ways:

algebraically and graphically.
The algebraic proof goes as follows.

P (xt−1|xt, x0)P (xt|x0) =

P (xt|xt−1)︷ ︸︸ ︷
P (xt|xt−1, x0)P (xt−1|x0) (19.28)

The graphical proof, although longer, is more intuitive. Start by noticing that∑
w0

��

· · ·
∑
wt−2

��

∑
wt−1

��
x0 //

∑
x1 // · · · // xt−1 // xt

= x0 // xt−1 // xt (diagram A)

= x0 //

0

66xt−1 // xt (make fully connected)

= x0 // 66xt−1 xtoo (reverse arrow) (diagram B)

(19.29)

Therefore,

P (xt−1|xt, x0)P (xt|x0)︸ ︷︷ ︸
diagram B of Eq.19.29

= P (xt|xt−1)P (xt−1|x0)︸ ︷︷ ︸
diagram A of Eq.19.29

(19.30)

QED
Define the following mean value:

M t−1(xt) =
∑
xt−1

xt−1P (xt−1|xt, x0) (19.31)

224



Claim 37

M t−1(xt) =

√
αt(1− πt−1

1 α)

1− πt1α
xt +

√
πt−1
1 α βt

1− πt1α
x0 (19.32)

proof:
By Claim 36, we know that Q = P (xt−1|xt, x0) can be expressed as a product

of two Gaussians P (xt|xt−1) and P (xt−1|x0), divided by a third Gaussian P (xt|x0),
and all 3 of these Gaussians have been calculated in closed form previously in this
chapter. So it’s just a matter of algebra to express Q as a Gaussian, complete the
square inside the exponent of Q, and thus obtain its mean value M t−1(xt). We leave
the algebra to the reader. If in doubt, the algebra can be found in Ref.[95].
QED

Claim 38

M t−1(xt) =
1√
αt

(
xt − βt√

1− πt1α
wt

)
(19.33)

proof:
Use Eq.(19.25) to replace x0 in Eq.(19.32).

QED
Let us parameterize M t−1

θ (xt) by

M t−1
θ (xt) =

1√
αt

(
xt − βt√

1− πt1α
nt−1
θ (xt)

)
(19.34)

If we define
Ct =

−βt√
αt(1− πt1α)

, (19.35)

then

M t−1(xt)−M t−1
θ (xt) = Ct[wt − nt−1

θ (xt)] (19.36)

= Ct[wt − nt−1
θ (

√
πt1α x

0 +
√

1− πt1α wt)] (19.37)
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19.3 Loss function L
Note that2

0 ≤ DKL(P (x
1:T |x0) ∥ P̃θ(x1:T |x0)) (19.38)

=
∑
x1:T

P (x1:T |x0) ln P (x1:T |x0)
P̃θ(x1:T |x0)

(19.39)

= ln P̃θ(x
0) +

∑
x1:T

P (x1:T |x0) ln P (x
1:T |x0)

P̃θ(x0:T )
(19.40)

−
∑
x0

P (x0) ln P̃θ(x
0)︸ ︷︷ ︸

−Ex0 [ln P̃θ(x0)]

≤
∑
x0:T

P (x0:T ) ln
P (x1:T |x0)
P̃θ(x0:T )︸ ︷︷ ︸

E
x0:T

[
ln

P (x1:T |x0)
P̃θ(x

0:T )

]
=L(θ)= loss function

(19.41)

Henceforth, expected values Ex0:T are to be understood as being with respect
to P (x0:T ).

The left hand side of the inequality Eq.(19.41) is expected to be a small positive
constant, because we expect P̃θ(x0) ≈ P (x0) ≈ δ(x0, X0). Thus, we are justified in
defining the right hand side of Eq.(19.41) as loss function L = L(θ) to be minimized.

Claim 39

L =
T∑
t=0

Lt (19.42)

L0 = − ln P̃θ(x
0|x1) (19.43)

Lt−1 = Ex0:T

[
ln
P (xt−1|xt, x0)
P̃θ(xt−1|xt)

]
for t = 2, 3, . . . T (19.44)

LT = Ex0:T

[
ln
P (xT |x0)
P̃θ(xT )

]
(19.45)

2DKL is the Kullback-Leibler divergence. It’s defined in Chapter C.
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proof:

L = Ex0:T

[
ln
P (x1:T |x0)
P̃θ(x0:T )

]
(19.46)

= Ex0:T

[
ln

∏T
t=1 P (x

t|xt−1)

P̃θ(xT )
∏T

t=1 P̃θ(x
t−1|xt)

]
(19.47)

= Ex0:T

ln P (x1|x0)
∏T

t=2

P (xt|xt−1,x0)︷ ︸︸ ︷
P (xt|xt−1)

P̃θ(xT )P̃θ(x0|x1)
∏T

t=2 P̃θ(x
t−1|xt)

 (19.48)

= Ex0:T

ln P (x1|x0)∏T
t=2 P (x

t−1|xt, x0) P (xt|x0)
P (xt−1|x0)

P̃θ(xT )P̃θ(x0|x1)
∏T

t=2 P̃θ(x
t−1|xt)

 (19.49)

= Ex0:T

ln �����P (x1|x0) P (xT |x0)
����P (x1|x0)

∏T
t=2 P (x

t−1|xt, x0)

P̃θ(xT )P̃θ(x0|x1)
∏T

t=2 P̃θ(x
t−1|xt)

 (19.50)

= Ex0:T

[
ln

1

P̃θ(x0|x1)
· P (x

T |x0)
P̃θ(xT )

·
∏T

t=2 P (x
t−1|xt, x0)∏T

t=2 P̃θ(x
t−1|xt)

]
(19.51)

QED
We expect P̃θ(x0|x1) in L0 to depend only very weakly on θ because it comes

at the end of the reverse Markov chain. Likewise, we expect P̃θ(xT ) in LT to be
approximately a normal distribution independent of θ, because it comes at the be-
ginning of the reverse Markov chain. Hence, we are justified in using L′ =

∑T
t=2 Lt−1

as the new loss function to me minimized with respect to θ.

Claim 40

Lt−1 = Ext

[
1

2(σt−1)2
[M t−1(xt)−M t−1

θ (xt)]2
]

(19.52)

= Ex0,wt

[
(Ct)2

2(σt−1)2

[
wt − nt−1

θ (
√
πt1α x

0 +
√

1− πt1α wt)
]2]

(19.53)

proof:
Eq.(19.53) follows trivially from Eq.(19.37) and Eq.(19.52).
To show Eq.(19.52), recall that

Lt−1 = Ex0:T

[
ln
P (xt−1|xt, x0)
P̃θ(xt−1|xt)

]
(19.54)
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The denominator P̃θ(xt−1|xt) is one of the TPMs for the bnet Fig.19.2 , and
it’s a normal distribution with mean M t−1

θ (xt). The numerator P (xt−1|xt, x0) is a
normal distribution too; it was calculated in the proof of Claim 37, where its mean
was called M t−1(xt). Hence, after some algebra which is left to the reader, one can
show Eq.(19.52).

QED
Eq.(19.53) for Lt−1 is usually simplified to

Lsimple = Ex0,wt

[[
wt − nt−1

θ (
√
πt1α x

0 +
√

1− πt1α wt)
]2]

(19.55)

19.4 Algorithms for training and sampling DM

Algorithm 2: Algorithm for training DM (i.e., finding optimum θ)
Input : {βt}Tt=1, 0 < ϵ < 1, ntθ(x) function, θin, ∆θin, P (x0), T , η > 0
Output: θnext = optimal θ
∆θ = ∆θin
θnext = θin
while |∆θ| > ϵ do

Choose x0 ∼ P (x0)
Choose t ∼ Uniform({1, 2, . . . , T})
Choose w ∼ N (0, I)
θ = θnext
// Gradient descent for simple loss function given by Eq.(19.55).

θnext = θ + η∂θ

[
w − nt−1

θ (
√
πt1αx

0 +
√
1− πt1αw)

]2
∆θ = θnext − θ

return θnext
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Algorithm 3: Algorithm for sampling DM (i.e., finding fake image x0)
Input : ntθ(x), where θ is optimal, T , {αt}Tt=1, {σt}Tt=1

Output: x0 = fake image
Choose xT ∼ N (0, I)
for t = T, T − 1, . . . , 2, 1 do

Choose w ∼ N (0, I) if t > 1, else w = 0
// See Eq.19.33

xt−1 = 1√
αt

(
xt − βt√

1−πt
1α
nt−1
θ (xt)

)
+ σtw

return x0
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Chapter 20

Digital Circuits

Figure 20.1: Typical digital circuit of NAND gates.

Digital (logic) gate: node with na input ports and nx output ports which
represents a function

f : {0, 1}na → {0, 1}nx . (20.1)

Suppose
ana = (ai)i=0,1,...,na−1 where ai ∈ {0, 1},
xnx = (xi)i=0,1,...,nx−1 where xi ∈ {0, 1}.
f maps ana into xnx.
Digital circuit (dcircuit) = circuit of digital gates.

20.1 Mapping any dcircuit to a bnet

20.1.1 Option A of Fig.20.2

1. Replace every dcircuit gate described by Eq.(20.1) by nx bnet nodes xi for
i = 0, 1, . . . , nx− 1 such that
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Figure 20.2: 2 options for mapping dcircuit node with multiple output ports into
bnet.

P (xi|ana) = δ(xi, fi(a
na)) (20.2)

2. Replace all connectors of the dcircuit by arrows pointing in the direction of the
bit flow.

20.1.2 Option B of Fig.20.2

1. Replace every dcircuit gate described by Eq.(20.1) with one bnet node called
xnx and, if nx > 0, nx “marginalizer nodes" mi for i = 0, 1, . . . , nx − 1, such
that

P (xnx|ana) = δ(xnx, f(ana)) , (20.3)

and
P (mi|xnx) = δ(mi, xi) . (20.4)

2. Replace all connectors of the dcircuit by arrows pointing in the direction of the
bit flow.

Options A and B don’t work for digital circuits with feedback loops such as flip-flops.
Those could probably be modeled with dynamical bnets.
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Chapter 21

Do Calculus

The Do Calculus and associated ideas were invented by Judea Pearl and collaborators.
This chapter is based on Judea Pearl’s books (see Chapter A).

When doing Do Calculus, it is convenient to separate the nodes of a bnet into
2 types: observed, and hidden (i.e., unobserved, latent, unmeasured, non-
visible), depending on whether data describing the state of that node is available
(i.e., measured) or not. In this chapter, every hidden node will be indicated in a bnet
diagram by either: (1) enclosing its random variable in a dashed circle or (2) making
the arrows coming out of it dashed. Accordingly, the 3 diagrams in Fig.21.1 all mean
the same thing.

A confounder node c for nodes x and y is a root node with arrows pointing
from it to both x and y. Thus, c acts as a common cause of x and y. In general,
confounders can be either observed or hidden nodes. The word “confounder" itself
just means that it confuses the analysis. It says nothing about whether it is hidden
or not. The node c in Fig.21.1) is a hidden confounder.

c

�� ��
x // y

x
�� ��// y c

�� ��
x // y

Figure 21.1: These 3 diagrams are equivalent. They mean that node c is hidden.
Node c is implicit in the middle diagram.

Let Dx be an operator that acts on a graph G with a node x by deleting all
the arrows entering x, thus converting x into a new node Dx that is a root node. Let
Lx be an operator that acts on a graph G with a node x by deleting all the arrows
leaving x, thus converting x into a new node Lx that is a leaf node. Dx and Lx are
depicted in Fig.21.2. 1

1Pearl uses DXG = GX and LXG = GX for a random variable X in a graph G. The way I
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Figure 21.2: The do operator Dx converts node x into a root node Dx. The leaf
operator Lx converts node x into a leaf node Lx.

If you don’t know yet what we mean by a multi-node a., see Chapter D.
Given a bnet G, we define as follows the operators Da. and La. for a multi-node

a..

Da.G =

[∏
j

Daj

]
G , La.G =

[∏
j

Laj

]
G . (21.1)

Consider a bnet whose totality of nodes is labeled X.. Recall that

P (X.) =
∏
j

P (Xj|(Xk)k:Xk∈pa(Xj)
) . (21.2)

Define an operator D that acts as follows2: Let X.− a. = (Xk)k:Xk /∈a..

P (X.− a.|Da. = a.) = N (!(X.− a.)) P (X.)∏
j:Xj∈a.

P (Xj|(Xk)k:Xk∈pa(Xj)
)

(21.3)

= N (!(X.− a.))
∏

j:Xj /∈a.

P (Xj|(Xk)k:Xk∈pa(Xj)
) (21.4)

̸= P (X.− a.|a. = a.) . (21.5)

Also,

P (Da. = a.) = δ(a′., a.) . (21.6)

In words, we replace the TPM for multinode a. by a delta function.
For instance, for the bnet

r // x // y (21.7)

with

P (r, x, y) = P (y|x)P (x|r)P (r) , (21.8)

remember Pearl’s notation is top-in (as in topping), and bottom-out (as in butt-out).
2As usual, N (!x) denotes a constant that is independent of x.
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one has

P (r, y|Dx = x) = P (y|x)P (r) (21.9)

Hence,

P (y|Dx = x) = P (y|x) (21.10)

For the bnet

c

�� ��
x // y

(21.11)

with

P (x, y, c) = P (y|x, c)P (x|c)P (c) , (21.12)

one has

P (y, c|Dx = x) = P (y|x, c)P (c) . (21.13)

Hence,

P (y|Dx = x) =
∑
c

P (y|x, c)P (c) . (21.14)

This is called adjusting the parents of x.
For b. ⊂ X.− a., define

P (b.|Da. = a.) =
∑

X.−a.−b.

P (X.− a.|Da. = a.) , (21.15)

and for s. ⊂ X.− a.− b., define

P (b.|Da. = a., s.) =
P (b., s.|Da. = a.)

P (s.|Da. = a.)
. (21.16)

P (b.|Da. = a., s.) is denoted by Pearl by P (b.|do(a. = a.), s.). I prefer to use
D instead of do(). I will still call D a do operator.

In P (y|Dx = x), node x is turned into a root node. This guarantees that there
is no confounding node connecting x and y. Such confounding nodes are unwelcomed
when calculating causal effects between the 2 variables x and y because they introduce
non-causal correlations between the two. This is also what happens in a Randomized
Controlled Trial (RCT). In an RCT with treatment x, the value of x for each
patient is determined by a coin toss, effectively turning x into a root node. Hence,
the do operator mimics an RCT.
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P (b.|Da. = a., s.) is said to be do-identifiable (i.e., expressible without do())
if it can be expressed in terms of probability distributions that only depend on ob-
served variables, and that have no do operators in them.3

For x, y ∈ {0, 1}, the average causal effect (ACE) is defined as

ACE = P (y = 1|Dx = 1)− P (y = 1|Dx = 0) (21.17)

and the Risk Difference (RD) is defined as

RD = P (y = 1|x = 1)− P (y = 1|x = 0) . (21.18)

21.1 3 Rules of Do Calculus
Throughout this section, suppose a., b., r., s. are disjoint multinodes in a bnet G.

Recall from Chapter 23 on d-separation, that (b. ⊥G a.|r., s.) means that we
have established from the d-separation rules that that all paths in G from a. to b. are
blocked if we condition on r. ∪ s.. Recall also that:

Rule 0: Insertion or deletion of observations, without do operators.

If (b. ⊥ a.|r., s.) in G, then

✓ P (b.|a., r., s.) = P (b.|r., s.) (i.e., a. = a.↔ 1)
r.

  

s.
��

a. // b. =

r.

  

s.
��

a. 0 // b.

✓ H(b. : a.|r., s.) = 0

Zeroing an arrow is the same as deleting it. The 3 rules of Do Calculus can be
presented in the same format.

• Rule 1: Insertion or deletion of observations

If (b. ⊥ a.|r., s.) in Dr.G, then

✓ P (b.|a.,Dr. = r., s.) = P (b.|Dr. = r., s.) (i.e., a. = a.↔ 1)
Dr. = r.

%%

s.

��
a. // b. =

Dr. = r.

%%

s.

��
a. 0 // b.

✓ H(b. : a.|Dr., s.) = 0

• Rule 2: Action or observation exchange

If (b. ⊥ a.|r., s.) in La.Dr.G, then
3In Statistics, one says a probability distribution P (x; θ) of x that depends on a parameter θ is

identifiable if P (x; θ1) = P (x; θ2) implies θ1 = θ2.
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✓ P (b.|Da. = a.,Dr. = r., s.) = P (b.|a.,Dr. = r., s.) (i.e., Da. = a. ↔
a. = a.)

0 ��

Dr. = r.

%%

s.

��
Da. = a. //

��

b. =
0 ��

Dr. = r.

%%

s.

��
Da. = a.

��

a. // b.

��

Dr. = r.

%%

s.

��
a. //

��

b. =
��

Dr. = r.

%%

s.

��
a.

��

Da. = a. // b.

In this rule, the node is split into a Da. = a. node and a a. node. The
original node keeps the arrows, and the new node is a root node.

✓ H(b. : Da.|Dr., s.) = H(b. : a.|Dr., s.)

• Rule 3: Insertion and deletion of actions
If (b. ⊥ a.|r., s.) in Da.−an(s.)Dr.G, then

✓ P (b.|Da. = a.,Dr. = r., s.) = P (b.|Dr. = r., s.) (i.e., Da. = a.↔ 1)
Dr. = r.

%%

s.

��
Da. = a. // b. =

Dr. = r.

%%

s.

��
Da. = a. 0 // b.

✓ H(b. : Da.|Dr., s.) = 0

See Fig.21.3 for a pictorial representation of these rules.
These rules have been proven to be sufficient for removing all do operators

from an expression for which it is possible to do so.
Next we discuss two formulae that can be proven using Do Calculus: the

backdoor and the frontdoor adjustment formulae.
The backdoor formula adjusts one multinode and the frontdoor formula adjusts

two.

21.2 Parent Adjustment Formula
Suppose that x., y., z. are disjoint multinodes and their union equals the totality of all
nodes of a bnet. Suppose we have data available that allows us to estimate P (x., y., z.).
Hence, all nodes of the bnet are observable. Furthermore, suppose z. = pa(x.). In
other words, we are considering the bnet

z.

�� ��
x. // y.

. (21.19)
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Figure 21.3: Pictorial representation of the rules of Do Calculus. an(s.) stands for
the ancestors of s.. In Rule 2, we zero the arrows leaving a. and ascertain that there
is no flow of info between a. and b. under those circumstances. In Rule 3, as shown
by the dotted arrows, conditioning on s. is enough to block paths going from b. into
a.−an(s.), but it is not sufficient to block paths going from b. into a.∩an(s.). In the
example with red dotted arrows, conditioning on s. opens a path between a. and b.
in which s. is a collider. That is the reason for zeroing arrows going into a.− an(s.),
but not zeroing arrows going into a. ∩ an(s.).

Then

P (y., z.|Dx. = x.) = P (y.|x., z.)P (z.) (21.20)

so
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P (y.|Dx. = x.) =
∑
z.

P (y.|x., z.)P (z.) . (21.21)

This is called adjusting the parents of x..
We say that we are adjusting or controlling a node a if we condition a

probability on a and then we average that probability over a. More generally, we can
adjust a whole multinode a. together.

Next, we will introduce a generalization of this parent adjustment formula
called the backdoor adjustment formula. In a backdoor adjustment formula, the
adjusted multinode is not necessarily the parents of x..

21.3 Backdoor Adjustment Formula
See Chapter 4 for examples of the use of the backdoor adjustment formula. In this
section, we shall mainly be concerned with proving this theorem using Do Calculus.

For any two disjoint multinodes x. and y., we define a backdoor path from
x. to y. as a path from x. and y. that starts with an arrow pointing into x.,

Suppose that we have access to data that allows us to estimate a probability
distribution P (x., y., z.). Hence, the variables x., y., z. are ALL observed (i.e, not
hidden). Then we say that the backdoor z. satisfies the backdoor adjustment
criterion relative to (x., y.) if

1. All backdoor paths from x. to y. are blocked by conditioning on z..

2. z. ∩ de(x.) = ∅.

Motivation for BD criterion: Part 1 rules out paths from x to y containing
a fork node (confounder) which, if not blocked by conditioning on z., would introduce
a non-causal correlation (confounder bias). Part 2 rules out a directed path from x to
y that has a mediator node blocked by conditioning on z. or a collider node unblocked
by conditioning on z..

Claim 41 (Backdoor Adjustment Formula)
If z. satisfies the backdoor criterion relative to (x., y.), then

P (y.|Dx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (21.22)

=
∑
z.

!!
x. // y.

(21.23)

where
∑
z. means node z. is summed over.
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proof:
For simplicity, let us omit the dots from the multinodes. If z satisfies the

backdoor criterion relative to (x, y), then x, y, z might have the following structure.

z

�� ��

BB

��

u

��

v

x //

@@ 77

y

??
(21.24)

See Claim 45 for a proof of this claim for the special case Eq.(21.24).
QED

Note that the backdoor adjustment formula can be written as

P (y.|Dx. = x.) =
∑
z.

P (y.|x., z.)P (z.) (21.25)

=
∑
z.

P (y., x., z.)

P (x.|z.)
(21.26)

This assumes P (x.|z.) ̸= 0 for all x., z.. This assumption is referred to as positivity,
and is violated if P (x.|z.) = δ(x., x.(z.)). P (x.|z.) is called the propensity score of x.
given z.. This equation does inverse probability weighting. One can approximate
P (x.|z.) in this equation to get an approximation to P (y|Dx = x).

21.4 Frontdoor Adjustment Formula
See Chapter 29 for examples of the use of the frontdoor adjustment formula. In this
section, we shall mainly be concerned with proving this theorem using Do Calculus.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x.,m., y.). Hence, the variables x.,m., y. are ALL observed (i.e, not
hidden). Then we say that the frontdoor m. satisfies the frontdoor adjustment
criterion relative to (x., y.) if

1. All directed paths from x. to y. are intercepted by (i.e., have a node in) m..

2. All backdoor paths from x. to m. are blocked.

3. All backdoor paths from on m. to y. are blocked by conditioning on x..

Claim 42 (Frontdoor Adjustment Formula)
If m. satisfies the frontdoor criterion relative to (x., y.), and P (x.,m.) > 0,

then
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P (y.|Dx. = x.) =
∑
m.

[∑
x′.

P (y.|x′.,m.)P (x′.)

]
︸ ︷︷ ︸

P (y.|Dm.=m.)

P (m.|x.)︸ ︷︷ ︸
P (m.|Dx.=x.)

(21.27)

=
∑
x′.

!!
x. //

∑
m. // y.

(21.28)

where
∑
x′. and

∑
m. means nodes x′. and m. are summed over.

proof:
For simplicity, let us omit the dots from the multinodes. If m satisfies the

frontdoor criterion relative to (x, y), then x,m, y might have the following structure,
where node c is unobserved.

c

�� ��
x //m // y

(21.29)

See Claim 46 for a proof of this claim for the special case Eq.(21.29).
See also Ref.[52] for a proof by Pearl of the Frontdoor Adjustment Formula

without using Do Calculus.
QED

21.5 Comparison of Backdoor and Frontdoor adjust-
ment formulae

Define a direct effect path for a query P (y|Dx = x, z.) as a directed path that
starts at x and ends at y. A backdoor path (i.e., one that connects x and y starting
with an arrow pointing into x), is not a direct effect path; it’s an indirect effect
path.

Note that in the backdoor AF (adjustment formula), we can find a possibly
empty observed multinode z. such that if we condition on z., all indirect effect paths
are blocked. In the frontdoor AF, we can’t find a multinode z. that blocks all indirect
effect paths. Despite this, in the frontdoor scenario, the do-query is identifiable and
an adjustment formula exists. How is that possible? The frontdoor AF uses the
backdoor AF once and then it uses the backdoor AF again, a second time, on the
result of the first use. The frontdoor AF replaces a sum over an unobserved node by
a sum over an observed one.
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21.6 Do operator for DEN diagrams
Recall that the structural equations for a linear DEN, as given by Eq.(48.48) of
Chapter 48, are:

x = Ax+ u . (21.30)

Therefore,

x = (1− A)−1u (21.31)

which can be represented for both linear and non-linear DEN diagrams by:

xi = xi(u.) (21.32)

If now we apply the operator Da=a to the diagram described by the structural
equations Eqs.21.30, we get the following new structural equations:

x∗i =

{ ∑
j<iAi|jx

∗
j + ui if xi ̸= a

a if xi = a
, (21.33)

where we are calling x∗i the nodes of the DEN diagram post intervention.
Eqs.(21.33) can be expressed in matrix notation as follows. Define πa to be

the nx × nx matrix with all entries equal to zero except for the (i0, i0) entry, which
is 1. And define ea to be the column vector with all entries zero except for the i0’th
one, which is 1. Here i0 is defined so that xi0 = a. In other words, πa and ea are
defined by

(πa)i,j = 1(i = j, a = xi) (21.34)

and

(ea)i = 1(a = xi) , (21.35)

for i, j ∈ {0, 1, . . . , nx− 1}. Next define

π!a = 1− πa , (21.36)

A∗ = π!aA , (21.37)

and

u!a = π!au . (21.38)

The effect of pre-multiplying the matrix A and the column vector u by π!a is to leave
all rows intact except for the i0 row, which is set to zero. Here i0 is defined by a = xi0 .
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Finally, using all of the variables just defined, we can express the structural equations
of the linear DEN diagram, post intervention, as

x∗ = A∗x∗ + u!a + aea . (21.39)

Thus,

x∗ = (1− A∗)−1(u!a + aea) . (21.40)

which can be represented for both linear and non-linear DEN diagrams by:

x∗i = x∗i (u!a, a) . (21.41)

For any bnet,

P (y = y|x = x) = PG(y = y|x = x) (21.42)

P (y = y|Dx = x) = PDx=xG(y = y) (21.43)

Claim 43 For a non-linear DEN diagram,

P (y|Dx = x) = E
[
δ[y, y(u!x, x)]

]
. (21.44)

proof:

P (y = y|Dx = x) = PDx=xG(y = y) (21.45)

=
∑
u!x

P (u!x)PDx=xG(y = y|u!x) (21.46)

=
∑
u!x

P (u!x)δ[y, y(u!x, x)] (21.47)

= Eu!x [δ[y, y(u!x, x)]] (21.48)
= E[δ[y, y(u!x, x)]] (21.49)

QED

Claim 44 For a nonlinear DEN diagram,

E[y|Dx = x] = E[y(u!x, x)] . (21.50)

proof:
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E[y|Dx = x] =
∑
y

yP (y = y|Dx = x) (21.51)

=
∑
y

yE[δ[y, y(u!x, x)]] (21.52)

= E[y(u!x, x)] (21.53)

QED
For any bnet

P (y|Dx = x, z) =
P (y, z|Dx = x)

P (z|Dx = x)
= PDx=xG(y|x, z) (21.54)

For a nonlinear DEN diagram,

P (y, z|Dx = x) =
∑
u!x

P (u!x)δ[y, y(u!x, x)]δ[z, z(u!x, x)] (21.55)

P (z|Dx = x) =
∑
u!x

P (u!x)δ[z, z(u!x, x)] . (21.56)

243



Chapter 22

Do Calculus proofs

In Chapter 21, we explained Do Calculus, but referred to this chapter for proofs
of claims that use Do Calculus. In this chapter, we’ve aggregated all proofs, from
throughout the book, of claims that use Do Calculus.

Note that even though the 3 rules of Do Calculus are great for proving adjust-
ment formulae for general classes of DAGs, they are sometimes overkill for proving
adjustment formulae for a single specific DAG. Indeed, since the 3 rules of Do Calculus
are a consequence of the d-separation theorem, it follows that all adjustment formulae
should be provable from first principles, assuming only the d-separation theorem and
the standard rules of probability theory.

In this chapter, we use the following conventions for bnet diagrams.
Random variables are underlined and their values are not. For example, a =

a means the random variable a takes the value a. A diagram with all its nodes
underlined represents a Bayesian Network (bnet), whereas the same diagram with the
letters not underlined represents a specific instantiation of that bnet. For example
a → b → c represents the bnet with full probability distribution P (c|b)P (b|a)P (a),
whereas a → b → c represents P (c|b)P (b|a). Note that, for convenience, we define
a→ b→ c to exclude the priors of root nodes such as P (a).

If a is a root node, then
∑
a signifies a weighted sum

∑
a P (a). For example,∑

a→ b→ c =
∑
a

P (c|b)P (b|a)P (a) (22.1)

If a is not a root node, then
∑
a signifies a simple unweighted sum

∑
a. For example,

x→
∑

a→ y =
∑
a

P (y|a)P (a|x) (22.2)

Two bnets are equated if their full probability distributions (i.e., their full
instantiations) are equal numerically. For example,

a→ b→ c = P (c|b)P (b|a)P (a) = a← b← c (22.3)
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Unobserved (a.k.a. hidden, latent) nodes are indicated in a bnet by enclosing
their label in a dashed circle. For example, u . Alternatively, they are indicated by
using dashed arrows for all arrows emanating from the unobserved node.

Selection diagrams with switch nodes are discussed in Chapter 99. In a se-
lection diagram with a switch node s ∈ {0, 1}, if a node x has parents pa(x) where
s ̸∈ pa(x), then the TPM of x is P (x|pa(x)). If, on the other hand, x has parents
pa(x) = pa′(x) ∪ s, where pa′(x) = pa(x)− s, then the TPM of x is

P (x|pa′(x), s) =
{
P (x|pa′(x)) if s = 0
P ∗(x|pa′(x)) if s = 1

(22.4)

Some identities that are used in this chapter:

1.
P (y|x1, x2) =

∑
a

P (y|a, x1, x2)P (a|x1, x2) . (22.5)

x1

&&
y

x2

88 =

x1

!!
((∑

a // y

x2

==
66

. (22.6)

One can describe this identity as “giving y a universal backdoor", because
∑
a

is a backdoor (i.e., input) to y, and
∑
a is universal in the sense that it is

entered by every arrow that enters y except
∑
a itself.

2. ∑
a

P (a|x1, x2) = 1 (22.7)

x1
((∑

a
0
// = 1

x2

66

(22.8)

One can describe this identity as “summing over the values of a collider node
which has no emerging arrows"1. Eq.(22.8) can be understood as an edge case
(when y = ∅) of Eq.(22.6).

3. ∑
a

P (x2|a)P (a|x1) = P (x2|x1) (22.9)

1A zeroed arrow means the same as no arrow.
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x1 //
∑
a // x2 = x1 // x2 (22.10)

One can describe this identity as “summing over the values of a mediator node".

4.
P (x) =

∑
a

P (x|a)P (a) =
∑
b

P (x|b)P (b) (22.11)

P (x) =
0
//
∑
a // x =

0
//
∑
b // x (22.12)

One can describe this identity as “averaging over different priors". Eq.(22.12)
can be understood as an edge case of Eq.(22.10).

A do-adjustment formula expresses a do-query (i.e., a conditional prob-
ability with do operators in its condition) by an equivalent expression without do
operators. The equivalent expression must satisfy 2 constraints to be discussed be-
low. If a do-adjustment formula exists for a particular do-query, then we say the
do-query is do-identifiable (DI). A do-transport formula is a relationship be-
tween 2 do-queries. This chapter deals with both do-adjustment and do-transport
formulae.

See Fig.22.1 for some simple examples of of bnets for which the do-query
P (y|Dx = x) is DI and non-DI.

z

�� ��
x // y

z

�� ��
x // y

(a)P (y|Dx = x) is DI (b)P (y|Dx = x) is non-DI

Figure 22.1: Examples of bnets for which the do-query P (y|Dx = x) is DI and non-
DI.

Let G be a graph before amputation of the arrows entering node x, and let
Gx = Dx=xG be the same graph after amputation. Also let PG() = P () be the
full probability distribution for graph G, and PGx() be that for Gx. In general, the
following is always true, whether it applies to a bnet with or without hidden nodes:2

P (y|Dx = x) = PGx(y|x) (22.13)
2Note that PGx

(y|x) ̸= PG(y|x) = P (y|x). In fact, PGx
(y|x) = P (y|x) iff there is no confounding,

so PGx
(y|x) ̸= P (y|x) indicates confounding.
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However, the right hand side of this equation is not a valid adjustment formula for
this query because it’s not expressed in terms of P (). We define a valid adjustment
formula for query P (y|Dx = x) to be a bnet instantiation diagram that satisfies the
following 2 constraints:

1. (structural constraint)

The adjustment formula must be representable by a bnet instantiation that
has a DAG structure identical to the DAG structure of G, except that arrows
entering node x have been amputated. All nodes of that instatiation, except
nodes x and y, must be summed over.

2. (probabilitistic constraint)

• If G has hidden nodes, these must be renamed and assigned a TPM that
can be constructed from the observable TPMs of G.

• The observable nodes of G with hidden parents, must also be assigned a
TPM that can be constructed from the observable TPMs of G.

• The observable nodes of G with no hidden parents, must be assigned the
same TPM as they have in G.

The reason for these 2 constraints is that we want an adjustment formula to show
exactly how it is calculated from the full probability distribution P (). If we don’t show
exactly how it is calculated (i.e., whether with or without the amputated arrows), it
is impossible to distinguish between marginals of P () and PGx() such as P (y|x) and
PGx(y|x).

Based on these 2 constraints, we can easily see why the query P (y|Dx = x)
is DI (resp., non-DI) for bnet (a) (resp., bnet (b)) of Fig.22.1. For bnet (a), after
amputating arrow z → x and summing over node z, we get

P (y|Dx = x) =
∑
z

  
x // y

(22.14)

The right hand side of Eq.(22.14) is a valid adjustment formula because it satisfies
both constraints. For bnet (b), if we amputate arrow z → x and sum over node z, we
get

P (y|Dx = x) =
∑
z

  
x // y

(22.15)
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The right hand side of Eq.(22.15) is not a valid adjustment formula because it violates
the second constraint. Furthermore, try as we may, there is no way to replace the
sum over hidden node z by a sum over an observed node, such that constraint 2 is
satisfied.

Claim 45 (Backdoor Adjustment Formula)
If z

�� ��
x // y

then

P (y|Dx = x) =
∑
z

P (y|x, z)P (z) (22.16)

=
∑
z

  
x // y

(22.17)

proof:
* proof 1:

P (y|Dx = x) =
∑
z

  
x // y

(22.18)

* proof 2:

P (y|Dx = x) =
∑

z P (y|Dx = x, z)P (z|Dx = x)
by Probability Axioms

=
∑

z P (y|x, z)P (z|Dx = x)
P (y|Dx = x, z)→ P (y|x, z)

by Rule 2: If (b. ⊥ a.|r., s.) in La.Dr.G, then
Da. = a.↔ a. = a.

y ⊥ x|z in LxD∅G : z

�� ��
x y

=
∑

z P (y|x, z)P (z)
P (z|Dx = x)→ P (z)

by Rule 3: If (b. ⊥ a.|r., s.) in Da.−an(s.)Dr.G, then
Da. = a.↔ 1
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z ⊥ x in DxD∅G : z

��
x // y

QED

Claim 46 (Frontdoor Adjustment Formula)
If c

�� ��
x //m // y

then

P (y|Dx = x) =
∑
m

[∑
x′

P (y|x′,m)P (x′)

]
P (m|x) (22.19)

=
∑
x′

  
x //

∑
m // y

(22.20)

proof:
* proof 1:

P (y|Dx = x) =
∑
c

��
x //

∑
m // y

(22.21)

=
∑
x′ //

∑
c

��
x //

∑
m // y

(22.22)

=
∑
x′

  
x //

∑
m // y

(22.23)

* proof 2:
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P (y|Dx = x) =
∑

m P (y|Dx = x,m)P (m|Dx = x)
by Probability Axioms

=
∑

m P (y|Dx = x,Dm = m)P (m|Dx = x)
P (y|Dx = x,m)→ P (y|Dx = x,Dm = m)

by Rule 2: If (b. ⊥ a.|r., s.) in La.Dr.G, then
Da. = a.↔ a. = a.

y ⊥ m|x in LmDxG : c

��
x //m y

=
∑

m P (y|Dx = x,Dm = m)P (m|x)
P (m|Dx = x)→ P (m|x)

by Rule 2: If (b. ⊥ a.|r., s.) in La.Dr.G, then
Da. = a.↔ a. = a.

m ⊥ x in LxD∅G : c

�� ��
x m // y

=
∑

m P (y|Dm = m)P (m|x)
P (y|Dx = x,Dm = m)→ P (y|Dm = m)

by Rule 3: If (b. ⊥ a.|r., s.) in Da.−an(s.)Dr.G, then
Da. = a.↔ 1

y ⊥ x|m in DxDmG : c

��
x m // y

=
∑

x′
∑

m P (y|Dm = m,x′)P (x′|Dm = m)P (m|x)
by Probability Axioms

=
∑

x′
∑

m P (y|m,x′)P (x′|Dm = m)P (m|x)
P (y|Dm = m,x′)→ P (y|m,x′)

by Rule 2: If (b. ⊥ a.|r., s.) in La.Dr.G, then
Da. = a.↔ a. = a.

y ⊥ m|x in LmD∅G : c

����
x //m y

=
∑

x′
∑

m P (y|m,x′)P (x′)P (m|x)
P (x′|Dm = m)→ P (x′)

by Rule 3: If (b. ⊥ a.|r., s.) in Da.−an(s.)Dr.G, then
Da. = a.↔ 1
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x ⊥ m in DmD∅G : c

����
x m // y

QED

Claim 47 (Napkin problem from Ref.[61])
If u1

�� ��

u2

�� ��
w // z // x // y

then

P (y|Dx = x) =
∑

w,z,z′,x′

P (y|x, z′)P (w|z′, x′)P (z′)P (x′)P (z|w) (22.24)

=
∑
z′

�� ��

∑
x′

||∑
w //

∑
z x // y

(22.25)

Note that x′ and z′ can be swapped, and we still get a valid adjustment formula. So
there can be more that one adjustment formula!

proof:

251



P (y|Dx = x) =
∑
u1

�� ��

∑
u2

||∑
w //

∑
z x // y

(22.26)

=
∑
u1

�� ��

∑
z′oo

∑
u2

||

∑
x′oo

∑
w //

∑
z x // y

(22.27)

=
∑
z′

�� ��

∑
x′

||∑
w //

∑
z x // y

(22.28)

QED

Claim 48 (from Ref.[61])
If x

�� ''
w // z // y

u

OO 88

then

P (y|Dz = z, x) =
∑
w

P (y|z, x, w)P (w) (22.29)

= x

''∑
w 77z // y

(22.30)

252



proof:

P (y|Dz = z, x) = x

��
((∑

w z // y

∑
u

OO
88

(22.31)

= x

��
))∑

w z // y

∑
u

OO
66

∑
w′oo

(22.32)

= x

��
''∑

w z // y

∑
w′

OO
77

(22.33)

= x

''∑
w 77z // y

(22.34)

QED

Claim 49 (Trivial Memoryless Transportability, from Ref.[59])
If z

�� ��

s

��
x //

22

ff 88 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x, z) = P ∗(y|x, z) (replace D by 1, keep P ∗) (22.35)

z

!!

s = 1

��Dx = x // y
=

z

""

s = 1

��
x // y

(22.36)
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proof:

P (y|Dx = x, z, s = 1) = P (y|x, z, s = 1)

z

!!

s = 1

��Dx = x // y
=

z

""

s = 1

��
x // y

QED

Claim 50 (Direct Transportability, a.k.a. External Validity, from Ref.[59])
If s // z

�� ��
x //

22

ff 88 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x, z) = P (y|Dx = x, z) (replace P ∗ by P , keep D) (22.37)

s = 1 // z

��Dx = x // y
=

z

��Dx = x // y

(22.38)

Furthermore,
P ∗(y|Dx = x) =

∑
z

P (y|Dx = x, z)P ∗(z) (22.39)

s = 1

''Dx = x // y
=

s = 1 //
∑
z

  Dx = x // y

(22.40)

proof:

P (y|Dx = x, z, s = 1) = P (y|Dx = x, z)

s = 1 // z

��Dx = x // y
=

z

��Dx = x // y

Because s ⊥ y|z

Furthermore,
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P (y|Dx = x, s = 1) =
∑

z P (y|Dx = x, z)P (z|s = 1)

s = 1 //
∑
z

  Dx = x // y

QED

Claim 51 (S-Admisssible Transportability, from Ref.[59])
If s // z //

��

a

��
x //

33

gg 77 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) =
∑
a

P (y|Dx = x, a)P ∗(a) (22.41)

s = 1

##Dx = x // y
=

s = 1 //
∑
a

��Dx = x // y

(22.42)

proof:

P (y|Dx = x, s = 1) =
∑

a P (y|Dx = x, a)P (a|s = 1)

s = 1 //
∑
z //

∑
a

��Dx = x // y
=

s = 1 //
∑
a

��Dx = x // y

QED

Claim 52 (Non-transportability, from Ref.[59])
If h

�� ��

s

��
x // y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) = P ∗(y|Dx = x) (22.43)
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s = 1

��Dx = x // y
= same

(22.44)

proof:

P ∗(y|Dx = x) = P ∗(y|Dx = x)

∑
h

##

s = 1

��Dx = x // y
=

s = 1

��Dx = x // y

Can’t replace Dx = x by x because y ̸⊥ x in LxG. Hence, Rule 2 not satisfied.
QED

Claim 53 (from Ref.[59])

If s
##

h

�� ��

//44



z

x //gg 77 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) = P (y|Dx = x) (22.45)

s = 1

''Dx = x // y
= Dx = x // y

(22.46)

proof:

P (y|Dx = x, s = 1) =
∑

h P (y|Dx = x, h)P (h)

s = 1
''∑

h //

""

∑
z

Dx = x // y
=

∑
h

  Dx = x // y

= P (y|Dx = x)

= Dx = x // y

QED
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Claim 54 (from Ref.[59])
If s

��

h

�� ��

44


x //gg 77z // y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) =
∑
z

P (y|Dx = x, z)P ∗(z|x) (22.47)

s = 1

%%

Dx = x

��
y

=

s = 1

##

Dx = x

��
x //

∑
z // y

(22.48)

proof:

P (y|Dx = x, s = 1) =
∑

h

∑
z P (y|h, z)P (h)P (z|Dx = x, s = 1)

s = 1

$$

∑
h

  Dx = x //
∑
z // y

=
∑

h

∑
z P (y|h, z)P (h|Dx = x)P (z|x, s = 1)

=

s = 1

""

∑
h

$$

Dx = xoo

x //
∑
z // y

=
∑

z P (y|Dx = x, z)P (z|x, s = 1)

=

s = 1

##

Dx = x

��
x //

∑
z // y

QED

Claim 55 (Unconfounded Mediation, from Ref.[58])
If m

��
d //

@@

y

then
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P (y|Dd = d, Imd = d′) =
∑
m

P (y|d,m)P (m|d′) (22.49)

Id = d′

""Dd = d // y
=

Id = d′ //
∑
m

  Dd = d // y

(22.50)

proof:

P (y|Dd = d, Id = d′) =
∑

m P (y|d,m)P (m|d′)

Id = d′ //
∑
m

  Dd = d // y

QED

Claim 56 (Mediation with universal prior ξ and universal confounder u, from Ref.[58])
If u

��

����

��
ξ

&&��

//m

��
d //

@@

y

then

P (y|Dd = d, Imd = d′) =
∑
ξ

∑
m

P (y|d,m, ξ)P (m|d′, ξ)P (ξ) (22.51)

Id = d′

""Dd = d // y
=

Id = d′ 44
∑
ξ

((

//
∑
m

  Dd = d // y

(22.52)

proof:

P (y|Dd = d, Id = d′) =
∑

ξ,u

∑
m P (y|d,m, ξ, u)P (m|d′, ξ, u)P (ξ|u)P (u)︸ ︷︷ ︸

P (ξ,u)
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∑
u

��

|| ��
Id = d′ 44

∑
ξ

((

//
∑
m

!!Dd = d // y

=
∑

ξ

∑
m P (y|d,m, ξ)P (m|d′, ξ)P (ξ)

=

Id = d′ 44
∑
ξ

((

//
∑
m

  Dd = d // y

We switch from averaging over
the prior of ξ, u
to averaging over the
prior of ξ.

QED

Claim 57 (Sequential backdoor (SBD) adjustment formula, from Ref.[62])
If z0 // ((

**

��

z1 //

''

��

z2

��

��

y

x0

GG >>

44

// 66x1

GG

77

// x2

??

then

P (y|Dx3 = x3) = Q(y|x3) (22.53)

Dx3 = x3 // y =

∑
z0 //

**

++

∑
z1 //

))

∑
z2

!!
y

x0

DD ::

33

x1

DD

55

x2

<<

(22.54)

The result shown here for n = 3 is true for any integer n ≥ 1.

proof:

P (y|Dx3 = x3) = Q(y|x3)
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∑
z0 // **

++

∑
z1 //

))

∑
z2

��
y

Dx0 = x0

CC ::

33

Dx1 = x1

CC

55

Dx2 = x2

??
=

∑
z0 //

))

**

∑
z1 //

&&

∑
z2

��
y

x0

FF >>

44

x1

FF

77

x2

AA

We can replace
Dxi = xi by xi
once all nodes
in bnet are
observed nodes.

QED

Claim 58 (Selection Bias (SB) Backdoor Adjustment Formula, from Ref.[3])

If s

��

//
))

z<x

~~ ��

// z>x

x

66

// y

where s ∈ {0, 1} is a switch node and z = (z<x, z>x), then

P (y|Dx = x, s = 1) =
∑
z

P (y|x, z)P (z) = P (y|x) (22.55)

s = 1

##Dx = x // y
=

∑
z

��
x // y

= x // y

(22.56)

proof:

P (y|Dx = x, s = 1) =
∑

z P (y|Dx = x, z)P (z<x|s = 1)P (z>x|x, z<x, s = 1)

s = 1 //
++∑

z<x

��

//
∑
z>x

Dx = x

44

// y

=
∑

z<x P (y|Dx = x, z<x)P (z<x|s = 1)

=

s = 1 //
∑
z<x

��Dx = x // y

=
∑

z P (y|x, z)P (z|s = 1)
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=

s = 1 //
∑
z

��
x // y

D can be removed because there are
no sums over unobserved nodes.

=
∑

z P (y|x, z)P (z)

=

∑
z

��
x // y

s = 1 node can be removed
because this expression must
equal P (y|x, s = 1). Furthermore,
y ⊥ s|(x, z) in the hypothesis bnet.
Hence, this expression must also
equal P (y|x).

QED
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Chapter 23

D-Separation

Before reading this chapter, I recommend that you read Chapter D.
A path γ that isn’t a loop can have 3 types of intermediate nodes x (an

intermediate node of γ is a node in γ that isn’t one of the two end nodes). Suppose
a, b ∈ γ are the two neighbors of x. Then the 3 possible cases are:

1. x is a mediator node: (a← x← b) or (a→ x→ b)

2. x is a fork node: (a← x→ b)

3. x is a collider node: (a→ x← b)

We say that a non-loop path γ from a to b (i.e., with end nodes a, b) is blocked
by conditioning on a multinode Z. if one or more of the following statements is true:

1. There is a node x ∈ Z. which is a mediator or a fork of γ.

2. γ contains a collider node c and (c ∪ de(c)) ∩ Z. = ∅ (i.e., neither c nor any of
the descendants of c is contained in Z.)

This definition of a blocked path1 is easy to remember if one thinks of the
following analogy with pipes carrying water. Think of path γ as if it were a pipe
carrying water. Think of the nodes of γ as junctions in the pipe. If Z. intersects γ at
either a mediator or a fork junction, that acts like a stone that blocks the pipe flow.
A collider junction c is like a t-joint or hole in the pipe causing a jet of water to leak
away from the main flow. Its presence diminishes or totally prevents the main flow of
water as long as neither c nor any of the descendants of c are in Z.. If, on the other
hand, c ∈ Z., or c′ ∈ Z. where c′ ∈ de(c), then the stone produces a complete (in the
case of c ∈ Z.) or a partial (in the case of c′ ∈ Z.) plug of the leak, preventing egress
from the main flow.

See Fig.23.1 for some examples of paths that are blocked or not blocked by
conditioning on a multinode Z..

1Note that we speak of blocked paths or info, not of blocked nodes. Nodes are not blocked; rather
they are either conditioned upon or not.
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◦ // ◦ // ◦ // ◦ // ◦ Not Blocked (23.1)
◦ // • // ◦ // ◦ // ◦ Blocked (23.2)
◦ ◦oo // ◦ // ◦ // ◦ Not Blocked (23.3)
◦ •oo // ◦ // ◦ // ◦ Blocked (23.4)
◦ // ◦ // ◦ ◦oo // ◦ Blocked (23.5)
◦ // ◦ // • ◦oo // ◦ Not Blocked (23.6)
◦ // ◦ // ◦

��

◦oo // ◦

•

Not Blocked (23.7)

Figure 23.1: Examples of paths that are blocked or not blocked by conditioning on a
multinode Z.. Nodes belonging to Z. are colored yellow.

Given 3 disjoint multinodes A.,B., Z. of a graph G, we write “ A. ⊥G B.|Z."
or say “ A. and B. are d-separated by Z. in G" iff there exists no path γ from
a ∈ A., to b ∈ B. which is not blocked by conditioning on Z..2

The minimal Markov blanket (see Chapter 50) of a node a is the smallest
multinode Z. such that a ⊥G b|Z. for all b /∈ a ∪ Z..

We are finally ready to state the d-separation theorem, without proof.
A probability distribution P is compatible with a DAG G if P and G

have the same random variables, and they can be combined to form a bnet without
contradictions; i.e., one can calculate all the TPMs from P and multiply them together
to obtain P again.

Claim 59 (d-separation Theorem)
Suppose A.,B., Z. are disjoint multinodes of a DAG G.
If A. ⊥G B.|Z., then P (B.|A., Z.) = P (B.|Z.) for all B.,A., Z., for all P

compatible with G.

The full converse of the theorem can also be proven, but we won’t be using it in this
book.

Often, the right hand side of this theorem is stated as “A. ⊥P B.|Z. for all
P". Then the theorem is stated: “If A. ⊥G B.|Z., then A. ⊥P B.|Z. for all P ."

Note that the following are equivalent:

• P (B.|A., Z.) = P (B.|Z.) for all B.,A., Z..

• A. ⊥P B.|Z.
2Z. are the nodes we are “conditioning on". Unmeasured (i.e., hidden, unobserved) nodes cannot

be conditioned on, because that would entail measuring them.
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• H(A. : B.|Z.) = 0 (see Chapter C for definition of conditional mutual informa-
tion (CMI))

Extra stuff: mostly only for pure mathematicians
Below, we will use the notation nde(a) to denote all non-descendants, including

a itself, of a node a in a DAG G; i.e., all nodes of G that are not in de(a) ∪ a, where
de(a) is defined in Chapter D.

Given a DAG G, define the following sets of d-separations:3

DS(G) = {(A. ⊥G B. | Z.) : A.,B., Z. are multinodes of G} . (23.8)

DSmin(G) = {(A. ⊥G nde(A.) | pa(A.)) : A. is a multinode of G} . (23.9)

See Chapter 67 for an example where set DSmin(G) is calculated for a partic-
ular DAG G.

Claim 60 For all DAGs G, DS(G) = DSmin(G).

Given a probability distribution P , define the following set of conditional in-
dependencies:

CI(P ) = {(A. ⊥P B. | Z.) : A.,B., Z. are multinodes of P} , (23.10)

For a DAG G and a probability distribution P compatible with G, define a
map ϕ by

ϕ : DSmin(G) → CI(P ) (23.11)
ϕ : A. ⊥G nde(A.) | pa(A.) 7→ A. ⊥P nde(A.) | pa(A.) (23.12)

In general, this map is 1-1 but not onto.

Claim 61 For a bnet with a DAG G and a total probability distribution P , the map
ϕ is a bijection.

DS(G) does not fully specify a DAG. DAGs with the same DS(G) are said
to be d-separation equivalent. See Chapter 67 for more info about d-separation
equivalence.

3Note that (A. ⊥G nde(A.) | pa(A.)) and (A. ⊥G nde(A.)−pa(A.) | pa(A.)) are equivalent because
H(a : b, c|c) = H(a : b|c).
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Chapter 24

D-Separation in Quantum Mechanics

See Ref.[85].
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Chapter 25

Dynamical Bayesian Networks

c(0) //

��

c(1) //

��

c(2) . . . c(T−2) //

��

c(T−1)

b(0)

  

// b(1)

  

// b(2) . . . b(T−2)

$$

// b(T−1)

a(0)

OO

a(1)

OO

a(2)

OO

. . . a(T−2)

OO

a(T−1)

OO

Figure 25.1: Example of a DBN. Same time-slice (in black) is repeated T times.
Green arrows connect adjacent slices.

A dynamical bnet (DBN) is simply a Markov chain a0 → a1 → . . . aT−1 (see
Chapter 52) for which each node ai is called a time-slice. Each time-slice represents
at finer resolution a sub-DAG which has the same structure (but not necessarily the
same TPMs) in every time-slice.1 If the TPMs are the same for all time-slices, we call
it a time-homogeneous dynamical bnet. Fig.25.1 gives an example of a DBN. In
that figure, each time-slice is represented in black, and arrows connecting adjacent
time-slices are represented in green. In Fig.25.1, we’ve drawn the 3 nodes of each time-
slice vertically, and labeled them with a superscript .(t), where t ∈ {0, 1 . . . , T − 1}
is the time of the slice. To fully specify the DBN of Fig.25.1, we would also have to
specify the TPMs

P (c(0)),
P (b(0)),
P (a(0)),
P (c(1)|c(0)),

1Sometimes, it is convenient to define time-slices that are influenced by the n-previous time-slices.
instead of just n = 1. By defining a bigger time-slice that contains n of the original time-slices, we
can get bigger time-slices that only listen to the adjacent previous bigger time-slice.
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P (b(1)|b(0), a(1))
P (a(1)|b(0), c(0)), etc.
Dynamical bnets are very common in AI and Data Science. Kalman filters

(Chapter 44), Hidden Markov Models (Chapter 37) and Recurrent Neural Networks
(Chapter 75) are famous examples of DBNs.

Bnets are acyclic; they can’t have cycles (i.e, closed directed paths). Yet
feedback loops are an important concept in Science. So what is the equivalent of
feedback loops in the bnet world? Dynamical bnets are. Fig.25.2 represents Fig.25.1
more compactly using feedback loops. Any bnet with feedback loops can be “unrolled"
into a DBN.

c(t)

ww

��

b(t)

��

��

a(t)

OO

Figure 25.2: Dynamical bnet Fig.25.1 represented more compactly using feedback
loops. Dashed green arrows point to the future, from nodes of the t time-slice to
nodes of the t+ 1 time-slice.

267



Chapter 26

Expectation Maximization

This chapter is based on Refs.[122] and [181].
The Expectation Maximization (EM) algorithm is commonly used in Data

Science to find the maximum over an unknown parameter θ of a likelihood function

P (x⃗|θ) =
∑
h⃗

P (x⃗, h⃗|θ) , (26.1)

where x⃗ denotes the observed variables, and h⃗ denotes the hidden variables.
Both θ and h⃗ are hidden (i.e., unobserved).1

θ

�� ��
x⃗ h⃗oo

= θ

��

��

��

""

��

��

x[0] h[0]oo

x[1] h[1]oo

x[2] h[2]oo

Figure 26.1: bnet for EM with nsam = 3. x[σ] = xσ and h[σ] = hσ.

The bnet for the EM algorithm is given by Fig.26.1 for nsam = 3. Later on in
this chapter, we will give the node TPMs for this bnet for the special case in which
P (xσ | θ) is a mixture (i.e., weighted sum) of Gaussians.

1The term “unknown parameter" is mainly of frequentist origin. For Bayesians, θ is a random
variable with a delta function prior, whereas for frequentists, it is not a random variable at all, just
an unknown parameter with no randomness.
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Note that if we erase the hσ nodes from Fig.26.1, we get the bnet for naive
Bayes, which is used for classification into the states of θ. However, there is one
big difference. With naive Bayes, the leaf nodes have different TPMs. Here, we will
assume they are i.i.d. Naive Bayes is used for classification: i.e., given the states of
the leaf nodes, we infer the state of the root node. EM is used for clustering; i.e., given
many i.i.d. samples, we fit their distribution by a weighted sum of prob distributions,
usually Gaussians.

Let
L =likelihood function.
nsam = number of samples.
x⃗ = (x[0], x[1], . . . , x[nsam− 1]), xσ = x[σ] ∈ Sx for all σ.
h⃗ = (h[0], h[1], . . . , h[nsam− 1]), hσ = h[σ] ∈ Sh for all σ.
We assume that the samples (xσ, hσ) are i.i.d. for different σ at fixed θ. What

this means is that there are probability distributions Px|h,θ and Ph|θ such that

P (x⃗, h⃗|θ) =
∏
σ

[
Px|h,θ(x

σ | hσ, θ)Ph|θ(hσ | θ)
]
. (26.2)

Definition of likelihood functions:

P (x⃗|θ)︸ ︷︷ ︸
L(θ;x⃗)

=
∑
h⃗

P (x⃗, h⃗|θ)︸ ︷︷ ︸
L(θ;x⃗,⃗h)

(26.3)

θ∗ = maximum likelihood estimate of θ (no prior P (θ) assumed):

θ∗ = argmax
θ

L(θ; x⃗) (26.4)

26.1 The EM algorithm:
1. Expectation step:2

Q(θ|θ(t)) = Eh⃗|x⃗,θ(t) lnP (x⃗, h⃗|θ) (26.5)

2. Maximization step:

θ(t+1) = argmax
θ

Q(θ|θ(t)) . (26.6)

Claim: limt→∞ θ(t) = θ∗.
Fig.26.2 portrays the recursive nature of the EM algo as a dynamical, recurrent

bnet. For Fig.26.2, the TPMs, printed in blue, for the θ(t) nodes for t = 1, 2, . . ., are
as follows:

2Note that that the right hand side of Eq.(26.5) is expressible in the form
∑

σ

∑
hσ f(xσ, hσ).
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θ(0)

��   

// θ(1) // θ(2) // · · · θ∗

x⃗

>> 66 44

h⃗oo

Figure 26.2: The EM algo generates a sequence of parameter estimates (θ(t))t=0,1,2,...

that converges to the optimum (i.e., best-fit) parameter θ∗.

P (θ(t+1)|x⃗, θ(t)) = δ(θ(t+1), argmax
θ

Q(θ|θ(t))) . (26.7)

26.1.1 Motivation

Q(θ|θ(t)) = Eh⃗|x⃗,θ(t) lnP (x⃗, h⃗|θ) (26.8)

= Eh⃗|x⃗,θ(t) [lnP (⃗h|x⃗, θ) + lnP (x⃗|θ)] (26.9)

= −DKL

(
P (⃗h|x⃗, θ(t)) ∥ P (⃗h|x⃗, θ)

)
−H[P (⃗h|x⃗, θ(t))] + lnP (x⃗|θ) (26.10)

When θ(t) = θ, this becomes

Q(θ|θ) = −H[P (⃗h|x⃗, θ)] + lnP (x⃗|θ) . (26.11)

Hence,

∂θQ(θ|θ) = −
∑
h⃗

∂θP (⃗h|x⃗, θ) + ∂θ lnP (x⃗|θ) (26.12)

= ∂θ lnP (x⃗|θ) (26.13)

So if θ(t) → θ and Q(θ|θ) is max at θ = θ∗, then lnP (x⃗|θ) is max at θ = θ∗

too.
For a more rigorous proof that limt→∞ θ(t) = θ∗, see Wikipedia article Ref.[122]

and references therein.

26.2 Minorize-Maximize (MM) algorithms

A function µ(θ|θ(t)) is said to minorize a target function LL(θ) iff for all θ at
fixed θ(t), it satisfies the “µ ≤ LL property"

µ(θ|θ(t)) ≤ LL(θ) , (26.14)
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Figure 26.3: Function µ(θ|θ(t)) minorizes the function LL(θ). Note that µ(θ|θ(t))
is always below LL(θ). “max" indicates θ(t+1) = argmax

θ
µ(θ|θ(t)). “kiss" indicates

µ(θ(t)|θ(t)) = LL(θ(t)).

and the “µ = LL property"

µ(θ(t)|θ(t)) = LL(θ(t)) . (26.15)

We recursively maximize a minorizing function µ(θ|θ(t)) if we define a
sequence (θ(t))t=0,1,... as follows:

θ(t+1) = argmax
θ

µ(θ|θ(t)) . (26.16)

The sequence (LL(θ(t)))t=0,1,2,... generated by recursively maximizing a minoriz-
ing function must be nondecreasing:

LL(θ(t+1)) ≥ µ(θ(t+1)|θ(t)) ≥ µ(θ(t)|θ(t)) = LL(θ(t)) . (26.17)

A minorize-maximize (MM) algorithm is any algo that specifies a mi-
norizing function µ(θ|θ(t)) for a particular target function LL(θ). One can also de-
fine a majorize-minimize algo (also called MM) by inverting the inequalities
throughout.

The EM algo is an MM algo. Indeed, if we define

LL(θ) = lnP (x⃗|θ) (26.18)

and
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µ(θ|θ(t)) = Q(θ|θ(t)) +H(P (⃗h|x⃗, θ(t)) , (26.19)

then Eq.(26.10) establishes the µ ≤ LL and µ = LL properties required of a minoriz-
ing function.

How an MM algo works is portrayed in Fig.26.3.

26.3 Examples

26.3.1 Gaussian mixture

xσ ∈ Rd = Sx. Sh discrete and not too large. nh = |Sh| is number of Gaussians that
we are going to fit the samples with.

Let
θ = [wh, µh,Σh]h∈Sh

, (26.20)

where [wh]h∈Sh
is a probability distribution of weights, and where µh ∈ Rd and Σh ∈

Rd×d are the mean value vector and covariance matrix of a d-dimensional Gaussian
distribution.

The TPMs, printed in blue, for the bnet Fig.26.1, for the special case of a
mixture of Gaussians, are as follows:

P (xσ | hσ | θ) = Nd(xσ;µhσ ,Σhσ) (26.21)

P (hσ | θ) = whσ (26.22)

Note that

P (xσ | θ) =
∑
h

P (xσ | hσ = h, θ)P (hσ = h | θ) (26.23)

=
∑
h

whNd(xσ;µh,Σh) (26.24)

P (x⃗, h⃗|θ) =
∏
σ

[whσNd(xσ;µhσ ,Σhσ)] (26.25)

=
∏
σ

∏
h

[whNd(xσ;µh,Σh)]
1(h=hσ) (26.26)

Old Faithful: See Wikipedia Ref.[122] for an animated gif of a classic example
of using EM to fit samples with a Gaussian mixture. Unfortunately, could not include
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it here because pdflatex does not support animated gifs. The gif shows samples in a
2 dimensional space (eruption time, delay time) from the Old Faithful geyser. In that
example, d = 2 and nh = 2. Two clusters of points in a plane are fitted by a mixture
of 2 Gaussians.

K-means clustering is often presented as the main competitor to EM for
doing clustering (non-supervised learning). In K-means clustering, the sample
points are split into K mutually disjoint sets S0, S1, . . . , SK−1. The algorithm is easy
to describe:

1. Initialize by choosing at random K data points (µk)
K−1
k=0 called means or cen-

troids and placing µk in Sk for all k.

2. STEP 1: For each data point, add it to the Sk whose centroid µk is closest to
it.

3. STEP 2: Recalculate the centroids. Set µk equal to the mean value of set Sk.

4. Repeat steps 1 and 2 until the centroids stop changing by much.

Step 1 is analogous to the expectation step in EM, and Step 2 to the maximization
step in EM (θ estimation versus µk estimation). We won’t say anything further about
K-means clustering because it isn’t related to bnets in any way, and this is a book
about bnets. For more info about K-means clustering, see Ref.[138].

26.3.2 Blood Genotypes and Phenotypes

Notation: a⃗ = (aσ)σ=0,1,...,nsam−1, where nsam is the number of samples.
Suppose x⃗ = (x⃗0) (i.e., just one component)
h⃗ = (h⃗0) (i.e., just one component)
hσ ∈ Sh = {AA,AO,BB,BO,OO,AB} (the 6 blood genotypes)
xσ ∈ Sx = {A,B,O,AB} (the 4 blood phenotypes)

θ

��   
xσ hσoo

Figure 26.4: bnet for blood phenotypes xσ and genotypes hσ.

For the bnet Fig.26.4, the TPMs, printed in blue, are as follows:
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P (hσ|θ) =

AA p2A
AO 2pApO
BB p2B
BO 2pBpO
OO p2O
AB 2pApB

, (26.27)

where pA + pB + pO = 1.

P (xσ | hσ, θ) =

AA AO BB BO OO AB
A 1 1 0 0 0 0
B 0 0 1 1 0 0
O 0 0 0 0 1 0
AB 0 0 0 0 0 1

(26.28)

θ = (pA, pB) (26.29)

Multiplying the TPMs in Eqs.(26.27 and (26.28), we get

P (xσ | θ) =
A p2A + 2pApO(= πA)
B p2B + 2pBpO(= πB)
O p2O(= πO)
AB 2pApB(= πAB)

(26.30)

Note that

P (x⃗|θ) =
∏
σ

P (xσ|θ) (26.31)

= (πA)
NA(πB)

NB(πO)
NO(πAB)

NAB , (26.32)

where Nx for x ∈ Sx = {A,B,O,AB} are the counts from the data. We can get
estimates for the parameters pA and pB right here without doing EM. Just note that

π̂x =
Nx

N+

(26.33)

for x ∈ Sx, where N+ =
∑

xNx. Eqs.(26.33) give 4 quadratic equations that can be
solved for the parameters pA, pB in terms of the observed counts Nx for x ∈ Sx.

If, instead, you want to find the optimum parameters pA, pB using EM, note
that
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Q(θ|θ(t)) =
∑
h⃗

P (⃗h|θ(t)) lnP (x⃗, h⃗|θ) (26.34)

=
∑
h⃗

[∏
σ

P (hσ|θ(t))

]
ln

[∏
σ

P (xσ, hσ|θ)

]
(26.35)

=
∑
σ

∑
hσ

P (hσ|θ(t)) lnP (xσ, hσ|θ) (26.36)

=
∑
σ

∑
hσ

P (hσ|θ(t))[lnP (xσ|hσ, θ) + lnP (hσ|θ)] (26.37)

= nsam
∑
hσ

P (hσ|θ(t)) lnP (hσ|θ) . (26.38)

26.3.3 Missing Data/Imputation

The previous example on blood genotypes and phenotypes assumed no missing data
in compiling the counts Nx. But what if there is missing data? Can one still apply
the EM algo in that case? Yes! See Chapter 59.
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Chapter 27

Factor Graphs

Suppose xnx = (x0, x1, . . . xnx−1). Consider a product

g(xnx) =

nf−1∏
α=0

fα(xAα) (27.1)

of scalar functions fα : xAα
→ R, where Aα ⊂ {0, 1, . . . , nx − 1}. For instance,

consider g : Sx0 ,×Sx1 × Sx2 → R defined by:

g(x0, x1, x2) = f0(x0)f1(x0, x1)f2(x0, x1)f3(x1, x2) . (27.2)

The factor graph for this function g is given by Fig.27.1.

x0 x1 x2

f0 f1 f2 f3

Figure 27.1: Factor graph for function g defined by Eq.(27.2).

x0

�� �� ''

x1

�� �� ''

x2

��
f
0

f
1

f
2

f
3

Figure 27.2: Bipartite bnet corresponding to factor graph Fig.27.1.
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A Markov Random Field (MRF) is a statistical model whose probability
distribution is of the form

P (xnx) = N (!xnx)
∏
α

fα(xAα) , (27.3)

so it can be represented graphically by a factor graph. The factor functions fα of a
factor graph are called potentials.

One can map any factor graph (the “source") to a special bipartite bnet (the
“image"), as follows. Replace each xi by xi ∈ Sxi for i = 0, 1, . . . , nx − 1 and each
fα by f

α
for α = 0, 1, . . . , nf − 1. Then replace the connections (edges) of the factor

graph by arrows from xi to f
α
. 1 For example, Fig.27.2 is the image bipartite bnet

of the source factor graph Fig.27.1.
Let xnx = (x0, x1, . . . , xnx−1) and fnf = (f

0
, f

1
, . . . , f

nf−1
). Let2 fα ∈ {0, 1}

for all α, and yα = fα(xnb(f
α
)). Here we are using nb(f

α
) to denote the neighborhood

of node f
α

in the image bipartite bnet, and we are using xS to denote (xi)i∈S. Without
loss of generality, we will assume that yα ∈ [0, 1] for all α. Then we define the TPMs,
printed in blue, for the image bipartite bnet, as follows.

P (fα|xnb(f
α
)) = yαδ(fα, 1) + [1− yα]δ(fα, 0) (27.4)

for α = 0, 1, . . . , nf − 1 and

Pxi(xi) = arbitrary prior (27.5)

for i = 0, 1, . . . , nx− 1. Note that

P (fnf = 1nf |xnx) =
∏
α

yα . (27.6)

Fig.27.3 gives an another bipartite bnet, alternative to Fig.27.2, corresponding
to factor graph Fig.27.1. In this new bnet, we replaced the f

α
∈ {0, 1} nodes by

y
α
∈ [0, 1] nodes. We also defined a new leaf node y ∈ {0, 1} with incoming arrows

from all nodes y
α
. The TPMs, printed in blue, for the y

α
and y nodes, are as follows.

P (y
α
= yα|xnb(y

α
)) = δ(yα, fα(xnb(y

α
))) (27.7)

P (y|{yα}nf−1
α=0 ) = y

∏
α

yα + (1− y)

(
1−

∏
α

yα

)
(27.8)

1Pointing arrows from the xi to the f
α

is more causal than the opposite because the xi preceed
the fα in time.

2Note that we are using fα to denote both a function fα(·) and a Boolean value. Which one we
mean will be clear from context. fα could also be used to denote, besides a function and a Boolean
value, the real number yα = fα(xnb(f

α
)). However, we won’t be using it that third way in this

chapter.
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��   ''

x2

  
y
0
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ww
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Figure 27.3: Another bipartite bnet, alternative to Fig.27.2, corresponding to factor
graph Fig.27.1.

Note that
P (y = 1|{yα}nf−1

α=0 ) =
∏
α

yα (27.9)

We’ve shown how to go from a factor graph to a bnet. Going from a bnet to
a factor graph is also possible. Fig.27.4 gives a simple example. Bnet to factor graph
conversion is used in the Junction Tree Algorithm (See Chapter 43).

a1

��

a2

��
x

����
b1 b2

⇒

P (a1) P (a2)

a1 a2

P (x|a1, a2)

x

P (b1|x) P (b2|x)

b1 b2

Figure 27.4: Example of converting a bnet to a factor graph.
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Chapter 28

Frisch-Waugh-Lovell (FWL) theorem

The Frisch-Waugh-Lovell (FWL) theorem (see Ref.[124]) (mnemonic: FoWL Theo-
rem) is a method used in Linear Regression (LR). It allows us to calculate, for LR
with two features x1 and x2, the regression coefficient of feature x2 by conditioning
on feature x1.

As in Section C.28 on LR, we will consider two cases: xσ non-random, and xσ
random i.i.d..

28.1 FWL, assuming xσ are non-random
Suppose

y = X1β1 +X2β2 + ϵ (28.1)

where
y, ϵ ∈ Rnsam

Xa ∈ Rnsam×ka , βa ∈ Rka for a = 1, 2
Define the matrices U1 and A1 by

U1 = X1(X
T
1 X1)

−1XT
1 (28.2)

and

A1 = 1− U1 . (28.3)

Note that

U1X1 = X1 , A1X1 = 0 (28.4)

(mnemonic: A1 Annihilates X1, and U1 acts like Unity on X1).
Applying A1 to Eq.(28.1) gives

A1y = A1X2β2 + A1ϵ (28.5)

so we can estimate β2 by
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β̂2 = (A1X2)
−1A1y . (28.6)

28.2 FWL, assuming xσ are random
Assume for simplicity that k1 = k2 = 1 in Eq.(28.1). Let β1, β2 ∈ R. When the xσ
are random and i.i.d., the X1, X2 are replaced by the random variables x1, x2 ∈ R,
and Eq.(28.1) becomes

y = β1x1 + β2x2 + ϵy (28.7)

Fig.28.1 shows two LDEN bnets in which Eq.(28.7) can arise.

ϵx2

��

ϵx1

��

ϵy

��

x1
β1

  

α

}}
x2 β2

// y

ϵx2

��

ϵx1

��

ϵy

��

x1
β1

  
x2 β2

//

λ
==

y

(a) (b)

Figure 28.1: LDEN bnets for discussing the FWL theorem. (a) and (b) only differ in
the direction of the arrow between x1 and x2.

The structural equations, printed in blue, for the 2 bnets of Fig.28.1, are as
follows:

For (a), 
x1 = ϵx1
x2 = αx1 + ϵx2
y = β1x1 + β2x2 + ϵy

(28.8)

For (b), 
x1 = λx2 + ϵx1
x2 = ϵx2
y = β1x1 + β2x2 + ϵy

(28.9)

What we are going to say next depends only on the boxed equation, so it applies
equally to cases (a) and (b).

Assume 〈
ϵy

〉
= 0 (28.10)
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Note that 〈
xj, ϵy

〉
= 0 (28.11)

because the path from xj to ϵy is blocked by a collider. Hence〈
x2, y

〉|x1 = β2 ⟨x2, x2⟩
|x1 (28.12)

β2 =

[ 〈
x2, y

〉
⟨x2, x2⟩

]|x1
=

[
∂

∂x2

]|x1
y (28.13)
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Chapter 29

Frontdoor Adjustment Formula

The frontdoor (FD) adjustment formula is proven in Chapter 21 from the rules of Do
Calculus. The goal of this chapter is to give examples of the use of that theorem. We
will restate the theorem in this chapter, sans proof. There is no need to understand
the theorem’s proof in order to use it. However, you will need to skim Chapter 21 in
order to familiarize yourself with the notation used to state the theorem. This chapter
also assumes that you are comfortable with the rules for checking for d-separation.
Those rules are covered in Chapter 23.

Suppose that we have access to data that allows us to estimate a probability
distribution P (x.,m., y.). Hence, the variables x.,m., y. are ALL observed (i.e, not
hidden). Then we say that the frontdoor m. satisfies the frontdoor adjustment
criterion relative to (x., y.) if

1. All directed paths from x. to y. are intercepted by (i.e., have a node in) m..

2. All backdoor paths from x. to m. are blocked.

3. All backdoor paths from on m. to y. are blocked by conditioning on x..

Claim 62 Frontdoor Adjustment Formula
If m. satisfies the frontdoor criterion relative to (x., y.), and P (x.,m.) > 0,

then

P (y.|Dx. = x.) =
∑
m.

[∑
x′.

P (y.|x′.,m.)P (x′.)

]
︸ ︷︷ ︸

P (y.|Dm.=m.)

P (m.|x.)︸ ︷︷ ︸
P (m.|Dx.=x.)

(29.1)

=
∑
x′.

!!
x. //

∑
m. // y.

(29.2)

where
∑
x′. and

∑
m. means nodes x′. and m. are summed over.
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proof: See Chapter 21.
QED

29.1 Examples
1.

c

�� ��
x //m // y

(29.3)

If x. = x,m. = m and y. = y, then the FD criterion is satisfied. Can’t sat-
isfy backdoor criterion because c unobserved so can’t condition on it to block
backdoor path x− c− y.

2.
z1

�� ��

z2

����
w1

��

c

~~   

w2

��
x //m // y

(29.4)

If x. = x,m. = m and y. = y, then the FD criterion is satisfied. Can’t satisfy
backdoor criterion because to block backdoor path x− c− y, need to condition
on c but if this is true, then long path x− w1 − z1 − c− z2 − w2 − y becomes
unblocked.
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Chapter 30

G-formula (Sequential Backdoor
Adjustment Formula)

Figure 30.1: Piscina Mirabilis, ancient Roman cistern in Naples

This chapter is based on Ref.[62] by Pearl and Robins.
A g-formula1 is any formula that defines recursively the full probability dis-

tribution of a bnet. In other words, it’s a recursive definition of a Dynamical Bayesian
Network.2

The goal of this chapter is to generalize the backdoor adjustment formula (see
Chapter 4) from a query P (y|Dx = x) with a single do node to a query P (y|Dxn = xn)

1It’s not clear from the literature what the “g" stands for. I assume it stands for “generating".
2Dynamical Bayesian Networks are discussed in Chapter 25.
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with multiple do nodes. The resulting generalized adjustment formula is called a
sequential backdoor (SBD) adjustment formula and it is associated with an
SBD g-formula.

For n = 1, 2, 3 . . ., define

Q(y|xn) =
∑
zn

P (y|xn, zn)
n−1∏
t=0

P (zt|x<t, z<t) (30.1)∑
zn

=

zn

��
y

xn

OO

∏n−1
t=0

z<t // zt

x<t

EE (30.2)

For n = 1,

Q(y|x0)

∑
z0

=

z0

��
y

x0

OO

P (z0)

=

∑
z0

!!
y

x0

<<

. (30.3)

For n = 2,

Q(y|x2)

∑
z2

=

(z0, z1)

��
y

(x0, x1)

OO

P (z0) z0 // z1

x0

EE (30.4)

=

∑
z0 //

))

∑
z1

!!
y

x0

DD

55

x1

<<

. (30.5)

For n = 3,
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Q(y|x3)

∑
z3

=

(z0, z1, z2)

��
y

(x0, x1, x2)

OO

P (z0) z0 // z1

x0

EE (z0, z1) // z2

(x0, x1)

CC (30.6)

∑
z3

=

(z0, z1, z2)

��
y

(x0, x1, x2)

OO

P (z0) z0 // ((
z1 // z2

x0

EE <<

x1

EE

x2

(30.7)

=

∑
z0 //

**

++

∑
z1 //

))

∑
z2

!!
y

x0

DD ::

33

x1

DD

55

x2

<<

(30.8)

Suppose that we have access to data that allows us to estimate a probabil-
ity distribution P (xn, y, zn). Hence, the variables xn, y, zn are ALL observed (i.e,
not hidden). Then we say that the the multinode of “covariates" zn satisfies the
sequential backdoor (SBD) adjustment criterion relative to (xn, y) if for all
t ∈ {0, 1, . . . , n− 1},

1. y ⊥ xt| (x0, x1, . . . , xt−1, z0, z1, . . . , zt)︸ ︷︷ ︸
Past of xt

in LxtDxt+1,xt+2,...,xn−1
G.

2. zt ∩ de(xt) = ∅.

Claim 63 (SBD Adjustment Formula)
If zn satisfies the sequential backdoor criterion relative to (xn, y), then

P (y|Dxn = xn) = Q(y|xn) , (30.9)

where Q(y|xn) is defined by Eq.(30.2).
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proof: If zn satisfies the SBD criterion relative to (xn, y), then xn, y, zn might have
the following structure for n = 3.

z0 // ((

**

��

z1 //

''

��

z2

��

��

y

x0

GG >>

44

// 66x1

GG

77

// x2

??

(30.10)

One can check using the following 3 auxiliary bnets that bnet Eq.(30.10) sat-
isfies the SBD criterion. Note that conditioned nodes are shaded yellow.

z0 //
''

((

��

z1 //

$$

z2

��
y

x0 x1

HH

99

x2

CC

z0 //
''

((

��

z1 //

$$

��

z2

��
y

x0

HH BB

66

// x1 x2

DD

z0 //
((

((

��

z1 //

$$

��

z2

��

��

y

x0

HH BB

66

// 77x1

HH

::

// x2

Lx0Dx1,x2G Lx1Dx2G Lx2G

(30.11)

See Claim 57 for a proof of this claim for the special case Eq.(30.10).
QED
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Chapter 31

Gaussian Nodes with Linear
Dependence on Parents

Bnet nodes that have a Gaussian TPM with a linear dependence on their parent nodes
(GLP) are a very popular way of modeling continuous nodes of bnets. A convenient
aspect of them is that their parents can be discrete or continuous nodes, and their
children can be discrete or continuous nodes too. Also, they can be learned easily from
the data because their parameters can be expressed in terms of two node covariances.
For these reasons, they are commonly used when doing structure learning of bnets
with continuous nodes (see Chapter 89).

y x1oo

x2

__

x3

WW

Figure 31.1: GLP node y with 3 parent nodes x3 = (x1, x2, x3).

Recall our notation for a Gaussian distribution:

N (x;µ, σ2) =
1

σ
√
2π
e

−(x−µ)2

2σ2 , (31.1)

where x, µ ∈ R and σ > 0.
A GLP node y with n parents xn = (x1, x2, . . . , xn) has the following TPM:

P (y|xn) = N (y; β0 + βnTxn, σ2) (31.2)

where y, β0,∈ R and σ2 > 0, and where xn, βn ∈ Rn are **column vectors**. The
T in βnT stands for transpose. Any xi can have a discrete set of states as long as
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they are real valued and ordinal (ordered by size). Fig.31.1 shows a diagrammatic
representation of a GLP node with 3 parents.

Note that as σ → 0, a GLP node becomes deterministic. In fact, it becomes a
neural net node with a linear activation function.

An equivalent way of defining a GLP node y is in terms of a random variable
equation expressing y as a hyperplane function of the parents xn plus a Gaussian
noise variable. Define a curve-fit ŷ of a “true value" y by

ŷ = β0 + βnTxn (31.3a)

and

y = ŷ + ϵ (31.3b)

where the residual ϵ satisfies

P (ϵ) = N (ϵ; 0, σ2) (31.3c)

and

⟨xn, ϵ⟩ = 0 . (31.3d)

The notation
〈
x, y
〉

for the covariance of random variables x and y is explained
in Chapter C.

Claim 64 The parameters of a GLP node can be expressed in terms of 2-node co-
variances. Specifically,

βn =
〈
xn, xnT

〉−1 〈
y, xn

〉
(31.4)

β0 =
〈
y
〉
− βnT ⟨xn⟩ (31.5)

σ2 =
〈
y, y
〉
− βnT

〈
xn, y

〉
(31.6)

proof:
Note that

〈
xn, xnT

〉T
=
〈
xn, xnT

〉
and

〈
y, xnT

〉T
=
〈
y, xn

〉
.〈

y, xnT
〉
= βnT

〈
xn, xnT

〉
(31.7)

〈
y, xn

〉
=
〈
xn, xnT

〉
βn (31.8)

βn =
〈
xn, xnT

〉−1 〈
y, xn

〉
(31.9)
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〈
y
〉
= β0 + βnT ⟨xn⟩ (31.10)

〈
y, y
〉

=
〈
β0 + βnTxn + ϵ, y

〉
(31.11)

= βnT
〈
xn, y

〉
+ σ2 (31.12)

QED
Let D=Discrete, GLP=Gaussian with Linear dependence in Parents
The following arrows are possible in a bnet.

• GLP ← GLP

• GLP ← D

Pass to GLP a separate set of regression coefficients β0, βn and variance σ2 for
each state of D. If D is called d, let

P (y|(xn)d, d) = N (y; (β0)d + (βnT )d(x
n)d, σ

2
d) (31.13)

for each d ∈ Sd.

• D ← GLP

If D expects a continuous parent, no need to preprocess GLP output. If D
expects a discrete parent, break the interval [a, b] that contains most of the
range of the GLP node into sub-intervals and assign a discrete label to each
subinterval.

• D ← D
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Chapter 32

Generalized Linear Model (GLM)

This chapter is based on chapter 4 of Ref.[1].

32.1 Exponential Family of Distributions
The Exponential Family (EF) of probability distributions is defined by

P (y|θ, ϕ) = exp

(
θy − b(θ)
a(ϕ)

+ c(y, ϕ)

)
(32.1)

In this chapter, we will denote averages over y|θ, ϕ by angular brackets

Ey|θ,ϕ[f(y)] =
∑
y

P (y|θ, ϕ)f(y) = ⟨f(y)⟩ (32.2)

As usual in this book, let Sx denote the set of values that the random variable x can
take. We will assume that Sy for EF can be either a discrete or a continuous subset
of R,1 but Sθ must be continuous. When Sy is a discrete subset of R, P (y|θ, ϕ) will
denote a probability distribution, whereas when Sy is continuous, it will denote a
probability density.

Claim 65
µ =

〈
y
〉
= b′(θ) (32.3)

σ2 =
〈
y, y
〉
= a(ϕ)b′′(θ) (32.4)

proof:
1By a “continuous set" we mean a finite set of intervals each of which has non-zero length.
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0 = ∂θ

∫ ∞

−∞
dy P (y|θ, ϕ) (32.5)

=

∫ ∞

−∞
dy

1

a
[y − b′(θ)]P (y|θ, ϕ) (32.6)

=
1

a
[
〈
y
〉
− b′(θ)] (32.7)

0 = ∂2θ

∫ ∞

−∞
dy P (y|θ, ϕ) (32.8)

=

∫ ∞

−∞
dy

{
−b′′(θ)
a

+
1

a2
[y − b′(θ)]2

}
P (y|θ, ϕ) (32.9)

Hence, 〈
[y − b′(θ)]2

〉
= ab′′(θ) (32.10)

QED
Note that the Normal Distribution belongs to the EF. Indeed,

N (y;µ, σ2) =
1√
2πσ2

exp

(
− (y − µ)2

2σ2

)
(32.11)

= exp

(
−y2 + 2µy − µ2

2σ2
− ln
√
2πσ2

)
(32.12)

= exp

(− 1
2
y2 + µy − 1

2
µ2

σ2
− ln
√
2πσ2

)
(32.13)

So, for the Normal Distribution, θ = µ , a = σ2, b = µ2/2, b′ = µ, b′′ = 1.
EF can be defined for an ensemble {yσ : σ ∈ Σ} of independent (but not

necessarily identically distributed) random variables yσ describing individuals σ of a
population Σ.

P (y⃗|θ⃗, ϕ) =
∏
σ

exp

(
θσyσ − b(θσ)

a(ϕ)
+ c(yσ, ϕ)

)
(32.14)

µσ =
〈
y
σ

〉
= ∂θσb(θσ) (32.15)〈

y
σ
, y

σ′

〉
= δ(σ, σ′)a(ϕ)∂2θσb(θσ) (32.16)
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32.2 GLM
The Generalized Linear Model (GLM) is a statistical model for an ensemble of in-
dependent (but not necessarily identically distributed) random variables y

σ
. GML

consists of 3 parts:

1. Exponential Family

Model y
σ

by probability distribution of exponential family (EF).

2. Linear predictor

In EF, replace θσ by the linear predictor XT
σ β =

∑
iXσ,iβi. XT

σ β is commonly
denoted by ησ, but I will avoid that notation because I think the results are
much clearer when expressed in the more explicit notation XT

σ β instead of ησ.

3. Link Function

µσ =
〈
y
σ

〉
= ∂XT

σ β
b (32.17)

XT
σ β = g(µσ) = θ̂(µσ) (32.18)

µσ = g−1(XT
σ β) = µ̂(XT

σ β) (32.19)

θ̂() = g() is called the link function.

Note that in Linear Regression (LR), we consider independent (but not nec-
essarily identically distributed) random variables y

σ
∈ R that satisfy

y
σ
= XT

σ β + ϵσ (32.20)

where

⟨ϵσ⟩ = 0, ⟨ϵσ, ϵσ⟩ = δ(σ, σ′)σ2
σ (32.21)

Equivalently, one states that

y
σ
∼ N (µσ = XT

σ β, σ
2
σ) (32.22)

Hence, for LR, the link function and its inverse are the identity map.
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For the Bernoulli distribution with yσ ∈ {0, 1},

Ber(yσ; pσ) = pyσσ (1− pσ)1−yσ (32.23)
= exp(yσ ln pσ + (1− yσ) ln(1− pσ)) (32.24)

= exp

yσ ln
(

pσ
1− pσ

)
︸ ︷︷ ︸

XT
σ β

+ ln(1− pσ)︸ ︷︷ ︸
−b

 (32.25)

µσ = pσ, and XT
σ β = lodds(µσ) so µσ = smoid(XT

σ β).
g() = lodds() and g−1() = smoid()

a = 1 (32.26)

b = − ln(1− µσ) (32.27)

= − ln

(
1− 1

1 + e−XT
σ β

)
(32.28)

= − ln

(
e−X

T
σ β

1 + e−XT
σ β

)
(32.29)

= ln(1 + eX
T
σ β) (32.30)

∂XT
σ β
b =

eX
T
σ β

1 + eXT
σ β

(32.31)

= smoid(XT
σ β) (32.32)

= µσ (32.33)

Table 32.1 gives various probability distributions and their natural link func-
tions, for cases where the link function is simple and easy to invert.

GLM is a generalization of LR. Recall some of the main results of LR:

y = Xβ + ϵ (32.34)

⟨ϵ⟩ = 0,
〈
ϵ, ϵT

〉
= σ2IN (32.35)

where IN is the N = |Σ| dimensional unit matrix.
The Maximum Likelihood Estimate (MLE) for β is

β̂ = (XTX)−1XTy . (32.36)
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prob. distribution link function XT
σ β = g(µσ) µσ = g−1(XT

σ β)
Normal
y
σ
∈ (−∞,+∞)

XT
σ β = µσ

(g= identity map) µσ = XT
σ β

Exponential
y
σ
∈ (0,+∞)

XT
σ β = − 1

µσ
µσ = − 1

XT
σ β

Poisson
y
σ
∈ {0, 1, 2, . . .} XT

σ β = lnµσ µσ = exp(XT
σ β)

Bernoulli
y
σ
∈ {0, 1} XT

σ β = lodds(µσ) µσ = smoid(XT
σ β)

Table 32.1: Various probability distributions and their natural link functions.

The covariance of β̂ is

〈
β̂, β̂T

〉
=

〈
XTX)−1XTy, yTX(XTX)−1

〉
(32.37)

= σ2(XTX)−1 (32.38)

Next we will try to find analogous results for GLM. We will give (1) a numerical
method for calculating an estimate β̂ and (2) an asymptotic expression for

〈
β̂, β̂T

〉
.

Let

LL =
∑
σ

LLσ (32.39)

where

LLσ = LLyσ |θσ (32.40)

=
yσθσ − b(θσ)

a(ϕ)
+ c(yσ, ϕ) (32.41)

The Newton-Raphson method for calculating an estimate β̂ is as follows. Let
uT = [∂⟨LL⟩

∂βj
]j=0,1,2,...

H = [Hj,j′ ], Hj,j′ =
∂2⟨LL⟩
∂βj∂βj′

. H is called the Hessian matrix
For t = 0, 1, 2, . . ., consider the Taylor expansion to second order of ⟨LL⟩ (β)

about the point β = β(t)

⟨LL⟩ (β) ≈ ⟨LL⟩ (β(t)) + u(t)T (β − β(t)) +
1

2
(β − β(t))TH(t)(β − β(t)) (32.42)

By Section C.32, we have,
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0 =
∂ ⟨LL⟩ (β)

∂βT
= u(t) +H(t)(β − β(t)) (32.43)

This last equation suggests the recursion

β(t+1) = β(t) − (H(t))−1u(t) . (32.44)

Fig.32.1 gives a graphical representation of one cycle of this recursion.

Figure 32.1: One cycle of Newton-Raphson method for calculating an estimate β̂ for
the GLM.

Claim 66
∂LLσ
∂βj

=
[yσ − b′(XT

σ β)]

⟨yσ, yσ⟩
∂µ̂σ
∂XT

σ β
Xσ,j (32.45)

proof:

∂LLσ
∂βj

=
∂LLσ
∂θσ

∂θσ
∂µσ

∂µ̂σ
∂XT

σ β

∂XT
σ β

∂βj
(32.46)

∂LLσ
∂θσ

=
yσ − b′(θσ)

a(ϕ)
(32.47)

∂µσ
∂θσ

= b′′(θσ) =
⟨yσ, yσ⟩
a(ϕ)

(32.48)

∂µ̂σ
∂XT

σ β
= (g−1)′(XT

σ β) (32.49)

∂XT
σ β

∂βj
= Xσ,j (32.50)
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∂LLσ
∂βj

=
[yσ − b′(θσ)]
⟨yσ, yσ⟩

∂µ̂σ
∂XT

σ β
Xσ,j (32.51)

QED

Claim 67 (Asymptotic expression for
〈
β̂, β̂T

〉
for GLM)〈

β̂, β̂T
〉
→ I−1 (asymptotic covariance) (32.52)

(Hence, more information I yields a smaller variance.) where

I = XTWX (32.53)

and

Wσ,σ′ =

[(
∂µ̂

∂XT
σ β

)2
δ(σ, σ′)

⟨yσ, yσ⟩

]
β=β̂

(32.54)

I is called the information matrix.

proof:

〈
∂LLσ
∂βj

∂LLσ
∂βj′

〉
=

〈
[yσ − b′(XT

σ β)]

⟨yσ, yσ⟩
∂µ̂σ
∂XT

σ β
Xσ,j

[yσ − b′(XT
σ β)]

⟨yσ, yσ⟩
∂µ̂σ
∂XT

σ β
Xσ,j′

〉
(32.55)

=

[
∂µ̂σ
∂XT

σ β

]2
Xσ,jXσ,j′

⟨yσ, yσ⟩
(32.56)

∑
σ

〈
∂LLσ
∂βj

∂LLσ
∂βj′

〉
= (XTWX)j,j′ (32.57)

By Section C.32, we have 〈
∂2LLσ
∂βj∂βj′

〉
= −

〈
∂LLσ
∂βj

∂LLσ
∂βj′

〉
(32.58)

Summing both sides of the last equation over σ, we find〈
∂2LL

∂βj∂βj′

〉
= −(XTWX)j,j′ (32.59)

According to Section C.32, we have〈
β̂, β̂T

〉
→ (XTWX)−1 (32.60)

QED
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Chapter 33

Generative Adversarial Networks
(GANs)

Figure 33.1: Generative Adversarial Network (GAN)

Original GAN, Ref.[20](2014).
Generator G (counterfeiter) generates samples f⃗ of fake money and submits

them to Discriminator D (Treasury agent). D also gets samples r⃗ of real money.
D submits verdict V ∈ [0, 1]. G depends on parameter θG and D on parameter θD.
Verdict V and initial θG, θD are used to get new parameters θ′G, θ′D.Process is repeated
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Figure 33.2: Discriminator node V in Fig.33.1 can be split into 3 nodes c⃗, d⃗ and V .

(Dynamical Bayesian Network) until saddle point in V (θG, θD) is reached. D makes
G better and vice versa. Zero-sum game between D and G.

Let D be the domain of D(·, θD). Assume that for any x ∈ D,

0 ≤ D(x, θD) ≤ 1 . (33.1)

For any S ⊂ D, define ∑
x∈S

D(x, θD) = λ(S, θD) . (33.2)

In general, G(·, θG) need not be real valued.
Assume that for every u ∈ Su, G(u, θG) = f ∈ Sf ⊂ D. Define

D(f, θD) = 1−D(f, θD) . (33.3)

Note that

0 ≤ D(f, θD) ≤ 1 . (33.4)

Define:

V (θG, θD) =
∑
r

P (r) lnD(r, θD) +
∑
u

P (u) lnD(G(u, θG), θD) . (33.5)

We want the first variation of V (θG, θD) to vanish.
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δV (θG, θD) = 0 . (33.6)

This implies

∂θGV (θG, θD) = ∂θDV (θG, θD) = 0 (33.7)

and

Vopt = min
θG

max
θD

V (θG, θD) . (33.8)

The TPMs, printed in blue, for bnets Figs.33.1 and 33.2, are as follows:

P (θG) = given (33.9)

P (θD) = given (33.10)

P (u⃗) =
∏
i

P (u[i]) (usually uniform distribution) (33.11)

P (r⃗) =
∏
i

P (r[i]) (33.12)

P (f [i] | u⃗, θG) = δ[f [i], G(u[i], θG)] (33.13)

P (c[i] | f⃗ , θD) = δ(c[i], D(f [i], θD)) (33.14)

P (d[j] | r⃗, θD) = δ(d[j], D(r[j], θD)) (33.15)

P (V |d⃗, c⃗) = δ(V,
1

N
ln
∏
i,j

(c[i]d[j])) (33.16)

where N = nsam(r⃗)nsam(u⃗).
Let ηG, ηD > 0. Maximize V wrt θD, and minimize it wrt θG.

P (θ′G|V, θG) = δ(θ′G, θG − ηG∂θGV ) (33.17)
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P (θ′D|V, θD) = δ(θ′D, θD + ηD∂θDV ) (33.18)

Figure 33.3: GAN, Constraining Bayesian Network

Constraining Bnet given in Fig.33.3. It adds 2 new nodes, namely U⃗ and R⃗, to
the bnet of Fig.33.1. The purpose of these 2 barren (childrenless) nodes is to constrain
certain functions to be probability distributions.

The TPMs, printed in blue, for the 2 new nodes, are as follows.

P (U [i] | θG) =
D(G(U [i], θG), θD))

λ(θG, θD)
(33.19)

where SU [i] = Su and λ(θG, θD) =
∑

uD(G(u, θG), θD)).

P (R[i] | θG, θD) =
D(R[i], θD)

λ(θD)
(33.20)

where SR[i] = Sr and λ(θD) =
∑

rD(r, θD).

P (V |u⃗, r⃗) = δ(V,
1

N
ln
∏
i,j

(P (R[i] = r[i] | θG, θD)P (U [i] = u[j] | θG))) (33.21)

where N = nsam(r⃗)nsam(u⃗).
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L = likelihood

L = P (r⃗, u⃗|θG, θD) (33.22)

=
∏
i,j

[
D(r[i], θD)

λ(θD)

D(G(u[j], θG), θD))

λ(θG, θD)

]
(33.23)

lnL = N [V (θG, θD)− lnλ(θD)− lnλ(θG, θD)] (33.24)
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Chapter 34

Goodness of Causal Fit

See my paper and software Ref.[82].
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Chapter 35

Gradient Descent

Gradient Descent (GD) is when we have a sequence of points wk ∈ Rn and a convex
loss function L : Rn → R such that

wk+1 = wk − α∇wL(wk)
−α∇wL(wk)

��
wk+1

//

wk

77 (35.1)

for some “learning rate" α > 0. Since the function L(w) is convex, it has a minimum
w∗ and wk → w∗ as k →∞.

In Machine Learning (ML), it is usually the case that

L(w) =
nsam∑
σ=1

L̂(ŷσ(xσ, w), yσ) (35.2)

where the sum is over nsam samples. Normally, nsam would be all the samples in a
dataset. In ML, nsam is often very large, and ∇wL̂ cannot be calculated analytically
so it must be calculated numerically1, individually for each of the nsam samples. In
such cases, a Monte Carlo method called Stochastic Gradient Descent (SGD) is
often used. SGD just means choosing at random a small subset of the nsam samples
(“mini-batch"), and approximating ∇wL(w) by an average of the gradients for the
mini-batch.

This description of GD is fairly complete, so why this chapter? In this chapter,
we will give a dynamical bnet (see Chapter 25) illustrating how GD is used in ML.

Samples (xσ, yσ) ∈ Sx × Sy are given. nsam(x⃗) = nsam(y⃗).
Estimator function ŷ(x;w) for x ∈ Sx and w ∈ R is given.
Let

Px,y(x, y) =
1

nsam(x⃗)

∑
σ

1(x = xσ, y = yσ) . (35.3)

1Gradients can be calculated numerically by the method of back-propagation, which is explained
in Chapter 5.
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x⃗

��

// y⃗

��
w // 55⃗̂y // L // w′

Figure 35.1: Basic gradient descent bnet.

Let
L(x⃗, y⃗, w) = 1

nsam(y⃗)

∑
σ

|yσ − ŷ(xσ;w)|2 (35.4)

L is called the mean square error.
Best fit is parameters w∗ such that

w∗ = argmin
w
L(x⃗, y⃗, w) . (35.5)

The TPMs, printed in blue, for the basic curve fitting bnet Fig.35.1, are as
follows.

P (w) = given . (35.6)

The first time it is used, w is arbitrary. After the first time, it is determined by
previous stage.

P (x⃗) =
∏
σ

Px(x
σ) (35.7)

P (y⃗|x⃗) =
∏
σ

Py|x(y
σ | xσ) (35.8)

P (ŷσ|w, x⃗) = δ(ŷσ, ŷ(xσ;w)) (35.9)

P (L|⃗ŷ, y⃗) = δ(L, 1

nsam(x⃗)

∑
σ

|yσ − ŷσ|2) . (35.10)

P (w′|w,L) = δ(w′, w − α∂wL) (35.11)

α > 0 is called the descent rate or learning rate. If ∆w = w′ −w = −α ∂L
∂w

, then
∆L = −1

α
(∆w)2 < 0 so this will minimize the error L. This is an example of GD.
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Chapter 36

Granger Causality

This chapter is based on the Wikipedia article Ref.[130] and Scholarpedia article
Ref.[69] on Granger causality and on the book Ref.[23] on time series analysis by
Hamilton.

This chapter assumes the reader has read Chapter 96 on the stationary time
series ARMA(p, q) and V AR(p).

Figure 36.1: When t-series X Granger-causes t-series Y , the patterns in X are approx-
imately repeated in Y after some time lag (two examples are indicated with arrows).
Thus, past values of X can be used for the prediction of future values of Y . (image
and caption from Ref.[130])

Let x⃗t = [xAt ]∀A ∈ Rnr1×1 and y⃗
t
= [yB

t
]∀B ∈ Rnr2×1. Thus, x⃗t for each t is a

column vector with nr1 rows, and y⃗
t
for each t is a column vector with nr2 rows. Let

nr1+nr2 = nr, the total number of rows. Consider a vector t-series {x⃗t, y⃗t}∀t of type
V AR(p), as defined by Eq.(96.183). To simplify the notation of Eq.(96.183), we are
replacing x1 by x, x2 by y, n1 by n, and n2 by w.
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 xAt

yB
t

 =

p∑
j=1

 α
x|x;A,A′

j α
x|y;A,B′

j

α
y|x;B,A′

j α
y|y;B,B′

j

 xA
′

t−j

yB
′

t−j

+

 nAt

wBt

 (36.1)

Hence,

E|x⃗<t,y⃗<t

[
yB
t

]
=

p∑
j=1

α
y|x;B,A′

j xA
′

t−j +

p∑
j=1

α
y|y;B,B′

j yB
′

t−j (36.2)

Let X = {x⃗t}∀t and Y = {y⃗
t
}∀t.

We say X does not G-cause (or does not G-forecast) Y , and symbolize
this by X ∥

G
// Y , if

α
y|x;B,A′

j = 0 ∀(j, B,A′) (36.3)

or, equivalently,
E|x⃗<t,y⃗<t

[
yB
t

]
= E|y⃗<t

[
yB
t

]
∀(B, t) (36.4)

We say X G-causes (or G-forecasts) Y and symbolize this by X
G
// Y ,

if X ∥
G
// Y is false.

· · · n⃗t−3 n⃗t−2 n⃗t−1 n⃗t

1

��

n⃗t+1 · · ·

· · · x⃗t−3 x⃗t−2

α
x|x
2

$$

α
y|x
2

##

x⃗t−1

α
x|x
1 //

α
y|x
1

��

x⃗t x⃗t+1 · · ·

· · · y⃗
t−3

y⃗
t−2

α
y|y
2

::

α
x|y
2

;;

y⃗
t−1

α
y|y
1

//
α
x|y
1

EE

y⃗
t

y⃗
t+1
· · ·

· · · w⃗t−3 w⃗t−2 w⃗t−1 w⃗t

1

OO

w⃗t+1 · · ·

Figure 36.2: Bnet for V AR(2). For clarity, we only show the arrows entering nodes
x⃗t and y⃗

t
. Remove red arrows if X does not G-cause Y , and keep them if it does.

Eq.(36) describing a bipartite V AR(p) t-series can be represented by the bnet
Fig.36.2. The TPMs, printed in blue, for the two nodes x⃗t and y⃗t, are as follows:
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P (x⃗t|⃗x[t−p,t−1], y⃗[t−p,t−1]
, n⃗t) =

∏
A

1

(
xAt =

p∑
j=1

α
x|x;A,A′

j xA
′

t−j +

p∑
j=1

α
x|y;A,B′

j yB
′

t−j + nAt

)
(36.5)

P (⃗y
t
|⃗x[t−p,t−1], y⃗[t−p,t−1]

, w⃗t) =
∏
B

1

yB
t
=

p∑
j=1

α
y|x;B,A′

j︸ ︷︷ ︸
0?

xA
′

t−j +

p∑
j=1

α
y|y;B,B′

j yB
′

t−j + wBt


(36.6)

Testing for GC

• Consider the datasets

Dx = {(t, x⃗[t−p,t−1], y⃗[t−p,t−1], x⃗t ) : t} (36.7)

Dy = {(t, x⃗[t−p,t−1], y⃗[t−p,t−1], y⃗t ) : t} (36.8)

One can do Linear Regression on Dx with x-variables (x⃗[t−p,t−1], y⃗[t−p,t−1]), y-
variable x⃗t, and regression coefficients αx|x[1,p], α

x|y
[1,p]. One can also do Linear

Regression on Dy with x-variables (x⃗[t−p,t−1], y⃗[t−p,t−1]), y-variable y⃗t, and re-

gression coefficients αy|x[1,p], α
y|y
[1,p]. The LR software yields confidence intervals for

the regression coefficients.

• One can do hypothesis testing using the Likelihood Ratio Test1

Null hypothesis H0 : X ∥
G
// Y , Alternative hypothesis H1 : X G

// Y

• Test for both X
G
// Y and Y

G
// X .

Limitations
It has been remarked that G-causality is not true causality because, even

though an event A must precede an event B in order to cause it, that does not
necessarily mean that A causes B. I think the problem with G-causality is that it
uses a bnet that is a good fit for the dataset, but not necessarily also a good causal
fit for the experiment. One can measure the goodness of causal fit of a bnet by doing
do-intervention experiments (See Chapter 34).

1The Likelihood Ratio Test is discussed in Section C.24.
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Chapter 37

Hidden Markov Model

A dynamical Bayesian network (DBN) (see Chapter 25) is a generalization of a Hidden
Markov Model (HMM), which in turn is a generalization of a Kalman Filter (KF)
(see Chapter 44).

See Wikipedia article Ref.[131] to learn about the history and many uses of
HMMs. This chapter is based on Refs.[48], [131], [178], [100].

In this chapter, we use the following conventions.
Random variables are underlined and their values are not. For example, a =

a means the random variable a takes the value a. A diagram with all its nodes
underlined represents a Bayesian Network (bnet), whereas the same diagram with the
letters not underlined represents a specific instantiation of that bnet. For example
a → b → c represents the bnet with full probability distribution P (c|b)P (b|a)P (a),
whereas a → b → c represents P (c|b)P (b|a). Note that, for convenience, we define
a→ b→ c to exclude the priors of root nodes such as P (a).

If a is a root node, then
∑
a signifies a weighted sum

∑
a P (a). For example,∑

a→ b→ c =
∑
a

P (c|b)P (b|a)P (a) (37.1)

If a is not a root node, then
∑
a signifies a simple unweighted sum

∑
a. For example,

x→
∑

a→ y =
∑
a

P (y|a)P (a|x) (37.2)

Two bnets are equated if their full probability distributions (i.e., their full
instantiations) are equal numerically. For example,

a→ b→ c = P (c|b)P (b|a)P (a) = a← b← c (37.3)

Unobserved (a.k.a. hidden, latent) nodes are indicated in a bnet by enclosing
their label in a dashed circle. For example, u . Alternatively, they are indicated by
using dashed arrows for all arrows emanating from the unobserved node.

Suppose
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x0

��

// x1

��

// x2

��

// x3

��
v0 v1 v2 v3

Figure 37.1: HMM bnet with n = 4.

vn = (v0, v1, . . . , vn−1) are n visible nodes that are measured, and
xn = (x0, x1, . . . , xn−1) are the n hidden, unmeasurable state nodes of a system

that is being monitored.
For the bnet of Fig.37.1, one has

P (xn, vn) =
n−1∏
t=0

P (xt|xt−1)P (vt|xt) , (37.4)

where x−1 = ∅.
We assume that this bnet is stationary. The following notation emphasizes

that fact:
π(x) = prior probability

π(x) = P (x0 = x) (37.5)

A(x|x′) = transition matrix

A(x|x′) = P (xt = x|xt−1 = x′) (37.6)

B(v|x) = emission probability

B(v|x) = P (vt = v|xt = x) (37.7)

Let x<t = (x0, x1, . . . , xt−1).
For t = 0, 1, . . . , n− 1, define
Ft(xt)=future measurements probability

Ft(xt) = P (v>i|xt) (37.8)

= xt //
∑
x>t

��
v>t

(37.9)

F t(xt)= past and present measurements probability
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F t(xt) = P (v<t, vt, xt) (37.10)

=
∑
x<t //

��

xt

��
v<t vt

(37.11)

λt(xt)= present measurement probability, (a.k.a. emission probability B(vt|xt)
). λt(xt) is the likelihood of xt.

λt(xt) = P (vt|xt) (37.12)
= xt

��
vt

(37.13)

37.1 Calculating P (xt, v
n) and P (xt, xt+1, v

n)

Claim 68 For t ≥ 0,

P (xt, v
n) = F t(xt)Ft(xt) (37.14)

=
∑
x<t //

��

xt

��
v<t vt

xt //
∑
x>t

��
v>t

. (37.15)

For t > 0,

P (xt−1, xt, v
n) = F t−1(xt−1)P (xt|xt−1)λt(xt)Ft(xt) (37.16)

=
∑
x<t−1

//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt

xt //
∑
x>t

��
v>t

.(37.17)

proof:
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P (xt, v
n) =

∑
x<i

∑
x>i

P (xn, vn) (37.18)

=
∑
x<i

∑
x>i

P (xn, vn|xt)P (xt) (37.19)

=
∑
x<i

∑
x>i

P (x<i, v<i, vt|xt)P (x>t, v>i|xt)P (xt) (37.20)

= P (v<i, vt|xt)P (v>i|xt)P (xt) (37.21)
= F t(xt)Ft(xt) (37.22)

P (xt−1, xt, v
n) =

∑
x<t−1

∑
x>t

P (xn, vn) (37.23)

=
∑
x<t−1

∑
x>t

P (xn, vn|xt−1, xt)P (xt−1, xt) (37.24)

=
∑
x<t−1

∑
x>t

P (x<t−1, v<t−1, vt−1|xt−1)P (vt|xt)P (xt−1, xt)P (x>i, v>i|xt)

(37.25)
= P (v<t−1, vt−1|xt−1)P (vt|xt)P (xt−1, xt)P (v>i|xt) (37.26)

= F t−1(xt−1)λt(xt)P (xt|xt−1)Ft(xt) (37.27)

QED

37.2 Calculating Ft and F t

Claim 69 For t > 0, Ft and F t can be calculated recursively as follows:

F t(xt) =
∑
xt−1

F t−1(xt−1)P (xt|xt−1)λt(xt) (37.28)

=
∑
xt−1

∑
x<t−1

//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt

(37.29)

and
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Ft−1(xt−1) =
∑
xt

P (xt|xt−1)λt(xt)Ft(xt) (37.30)

=
∑
xt

xt−1
// xt xt

��
vt

xt //
∑
x>t

��
v>t

(37.31)

proof:

F t(xt)Ft(xt) = P (xt, v
n) (37.32)

=
∑
xt−1

P (xt−1, xt, v
n) (37.33)

=
∑
xt−1

F t−1(xt−1)λt(xt)P (xt|xt−1)Ft(xt) (37.34)

F t−1(xt−1)Ft−1(xt−1) = P (xt−1, v
n) (37.35)

=
∑
xt

P (xt−1, xt, v
n) (37.36)

=
∑
xt

F t−1(xt−1)λt(xt)P (xt|xt−1)Ft(xt) (37.37)

QED

37.3 Calculating P (xn|vn)
Claim 70

P (xt|xt−1, v
n) =

P (xt|xt−1)λt(xt)Ft(xt)
Ft−1(xt−1)

(37.38)

=

xt−1
// xt xt

��
vt

xt //
∑
x>t

��
v>t

xt−1
//
∑
xt

��

//
∑
x>t

��
vt v>t

(37.39)

Note that actually, P (xt|xt−1, v
n) = P (xt|xt−1, v≥t) by d-separation, but we won’t use

this fact.
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P (xt−1|xt, vn) =
F t−1(xt−1)P (xt|xt−1)λt(xt)

F t(xt)
(37.40)

=

∑
x<t−1

//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt∑

x<t−1
//

��

∑
xt−1

//

��

xt

��
v<t−1 vt−1 vt

(37.41)

Note that actually P (xt−1|xt, vn) = P (xt−1|xt, v≤t−1) by d-separation, but we won’t
use this fact.

proof:

P (xt|xt−1, v
n) =

P (xt−1, xt, v
n)

P (xt−1, vn)
(37.42)

=
F t−1(xt−1)λt(xt)P (xt|xt−1)Ft(xt)

F t−1(xt−1)Ft−1(xt−1)
(37.43)

Analogous proof for Eq.(37.41).
QED

P (xn|vn) =
∏

t=1,...,n−1,n

P (xt|xt−1, v
n) (forward propagation) (37.44)

=
∏

t=n+1,n,...3,2

P (xt−1|xt, vn) (backward propagation) (37.45)

37.4 Calculating P (vn|A,B, π)
P (vn|A,B, π) can be calculated

• from Fn−1(xn−1) (past of xn−1)

P (vn|A,B, π) =
∑
xn−1

P (v<n−1, vn−1, xn−1)︸ ︷︷ ︸
Fn−1(xn−1)

(37.46)

=
∑
x<n−1

//

��

∑
xn−1

��
v<n−1 vn−1

(37.47)
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• from F0(x0) (future of x0)

P (vn|A,B, π) =
∑
x0

P (x0)P (v0|x0)P (v>0|x0)︸ ︷︷ ︸
F0(x0)

(37.48)

=
∑
x0 //

��

∑
x>0

��
v0 v>0

(37.49)

• from F t(xt) and Ft(xt) for some t (past and future of xt)

P (vn|A,B, π) =
∑
xt

P (v<t, vt, xt)︸ ︷︷ ︸
Ft(xt)

P (v>t|xt)︸ ︷︷ ︸
Ft(xt)

(37.50)

=
∑
x<t //

��

∑
xt

��

//
∑
x>t

��
v<t vt v>t

. (37.51)

37.5 Calculating x̂n (Viterbi algorithm)
xn is not visible, only vn is. Here is how to find an estimate x̂n of xn.

Define

Fmaxt (xt) = max
x<t

P (v<t, vt, x<t, xt) (37.52)

= maxx<t //

��

xt

��
v<t vt

(37.53)

x̂t−1(xt) = argmax
xt−1

Fmaxt−1 (xt−1)P (xt|xt−1)λt(xt) (37.54)

= maxx<t−1
//

��

argmaxxt−1

��

// xt

��
v<t−1 vt−1 vt

(37.55)

For t > 0, Fmaxt and x̂t−1(xt) can be calculated recursively as follows:
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Fmaxt (xt) = max
xt−1

Fmaxt−1 (xt−1)P (xt|xt−1)λt(xt) (37.56)

= max
xt−1

maxx<t−1
//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt

(37.57)

x̂t−1(xt) = argmax
xt−1

Fmaxt−1 (xt−1)P (xt|xt−1)λt(xt) (37.58)

= argmax
xt−1

maxx<t−1
//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt

(37.59)

Claim 71 (Viterbi Algorithm)
If

x̂n = argmax
xn

P (xn|vn) , (37.60)

then the components of x̂n can be calculated recursively from the last one x̂n−1 to the
first one x̂0, as follows. Let

x̂n−1 = argmax
xn−1

Fmaxn−1(xn−1) (37.61)

= maxx<n−1
//

��

argmaxxn−1

��
v<n−1 vn−1

(37.62)

and for t < n− 1, use

x̂t−1 = x̂t−1(x̂t) (37.63)
= maxx<t−1

//

��

argmaxxt−1

��

// x̂t

��
v<t−1 vt−1 vt

(37.64)

proof:
QED
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37.6 Calculating Â, B̂, π̂ (Baum-Welch algorithm)

Let θ = (A,B, π). θ is a set of hidden parameters. Here is how to find an estimate θ̂
of θ.

If xn and vn were visible, we could use

π̂(x) = 1(x0 = x) (37.65)

Â(x′|x) =
∑n−2

t=0 1(xt = x, xt+1 = x′)∑
x numerator

(37.66)

B̂(v|x) =
∑n−1

t=0 1(vt = v, xt = x)∑
v numerator

(37.67)

But xn is not visible. So how can we estimate θ under those circumstances?
Define

γt(xt) = = P (xt|vn) (37.68)

=
P (xt, v

n)

P (vn)
(37.69)

=
F t(xt)Ft(xt)∑
xt
numerator

(37.70)

=

∑
x<t //

��

xt

��
v<t vt

xt //
∑
x>t

��
v>t∑

xt
numerator

(37.71)

ξt(xt, xt+1) =
P (xt, xt+1, v

n)∑
xt

∑
xt+1

numerator
(37.72)

=
F t−1(xt−1)P (xt|xt−1)λt(xt)Ft(xt)∑

xt

∑
xt+1

numerator
(37.73)

=

∑
x<t−1

//

��

xt−1

��
v<t−1 vt−1

xt−1
// xt xt

��
vt

xt //
∑
x>t

��
v>t∑

xt

∑
xt+1

numerator
(37.74)
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Claim 72 (Baum-Welch algorithm)
If

θ̂ = argmax
θ

P (vn|θ) , (37.75)

then we can find θ̂ using the following formulae:

π̂(x) =

∼P (x)︷ ︸︸ ︷
γ0(x) (37.76)

Â(x′|x) =
∑n−2

t=0

∼P (x,x′)︷ ︸︸ ︷
ξt(x, x

′)∑n−2
t=0 γt(x)︸ ︷︷ ︸

P (x)

(37.77)

B̂(v|x) =
∑n−1

t=0

∼P (v|x)︷ ︸︸ ︷
1(vt = v)

∼P (x)︷ ︸︸ ︷
γt(x)∑n−1

t=0 γt(x)︸ ︷︷ ︸
∼P (x)

(37.78)

proof:
QED
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Chapter 38

Identification of do queries via LDEN
diagrams

The most general way to decide whether a do query for a particular DAG is identi-
fiable, is by using Pearl’s Do Calculus rules (see Chapter 21). However, those rules
are fairly complicated and therefore difficult to automate.

We contend that by analyzing any DAG symbolically using SCuMpy (see
Ref.[87]), one can decide rigorously whether a do query for that DAG is identifi-
able or not. Hence, SCuMpy allows us, if we have a single specific DAG in mind, to
bypass and supplant, in an automated fashion, the Do Calculus rules.

SCuMpy uses LDEN diagrams (a.k.a. linear SCM, see Chapter 48) whereas
the Do Calculus rules are for general bnets. However, the answer to the question of
whether a do query is identifiable for a particular DAG, only depends on the DAG,
so it is independent of whether the DAG came from an LDEN diagram, or from the
more general corresponding bnet.

In this chapter, we will briefly summarize the results presented in the Jupyter
notebook entitled “unconfounded-children" in SCuMpy (Ref.[87]). See that notebook
for more details.

Consider the LDEN diagram of Fig.38.1. This DAG does not satisfy either
the backdoor or frontdoor criteria, but the query P (y|do(x)) is still known to be
identifiable for this DAG.

For the LDEN diagram of Fig.38.1, SCuMpy gives the following covariance
between nodes x and y:

〈
x, y
〉
=

 αx|h1σ
2
ϵh1

(
αm1|xαx|h1αy|m1 + αm2|xαx|h1αy|m2 + αy|h1

)
+σ2

ϵx

(
αm1|xαy|m1 + αm2|xαy|m2

) (38.1)

Suppose we amputate, from the LDEN diagram of Fig.38.1, all arrows entering
node x (for this example, that means amputating the arrow h1 → x). Such an
amputation is demanded by the definition of the do query P (y|do(x)), Then SCuMpy
gives instead:
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Figure 38.1: LDEN diagram for which the query P (y|do(x)) is known to be identifi-
able. External root nodes ϵa pointing into each node a, are left implicit. The path
coefficients (a.k.a arrow gains) are not shown either. For any two nodes a, b, these
gains are denoted by αb|a for an arrow a→ b.

〈
x, y
〉
= σ2

ϵx

(
αm1|xαy|m1 + αm2|xαy|m2

)
(38.2)

so

∂x

∂y
=

〈
x, y
〉

⟨x, x⟩
= αm1|xαy|m1 + αm2|xαy|m2 (38.3)

Note that upon amputating the arrows entering x, the covariance
〈
x, y
〉

be-
comes independent of the hidden (i.e., unobserved) variables h1, h2. Thus, the do
query P (y|do(x)) is identifiable, because it doesn’t depend on unobserved quantities.
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Chapter 39

Influence Diagrams & Utility Nodes

Influence diagrams are just arbitrary bnets enhanced with a new kind of node called
an utility node. The rest of this brief chapter will be devoted to discussing utility
nodes.

Suppose U(x) is a deterministic function U : Sx → R called the utility func-
tion. Then the expected utility is defined as

EU [U ] =
∑
U

P (U)U (39.1)

=
∑
x

∑
U

P (U |x)︸ ︷︷ ︸
δ[U,U(x)]

P (x)U (39.2)

=
∑
x

P (x)U(x) . (39.3)

An utility node can be understood as a node composed of 3 simpler bnet
nodes. This is illustrated in Fig.39.1.

Figure 39.1: An utility node can be understood as a node composed of 3 simpler bnet
nodes.

The TPMs, printed in blue, for the bnet Fig.39.1, are as follows:

P (U |pa(U)) = δ[U,U(pa(U))] , (39.4)
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where if U : Sx → R, then x = pa(U).

P (u|pa(U)) = δ[u, U(pa(U))] (39.5)

Node µ
u

calculates the expected value (mean value) of u:

P (µu) = δ(µu, Eu[u]) (39.6)

Node σu calculates the standard deviation of u:

P (σu) = δ(σU ,
√
Eu[(u− Eu[u])2]) (39.7)

Note that in order to calculate expected values, it is necessary that U, u ∈ R.
Note that nodes u, µ

u
, σu must all 3 have access to the TPM P (U |pa(U)) of node U .

In fact, in order to calculate Eu[·], it is necessary for nodes µ
u

and σu to have access
not just to P (U |pa(U)) but also to P (pa(U)).

See Fig.39.2. An influence diagram may have multiple utility nodes (U1 and
U2 in Fig.39.2). Then one can define a merging utility node U that sums the values
of all the other utility nodes.

Figure 39.2: An influence diagram may have multiple utility nodes, say U1 and U2.
Then one can define an utility node U = U1 + U2.

For the node U of Fig.39.2,

P (U |U1, U2) = δ(U,U1 + U2) (39.8)

322



Chapter 40

Instrumental Inequality and beyond

This chapter is based on Refs. [14] and [53].
Instrumental Variables (IVs) are discussed in Chapter 41. This chapter will

discuss the original Instrumental inequality (I-inequality) discovered by Pearl, and
other related inequalities. The I-inequality arises in bnets that use an IV. The I-
inequality bounds the effect that an IV z can have on the outcome y of a treatment
d → y. Since there is a path z → d → y, the treatment dose d acts as a mediator
between the IV z and the treatment outcome y. The I-inequality is reminiscent of
the data processing inequality H(z : y) ≤ H(d : y) which is valid for a simple Markov
chain bnet z → d→ y. The data processing inequality is saying that the endpoint y
receives more information from d than from z. This is reasonable, since y is “closer"
to d than to z.

40.1 I-inequality

u

�� ��
z // d // y

u

}} !!
z // d d̃ = d̃ // y

G G̃ = Id→y(d̃)G

Figure 40.1: In bnet G, an IV z acts on a treatment d → y. Bnet G̃ is obtained by
applying an imagine operator to arrow d→ y of bnet G.

Claim 73 The TPMs for the bnet G in Fig.40.1 satisfy
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max
d

∑
y

max
z
P (d, y|z) ≤ 1 (40.1)

proof:
Below, any probability that alludes to a value d̃ refers to bnet G̃. Otherwise,

if it doesn’t allude to d̃, then it refers to G (or to G̃, since the TPMs of G̃ are defined
from those of G in a consistent manner.)

G satisfies
P (d, y|z) =

∑
u

P (u)P (y|u, d)P (d|u, z) , (40.2)

and G̃ satisfies

P (d, y|z, d̃) =
∑
u

P (u)P (y|u, d̃)P (d|u, z) . (40.3)

Note that Eqs.(40.2) and (40.3) imply that

P (d, y|z, d) = P (d, y|z) (40.4)

and that

P (d̃, y|z, d̃) ≤
∑
d

P (d, y|z, d̃) = P (y|d̃) . (40.5)

Thus,

max
d̃

∑
y

max
z
P (d̃, y|z, d̃) ≤ max

d̃

∑
y

max
z
P (y|d̃) (40.6)

≤ max
d̃

∑
y

P (y|d̃) (40.7)

≤ max
d̃

1 (40.8)

≤ 1 (40.9)

QED
As pointed out in Ref.[14] from which I learned the above proof, the above

proof is highly generalizable.
Fig.40.2 gives a graphical representation of the boxed Eq.(40.5) which is crucial

to the proof.
And here is a meta-description of the steps in the proof:

1. Use imagine operator to create a non-negative matrix Md,d̃.

2. Use fact that row or column sum of Md,d̃ is larger than diagonal element in sum:∑
dMd,d̃ ≥Md̃,d̃.
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∑
u u

{{
!!

z // d = d̃ d̃ = d̃ // y

≤
∑

d

∑
u u

}} !!
z // d d̃ = d̃ // y

= .

d̃ = d̃ // y

Figure 40.2: Graphical representation of the boxed equation Eq.(40.5).

40.1.1 I-inequality for binary z,d,y

It is enlightening to write down the I-inequality for the special case that z, d, y are
binary.

Figure 40.3: I-inequality for binary z, d, y. The same picture except with d = 0 is
also true.

In the binary case, the I-inequality implies 4 different inequalities. These are
as follows. One gets two inequalities by setting d = 1 in the next 2 equations.

1∑
y=0

1∑
z=0

1(y = z)P (d, y|z) , (40.10a)

1∑
y=0

1∑
z=0

1(y ̸= z)P (d, y|z) . (40.10b)

One gets an additional 2 inequalities by setting d = 0 in Eqs.(40.10). These 4 in-
equalities are illustrated in Fig.40.3.

What do they mean? That at fixed d, the correlation between z and y is
limited.
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40.2 Bounds on Effect of IV on treatment outcome
y

u

�� ��
z // 88d // y

u

��
z 77Dd = d̃ // y

u

}} !!
z // 77d d̃ = d̃ // y

G Gdo = Dd=d̃G Gim = Id→y(d̃)G

Figure 40.4: Bnet G is obtained from the bnet G in Fig.40.1 by adding to G an arrow
from the IV z to the treatment outcome y. Bnet Gdo is obtained by applying a do
operator to node d of G. Bnet Gim is obtained by applying an imagine operator to
arrow d→ y of G.

In this section, we will assume that random variables z, d, y are binary. Just
as with the binary case of the I-inequality, we will find an inequality for each value
of d ∈ {0, 1}.

Below, we will use the following 3 shorthand notations:

Py|z(d) = P (d, y|z) , (40.11)

P|z(d) =
∑
y

P (d, y|z) , (40.12)

and

π|z(d) = 1− P|z(d) . (40.13)

For the bnet Gdo in Fig.40.4, define the IV effect at fixed Dd = d̃ by

IV E(d̃) = P (y = 1|z = 1,Dd = d̃)− P (y = 1|z = 0,Dd = d̃) . (40.14)

Claim 74 The TPMs for the bnet Gdo in Fig.40.4 satisfy

π|0(d) ≤
[
IV E(d)− {P1|1(d)− P1|0(d)}

]
≤ π|1(d) (40.15)
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proof:

P (y|z,Dd = d̃) =
∑
u

P (u)P (y|u, z, d̃) (40.16)

=
∑
u

P (u)
∑
d

P (d, y|u, z, d̃) (40.17)

≥
∑
u

P (u)P (d̃, y|u, z, d̃) (40.18)

=
∑
u

P (u)P (d̃, y|u, z) (40.19)

= Py|z(d̃) (40.20)

Next note that P (d, y|z, d̃) ≥ 0, and
∑

d,y P (d, y|z, d̃) = 1. If we write a table
for P (d, y|z, d̃) at fixed z, d̃ with row and column indices (d, y), then a partial sum of
the entries of that table must be ≤ 1:∑

d ̸=d̃

P (d, y|z, d̃) +
∑
y′

P (d̃, y′|z, d̃)︸ ︷︷ ︸
P|z(d̃)

≤ 1 . (40.21)

Using the definitions of P|z and π|z, we can rewrite the last equation as∑
d̸=d̃

P (d, y|z, d̃) ≤ π|z(d̃) . (40.22)

Next note that

P (y|z,Dd = d̃) =
∑
u

P (u)P (y|u, z, d̃) (40.23)

=
∑
u

P (u)
∑
d

P (d, y|u, z, d̃) (40.24)

= P (d̃, y|z, d̃) +
∑
d̸=d̃

P (d, y|z, d̃) (40.25)

= Py|z(d̃) +
∑
d̸=d̃

P (d, y|z, d̃) (40.26)

≤ Py|z(d̃) + π|z(d̃) . (40.27)

Hence,

Py|z(d̃) ≤ P (y|z,Dd = d̃) ≤ Py|z(d̃) + π|z (40.28)
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P1|1(d̃) ≤ P (y = 1|z = 1,Dd = d̃) ≤ P1|1(d̃) + π|1 (40.29)

−P1|0(d̃)− π|0 ≤ −P (y = 1|z = 0,Dd = d̃) ≤ −P1|0(d̃) (40.30)

QED
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Chapter 41

Instrumental Variables

This chapter is based on Refs.[12] and [134].
The theory of potential outcomes (PO) discussed in Chapter 72 assumes that

confounders can be ignored by conditioning on them. However, there are cases when
that is not possible, as when there are some unmeasured (i.e., unobserved, hidden)
confounder nodes in the bnet, because one can only condition on observed random
variables, by definition. So what if confounders can’t be ignored? Are we then
precluded from using PO theory? Not necessarily. It might still be possible to use
PO theory if one can find a suitable instrumental variable (IV) for the problem.

IVs were actually invented by Sewall Wright and his father Philip Wright
long before PO theory was invented by Rubin. The reason why IVs save PO theory
is greatly clarified by using Pearl causal DAGs and his d-separation theorem (see
Chapter 23).

Most of the discussion in this chapter is limited to LDEN (linear deterministic
bnets with external noise). These are discussed in Chapter 48. However, as will
become obvious to the reader, IVs are also applicable and useful in general bnet
modeling.

41.1 δ with unmeasured confounder
In this section, we explain, using LDENs, why unmeasured confounders prejudice PO
δ calculations.

Consider the LDEN bnet of Fig.41.1. For some δ, µ ∈ R, we have

y = δd+ µu+ ϵy . (41.1)

Note that 〈
d, ϵy

〉
= 0 (41.2)

because the path from d to ϵy is blocked by a collider. Note also that ⟨d, u⟩ ̸= 0

because there is an unblocked path between d and u. Hence
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u
ν

��

µ

��
d

δ
// y

Figure 41.1: An LDEN bnet. The direct path d → y is confounded by a hidden
variable u. External root nodes ϵd, ϵu, ϵy are left implicit.

〈
d, y
〉
= δ ⟨d, d⟩+ µ ⟨d, u⟩ . (41.3)

If ⟨d, u⟩ were always zero, or if we could measure ⟨d, u⟩ (we can’t because u is unob-
served), we could solve for δ, but that is unfortunately not the case.

41.2 δ (with unmeasured confounder) can be inferred
via IV

u
ν

��

µ

��
a α

// d
δ

// y

u

ν

��

µ

��
a α

// d d̃
δ
// y

G Gim+

Figure 41.2: Two LDEN bnets. The direct path d → y is confounded by a hidden
variable u, but by using the IV a, we are still able to identify (i.e., calculate) δ.
External root nodes ϵa, ϵd, ϵu, ϵy are left implicit.

Now consider the two LDEN bnets shown in Fig.41.2. Note that there are no
arrows a → y or a → u. Note that node d is a collider in the path a − d − u − y,
Therefore, the only unblocked path from a to y in G is a → d → y and that path
has been removed in Gim+. These observations are encapsulated in the following
statements.

d ⊥G y = false, a ⊥G y = false . (41.4)

d ⊥Gim+
y = false, a ⊥Gim+

y = true . (41.5)
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For G, the following is true.{
y = δd+ µu+ ϵy
d = αa+ νu+ ϵd

(41.6)

Note that

⟨a, u⟩ =
〈
a, ϵy

〉
=
〈
a, ϵd

〉
= 0 (41.7)

because in all cases, paths between the two nodes in the covariance are blocked by a
collider. Therefore 〈

a, y
〉
= δ ⟨a, d⟩ (41.8)

and

⟨a, d⟩ = α ⟨a, a⟩ . (41.9)

Note that
〈
a, y
〉
= δ = 0 for Gim+ but not for G, so we are speaking about G from

here on. It follows that1

α =
⟨a, d⟩
⟨a, a⟩

=
∂d

∂a
(41.10)

and

δ =

〈
a, y
〉

⟨a, d⟩
(41.11)

=

〈
a, y
〉

⟨a, a⟩
⟨a, a⟩
⟨a, d⟩

(41.12)

=

∂y

∂a

∂d
∂a

( ̸=
∂y

∂d
) (41.13)

=
∂y

∂(αa)
. (41.14)

Eq.(41.13) is illustrated in Fig.41.3.

41.3 More general bnets with IVs
Figs.41.4 and 41.5 are examples of other bnets for which the effect δ is identifiable
thanks to the IV a.

1As usual in this book, we define ∂y

∂x =
⟨x,y⟩
⟨x,x⟩ for any random variables x, y.
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Figure 41.3: Effect δ as slope of line.

u

�� ��
a //

&&

d
δ

// y

��
v

u

�� ��
a //

&&

d d̃
δ
// y

��
v

G Gim+

Figure 41.4: The 2 paths in Gim+ from IV variable a to y are blocked by not condi-
tioning on colliders v and d. Thus, d ⊥Gim+

y = false, a ⊥Gim+
y = true.

u

�� ��
a // d

δ
// y

v

AAff

u

�� ��
a // d d̃

δ
// y

v

AAff

G Gim+

Figure 41.5: There are 2 paths in Gim+ from IV variable a to y. One is blocked by
not conditioning on the collider d and the other can be blocked by conditioning on v.
Thus, d ⊥Gim+

y|v = false, a ⊥Gim+
y|v = true.

41.4 Instrumental Inequality
Pearl’s instrumental inequality and related inequalities are discussed in Chapter 40.
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Chapter 42

Jackknife Resampling

This chapter is based on Ref. [136].
Before reading this chapter, we recommend that you read the section entitled

“Demystifying Population and Sample Variances", in Chapter C.
Jackknife Resampling (JR) is a way of generating from an original list of n

samples, a new list of n synthetic (i.e., man made, not occurring physically in Nature)
samples obtained by deleting one of the samples from the original list and averaging
over the rest.

Let Σ = {0, 1, 2, . . . , n− 1}. Let us consider the list of samples

x⃗ = (xσ)σ∈Σ , (42.1)

where the xσ are assumed to be i.i.d. with

E[xσ] = µ (42.2)

and 〈
xσ, xσ

′
〉
= V1δ(σ, σ

′) . (42.3)

If we define µ and V1 estimators by

µ̂ =
1

n

∑
σ

xσ (42.4a)

V̂1 =
1

n− 1

∑
σ

(xσ − µ̂)2 , (42.4b)

then one can show that:

E[µ̂] = µ , E[V̂ 1] = V1 (42.5)

so both of these estimators are unbiased.
Now define lists of samples with one of the items in x⃗ deleted:

333



x⃗ξ = (xσ)σ∈Σ−{ξ} . (42.6)

Suppose we are given functions of x⃗ and x⃗ξ

A = An(x⃗) , (42.7)

Aξ = An−1(x⃗ξ) . (42.8)

Then define a list A⃗ by
A⃗ = (Aξ)ξ∈Σ . (42.9)

One can also define a list B⃗ by:

B⃗ = (Bξ)ξ∈Σ (42.10)

where

Bξ = nA− (n− 1)Aξ (42.11)
= Aξ − n[Aξ − A] . (42.12)

Later on, we will see why the list B⃗ just defined is of interest.

x⃗





��   ((
x⃗0

��

x⃗1

��

x⃗2

��
A0

��

A1

��

A2

��
A // 66 44B0 B1 B2

Figure 42.1: Bnet for jackknife resampling (JR).

Fig.42.1 is a bnet that encapsulates JR. The TPMs, printed in blue, for that
bnet, are as follows:

P (x⃗ξ|x⃗) = 1( x⃗ξ = defined by Eq.(42.6) ) (42.13)

P (Aξ|x⃗ξ) = 1( Aξ = defined by Eq.(42.8) ) (42.14)
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P (Bξ|A⃗ξ, A) = 1( Bξ = defined by Eq.(42.12) ) (42.15)

42.1 Case A = An(x⃗) = 1
n

∑
σ x

σ

Suppose

A =
1

n

∑
σ

xσ︸ ︷︷ ︸
Eσ [xσ ]

(42.16)

and

Aξ =
1

n− 1

∑
σ∈Σ−{ξ}

xσ︸ ︷︷ ︸
Eσ|ξ[xσ ] where P (σ|ξ)=1(σ ̸=ξ)

n−1

. (42.17)

Then

1

n

∑
ξ

Aξ = EξEσ|ξ[x
σ] = Eσ[x

σ] = A (42.18)

Claim 75
E[Aξ] = µ (42.19)

〈
Aξ, Aξ′

〉
= V1

[
n− 2− δ(ξ, ξ′)

n− 1

]
(42.20)

proof:

E[Aξ] =
1

n− 1

∑
σ

1(ξ ̸= σ)E[xσ] = µ (42.21)

〈
Aξ, Aξ′

〉
=

1

n− 1

∑
σ

∑
σ′

[1− δ(σ, ξ)][1− δ(σ′, ξ′)]
〈
xσ, xσ

′
〉

(42.22)

=
V1

n− 1

∑
σ

∑
σ′

[1− δσξ − δσ
′

ξ′ + δσξ δ
σ′

ξ′ ]δ
σ
σ′ (42.23)

=
V1

n− 1
[n− 2 + δξξ′ ] (42.24)

QED
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Figure 42.2: For each point xξ, there is a corresponding point Aξ which is n−1 times
closer to the average A than xξ is.

Claim 76

Aξ − A =
A− xξ

n− 1
(42.25)

Hence, the distance of a point xξ to the mean value A is n− 1 times as large as the
distance of Aξ to A. (see Fig.42.2)

proof:

Aξ − A =
1

n− 1

(∑
σ

xσ − xξ
)
− 1

n

∑
σ

xσ (42.26)

= xξ
(
−1
n− 1

)
+
∑
σ

xσ
(

1

n− 1
− 1

n

)
︸ ︷︷ ︸

1
n(n−1)

(42.27)

=
A− xξ

n− 1
(42.28)

QED
Note that

(n− 1)
∑
ξ

(Aξ − Eξ[Aξ])2 = V̂1 (42.29)

by Eq.(42.25). Hence, we can estimate V1 from A⃗ instead of x⃗.
Note that

Bξ = nA− (n− 1)Aξ (42.30)

=
∑
σ

xσ −
∑
σ ̸=ξ

xσ = xξ (42.31)

Since Bξ = xξ, they have identical statistics. In particular, one can use for Bξ the
same µ and V1 estimators that we defined in Eqs.(42.4) for xσ.
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Chapter 43

Junction Tree Algorithm

The Junction Tree (JT) algorithm is an algo for evaluating exact marginals of a bnet,
including cases in which some nodes are fixed to a single state. (fixed nodes are called
the a priori evidence.)

The JT algo starts by clustering the loops of a bnet into bigger nodes so as to
transform the bnet into a polytree bnet. Then it applies Pearl Belief Propagation (see
Chapter 56) to the ensuing polytree. The first breakthrough paper to achieve this
agenda in full was Ref.[36] by Lauritzen, and Spiegelhalter in 1988. See the Wikipedia
article Ref.[137] for more info and references on the JT algorithm.

I won’t describe the JT algo any further here, because it would take too long for
this brief book to give a complete treatment of it, including the mathematical proofs.
If all you want to do is to code the JT algo, without delving into the mathematical
theorems and proofs behind it, I strongly recommend Ref.[29]. Ref.[29] is an excellent
cookbook for programmers of the JT algo. My open source program QuantumFog
(see Ref.[86]) implements the JT algo in Python, following the recipe of Ref.[29].
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Chapter 44

Kalman Filter

This chapter is based on Ref.[139], except we’ve replaced the variables Ft, wt, vt in
that reference by At, ξt, ζt, respectively.

A Kalman Filter (KF) is a special case of a Hidden Markov Model. HMMs
are discussed in Chapter 37.

u1

��

ξ
1

��

u1

��

· · · ut−1

!!

ξ
t−1

��

ut

Bt

��

ξ
t

Qt

��
x0

��

// x1

��

// · · · xt−1

��

At

// xt

Ht

��
z0 z1 · · · zt−1 zt

ζ
0

OO

ζ
1

OO

· · · ζ
t−1

OO

ζ
t

Rt

OO

Figure 44.1: Kalman Filter (KF) bnet.

Let
t = 0, 1, 2, . . . , T − 1 be the time.
ξ
t
∈ Rnx, ζ

t
∈ Rnz be random variables that represent hidden (unobserved)

external Gaussian white noise.
xt ∈ Rnx be random variables that represent the hidden (unobserved) true

state of the system.
ut ∈ Rnu, zt ∈ Rnz be random variables that represent the measured (observed)

state of the system.
The TPMs, printed in blue, for the KF bnet Fig.44.1, are as follows:
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P (ξt) = N (ξt; 0, Qt) , (44.1)

where Qt is given.

P (xt|xt−1, ut, ξt) = 1(xt = Atxt−1 +Btut + ξt) , (44.2)

where At, Btut are given. P (xt|xt−1, ut, ξt) becomes P (xt) for t = 0.

P (ζt) = N (ζt; 0, Rt) , (44.3)

where Rt is given.

P (zt|xt, ζt) = 1(zt = Htxt + ζt) , (44.4)

where Ht is given.

44.1 Prediction Problem
Find x̂t (the best possible estimate of xt) and Pt (the state of the filter at time t) in
terms of

1. x̂t−1 and Pt−1.

2. the 5 matricesMt = (At, Bt, Ht, Qt, Rt)

3. the observed values of zt and ut.

See Fig.44.2. For that figure,

P (x̂t, Pt|x̂t−1, Pt−1,Mt, zt, ut) = δ(x̂t, ?)δ(Pt, ?) . (44.5)

M0, z0, u0

��

M1, z1, u1

��

M2, z2, u2

��

M3, z3, u3

��
x̂0, P 0

// x̂1, P 1
// x̂2, P 2

// x̂3, P 3

Figure 44.2: Evolution of x̂t, Pt for a KF.

339



Pt−1
// Pt|t−1

//

''

Pt

Kt

OO

ut−1 ut

Bt

vv
x̂t−1

At // x̂t|t−1
1 //

−Ht
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−Ht

��
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77

ỹt

zt−1 zt

1

hh

1

OO

Figure 44.3: Bnet representation of the algebraic solution of the prediction problem
for a KF.

44.2 Solution
The algebraic solution of the prediction problem for a KF is as follows. See Fig.44.3
for a bnet representation of this algebraic solution.

Define ηt|t = ηt for η = x̂, P .

• Initial Conditions x̂0, P0

• A priori estimates

a priori state estimate
x̂t|t−1 = Atx̂t−1 +Btut︸ ︷︷ ︸

xt−ξt

(44.6)

a priori covariance estimate

Pt|t−1 = AtPt−1A
T
t +Qt (44.7)

• A posteriori estimates

Optimal Kalman gain Kt

St = HtPt|t−1H
T
t +Rt (44.8)
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Kt = Pt|t−1H
T
t S

−1
t (44.9)

= Pt|t−1H
T
t

[
HtPt|t−1H

T
t +Rt

]−1 (44.10)

a posteriori state estimate

ỹt|t−1 = zt −Htx̂t|t−1 (44.11)

x̂t = x̂t|t−1 +Ktỹt|t−1 (44.12)
= (1−KtHt)x̂t|t−1 +Kt zt︸︷︷︸

Htxt+ζt

(interpolation formula) (44.13)

ỹt = zt −Htx̂t (44.14)

a posteriori covariance estimate

Pt = (I −KtHt)Pt|t−1 (44.15)

44.3 Simple Example
rt position, vt velocity, at acceleration of point particle.

xt = Axt−1 +But + ξt (44.16)

xt =

[
rt
vt

]
, ut = at (44.17)

A =

[
1 ∆t
0 1

]
, B =

[
1
2
(∆t)2

∆t

]
(44.18)

zt = Hxt + ζt (44.19)

H =
[
1 0

]
(44.20)
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44.4 Invariants
Note that

xt − x̂t|t−1 = ξt (44.21)

xt − x̂t = (1−KtHt)(xt − x̂t|t−1)−Ktζt (44.22)
= (1−KtHt)ξt −Ktζt (44.23)

ỹt|t−1 = zt︸︷︷︸
Htxt+ζt

−Htx̂t|t−1 (44.24)

= Htξt + ζt (44.25)

ỹt = zt︸︷︷︸
Htxt+ζt

−Htx̂t (44.26)

= Ht(xt − x̂t) + ζt (44.27)
= Ht(1−KtHt)ξt + (1−HtKt)ζt (44.28)

(xt − x̂t|t−1), (xt − x̂t), ỹt|t−1 and ỹt are called residuals. Since ξt and ζt have zero
mean value,

E[xt − x̂t] = E[xt − x̂t|t−1] = 0 (44.29)

E[ỹ
t
] = E[ỹ

t|t−1
] = 0 (44.30)

These zero mean value identities are called invariants.

44.5 Derivation of Solution
First, some notational conventions. Let

Cov(a)i,j =
〈
ai, aj

〉
(44.31)

Cov(a) =
〈
a, aT

〉
= ⟨a, tp.⟩ (44.32)

[A,B]+ = AB +BTAT (44.33)
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A+ tp. = A+ AT (44.34)

tp. stands for transpose.
Now define

Pt = Cov(xt − x̂t) (44.35)

Pt|t−1 = Cov(xt − x̂t|t−1) (44.36)

St = Cov(ỹ
t|t−1

) (44.37)

It follows that

Pt = ⟨xt − x̂t, tp.⟩ (44.38)

=
〈
(1−KtHt)(xt − x̂t|t−1)−Ktζt, tp.

〉
(by Eq.(44.23)) (44.39)

=
〈
(1−KtHt)(xt − x̂t|t−1), tp.

〉
+
〈
Ktζt, tp.

〉
(ζ
t
uncorrelated with (xt − x̂t|t−1))

(44.40)

= (1−KtHt)
〈
xt − x̂t|t−1, tp.

〉︸ ︷︷ ︸
Pt|t−1

(1−KtHt)
T +Kt

〈
ζ
t
, tp.
〉

︸ ︷︷ ︸
Rt

KT
t (44.41)

= Pt|t−1 − [KtHt, Pt|t−1]+ +Kt

(
HtPt|t−1H

T
t +Rt

)︸ ︷︷ ︸
St

KT
t (44.42)

Next we find the optimal Kalman gain Kt by minimizing with respect to Kt

the following mean squared error.

E =
∑
i

E[(xt − x̂t)2i ] (44.43)

= trE
[
(xt − x̂t)(xt − x̂t)T

]
(44.44)

= trPt (44.45)
= tr

(
Pt|t−1 − [KtHt, Pt|t−1]+ +KtStK

T
t

)
(44.46)

If we set to zero the variation of E when Kt varies, we get

0 = δE = tr
[(
−Pt|t−1H

T
t +KtSt

)
δKT

t

]
+ tp. (44.47)

Hence

−Pt|t−1H
T
t +KtSt = 0 (44.48)

Kt = Pt|t−1H
T
t S

−1
t (44.49)
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Chapter 45

LATE (Local Average Treatment
Effect)

This chapter is based on Refs.[45, 15].
The Local Average Treatment Effect (LATE) is the same as the ATE

estimand1, but it only counts “compliers" (i.e., individuals that comply with the
treatment they’ve been assigned). LATE assumes the same bnet that we considered
when we discussed Instrumental Variables (IV) 2

σ aσ dσ(aσ = 0) dσ(aσ = 1) yσ(dσ = 0) yσ(dσ = 1)
1 0 1 0
2 0 0 1
3 0 1 1
4 0 0 0
5 0 0 1
6 1 1 0
7 1 0 0
8 1 1 0
9 1 0 1
10 1 1 1

Table 45.1: Hypothetical dataset for LATE problem. Pink cells indicate missing data.

Table 45.1 shows a hypothetical dataset for the LATE problem.
Consider the bnets G and G+ of Fig.45.1.3

1ATE is defined in the Potential Outcomes chapter, i.e., Chapter 72.
2Instrumental Variables are discussed in Chapters 41 and 40.
3If there were an arrow a → y in bnet G, then we could also apply the imagine operator Ia→y

to G. This would lead to nodes [y(a′, d′)]1a′=0|1d′=0. Since there is no arrow a → y, we would have
y(a, d) = y(d) for all a, d, i.e., y does not depend directly on the instrument a. This independence of
y(a, d) on a is called the excludability assumption. One could say the excludability assumption
is built into our bnet G+.
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[d(a′)]1a′=0
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[y(d′)]1d′=0

��
a // d // y

G G+ = Id→yIa→dG

Figure 45.1: Bnet G+ is bnet G after application of 2 imagine operators. Imagine
operators are discussed in Chapter 12.

Let
a ∈ {0, 1}, instrumetal variable, initially assigned dose
d ∈ {0, 1}, actual treatment dose
y ∈ {0, 1}, treatment outcome
The definition of the imagine operators used in G+ stipulates that nodes y and

d in G+ must be have the following deterministic TPMs (printed in blue below).

P (d|a, [d(a′)]1a′=0) = 1( d = ad(1) + (1− a)d(0)︸ ︷︷ ︸
=
∑1

a′=0 δ(a,a
′)d(a′) = d(a)

) (45.1)

P (y|d, [y(d′)]|1d′=0) = 1( y = y(d) ) (45.2)

dσ(0) dσ(1)
never-takers 0 0
compliers 0 1
defiers 1 0
always-takers 1 1

Table 45.2: Possible compliance behaviors for individual σ.

Table 45.2 gives a name to the 4 possible compliance behaviors that might
be exhibited by an individual σ of a dataset. Below, we will use C to denote the
conditions that define a complier:

C = {d(0) = 0, d(1) = 1} (45.3)
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Monotonicity is said to hold if

dσ(1) ≥ dσ(0) (45.4)

Note that monotonicity rules out defiers (i.e., dσ(1) = 0, dσ(0) = 1), but allows the
other 3 compliance behaviors.

It is convenient to define the following expected values:

D|a =
∑
d

d P (d|a) = E|a[d] (45.5)

Y|d,a =
∑
y

y P (y|d, a) = E|d,a[y] (45.6)

Y|d=d =
∑
y

y P (y|d) = E|d[y] (45.7)

Y|a=a =
∑
y

y P (y|a) = E|a[y] (45.8)

Assume that D|1 ̸= D|0. Then LATE is defined by

LATE =
Y|a=1 − Y|a=0

D|1 −D|0
(45.9)

Claim 77 If monotonicity is satisfied, then

P (C) = D|1 −D|0 (45.10)

proof:

D|1 −D|0 =
∑

d(0),d(1)

P (d(0), d(1))[d(1)− d(0)] (45.11)

=



P (d(0) = 0, d(1) = 0) [d(1)− d(0)]︸ ︷︷ ︸
0

+P (d(0) = 0, d(1) = 1) [d(1)− d(0)]︸ ︷︷ ︸
1

+P (d(0) = 1, d(1) = 0)︸ ︷︷ ︸
=0 by monotonicity

[d(1)− d(0)]

+P (d(0) = 1, d(1) = 1) [d(1)− d(0)]︸ ︷︷ ︸
0

(45.12)

= P (C) (45.13)

QED
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Claim 78 Recall
ATE = E[y(1)− y(0)] (45.14)

If monotonicity is satisfied, then

LATE = E|C[y(1)− y(0)] (45.15)

proof:

Y|a=1 − Y|a=0 = E|a=1[y]− E|a=0[y] (45.16)

=
∑
x

∑
y(0),y(1)

∑
d(0),d(1)


[y(d(1))− y(d(0))]
∗P (y(0), y(1)|x)
∗P (d(0), d(1)|x)
∗P (x)

(45.17)

=
∑

y(0),y(1)

∑
d(0),d(1)

[y(d(1))− y(d(0))]
{
P (y(0), y(1)|d(0), d(1))
∗P (d(0), d(1)) (45.18)

=
∑

y(0),y(1)



[y(0)− y(0)]︸ ︷︷ ︸
0

{
P (y(0), y(1)|d(0) = 0, d(1) = 0)
∗P (d(0) = 0, d(1) = 0)

+[y(1)− y(0)]
{
P (y(0), y(1)|d(0) = 0, d(1) = 1)
∗P (d(0) = 0, d(1) = 1)

+[y(0)− y(1)]


P (y(0), y(1)|d(0) = 0, d(1) = 0)
∗P (d(0) = 1, d(1) = 0)︸ ︷︷ ︸

=0 monotonicity

+ [y(1)− y(1)]︸ ︷︷ ︸
0

{
P (y(0), y(1)|d(0) = 1, d(1) = 1)
∗P (d(0) = 1, d(1) = 1)

(45.19)

= P (C)
∑

y(0),y(1)

[y(1)− y(0)]P (y(0), y(1)|C) (45.20)

= P (C)E|C[y(1)− y(0)] (45.21)

QED
It is instructive to evaluate LATE for the special case in which G of Fig.45.1

is an LDEN (Linear Deterministic with External Noise) bnet.4
Consider Fig.45.2. From that figure

4LDEN bnets are discussed in Chapter 48.
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Figure 45.2: LDEN bnet for LATE. External root nodes ϵa, ϵd, ϵx, ϵy are left implicit.

d = αa+ µx+ ϵd (45.22)

y = δd+ νx+ ϵy (45.23)

Claim 79 For the LDEN bnet of Fig.45.2,

LATE = δ =

∂y

∂a

∂d
∂a

(45.24)

proof:
Note that

⟨a, x⟩ =
〈
a, ϵd

〉
=
〈
a, ϵy

〉
= 0 (45.25)

because in all cases, the path between the two nodes of the covariance is blocked by
a collider. Thus

⟨a, d⟩ = α ⟨a, a⟩ (45.26)

〈
a, y
〉

= δ ⟨a, d⟩ (45.27)

Hence,

α =
⟨a, d⟩
⟨a, a⟩

=
∂d

∂a
(45.28)

and

δ =

〈
a, y
〉

⟨a, d⟩
=

〈
a, y
〉

⟨a, a⟩
⟨a, a⟩
⟨a, d⟩

=

∂y

∂a

∂d
∂a

(45.29)
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Ea=1[y]− Ea=0[y] = Ea=1[δd+ νx]− Ea=0[δd+ νx] (45.30)
= δ(Ea=1[d]− Ea=0[d]) + ν (Ea=1[x]− Ea=0[x])︸ ︷︷ ︸

0

(45.31)

QED
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Chapter 46

LDEN with feedback loops

This chapter assumes that the reader has read Chapter 48 on LDEN (linear deter-
ministic with external noise) diagrams and Section C.47 on the Z-transform. The
algorithm described in this chapter was first published here, and is implemented in
my software SCuMpy (see Ref.[87]).
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β1|0

''

α1|0

��
x1

β1|1

VV

β0|1

gg x
[1]
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x
[2]
0
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//

��

x
[3]
0

��

x
[1]
1

//

??

x
[2]
1

//

??

x
[3]
1

(a) (b)

Figure 46.1: LDEN diagrams with two xj nodes (exogenous nodes uj not shown).
Figure (a) shows a single time-slice with feedback loops. Figure (b) is an “unrolled"
version of figure (a) showing 3 time-slices. LDEN diagrams with feedback loops are
a special case of Dynamic Bayesian networks (DBN) (see Chapter 25)

Consider Fig.46.1 of an LDEN diagram with feedback loops. It represents the
following two “structural equations":
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x
[n+1]
0 =

1∑
j=0

β0|jx
[n]
j︸ ︷︷ ︸

from past

+u
[n+1]
0 (46.1)

x
[n+1]
1 =

1∑
j=0

β1|jx
[n]
j︸ ︷︷ ︸

from past

+α1|0x
[n+1]
0 + u

[n+1]
1 (46.2)

for n = 0, 1, 2, . . . with x[0]j = u
[0]
j = 0 for all j.

From the results of Section C.47, we conclude that

Z(x[n+1]
j ) = z

(
x̃j(z)− zx

[0]
j

)
= zx̃j(z) (46.3)

Z(u[n+1]
j ) = zũj(z) (46.4)

Therefore, in z-space, the two structural equations are as follows:

zx̃0(z) =
1∑
j=0

β0|jx̃j(z) + zũ0(z) (46.5)

zx̃1(z) =
1∑
j=0

β1|jx̃j(z) + α1|0zx̃0(z) + zũ1(z) (46.6)

We can express these two z-space structural equations in matrix form. Let

x̃ =

[
x̃0
x̃1

]
, ũ =

[
ũ0
ũ1

]
, A =

[
0 0
α1|0 0

]
, B =

[
β0|0 β0|1
β1|0 β1|1

]
(46.7)

1A = 1− A (46.8)

M(z) = 1A −B/z (46.9)

Then the two z-space structural equations reduce to the single matrix equation:

M(z)x̃(z) = ũ(z) (46.10)

If the DAG for a single time-slice has N > 2 nodes, then this matrix equation is still
valid. In that case, A and B must be N × N matrices. The graph for a single time
slice is acyclic (i.e., a DAG), so we can order its nodes topologically. This just means
that xi is a child of xj if i > j. If the nodes are indexed topologically, then αi|j = 0
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for i ≤ j, so matrix A is strictly lower diagonal. Henceforth, everything we say will
be valid for an arbitrary number N ≥ 2 of nodes.

For a = x, u, let

[C [n]
a ]i,j =

〈
a
[n]
i , a

[n]
j

〉
, [C [n,n+1]

a ]i,j =
〈
a
[n]
i , a

[n+1]
j

〉
(46.11)

and

[Cz1,z2
ã ]i,j =

〈
ãi(z1), ãj(z2)

〉
, (46.12)

Let
C = single time covariance matrices [C

[n]
x ]i,j = ⟨x[n]i , x

[n]
j ⟩ and [C

[n+1]
x ]i,j =

⟨x[n+1]
i , x

[n+1]
j ⟩, and two-times covariance matrix [C

[n,n+1]
x ]i,j = ⟨x[n]i , x

[n+1]
j ⟩.

A = strictly lower triangular matrix with entries αi|j = gain of arrow x
[n]
j → x

[n]
i

B = matrix with entries βi|j = gain of arrow x
[n]
j → x

[n+1]
i

The rest of this chapter will be dedicated to accomplishing the following 2
tasks:

1. Express C in terms of A and B

2. Express A and B in terms of C

Due to the linearity of the model, we will find that these two tasks can be accomplished
exactly, in closed form.

Claim 80 C
[n]
x =

〈
x[n], x[n]T

〉
satisfies

C [n]
x = Gn−1 C [1]

x (GT )n−1 (46.13)

for n = 1, 2, 3 . . ., where the “growth matrix" G is given by

G = 1
−1
A B (46.14)

and the “initial covariance matrix" C [1]
x =

〈
x[1], x[1]T

〉
by

C [1]
x = 1

−1
A diag(σ2

ui
)(1−1

A )T (46.15)

Once we know the single time covariance matrix
〈
x[n], x[n]T

〉
, the 2 times co-

variance matrix
〈
x[n], x[n+1]T

〉
can be found using the equation〈

x[n], x[n+1]T
〉
=
〈
x[n], x[n]T

〉
GT (46.16)
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proof:
Recall from Section C.47 that
Z-transform of same-time product

x
[n]
1 x

[n]
2 = Z−1

[
1

2πi

∮
C

dw

w
x̃1(w)x̃2

( z
w

)]
(46.17)

It follows that

〈
x[n], x[n]T

〉︸ ︷︷ ︸
C

[n]
x

= Z−1

 1

2πi

∮
C

dw

w

〈
x̃(w), x̃T

( z
w

)〉
︸ ︷︷ ︸

C
w,z/w
x̃

 (46.18)

where

C
w,z/w
x̃ =M−1(w)C

w,z/w
ũ (M−1)T (z/w) (46.19)

so therefore

C [n]
x = Z−1

[
1

2πi

∮
C

dw

w
M−1(w)C

w,z/w
ũ (M−1)T (z/w)

]
(46.20)

At this juncture, we would like to find an expression for Cw,z/w
ũ to plug into

Eq.(46.20). This shaded frame is dedicated to finding such an expression.
For all i, u[0]i = 0. Keep in mind that H

[n]
0 = 1 at n = 0, so we must have〈

u
[n]
i , u

[n]
j

〉
= δ(i, j)σ2

ui
H

[n]
1 (46.21)

Recall from Section C.47 that:
Z-transform of Heavyside unit step function:

Z
[
anH

[n]
0

]
=

1

1− a/z
=

z

z − a
for |z| > |a| (46.22)

Z-transform of discrete Kronecker delta function:

Z[δ[n]n0
] = z−n0 (46.23)

Unit step function as a sum of delta functions:

H
[n]
0 =

∞∑
k=0

δ
[n]
k (46.24)

It follows that
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H
[n]
1 = H

[n]
0 − δ

[n]
0 (46.25)

Z[H[n]
1 ] = Z[H[n]

0 ]−Z[δ[n]0 ] (46.26)

=
z

z − 1
− 1 (46.27)

=
1

z − 1
(46.28)

Therefore,

Z[
〈
u
[n]
i , u

[n]
j

〉
] = δ(i, j)σ2

ui

1

z − 1
(46.29)

We can satisfy Eq.(46.29) and the following equation

Z[
〈
u
[n]
i , u

[n]
j

〉
] =

1

2πi

∮
C

dw

w

〈
ũi(w), ũj

( z
w

)〉
(46.30)

if we set 〈
ũi(w), ũj(z/w)

〉
= δ(i, j)σ2

ui

1

z − 1
≈ δ(i, j)σ2

ui

1

z
(46.31)

I believe that approximating 1/(z − 1) by 1/z leads to a very small change in
the subsequent results of this chapter. This approximation merely shifts a pole
from z = 1 to z = 0, and we will only use this expression to do complex contour
integrals over a circle in the complex plane with radius |z| >> 1.

Plugging Eq.(46.31) into Eq.(46.20) now yields

C [n]
x = Z−1

[
1

2πi

∮
C

dw

w
M−1(w)

diag(σ2
ui
)

z
(M−1)T (z/w)

]
(46.32)

where

M−1(w) = (1A −B/w)−1 (46.33)
= (1Aw −B)−1w (46.34)
= (w − 1

−1
A B)−1w1−1

A (46.35)

=
w

w − 1
−1
A B

1
−1
A (46.36)

and

354



(M−1)T (z/w) = (1−1
A )T

z/w

z/w −BT (1−1
A )T

(46.37)

= (1−1
A )T

z

z −BT (1−1
A )Tw

(46.38)

Next, we will avail ourselves of 2 more results from Section C.47:
Inverse Z-transform:

Z−1[x̃(z)]︸ ︷︷ ︸
x[n]

=
1

2πi

∮
C

dz x̃(z)zn−1 (46.39)

Time delay:

x[n−1] = Z−1

[
1

z
x̃(z)

]
(46.40)

Using Eq.(46.22) and Eq.(46.40), we get

Z−1
z

[
1

z
(M−1)T (z/w)

]
= (1−1

A )T
[
BT (1−1

A )Tw
]n−1 (46.41)

C [n]
x =

1

2πi

∮
C

dw

w
M−1(w)diag(σ2

ui
)Z−1

z

[
1

z
(M−1)T (z/w)

]
(46.42)

=

[
1

2πi

∮
C

dw
wn−1

w − 1
−1
A B

]
1
−1
A diag(σ2

ui
)(1−1

A )T
[
BT (1−1

A )T
]n−1 (46.43)

= Z−1
w

[
1

w − 1
−1
A B

]
1
−1
A diag(σ2

ui
)(1−1

A )T
[
BT (1−1

A )T
]n−1 (by Eq.(46.39))

(46.44)

= [1−1
A B]n−1

1
−1
A diag(σ2

ui
)(1−1

A )T
[
BT (1−1

A )T
]n−1 (by Eqs.(46.22)(46.40))

(46.45)

Eq.(46.16) is the same as Eq.(46.49), and the latter is proven below.
QED

The structural equations in n (i.e., time) space, and in matrix form, can be
expressed as:

x[n+1] = Bx[n] + Ax[n+1] + u[n+1] (46.46)

Applying
〈
·, x[n]T

〉
from the right to Eq.(46.46), we get

(1− A)
〈
x[n+1], x[n]T

〉
= B

〈
x[n], x[n]T

〉
+
〈
u[n+1], x[n]T

〉
(46.47)

Note that 〈
u[n+1], x[n]T

〉
= 0 (46.48)
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by causality, because the x[n] can’t be affected by the noise in the future. Therefore

1A

〈
x[n], x[n+1]T

〉T
= B

〈
x[n], x[n]T

〉
(46.49)

Applying
〈
·, x[n+1]T

〉
from the right to Eq.(46.46), we get〈

x[n+1], x[n+1]T
〉
= B

〈
x[n], x[n+1]T

〉
+ A

〈
x[n+1], x[n+1]T

〉
+
〈
u[n+1], x[n+1]T

〉
(46.50)

For any matrix A, define SL(A) to be the strictly lower triangular matrix
obtained from matrix A by setting to zero all entries on the main diagonal of A and
above it. Note that

SL(
〈
u[n+1], x[n+1]T

〉
) = 0 (46.51)

by causality, because the nodes are assumed to be topologically ordered (when the
feedback arrows are removed), and the future noise u[n+1]

i cannot be correlated with
x
[n+1]
j where i > j. Thus,

SL

〈x[n+1], x[n+1]T
〉
−B

〈
x[n], x[n+1]T

〉︸ ︷︷ ︸
K

 = SL
(
A
〈
x[n+1], x[n+1]T

〉)
(46.52)

A and B satisfy a system of 2 linear equations (the two boxed equations
above, Eq.(46.49) and Eq.(46.52)) with two unknowns A,B. To solve that system of
2 equations in (A,B), we can:

1. First solve Eq.(46.52)) for A in terms of B and C, thus obtaining A(B, C). To
do this step, we can use the same method that was used in Chapter 48, for
LDEN without feedback loops, to solve for A when K = 0.

Caveat: Eq.(46.52)) for A has the same number of equations as unknowns as
long as, for all i > j, αi|j ̸= 0. If some of those αi|j are zero, then we get an
overdetermined system of linear equations. To solve that problem, for every i, j
such that i > j and αi|j = 0, replace that unknown by

〈
x
[n]
i , x

[n]
j

〉
.

2. Then we can substitute A(B, C) into the remaining equation Eq.(46.49) to ob-
tain B(C).
Caveat: Eq.(46.49)) for B has the same number of equations as unknowns as
long as all βi|j ̸= 0 for all i, j. If some of those βi|j are zero, then we get an
overdetermined system of linear equations. To solve that problem, for every i, j
such that βi|j = 0, replace that unknown by

〈
x
[n]
j , x

[n+1]
i

〉
.

3. Finally, we can substitute B(C) into A(B, C) to get A(B(C), C).
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Chapter 47

Linear and Logistic Regression

Figure 47.1: Linear Regression

Figure 47.2: Bnet of Fig.47.1 with new Y⃗ node.

Estimators ŷ for linear and logistic regression.

• Linear Regression: y ∈ R. Note ŷ ∈ R. (x, ŷ(x)) is the graph of a straight
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line with y-intercept b and slope m.

ŷ(x; b,m) = b+mx (47.1)

• Logistic Regression: y ∈ {0, 1}. Note ŷ ∈ [0, 1]. (x, ŷ(x)) is the graph of a
sigmoid. Often in literature, b,m are replaced by β0, β1.

ŷ(x; b,m) = smoid(b+mx) (47.2)

Define
V (b,m) =

∑
x,y

P (x, y)|y − ŷ(x; b,m)|2 . (47.3)

We want to minimize V (b,m) (called a cost or loss function) wrt b and m.
The TPMs, printed in blue, for the Bnet Fig.47.1, are as follows.

P (b,m) = given (47.4)

The first time it is used, (b,m) is arbitrary. After the first time, it is determined by
previous stage.

Let
Px,y(x, y) =

1

nsam(x⃗)

∑
σ

1(x = xσ, y = yσ) . (47.5)

P (x⃗) =
∏
σ

P (xσ) (47.6)

P (y⃗|x⃗) =
∏
σ

P (yσ | xσ) (47.7)

P (⃗ŷ|x⃗, b,m) =
∏
σ

δ(ŷσ, ŷ(xσ, b,m)) (47.8)

P (V |⃗ŷ, y⃗) = δ(V,
1

nsam(x⃗)

∑
σ

|yσ − ŷσ|2) (47.9)

Let ηb, ηm > 0. For x = b,m, if x′ − x = ∆x = −η ∂V
∂x

, then ∆V ≈ −1
η
(∆x)2 ≤ 0 for

η > 0. This is called “gradient descent".

P (b′|V, b) = δ(b′, b− ηb∂bV ) (47.10)

P (m′|V,m) = δ(m′,m− ηm∂mV ) (47.11)
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47.1 Generalization to x with multiple components
(features)

Suppose that for each sample σ, instead of xσ being a scalar, it has n components
called features:

xσ = (xσ0 , x
σ
1 , x

σ
2 , . . . x

σ
n−1) . (47.12)

Slope m is replaced by weights

w = (w0, w1, w3, , . . . , wn−1) , (47.13)

and the product of 2 scalars mxσ is replaced by the inner vector product wTxσ.

47.2 Alternative V (b,m) for logistic regression
For logistic regression, since yσ ∈ {0, 1} and ŷσ ∈ [0, 1] are both in the interval [0, 1],
they can be interpreted as probabilities. Define probability distributions pσ(x) and
p̂σ(x) for x ∈ {0, 1} by

pσ(1) = yσ, pσ(0) = 1− yσ (47.14)

p̂σ(1) = ŷσ, p̂σ(0) = 1− ŷσ (47.15)

Then for logistic regression, the following 2 cost functions V (b,m) can be used as
alternatives to the cost function Eq.(47.3) previously given.

V (b,m) =
1

nsam(x⃗)

∑
σ

DKL(p
σ ∥ p̂σ) (47.16)

and

V (b,m) =
1

nsam(x⃗)

∑
σ

CE(pσ ∥ p̂σ) (47.17)

=
−1

nsam(x⃗)

∑
σ

{yσ ln ŷσ + (1− yσ) ln(1− ŷσ)} (47.18)

=
−1

nsam(x⃗)

∑
σ

ln
{
(ŷσ)y

σ

(1− ŷσ)(1−yσ)
}

(47.19)

=
−1

nsam(x⃗)

∑
σ

lnP (Y = yσ | ŷ = ŷσ) (47.20)

= −
∑
x,y

P (x, y) lnP (Y = y|ŷ = ŷ(x, b,m)) (47.21)
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Above, we used
P (Y = Y |ŷ) = ŷY [1− ŷ]1−Y (47.22)

for Y ∈ SY = {0, 1}. (Bernoulli distribution).
There is no node corresponding to Y in the Bnet of Fig.47.1. Fig.47.2 shows

a new Bnet that has a new node called Y⃗ compared to the Bnet of Fig.47.1. One
defines the TPMs for all nodes of Fig.47.2 except Y⃗ and V the same as for Fig.47.1.
For Y⃗ and V , one defines

P (Y σ | ⃗̂y) = P (Y = Y σ | ŷσ) (47.23)

P (V |Y⃗ , y⃗) = δ(V,
−1

nsam(x⃗)
lnL) , (47.24)

where L =
∏

σ P (Y = yσ | ŷσ)=likelihood.
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Chapter 48

Linear Deterministic Bnets with
External Noise

In this chapter, we will consider bnets which were referred to, prior to the invention of
bnets, as: Sewall Wright’s Path Analysis (PA) and linear Structural Equations
Models (SEM). Judea Pearl in his books calls them linear Structural Causal
Models (SCM), because they are very convenient for doing causal analysis. We will
refer to them as linear Deterministic with External Noise (LDEN) diagrams.
This chapter is devoted to LDEN diagrams, except that we will say a few words about
non-linear DEN diagrams at the end.

A DEN diagram is a special kind of bnet. To build a DEN diagram, start
with a deterministic bnet G. The deterministic nodes of G are called the endogenous
(internal) variables. Now make a bigger bnet G called a DEN diagram by adding
to each node a of G a non-deterministic root node ua pointing into a only. The nodes
ua are called the exogenous (external) variables. The exogenous variables make
their children noisy. They are assumed to be unobserved and their TPMs are prior
probability distributions. Since they are root nodes, they are mutually independent.
When we draw a DEN diagram, we will sometimes not draw the exogenous nodes,
leaving them implicit.

A linear DEN diagram (LDEN) is a DEN diagram whose deterministic
nodes have a TPM that is a linear function of the states of the parent nodes.

This chapter uses the notation
〈
x, y
〉

for the covariance of any two random
variables x, y. This

〈
x, y
〉

notation is defined in Chapter C.

48.1 Example of LDEN diagram
The TPMs, printed in blue, for the LDEN diagram Fig.48.1, are as follows.

P (y|w, z, uy) = 1(y = ϵw + δz + uy) (48.1)
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x
β

��

α

��
w

ϵ
��

z
γoo

δ
��

y

Figure 48.1: Example of a LDEN diagram wherein x splits into two nodes z and w,
then merges into node y. There is also an arrow z → w. Exogenous nodes are not
shown. The Greek letters represent real numbers.

P (w|x, z, uw) = 1(w = βx+ γz + uw) (48.2)

P (z|x, uz) = 1(z = αx+ uz) (48.3)

P (x|ux) = 1(x = ux) (48.4)

Hence,

y = ϵw + δz + uy (48.5)
= ϵ(βx+ γz + uw) + δz + uy (48.6)
= (ϵγ + δ)z + ϵβx+ ϵuw + uy (48.7)
= (ϵγ + δ)z + ϵβux + ϵuw + uy . (48.8)

Therefore (
∂y

∂z

)
u.−uz

= ϵγ + δ , (48.9)

where the partial derivative holds fixed all exogenous variables except uz. Note that
this partial derivative is a sum of terms, and that each of those terms represents a
different directed path from z to y(z). This is a general property of LDEN diagrams.

48.2 LDEN equations and their 2 solutions
LDEN diagrams are described by a system of linear equations (known as the struc-
tural equations) of the form
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xi =
nx−1∑
j=0

αi|jxj + ui (48.10)

for i = 0, 1, . . . , nx − 1, where the xi are the internal nodes, the αi|j are the path
coefficients (a.k.a. arrow gains), and the ui are the external nodes that inject noise
into the system. Some of the αi|j may be zero, in which case the corresponding arrow
xj → xi would not be drawn. The ui are root nodes with zero covariance with each
other.

We can view this as either

1. UNK-CM (unknown covariance matrix) solution

a linear system of equations with the unknowns xi. We can solve for these
unknowns using basic Linear Algebra. Once we solve for the unknowns, we can
calculate the covariances

〈
xj, xk

〉
.

2. UNK-G (unknown gains) solution

a linear system of equations with the unknowns αi|j. We can solve for these
unknowns using basic Linear Algebra.

Next, we will find the 2 solutions UNK-CM and UNK-G explicitly for arbitrary
LDEN diagrams. We will present these solutions gradually, first for fully connected
LDEN diagrams, and then for the general case that does not require full connectivity.

48.3 Fully connected LDEN diagrams
The bnets that will be considered in this section will all be fully connected. Fully
connected bnets are defined in Chapter D.

In this section, we will assume that the nodes xj are ordered topologically,
with the root nodes first. This means that xi happens after xj if i > j. When the
nodes are ordered topologically, αi|j = 0 if j ≥ i.

In the fully connected case, αi|j ̸= 0 for all j < i, and for any node xi, all
previous nodes are parents of xi and we draw arrows xj → xi for j = 0, 1, . . . , i− 1.

In the not fully connected case, some of the αi|j with j < i are zero, in which
case the corresponding arrow xj → xi is not drawn.

48.3.1 Fully connected LDEN diagram with nx = 2

Consider the LDEN diagram of Fig.48.2. This diagram represents the following struc-
tural equations:

x0 = u0 (48.11a)
x1 = α1|0x0 + u1 . (48.11b)
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x0

α1|0
��
x1

Figure 48.2: Fully connected LDEN diagram with two xj nodes (exogenous nodes uj
not shown).

1. UNK-CM solution

Note that

x0 = u0 (48.12a)
x1 = α1|0u0 + u1 (48.12b)

Thus, the xi can be expressed in terms of the ui. Using the fact that
〈
ui, uj

〉
= 0

for i ̸= j, we get

⟨x0, x0⟩ = σ2
u0

(48.13)

⟨x1, x0⟩ = α1|0σ
2
u0

(48.14)

⟨x1, x1⟩ = α2
1|0σ

2
u0

+ σ2
u1

(48.15)

2. UNK-G solution

Note that

⟨x0, u1⟩ = 0 (48.16)

because the path from x0 to u1 is blocked by a collider. Therefore,

⟨x0, x1⟩ = α1|0 ⟨x0, x0⟩ (48.17)

so1

α1|0 =
⟨x0, x1⟩
⟨x0, x0⟩

=
∂x1
∂x0

(48.18)

Thus, α1|0 can be estimated from the covariances
〈
xi, xj

〉
.
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x0
α1|0

��

α2|0

  
x1 α2|1

// x2

Figure 48.3: Fully connected LDEN diagram with three xj nodes (exogenous nodes
uj not shown).

48.3.2 Fully connected LDEN diagram with nx = 3

Consider the LDEN diagram of Fig.48.3. This diagram represents the following struc-
tural equations:

x0 = u0 (48.19a)
x1 = α1|0x0 + u1 (48.19b)
x2 = α2|0x0 + α2|1x1 + u2 . (48.19c)

1. UNK-CM solution

Let

x =

 x0
x1
x2

 , u =

 u0
u1
u2

 (48.20)

and

A =

 0 0 0
α1|0 0 0
α2|0 α2|1 0

 (48.21)

Note that

x = Ax+ u (48.22)

so

x = (1− A)−1u (48.23)

Thus, the xi can be expressed in terms of the ui.

If we define the covariance matrix by

1We are using the notation ∂b
∂a = ⟨a,b⟩

⟨a,a⟩ , for any two random variables a, b
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C =
〈
x, xT

〉
, Ci,j =

〈
xi, xj

〉
(48.24)

then2

C = (1− A)−1
〈
ϵ, ϵT

〉
[(1− A)−1]T (48.25)

= (1− A)−1diag(σ2
ϵi
)[(1− A)−1]T (48.26)

If we define the Jacobian matrix J by

Ji,j =
∂xi
∂xj

(48.27)

then

J = C[diag(⟨xi, xi⟩)]−1 (48.28)
= (1− A)−1diag(σ2

ϵi
)[(1− A)−1]T [diag(⟨xi, xi⟩)]−1 (48.29)

C has the nice property that it is a symmetric matrix, whereas J has the nice
property that its diagonal elements are all 1.

2. UNK-G solution

Note that

⟨x0, x1⟩ = α1|0 ⟨x0, x0⟩ (48.30a)
⟨x0, x2⟩ = α2|0 ⟨x0, x0⟩+ α2|1 ⟨x0, x1⟩ (48.30b)
⟨x1, x2⟩ = α2|0 ⟨x1, x0⟩+ α2|1 ⟨x1, x1⟩ (48.30c)

Hence
α1|0 =

⟨x0, x1⟩
⟨x0, x0⟩

=
∂x1
∂x0

(48.31)

[
⟨x0, x2⟩
⟨x1, x2⟩

]
=

[
⟨x0, x0⟩ ⟨x0, x1⟩
⟨x1, x0⟩ ⟨x1, x1⟩

] [
α2|0
α2|1

]
(48.32)

Let

α(2) =

[
α2|0
α2|1

]
, x(2) =

[
x0
x1

]
,
〈
x(2), x2

〉
=

[
⟨x0, x2⟩
⟨x1, x2⟩

]
(48.33)

Define the covariance matrix C(2) for the third row of A by
2We are using the notation diag(a) = diagonal matrix with a ∈ Rn along its diagonal.
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C(2) =

[
⟨x0, x0⟩ ⟨x0, x1⟩
⟨x1, x0⟩ ⟨x1, x1⟩

]
(48.34)

Then

〈
x(2), x2

〉
= C(2)α(2) (48.35)

so

α(2) = [C(2)]−1
〈
x(2), x2

〉
(48.36)

Alternatively, let

∇(2)x2 =

[
∂x0x2
∂x1x2

]
(48.37)

Define the Jacobian matrix for the third row of A by

J
(2)
i,j =

∂xi
∂xj

(48.38)

for i, j ∈ {0, 1}. Then

∇(2)x2 = J (2)Tα(2) (48.39)

so

α(2) = [J (2)T ]−1∇(2)x2 (48.40)

From the C(r) and the J (r) expressions for r = 1, 2, we see that the αi|j can be
expressed in terms of the covariances

〈
xi, xj

〉
.

48.3.3 Fully connected LDEN diagram with arbitrary nx

Let x. = (xi)i=0,1,...,nx−1 and x<i = (xk)k=0,1,...,i−1. Consider a fully connected LDEN
diagram with deterministic internal nodes labeled xi. The xi labels are assumed to
be in topological order (i.e., the parents of node xi are x<i). Let the TPMs, printed
in blue, for the nodes x. of the LDEN diagram, be as follows.

P (xi|x<i, ui) = 1(xi =
∑
j<i

αi|jxj + ui) , (48.41)

for some parameters αi|j ∈ R. The external nodes u. are assumed to be independent
so
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P (u.) =
∏
i

P (ui) (48.42)

and 〈
ui, uj

〉
= 0 if i ̸= j . (48.43)

Note that

P (x.) =
∑
u.

P (u.)
∏
i

P (xi|x<i, ui) (48.44)

= Eu.[
∏
i

P (xi|x<i, ui)] . (48.45)

In terms of random variables, this system is described by the following struc-
tural equations:

xi =
∑
j<i

αi|jxj + ui . (48.46)

1. UNK-CM solution

The structural equations can be written in matrix form as follows. Define a
strictly lower triangular matrix A with the arrow gains αi|j ∈ R as entries. For
example, for nx = 4,

A =


0 0 0 0
α1|0 0 0 0
α2|0 α2|1 0 0
α3|0 α3|1 α3|2 0

 . (48.47)

If we now represent the multinodes x. and u. as column vectors x and u, we get

x = Ax+ u . (48.48)

Note that

x = (1− A)−1u (48.49)

so the xi can be expressed in terms of the ui.

Just like we did for the case nx = 3, we can now use Eq.(48.49) to express, in
terms of A and the ⟨ui, ui⟩ = σ2

ui
, the covariance matrix C =

〈
x, xT

〉
and the

Jacobian matrix J with Ji,j =
∂xi
∂xj

. .
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2. UNK-G solution
Note that

xi = fi(u≤i) . (48.50)
Therefore, if i > k,

⟨xk, ui⟩ =
〈
fk(u≤k), ui

〉
= 0 . (48.51)

Thus, if i > k,

⟨xk, xi⟩ =
∑
j<i

αi|j
〈
xk, xj

〉
+ ⟨xk, ui⟩ (48.52)

=
∑
j<i

αi|j
〈
xk, xj

〉
. (48.53)

As shown for the cases nx = 2, 3 above, Eqs.(48.53) can be expressed as a system
of equations for each row of the matrix A, and those systems of equations can
be solved to express the αi|j in terms of the covariances

〈
xi, xj

〉
.

Dividing both sides of Eq.(48.53) by ⟨xk, xk⟩, we get, for i > k,

∂xi
∂xk

=
∑
j<i

αi|j
∂xj
∂xk

(48.54)

48.4 Not fully connected LDEN diagrams
When the LDEN diagram is not fully connected, some αi|j might be zero for i > j, and
the corresponding arrow xj → xi is not drawn. If that is the case, the formulae that
we gave above, for the fully connected LDEN diagram, for the UNK-CM solution,
still apply, but the formulae that we gave above, for the UNK-G solution, must be
modified as follows.

The problem with the previously presented UNK-G solution is that, when we
solve for the αi|j in each row of A, we are sometimes solving for αi|j which we know a
priori are equal to zero. So basically, we are solving a system of equations with more
equations than unknowns, what is called an “overdetermined" system of equations. A
simple solution to this quandary is to add to the set of unknown variables αi|j, a few
of the covariances too. That way, we can get a system of equations with the same
number of equations as number of unknowns. So which of the covariances should be
made into unknowns? A very natural choice is to make the covariance

〈
xi, xj

〉
an

unknown if αi|j = 0 for some i > j. This is what I do in Ref.[87], and it works like a
charm. A fully connected LDEN diagram with N nodes has N2/2 − N/2 arrows. If
M of those are missing, our final result will be M constraints among the covariances,
and N2/2−N/2−M equations expressing the non-zero αi|j in terms of covariances.
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48.5 LDEN diagram with conditioned nodes
Conditioning on a node x of an LDEN diagram means assuming that x is fixed at a
specific value x. Normally, we assume〈

ϵi, ϵj
〉
= 0 if i ̸= j (48.55)

However, when we condition on some nodes {xi : i ∈ C}, the constraint Eq.(48.55)
must be modified. Instead, we assume〈

ϵi, ϵj
〉
= 0 if i ∈ C or j ∈ C. (48.56)

The reason this makes sense is as follows. The ϵi for i ∈ C no longer serve a function
because they are futilely pumping noise into a fixed node, so we may set those ϵi to a
constant. On the other hand, the ϵi with i ̸∈ C, might have become correlated among
themselves as a result of the conditioning. For example. we might have conditioned
on a collider, and opened an unblocked path between two of those ϵi with i ̸= C. See
Ref.[87] for examples where this occurs.

48.6 SCuMpy
Check out my free open source software SCuMpy [87]. SCuMpy ia a Python library
for doing both symbolic and numeric calculations for linear Structural Causal Models
(SCM) (i.e., LDEN diagrams).

48.7 Non-linear DEN diagrams
This chapter is dedicated to linear DEN diagrams. This implicitly assumes that the
deterministic nodes x. of the DEN diagram have an interval of real values as their
possible states. A trivial but very useful generalization of linear DEN diagrams is to
replace Eq.(48.41) for the TPMs of the deterministic nodes of the diagram by

P (xi|x<i, ui) = 1(xi = fi(x<i, ui)) , (48.57)

with structural equations

xi = fi(x<i, ui) , (48.58)

for i = 0, 1, . . . , nx− 1. Here the fi are possibly non-linear functions that depend on
the states x<i and ui of nodes x<i and ui. If a node xi has no arrows entering it (i.e.,
is a root node), then

P (xi|x<i, ui) = P (xi) = δ(xi, a) (48.59)
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and

xi = a (48.60)

for some a ∈ Sxi .
Besides a linear function, the fi() might equal a continuous function such as

a polynomial, or a discrete-valued Boolean function such as an OR gate.

371



Chapter 49

Marginalizer Nodes

Suppose we have a bnet node x that has multiple components. For instance, suppose
x = (x1, x2, x3). Then, we can define 3 marginalizer nodes with TPMs, shown in
blue, as follows

P (xi = ξi|x = (x1, x2, x3)) = δ(ξi, xi) (49.1)

for ξi ∈ Sxi and i = 1, 2, 3.
Figs.49.1 and 49.2 show 3 different styles for representing marginalizer nodes

graphically. In this book, we will use styles (b) or (c). Style (b) is the least ambiguous.
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Figure 49.1: 3 styles for representing marginalizer nodes in an arbitrary bnet.
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Figure 49.2: 3 styles for representing marginalizer nodes in an LDEN bnet (see Chap-
ter 48).
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Chapter 50

Markov Blankets

This chapter is based on the Wikipedia article, Ref.[148]. Markov blankets and
Markov boundaries of bnets were apparently invented by Judea Pearl. His 1988
book Ref.[55], instead of a research paper, is usually given as the original reference.

Figure 50.1: In a bnet, the minimal Markov blanket, a.k.a. Markov boundary, of
node a.

We will treat vectors of random variables as if they were sets when using the
∈, ⊂ and − operations. For example, if x = (x0, x1, x2, x3) and b = (x1, x2), then
x1 ∈ b ⊂ x and x− b = (x0, x3).

Below, H(a : b|c) denotes the conditional mutual information of random vari-
ables a and b conditioned on random variable c. H(a : b|c) is used in Shannon
Information Theory, where it is defined by

H(a : b|c) =
∑
a,b,c

P (a, b, c) ln
P (a, b|c)

P (a|c)P (b|c)
. (50.1)

H(a : b|c) = 0 iff a and b are independent (uncorrelated) when c is held fixed.
Suppose a ∈ X, B ⊂ X, but a /∈ B. Then B is a Markov blanket of a if
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H(a : X − a|B) = 0 . (50.2)

In other words, one may assume that a depends on B only, and is independent of all
random variables in X − (a ∪B).

The minimal Markov blanket is called the Markov boundary.
In a bnet, the Markov boundary of a node a, contains:

1. the parents of a,

2. the children of a,

3. the parents, other than a, of the children of a.

This is illustrated in Fig.50.1.
From the d-separation theorem (see Chapter 23), we get an intuitive moti-

vation for the definition of Markov boundary. By conditioning on the parents and
children of node a, we block almost all, but not all, information from reaching node
a. The reason not all info is blocked is that conditioning on a child c of a creates
paths from a parent of c to c to a, wherein node c acts as a conditioned collider. To
block such paths, we must condition on the parents of c too.
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Chapter 51

Markov Chain Monte Carlo (MCMC)

Monte Carlo methods are methods for using random number generation to sample
probability distributions. The subject of Monte Carlo methods has many branches,
as you can see from its Wikipedia category list, Ref.[151]. MCMC (Markov Chain
Monte Carlo) is just one of those branches, albeit a major one. Metropolis-Hastings
(MH) sampling is a very important MCMC method. Gibbs sampling is a special case
of MH sampling. This chapter covers both, MH and Gibbs sampling. It also covers
a few other types of sampling.

Throughout this chapter, we use Px : Sx → [0, 1] to denote the target proba-
bility distribution that we wish to obtain samples from.

51.1 Inverse Cumulative Sampling
For more info about this topic and some original references, see Ref.[135].

This is one of the simplest methods for obtaining samples from a probability
distribution Px, but it requires knowledge of the inverse cumulative distribution of
Px, which is often not available.

The cumulative distribution function is defined by:

CUMx(x) = P (x < x) =

∫
x′<x

dx′ Px(x
′) . (51.1)

Note that

Px(x) =
d

dx
CUMx(x) . (51.2)

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
x⃗(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples

collected up to time t.
The TPMs, printed in blue, for bnet Fig.51.1, are as follows:

376



u(0)

��

u(1)

��

u(2)

��

x⃗(0) // x⃗(1) // x⃗(2)

Figure 51.1: bnet for Inverse Cumulative Sampling

P (u(t)) = 1 (51.3)

P (x⃗(t)|x⃗(t−1), u(t)) = δ( x⃗(t), [x⃗(t−1), CUM−1
x (u(t))] ) (51.4)

Motivation

Figure 51.2: Motivation for Inverse Cumulative Sampling.

See Fig.51.2.
Note that if u is uniformly distributed over the interval [0, 1] and a ∈ [0, 1],

then

P (u < a) = a . (51.5)

Thus

P (CUM−1
x (u) < x) = P (u < CUMx(x)) (51.6)

= CUMx(x) . (51.7)

Therefore,

dP (CUM−1
x (u) < x) = Px(x)dx . (51.8)
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51.2 Rejection Sampling
For more info about this topic and some original references, see Ref.[162].

This method samples from a “candidates" probability distribution Pc : Sx →
[0, 1], in cases where sampling directly from the target probability distribution Px :
Sx → [0, 1] is not possible.

u(0)

��

u(1)

��

u(2)

��
x⃗(0)

))
a(0) // x⃗(1)

))
a(1) // x⃗(2)

))
a(2) // x⃗(3)

c(0)

OO ==

c(1)

OO ==

c(2)

OO ==

Figure 51.3: bnet for Rejection Sampling

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
a(t) ∈ {0, 1}= accept candidate? (no=0, yes=1)
c(t) ∈ Sx= sample that is a candidate for being accepted
x⃗(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples

collected up to time t.
This algorithm requires a priori definition of a candidate probability distribu-

tion Pc : Sx → R such that
Px(x) < βPc(x) (51.9)

for all x ∈ Sx, for some β ∈ R.
The TPMs, printed in blue, for bnet Fig.51.3, are as follows:

P (u(t) = u) = 1 (51.10)

P (c(t) = c) = Pc(c) (51.11)

P (a(t) = a|c(t) = c, u(t) = u) =

{
δ(a, 0) if uβPc(c) ≥ Px(c)
δ(a, 1) if uβPc(c) < Px(c)

(51.12)
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P (x⃗(t)|x⃗(t−1), a(t) = a, c(t) = c) =

{
δ(x⃗(t), x⃗(t−1)) if a = 0
δ(x⃗(t), [x⃗(t−1), c]) if a = 1

(51.13)

This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (x⃗(0)) which must be specified a priori.
Motivation

Figure 51.4: Motivation for Rejection Sampling.

See Fig.51.4.

51.3 Metropolis-Hastings Sampling
For more info about this topic and some original references, see Refs.[4] and [149].

An advantage of this method is that it can sample unnormalized probability
distributions (constant)Px because it only uses ratios of Px at two different points.
Another advantage of this method is that it scales much better than other sampling
methods as the number of dimensions of the sampled variable x increases.

This method produces samples that take a finite amount of time to reach
steady state. The samples are also theoretically correlated instead of being i.i.d. as
one desires. To mitigate for the steady state problem, one discards an initial set of
samples (the “burn-in" period). To mitigate for the correlation problem, one calculates
the autocorrelation between the samples and keeps only samples separated by a time
interval after which the samples cease to be autocorrelated to a good approximation.

For t = 0, 1, . . . , T − 1, let
u(t) ∈ [0, 1]= random variable, uniformly distributed over [0, 1].
a(t) ∈ {0, 1}= accept candidate? (no=0, yes=1)
c(t) ∈ Sx= sample that is a candidate for being accepted
m(t) ∈ Sx= memory of last accepted sample
x⃗(t) = (x(t)[σ])σ=0,1,...,nsam(t)−1 where x(t)[σ] ∈ Sx for all σ. Vector of samples

collected up to time t.
A proposal TPM Pc|x : S2

x → [0, 1] must be specified a priori for this algo-
rithm.

The TPMs, printed in blue, for bnet Fig.51.5, are as follows:
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Figure 51.5: bnet for Metropolis-Hastings Sampling

P (u(t) = u) = 1 (51.14)

P (c(t) = c|m(t) = m) = Pc|x(c|m) (51.15)

P (a(t) = a|c(t) = c, u(t) = u,m(t) = m) =

{
δ(a, 0) if u ≥ α(c|m)
δ(a, 1) if u < α(c|m)

(51.16)

where the acceptance probability α is defined as

α(c|m) = min

(
1,
Pc|x(m|c)Px(c)
Pc|x(c|m)Px(m)

)
. (51.17)

Note that if the proposal distribution is symmetric, then

α(c|m) = min

(
1,
Px(c)

Px(m)

)
. (51.18)

P (x⃗(t)|x⃗(t−1), a(t) = a, c(t) = c) =

{
δ(x⃗(t), x⃗(t−1)) if a = 0
δ(x⃗(t), [x⃗(t−1), c]) if a = 1

(51.19)

This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (x⃗(0)) which must be specified a priori.

P (m(t) = m|x⃗(t)) = δ(m, last component of x⃗(t)) . (51.20)
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Figure 51.6: Motivation for Metropolis-Hastings Sampling.

This last equation is only defined for t > 0. For t = 0, the left hand side reduces to
P (m(0) = m) which must be specified a priori.
Motivation

See Fig.51.6.
Consider a time homogeneous (its TPM is the same for all times) Markov chain

with TPM P (x′|x) = [T ]x′,x. Its stationary distribution, if it exists, is defined as

π = lim
n→∞

T nπ0 . (51.21)

Suppose the prob distribution Px(x) that we wish to sample from satisfies

Px(x) = π(x) . (51.22)

Reversibility (detailed balance): For all x, x′ ∈ Sx,

P (x′|x)π(x) = P (x|x′)π(x′) . (51.23)

Detailed balance is a sufficient (although not necessary) condition for a unique sta-
tionary prob distribution π to exist.1

Let

P (x′|x) = P (a = 1|x′, x)Pc|x(x′|x) + δ(x, x′)P (a = 0|x) , (51.24)

where

P (a = 0|x) =
∑
x′

P (a = 0|x′, x)Pc|x(x′|x) . (51.25)

1As explained lucidly in Ref.[4], besides detailed balance, 2 other properties must also be satisfied
by the Markov chain, irreducibility and aperiodicity. However, because of how it is constructed, the
Metropolis-Hastings algorithm automatically produces a Markov chain that has those 2 properties.
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Claim 81 If

P (a = 1|x′, x) = α(x′|x) , (51.26)

then detailed balance is satisfied.

proof: Assume x ̸= x′.

P (x′|x)P (x) = P (a = 1|x′, x)Pc|x(x′|x)Px(x) (51.27)

= min

(
1,
Pc|x(x|x′)Px(x′)
Pc|x(x′|x)Px(x)

)
Pc|x(x

′|x)Px(x) (51.28)

= min
(
Pc|x(x

′|x)Px(x), Pc|x(x|x′)Px(x′)
)

(51.29)
= P (x|x′)P (x′) (51.30)

QED

51.4 Gibbs Sampling
For more info about this topic and some original references, see Ref.[129].

Gibbs sampling is a special case of Metropolis-Hastings sampling. Gibbs sam-
pling is ideally suited for application to a bnet, because it is stated in terms of the
conditional prob distributions of N random variables, and conditional prob distribu-
tions are part of the definition of a bnet.

Consider a bnet with nodes x0, x1, . . . , xN−1

Identify the random variable x = (x0, x1, . . . , xN−1) with the random variable
x used in Metropolis-Hastings sampling. For Gibbs sampling, we use the following
proposal distribution:

Pc|x(c|m) =
N−1∏
j=0

P (cj | [mi]i ̸=j) . (51.31)

Eq.(51.31) can be simplified using Markov Blankets (see Chapter 50) to the following:

Pc|x(c|m) =
N−1∏
j=0

P (cj | [mi : ∀i ∋ xi ∈MB(xj)]) , (51.32)

where, for any node a, we denote its Markov blanket by MB(a).
An alternative proposal distribution that leads to much faster convergence is

as follows. The idea is to make the components c(t)j of candidate sample c(t) depend
on the previous components (c(t)i )i<j. See the bnet Fig.51.7. The TPM for the nodes
of that bnet are
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Figure 51.7: In Gibbs sampling, the proposal distribution Pc|x can be defined by mak-
ing the components c(t)j of candidate sample c(t) depend on the previous components
(c

(t)
i )i<j.

P (c
(t)
j = cj | (c(t)i )i<j = (ci)i<j,m

(t−1) = m) = P (cj|(ci)i<j, (mi)i>j) (51.33)

for j = 0, 1, . . . , N − 1. This implies

Pc|x(c
(t) = c|m(t−1) = m) =

N−1∏
j=0

P (cj|(ci)i<j, (mi)i>j) . (51.34)

As before, we can condition only on the Markov blanket of each node xj.

Pc|x(c
(t) = c|m(t−1) = m) =

N−1∏
j=0

P (cj|(ci)i<j, (mi)i>j, use only ci and mi ∋ xi ∈MB(xj)) .

(51.35)

51.5 Importance Sampling
For more info about this topic and some original references, see Ref.[133].

Suppose random variables x[σ] ∈ Sx for σ = 0, 1, . . . , nsam− 1 are i.i.d. with
probability distribution Px. Then

Ex[f(x)] ≈
1

nsam

nsam−1∑
σ=0

f(x[σ]) (51.36)
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for any f : Sx → R. Sometimes, instead of using i.i.d. samples x[σ] ∈ Sx where
x[σ] ∼ Px, we wish to use i.i.d. samples y[σ] ∈ Sx where y[σ] ∼ Py.

Ex[f(x)] =
∑
x

Px(x)f(x) (51.37)

=
∑
x

Py(x))
Px(x)

Py(x)
f(x) (51.38)

= Ey[
Px(y)

Py(y)
f(y)] (51.39)

Sampling from Py(y) instead of Px(x) might reduce (or increase) variance for
a particular f : Sx → R.

V arx[f(x)] = Ex[(f(x))
2]− (Ex[f(x)])

2 (51.40)

V ary[
Px(y)

Py(y)
f(y)] = Ey[(

Px(y)

Py(y)
f(y))2]− (Ey[

Px(y)

Py(y)
f(y)])2 (51.41)

= Ex[
Px(x)

Py(x)
(f(x))2]− (Ex[f(x)])

2 (51.42)
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Chapter 52

Markov Chains

A Markov Chain is simply a bnet with the graph structure of a chain. For example,
Fig.52.1 shows a chain with n = 4 nodes.

x0 // x1 // x2 // x3

Figure 52.1: Markov chain with n = 4 nodes.

Because of its graph structure, the TPM of each node only depends on the
state of the previous node:

P (xt|(xa)a̸=t) = P (xt|xt−1) , (52.1)

where (xa)a̸=t are all the nodes except xt itself and t = 1, 2, . . . , n− 1.
If there exists a single TPM Px1|x0 such that

P (xt|xt−1) = Px1|x0(xt|xt−1) (52.2)

for t = 1, 2, . . . , n− 1, then we say that the Markov chain is time homogeneous.

Claim 82 (Data Processing Inequality (DPI))
Consider a Markov chain x0 → x1 · · · → xn−1. Suppose 0 ≤ a < m < b ≤

n− 1. Then
H(xa : xb) ≤ min[H(xa : xm), H(xm : xb)] (52.3)

See Ref.[119] for references where the DPI is proven. This inequality confirms our
intuitive expectations that the information transmitted (i.e., the mutual informa-
tion(MI)) from a to b (or vice versa since MI is symmetric) is smaller or equal to the
one transmitted from a to m or from m to b because a and b are “farther apart" and
“some info can get lost during transmission through the mediator node m".
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Chapter 53

Mediation Analysis

This chapter is mostly based on Refs.[58, 56] by Pearl.
To fully understand this chapter, the reader should first read Chapter 12 where

do and imagine operators are defined.

ud

��

um

��

uy

��

m

  
d

>>

// y

ud

��

�� ��
um

��

�� ��
uy

��

m

  
d

>>

// y

G0 G

Figure 53.1: DEN bnets G0 and G are used to discuss mediation analysis. In graph
G0, the external variables are independent, whereas in graph G they are not.

The term “mediation analysis" (MA) refers to the analysis by Pearl of the
DEN bnet G in Fig.53.1. We will discuss MA in terms of DEN bnets, just as Pearl
does. However, note that much of what we will say applies also to the general (i.e.,
not necessarily a DEN) bnet Ggen show in Fig. 53.2.

In the DEN bnetG, node d influences node y both directly and via the mediator
node m. The structural equations for G are of the form:

d = ud (53.1a)
m = fm(d, um) (53.1b)
y = fy(d,m, uy) . (53.1c)

386



u

��

�� ��

m

��
d

@@

// y

Ggen

Figure 53.2: General bnet used to discuss mediation analysis. Node u is a hidden
confounder.

Thus,

y = fy(ud, fm(ud, um), uy) . (53.2)
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�� ��
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  Dd = 5
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uy
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Imd = 5 //m

��
d // y

Dd=5G Id→m(5)G

Figure 53.3: Graph G of Fig.53.1 after applying do operator Dd=5 and imagine oper-
ator Id→m(5).

If we apply Dd=5G to Eqs.(53.1), we get

d = 5 (53.3a)
m = fm(d, um) (53.3b)
y = fy(d,m, uy) . (53.3c)

Eqs.53.3 are represented graphically in Fig.53.3. We will often denote the random
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variable y in Eqs.(53.3) by the more explicit symbol yDd=5G
. Pearl often refers to this

y by the less explicit symbol Y5 or Y5(u) where u = (um, uy) = u!d.
If we apply Id→m(5)G to Eqs.(53.1), we get

d = ud (53.4a)
m = fm(5, um) (53.4b)
y = fy(d,m, uy) . (53.4c)

Eqs.53.4 are represented graphically in Fig.53.3. We will often denote the random
variable y in Eqs.(53.4) by the more explicit symbol yId→m(5)G

. Pearl often refers to
this y by the less explicit symbol Y5 or Y5(u) where u = (ud, um, uy).
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um

��

�� ��
uy

��

m

  Dd = d

::

// y

ud
�� ��

um
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uy

��

Dm = m

$$Dd = d // y

Dd=dG Dd=dDm=mG

Figure 53.4: Graph G of Fig.53.1 after applying the do operators Dd=d and
Dd=dDm=m.

Define

Yd = E[yDd=dG
] =

∑
y

yP (y|Dd = d) (53.5)

and

Ymd = E[yDd=dDm=mG
] =

∑
y

yP (y|Dd = d,Dm = m) (53.6)

The two DEN diagrams Dd=dG and Dd=dDm=mG used in the definitions of Yd and
Ymd are given in Fig.53.4.

Now define the Total Effect (TE), and the Controlled Direct Effect (CDE) by

TE = Y1 − Y0 (53.7)
CDE(m) = Ym1 − Ym0 (53.8)
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ud
yy %%

um

��

�� ��
uy

��

Imd = d′ //m

��Dd = d // y

Dd=dId→m(d
′)G

Figure 53.5: Graph G of Fig.53.1 after applying the imagine operator I to arrow
d→ m and the do operator to node d.

Define

Yd
′

d = E[yDd=dId→m(d′)G
] =

∑
y

yP (y|Dd = d, Imd = d′) (53.9)

Fig.53.5 shows the diagram Dd=dId→y(d
′)G used in the definition of Yd

′

d .
Note that

Yd
′

d =
∑
m

Ymd P (m = m|d′) (53.10)

if there is no arrow um → m. This expresses P (y|Dd = d, Id = d′) in terms of
P (y|Dd = d,Dm = m).

Define
Yd

′−
d = Yd

′

d − Y
d′

d′ (53.11)

and
Yd

′

d− = Yd
′

d − Y
d

d (53.12)

Now define the Natural Direct Effect (NDE), and the Natural Indirect Effect
(NIE) by

NDEd′

d = Yd
′−
d (53.13)

NIEd′

d = Yd
′

d− . (53.14)

Note that

NDE0
1 −NIE0

1 = −Y0

0 + Y
1

1 (53.15)
= TE . (53.16)
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Linear Case
Consider the LDEN of Fig.53.6. One has

ud

��

um

��

uy

��

m

β
  

d

α

>>

γ
// y

Figure 53.6: LDEN that is used to discuss mediation analysis.

d = ud (53.17a)
m = αd+ um (53.17b)
y = γd+ βm+ uy . (53.17c)

Yd = (γ + αβ)d (53.18)

Ymd = γd+ βm (53.19)

Yd
′

d = γd+ αβd′ (53.20)

TE = Y1 − Y0 = γ + αβ (53.21)

CDE(m) = Ym1 − Ym0 = γ (53.22)

NDE0
1 = Y0−

1 = γ (53.23)

NIE0
1 = Y0

1− = −αβ (53.24)

As expected, NDE0
1 −NIE0

1 = TE.
TE and the “controlled effect" CDE(m) contain do operators but no imagine

operators so one can do do-intervention experiments to calculate them. On the other
hand, the “natural effects" NDE0

1 and NIE0
1 contain imagine operators (and there-

fore counterfactual distributions) so it’s not obvious how to calculate them, or even
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whether it is possible to do so. The next claim shows how to calculate Yd
′

d in certain
cases. In technical jargon, the claim gives sufficient conditions for DI-identifiability
of Yd

′

d . NDE0
1 and NIE0

1 can be calculated once Yd
′

d is known.

Claim 83 (Unconfounded Mediation, from Ref.[58])
If m

��
d //

@@

y

then

P (y|Dd = d, Imd = d′) =
∑
m

P (y|d,m)P (m|d′) (53.25)

Id = d′

""Dd = d // y
=

Id = d′ //
∑
m

  Dd = d // y

(53.26)

proof: See Claim 55.
QED

Claim 84 (Mediation with universal prior ξ and universal confounder u, from Ref.[58])
If u

��

����

��
ξ

&&��

//m

��
d //

@@

y

then

P (y|Dd = d, Imd = d′) =
∑
ξ

∑
m

P (y|d,m, ξ)P (m|d′, ξ)P (ξ) (53.27)

Id = d′

""Dd = d // y
=

Id = d′ 44
∑
ξ

((

//
∑
m

  Dd = d // y

(53.28)

proof: See Claim 56.
QED

Actually,

∑
m

P (y|d,m)P (m|d′) =
∑
ξ

∑
m

P (y|d,m, ξ)P (m|d′, ξ)P (ξ) (53.29)
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so the adjustment formulae in Claims 83 and 84 are equivalent, but if the available
dataset contains info about ξ, then the adjustment formula that uses that ξ info
should be used, as it will be more sensitive to deviations from the DAG model being
hypothesized.
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Chapter 54

Mendelian Randomization

Mendelian Randomization (MR) is an application of the method of Instrumental
Variables (IVs) to genetics. It’s considered an “observational study". It’s used as a
substitute to an RCT (i.e., experimental study), when an RCT can’t be done.

IVs are discussed in Chapter 41. Here is a quick review of the essential points
of that chapter.

u
ν

��

µ

��
a α

// d
δ

// y

Figure 54.1: MR assumes this bnet

Figure 54.2: Pictorial representation of ATE = y(1)− y(0) = δ.

The bnet of Fig.54.1 obeys the following equations:{
y = δd+ µu+ uy
d = αa+ νu+ ud

(54.1)
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where uy and ud are external, uncorrelated noises.
If one solves for δ, one gets1

ATE = δ =

∂y

∂a

∂d
∂a

(54.2)

This formula for δ can be estimated using Linear Regression. See Fig.54.2 for a
pictorial representation of δ.
What these random variables stand for in MR:

a : genotype (inherited genetic variant trait). This is the IV.
u : hidden variable, “confounders" (good controls)
d ∈ {0, 1}: exposure
y ∈ {0, 1}: outcome

Example
a : has genotype that is strongly associated with heavy smokers?
u : city dweller?
d: smoker?
y: died of lung cancer?

Assumptions of MR (should be tested)

• a→ d, but no a→ y

• no confounder c such that c→ a, y

• no feedback (a.k.a. reverse causation) arrows y → a.

Using genotype for a makes these assumptions more likely.

1As usual in this book, we define ∂y

∂x =
⟨x,y⟩
⟨x,x⟩ for any random variables x, y.
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Chapter 55

Message Passing and Bethe Free
Energy

This chapter is based on Refs. [93] and [183].

55.1 2MRFs

∆ ∆ ∆

x11 ∆ x12 ∆ x13

∆ ∆ ∆ ∆ ∆ ∆

x21 ∆ x22 ∆ x23

Figure 55.1: Example of factor graph for a 2MRF. In this figure, a boxed ∆ between
variables xi and xj, denotes the propagator function ∆(xi, xj). Also, a boxed ∆
connected to a single variable xi, denotes the function ∆(xi, k), where k is a fixed
number. If we view this factor graph as a representation of a 3 dimensional device
with the leaf nodes ∆ in the back part and everything else in the front part, then the
back part can represent the light inputs from a scene, and the front part can represent
the analysis being done with the light inputs.

Factor graphs are discussed in Chapter 27.
A pairwise Markov Random Field (2MRF) is a statistical model whose prob-

ability distribution is of the form
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p(x) = N (!x)
∏
i−j

∆(xi, xj) (55.1)

where x = (x1, x2, . . . , xn), where i− j represents the edge that connects nodes i and
j in an undirected graph G, and where the product is over all edges of G. p(x) can
be represented graphically by a factor graph.

Fig.55.1 shows an example of a 2MRF represented as a factor graph.
The Ising model is another prototypical example of a 2MRF. Let T be the

temperature of a system,

θ =
1

T
, (55.2)

and x = (x1, x2, . . . , xnx) ∈ {−1, 1}nx. The Ising model is defined for J, h(xi) ∈ R by

ϵ(x) = −J
∑
i−j

xixj −
∑
i

h(xi) (55.3)

P (x) =
e

−ϵ(x)
T

Zθ
(55.4)

Note that a bnet can be easily converted to an equivalent 2MRF. You just set
∆(xi, k) = p(xi) if xi is a root node of the bnet, and ∆(xi, xj) = p(xi|xj) if xi isn’t a
root node. One must then choose the arrow directions of the bnet. A natural choice
is to choose the bnet arrows so that they all point from an xi to a ∆.

In what follows, we shall use messages (a.k.a. cavity fields)ma⇒i(xi), Note
that in our notation for messages, the letter i appears twice, and both occurrences
are next to each other. This is always the case in our notation for messages.

Henceforth, we will refer to the functions ∆(xi, xj) as propagators, to make
contact with Physics.

Henceforth, we shall use the notation ∂i to denote all nodes j that are neighbors
of node i. ∂i is called the neighborhood or boundary of i.

55.2 Message Passing Intuition
Next we present some results that will be derived later in the chapter, but which we
will first present now without proof, and explain how they make sense intuitively.
Assume that the functions ∆(xi, xj) are known for all edges i − j, and that the full
probability distribution p(x) of the model is given by Eq.(55.1).

1. Calculate message mj⇒i(xi) in terms of messages leaving xj. This is called the
message updating rule.

One has that
mj⇒i(xi) =

∑
xj

∆(xi, xj)
∏
b∈∂j\i

mb⇒j(xj) (55.5)
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This can be represented graphically by

xi mj⇒i(xi) =

mb1⇒j(xj)

xi ∆
∑
xj mb2⇒j(xj)

mb3⇒j(xj)

(55.6)

2. Calculate p̃(xi, xj) for any edge i−j in terms of messages entering xi and leaving
xj

One has that

p̃(xi, xj) = N (!x)∆(xi, xj)
∏
a∈∂i\j

ma⇒i(xi)
∏
b∈∂j\i

mb⇒j(xj) (55.7)

This can be represented graphically by

xi p̃ xj = N (!x)

ma1⇒i(xi) mb1⇒j(xj)

ma2⇒i(xi) xi ∆ xj mb2⇒j(xj)

ma3⇒i(xi) mb3⇒j(xj)

(55.8)

3. Calculate p̃(xi) in terms of messages entering xi
One has that

p̃(xi) =
∑
xj

p̃(xi, xj) (55.9)

This can be represented graphically by

xi p̃ = N (!x))

ma1⇒i(xi)

ma2⇒i(xi) xi mj⇒i(xi)

ma3⇒i(xi)

(55.10)
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Why it works?
Suppose we approximate the propagator ∆(xi, xj) by

∆(xi, xj) ≈ mj⇒i(xi)mi⇒j(xj) (55.11)

This can be represented graphically by

xi ∆ xj ≈ xi mj⇒i(xi) mi⇒j(xj) xj (55.12)

Then the results 1,2,3 above can be justified as follows.

1.

mj⇒i(xi) ≈
∑
xj

mj⇒i(xi)mi⇒j(xj)︸ ︷︷ ︸
∆(xi,xj)

∏
b∈∂j\i

mb⇒j(xj) (55.13)

= mj⇒i(xi)
∑
xj

∏
b∈∂j

mb⇒j(xj) (55.14)

= N (!x)mj⇒i(xi) (55.15)

2.

p̃(xi, xj) =
∑
x\xi,xj

p̃(x) (55.16)

≈ N (!x)
∑
x\xi,xj

∏
i−j

mj⇒i(xi)mi⇒j(xj)︸ ︷︷ ︸
∆(xi,xj)

(55.17)

≈ N (!x)∆(xi, xj)
∏
a∈∂i\j

ma⇒i(xi)
∏
b∈∂j\i

mb⇒j(xj) (55.18)

3.

p̃(xi) =
∑
xj

p̃(xi, xj) (55.19)

≈ N (!x)
∑
xj

mj⇒i(xi)mi⇒j(xj)︸ ︷︷ ︸
∆(xi,xj)

∏
a∈∂i\j

ma⇒i(xi)
∏
b∈∂j\i

mb⇒j(xj) (55.20)

≈ N (!x)
∏
a∈∂i

ma⇒i(xi) (55.21)

Henceforth, we will ocassionally use the following more compressed notation
for the factor graph of a 2MRF. Instead of using circles for variables and squares for
functions, we will use arrows pointing from x1 to x2 and vice versa.

x1 m2⇒1(x1) m1⇒2(x2) x2 = x1
m1⇒2(x2) //

x2
m2⇒1(x1)
oo (55.22)
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x3

m3⇒2(x2)wwx1
m1⇒2(x2) //

x2
m2⇒1(x1)

oo

m2⇒3(x3)
77

m2⇒4(x4)

''
x4

m4⇒2(x2)

gg

Figure 55.2: Example of compressed factor graph for a 2MRF.

Next, we give an example of how to use message passing to find the marginal
p̃(xi) for any node xi. Refer to Fig55.2 for this example.

Using the message updating rule successively, we get

p̃(x1) = N (!x)m2⇒1(x1) (55.23)

= N (!x)
∑
x2

∆(x1, x2)m3⇒2(x2)m4⇒2(x2) (55.24)

= N (!x)
∑
x2

∆(x1, x2)
∑
x3

∆(x2, x3)
∑
x4

∆(x2, x4) (55.25)

=
∑
x3

∆

x1 ∆
∑
x2

∆ ∑
x4

(55.26)

This algorithm is guaranteed to work only for trees. In practice, one starts
by calculating the messages pointing up from the leaf nodes of the tree. Then one
calculates the messages pointing up from the parents of the leaf nodes of the tree.
And so forth until one calculates all the messages pointing up from the leaf nodes to
the root node of the tree. Then one goes in the opposite direction, first calculating
messages pointing down from the root node to its children, from the children of the
root node to their children. And so forth. By the end, all upward and downward
pointing messages have been calculated. From this, p̃(xi) for all i can be calculated.
p̃(xi) is the product of all messages pointing into xi. .
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55.3 − lnZθ= Free Energy (FE)
Suppose θ, ϵ(x) ∈ Rni and x = (x1, x2, . . . , xnx) ∈ Rnx. Define the partition func-
tion Zθ by

Zθ =
∑
x

e−θ
T ϵ(x) (55.27)

and the probability distribution P (x|h) by

P (x|θ)︸ ︷︷ ︸
eLLθ(x)

= exp(−θT ϵ(x)− lnZθ) (55.28)

=
e−θ

T ϵ(x)

Z
(55.29)

ϵ(x) is called a sufficient statistic for x because P (x|θ) is a functional (i.e., a
function of a function) of ϵ(x). Note that by taking first and higher order derivatives
of lnZθ with respect to θi, we can calculate the statistics of ϵi(x).

−∂θi lnZθ =
1

Zθ

∑
x

ϵi(x)e
−θT ϵ(x) (55.30)

= Ex|θ[ϵi(x)] = ⟨ϵi⟩ (55.31)

∂θj∂θi lnZθ = ∂θj
1

Zθ

∑
x

−ϵi(x)e−θ
T ϵ(x) (55.32)

=

{
1
Zθ

∑
x ϵj(x)ϵi(x)e

−θT ϵ(x)

+−1
Z2
θ

[∑
x−ϵj(x)e−θ

T ϵ(x)
] [∑

x−ϵi(x)e−θ
T ϵ(x)

] (55.33)

= ⟨ϵjϵi⟩ − ⟨ϵj⟩ ⟨ϵi⟩ (55.34)
= ⟨ϵj, ϵi⟩ (55.35)

Define the log likelihood LLθ(x) by

LLθ(x) = −θT ϵ(x)− lnZθ (55.36)
and the entropy S by 1

S = −
∑
x

P (x|θ)LLθ(x) (55.37)

= −
∑
x

P (x|θ) lnP (x|θ) (55.38)

1In Thermodynamics, the entropy is denoted by the letter S. In Shannon Information Theory,
and elsewhere in this book, it is denoted by the letter H.
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Define the internal energy U by

U =
∑
x

P (x|θ)ϵθ(x) (55.39)

−S = −θTU − lnZθ (55.40)

∂Ui
S = θi (55.41)

S is concave. S and − lnZθ = F/T are concave dual functions.2.

Relationship to Thermodynamics
In Thermodynamics, U is the internal energy and S is the entropy of a

system at temperature T . Define θ ∈ R to be the inverse temperature

θ =
1

T
(55.42)

Define the free energy F bya

F = −T lnZθ (55.43)

= −T ln
∑
x

e−
ϵ(x)
T (55.44)

Then

U − TS = F (55.45)

So the free energy equals the internal energy minus the energy held in disordered
form.

aIn this chapter, we call − lnZ the free energy too.

55.4 − lnZθ∗= Minimum FE
Suppose we consider P (x|θ) for two different parameter θ and θ̃. Define

p(x) = P (x|θ), p̃(x) = P (x|θ̃) (55.46)

The Kullback-Leibler divergence is always non-negative so:
2Concave dual functions are discussed in Chapter 102
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0 ≤ DKL(p̃(x)) ∥ p(x)) (55.47)

=
∑
x

p̃(x) ln
p̃(x)

p(x)
(55.48)

= −S̃ −
∑
x

p̃(x)
[
−(θ)T ϵ(x)− lnZθ

]
(55.49)

= −S̃ + (θ)T Ũ + lnZθ (S̃, Ũ correspond to parameter θ̃) (55.50)

− lnZθ ≤ −S̃ + (θ)T Ũ (55.51)

Let

θ∗ = argmin
θ

[
−S̃ + (θ)T Ũ

]
(55.52)

Henceforth, we will refer to − lnZθ as the FE (Free Energy) and to − lnZθ∗ as the
minimum FE.

Relationship to convex/concave dual functions3

S̃ = min
θ

[
(θ)T Ũ + lnZθ

]
(55.53)

− lnZθ = min
Ũ

[
(θ)T Ũ − S̃

]
(55.54)

S̃ and − lnZθ are concave dual functions.

− lnZθ∗ = (θ∗)T Ũ − S̃ (55.55)

55.5 − lnZtree
θ =Tree FE (a.k.a. Bethe FE)

p̃()x) is said to satisfy Mean Field Approximation (MFA) or independent
variables approximation (IVA) if its variables xi are independently distributed:

p̃ind(x) =
∏
k

p̃(xk) (55.56)

In the MFA, the entropy is
3Convex/concave dual functions are discussed in Chapter 102
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S̃ind = −
∑
x

p̃(x) ln
∏
i

p̃(xi) (55.57)

= −
∑
xi

p̃(xi) ln p̃(xi) (55.58)

=
∑
i

H̃(xi) (55.59)

A slightly more complicated case than the MFA is when p̃(x) is defined on a
tree graph Gtree with edges i − j. In such a case, it will take just a few examples of
trees Gtree to convince the reader that in general, for any tree Gtree, p̃(x) must have
the following form:

p̃tree(x) = p̃ind(x)
∏
i−j

p̃(xi, xj)

p̃(xi)p̃(xj)
(55.60)

Hence,

S̃tree = −
∑
i

∑
xi

p̃tree(xi) ln p̃
tree(xi) (55.61)

=
∑
i

H̃(xi)−
∑
i−j

∑
xi,xj

p̃(xi, xj) ln
p̃(xi, xj)

p̃(xi)p̃(xj)
(55.62)

=
∑
i

H̃(xi)−
∑
i−j

H̃(xi : xj) (55.63)

Note that S̃tree can be written in terms of the joint entropy H̃(xi, xj) instead
of the mutual entropy H̃(xi : xj).

S̃tree = −
∑
i

(di − 1)H̃(xi) +
∑
i−j

H̃(xi, xj) (55.64)

where di is the number of neighbors of node i.
The following approximation is often called the Bethe approximation

− lnZθ∗ ≈ − lnZtree
θ∗ (55.65)

55.6 − lnZtree
θ∗ = Tree Minimum FE, and message

passing
In this section, we will evaluate − lnZtree

θ∗ exactly using a message passing ansatz (an
ansatz is an initial guess).
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If we replace S̃ by S̃tree in Eq.(55.55), we get

− lnZtree
θ∗ = min

Ũ

[
(θ)T Ũ − S̃tree

]
(55.66)

But note that

(θ)T Ũ =
∑
i

θi
∑
x

p̃(x)ϵi(x) (55.67)

=
∑
x

p̃(x)
∑
i

θiϵi(x)︸ ︷︷ ︸
call Θ(x)

(55.68)

so Eq.(55.66) becomes

− lnZtree
θ∗ = min

p̃

[∑
x

p̃(x)Θ(x)−
∑
i

H̃(xi) +
∑
i−j

H̃(xi : xj)

]
(55.69)

subject to
∑

x p̃(x) = 1 and p̃(x) ≥ 0 for all x.

Claim 85 − lnZtree
θ∗ is achieved if

p̃(x) = N (!x)e−Θ(x) (55.70)

Θ(x) =
∑
i

Θ(xi) +
∑
i−j

Θ(xi, xj) (55.71)

(This form for p̃(x) and Θ(x) agrees with Eq.(55.60))

mt⇒s(xs) = eλt⇒s(xs) (55.72)

p̃(xi) = N (!x)e−Θ(xi)
∏
a∈∂i

ma⇒i(xi) (55.73)

p̃(xi, xj) = N (!x)e−Θ(xi,xj)−Θ(xi)−Θ(xj)

 ∏
a∈∂i\j

ma⇒i(xi)

 ∏
b∈∂j\i

mb⇒j(xj)

 (55.74)

proof:
We want to minimize the following Lagrangian with respect to variations δp̃(xi)

of p̃(x), for each i.
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L =


∑

x p̃(x)Θ(x)
+
∑

i(1− di)
∑

xi
p̃(xi) ln p̃(xi)

+
∑

i−j
∑

xi,xj
p̃(xi, xj) ln p̃(xi, xj)

+λ [
∑

x p̃(x)− 1]

 (55.75)

The term proportional to the Lagrange multiplier λ enforces the constraint
∑

x p̃(x) =
1. Note that in general,

δp̃(x) =
∑
i

δp̃(xi) (55.76)

so if we only vary p̃(xi),

δF (p̃(x)) =
∂F (p̃(x))

∂p̃(x)
δp̃(x) (55.77)

=
∂F (p̃(x))

∂p̃(x)
δp̃(xi) (55.78)

for any well behaved function F : R→ R. Hence

δL =
∑
x

δp̃(xi)


Θ(x)
+
∑

i(1− di) [1 + ln p̃(xi)]
+
∑

i−j [1 + ln p̃(xi, xj)]

+λ

 (55.79)

for any variation δp̃(xi). Setting the coefficient of δp̃(xi) to zero now yields

0 =


Θ(x)
+
∑

i [1 + ln p̃(xi)]

+
∑

i−j

[
1 + ln

p̃(xi,xj)

p̃(xi)p̃(xj)

]
+λ

 (55.80)

for each i. If we now substitute the equations that are hypotheses to this claim, we
get

0 =


Θ(x)
−
∑

iΘ(xi)
−
∑

i−j Θ(xi, xj)

 (55.81)
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0 =


+
∑

i ln
∏

a∈∂ima⇒i(xi)

+
∑

i−j ln
[
∏

a∈∂i\j ma⇒i(xi)][
∏

b∈∂j\imb⇒j(xj)]∏
a∈∂ima⇒i(xi)

∏
b∈∂j mb⇒j(xj)

+λ

 (55.82)

=


∑

i

∑
a∈∂i λa⇒i(xi)

−
∑

i−j [λj⇒i(xi) + λi⇒j(xj)]

+λ

 (55.83)

= λ (55.84)

So the hypotheses to this claim indeed do satisfy δL = 0 for all variations δp̃(xi), for
each i, with Lagrange multiplier λ = 0.
QED
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Chapter 56

Message Passing, Pearl’s theory

This chapter is mostly based on chapter 4 of Ref.[55] by Pearl. Refs.[101], and [46]
were also helpful in writing this chapter.

In his book Ref.[55], Pearl explains two types of Message Passing (i.e., dis-
tributed computing in a bnet). In Chapter 4, he discusses one type of MP which
he calls Belief Propagation (BP) or Belief Updating. In Chapter 5, he introduces
a second type of MP which is he calls Belief Revision, but which I prefer to call
Explanation Optimization (EO). This chapter will be devoted to BP only.

BP was first proposed for bnets in 1982 Ref.[54] by Judea Pearl to simplify
the exact evaluation of the probability of one node conditioned on other nodes of a
bnet (exact inference). It gives exact results for trees and polytrees (i.e., bnets with a
single connected component and no loops). For bnets with loops, it gives approximate
results (loopy belief propagation), and it has been generalized to the junction tree
algorithm (see Chapter 43) which can do exact inference for general bnets with loops.
The basic idea behind the junction tree algorithm is to eliminate loops by clustering
them into single nodes.

56.1 Distributed Soldier Counting
Consider a group of soldiers marching single file. Fig.56.1 shows several methods by
which a member of the group can obtain a count of the soldiers without breaking
the line to do global operations. This can be done in a distributed fashion, with
every soldier doing only local operations (i.e., each soldier can only send messages to
either the soldier in front or the one in back). Such distributed soldier counting is a
rudimentary type of BP. In the next section, we will generalize this BP for soldiers
to BP for a Markov chain.
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Figure 56.1: Distributed soldier counting (This example comes from Chapter 4 of
Ref.[55]). Green dots indicate the beginning and red dots the end of a count. Only
first soldier can calculate total count in (a). Only third soldier can calculate total
count in (b,c). All soldiers can calculate the total count in (d,e). One starting point
in (a,b,e). Two ends as starting points in (c,d).
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56.2 Spring Systems

Figure 56.2: Spring system. Point masses connected by springs.

See Ref.[167] for an introduction to spring systems. Ideal springs between the
point mass nodes would not be sufficient. One would have to add damping to the
springs so as to reach an equilibrium. Time dependent forces (loads) pointing into
or out of the page, applied to the point masses, would generate signals that would
propagate like BP messages.

56.3 BP for Markov Chains

ϵ+
oo

πϵ+⇐x

λϵ+⇒x

//
xoo
oo

πx⇐ϵ−

λx⇒ϵ−
//
ϵ−oo

Figure 56.3: 3 node Markov chain ϵ+ ← x ← ϵ−. The π messages (probability
functions) travel downstream (i.e., they carry info in the direction of the graph arrows,
towards the future) and are indicated by a dashed arrow or by a left double arrow⇐.
The λ messages (likelihood functions) travel upstream (i.e., they carry info opposite
to direction of the graph arrows, towards the past) and are indicated by a dotted
arrow or by a right double arrow ⇒. ϵ+ stands for future evidence and ϵ− for past
evidence.

Consider the 3 node Markov chain ϵ+ ← x← ϵ− shown in Fig.56.3. Define1

1The pattern behind these definitions, in case it eludes you, is as follows: the π’s always carry
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πϵ+⇐x(x) = P (x|ϵ−) (past of x) (56.1)

λϵ+⇒x(x) = P (ϵ+|x) (future of x) (56.2)

πx⇐ϵ−(ϵ
−) = P (ϵ−) = δ(ϵ−, ϵ−0 ) (past of ϵ−) (56.3)

λx⇒ϵ−(ϵ
−) = P (ϵ+|ϵ−) (future of ϵ−) . (56.4)

Furthermore, define the Belief BEL in x to be

BELx(x) = P (x|ϵ) , (56.5)

where

ϵ = ϵ+ ∪ ϵ− . (56.6)

It follows that

BELx(x) = P (x|ϵ+, ϵ−) = (56.7)
= N (!x)P (ϵ+, x, ϵ−) (56.8)
= N (!x)P (ϵ+|x)P (x|ϵ−) (56.9)
= N (!x)λϵ+⇒x(x)πϵ+⇐x(x) . (56.10)

Note that Bayes rule would affirm that2

P (x|ϵ+) = N (!x)P (ϵ+|x)︸ ︷︷ ︸
λϵ+⇒x(x)

P (x) . (56.11)

Thus, Eq.(56.10) is like a 2-sided Janus Bayes rule.
Note that the π messages and λ messages propagate independently of each

other, via the TPM P (x|ϵ−):

πϵ+⇐x(x)︸ ︷︷ ︸
P (x|ϵ−0 )

=
∑
ϵ−

P (x|ϵ−) πx⇐ϵ−(ϵ
−)︸ ︷︷ ︸

δ(ϵ−,ϵ−0 )

(56.12a)

λx⇒ϵ−(ϵ
−)︸ ︷︷ ︸

P (ϵ+|ϵ−)

=
∑
x

P (x|ϵ−)λϵ+⇒x(x)︸ ︷︷ ︸
P (ϵ+|x)

(56.12b)

information about the past and the λ’s about the future. But the past or future of what? Of the
argument of the function. Out of the two random variables in the subscript of the function, the
one on the right hand side of the subscript, the one which is adjacent but beneath the argument, is
always the argument.

2As usual in this book, N (!x) means a constant that is independent of x.
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Eqs.(56.12) suggest that we define an edge bnet for the π and λ messages
(these messages live in the edges between the nodes ϵ+, x, ϵ−). Such an edge bnet,
shown in Fig.56.4, is complementary to bnet for the nodes themselves. We will call
it the BP 2-track bnet for the bnet Fig.56.3, because it has two “tracks", one for π
messages and another for λ ones. The TPMs, printed in blue, for bnet Fig.56.4, are
as follows:

πϵ+⇐x

""

πx⇐ϵ−
oo

Bx

λϵ+⇒x
//

<<

λx⇒ϵ−

Figure 56.4: BP 2-track bnet for the bnet Fig.56.3.

P (πx⇐ϵ−) =
∏
ϵ−

1(πx⇐ϵ−(ϵ
−) = P (ϵ−)) (56.13)

P (πϵ+⇐x|πx⇐ϵ−) =
∏
x

1

(
πϵ+⇐x(x) =

∑
ϵ−

P (x|ϵ−)πx⇐ϵ−(ϵ
−)

)
(56.14)

P (Bx|πϵ+⇐x, λϵ+⇒x) =
∏
x

1 (Bx(x) = BELx(x)) (56.15)

P (λϵ+⇒x) =
∏
x

1
(
λϵ+⇒x(x) = P (ϵ+|x)

)
(56.16)

P (λx⇒ϵ− |λϵ+⇒x) =
∏
ϵ−

1

(
λx⇒ϵ−(ϵ

−) =
∑
x

P (x|ϵ−)λϵ+⇒x(x)

)
(56.17)

So far in this section, we have considered Markov chains with 3 nodes. Before
concluding our discussion of BP for Markov chains, let us consider BP for a slightly
longer chain. Let us consider the 5 node Markov chain ϵ+ ← b← x← a← ϵ− shown
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ϵ+
oo

πϵ+⇐b

λϵ+⇒b

//
boo
oo

πb⇐x

λb⇒x

//
xoo
oo

πx⇐a

λx⇒a

//
aoo
oo

πa⇐ϵ−

λa⇒ϵ−
//
ϵ−oo

Figure 56.5: 5 node Markov chain

in Fig.56.5. We have already dealt with the end nodes of a Markov chain in the 3
node Markov chain example above, so in the 5 node case, let us focus on the internal
(i.e., not at an end) node x and its neighbors a and b. Define

πb⇐x(x) = P (x|ϵ−) (past of x) , (56.18)

λb⇒x(x) = P (ϵ+|x) (future of x) , (56.19)

πx⇐a(a) = P (a|ϵ−) (past of a) (56.20)

and

λx⇒a(a) = P (ϵ+|a) (future of a) . (56.21)

Define the Belief BEL in x to be

BELx(x) = P (x|ϵ) , (56.22)

where

ϵ = ϵ+ ∪ ϵ− . (56.23)

Then

BELx(x) = N (!x)P (ϵ+|x)P (x|ϵ−) (56.24)
= N (!x)λb⇒x(x)πb⇐x(x) . (56.25)

In analogy with the case of BP for a 3 node Markov chain, we can define the
bnet Fig.56.6, which we refer to as the BP 2-track bnet for Fig.56.5. The TPMs,
printed in blue, for bnet Fig.56.6, are as follows:

P (πb⇐x|πx⇐a) =
∏
x

1

(
πb⇐x(x) =

∑
a

P (x|a)πx⇐a(a)

)
(56.26)
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πϵ+⇐b

""

πb⇐x
oo

""

πx⇐a
oo

""

πa⇐ϵ−
oo

Bb Bx Ba

λϵ+⇒b
//

<<

λb⇒x
//

==

λx⇒a
//

==

λa⇒ϵ−

Figure 56.6: BP 2-track bnet for the bnet Fig.56.5.

P (Bx|πb⇐x, λb⇒x) =
∏
x

1 (Bx(x) = BELx(x)) (56.27)

P (λx⇒a|λb⇒x) =
∏
a

1

(
λx⇒a(a) =

∑
x

P (x|a)λb⇒x(x)

)
(56.28)

Let us represent the Markov chain of Fig.56.5 by xnx−1 ← . . . , x2 ← x1 ← x0
where nx = 5. For any node xi with parent px

i
= xi−1 and child cxi = xi+1, define

the memory matrixMxi
for node xi as

Mxi
= [M+

xi
,M−

xi
] , (56.29)

where + =future, − =past, and

M+
xi
=

[
πcxi⇐xi

(·)
λcxi⇒xi

(·)

]
, M−

xi
=

[
πxi⇐px

i
(·)

λxi⇒px
i
(·)

]
. (56.30)

Note that

M−
xi
=M+

px
i

(56.31)

for all nodes xi. We will refer to Eqs.(56.31) as the memory overlap conditions.
We will also use a permuted version of the memory matrix

M′
xi
= [MOUT

xi
,MIN

xi
] , (56.32)

where

MOUT
xi

=

[
πcxi⇐xi

(·)
λxi⇒px

i
(·)

]
, MIN

xi
=

[
πxi⇐px

i
(·)

λcxi⇒xi
(·)

]
. (56.33)

Unfortunately, 2-track bnets cannot be generalized in any obvious way from
Markov chains to more complicated DAGs. An alternative to 2-track bnets that still
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Mϵ+ Mb
oo Mx

oo Ma
oo Mϵ−

oo

Figure 56.7: BP Memory Bnet for the bnet Fig.56.5.

carries message info in its nodes, are memory bnets. An BP memory bnet is a
bnet which takes each node of an original bnet and adds a local memory to it. More
specifically, it keeps that DAG but replaces each node xi by a memoryMxi

. Fig.56.7
shows the memory bnet for the bnet Fig.56.5. The TPM, printed in blue, for the
nodeMx of the memory bnet Fig.56.7, is as follows

P (Mxi
|Mn∈nb(xi)) = AB , (56.34)

where

A = 1(M−
xi
=M+

px
i
) , (56.35)

and

B = 1(MOUT
xi

= C(MIN
xi

)) . (56.36)

The function C, which we will call the BP local computation, maps MIN
xi

into
MOUT

xi
. More explicitly, C is defined so that

B = P (πb⇐x|πx⇐a)︸ ︷︷ ︸
Bπ

P (λx⇒a|λb⇒x)︸ ︷︷ ︸
Bπ

, (56.37)

where Bπ and Bλ are given by Eqs.(56.26) and (56.28), respectively.
The BP memory bnet Fig. 56.7 is a deterministic bnet. A deterministic bnet

is basically just a coupled system of equations (CSE) for some unknowns xi. A CSE
per se does not include with it a method for solving for the xi. Such methods are
not unique. For example, for the distributed soldier counting problem, the various
methods that we described for counting soldiers are just different methods for solving
the same CSE. One can describe a method for solving a CSE using a dynamical bnet.3
To solve the CSE represented by the memory bnet Fig.56.7, we will use the dynamical
bnet Fig.56.8. Henceforth, we will refer to Fig.56.8 as an BP dynamical bnet for
Fig.56.7.

Next, we will explain the meaning of Fig.56.8. Fig.56.8 is a step by step
recipe (i.e., algorithm) for solving a CSE, where the unknowns are memory matrices.
Each step encoded in Fig.56.8 corresponds to a specific message sending event, where
the messages are sent along the edges of the Markov chain Fig.56.5. These message

3The term dynamical bnet was used in Chapter 25 to mean a time inhomogeneous Markov chain,
but here we are stretching its meaning to include Markov chains that aren’t time inhomogeneous.
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ϵ−

��

M(0)

ϵ−
//

""

M(1)

ϵ−
//M(2)

ϵ−
//M(3)

ϵ−
//M(4)

ϵ−

a

��

M(0)
a

//M(1)
a

//

""

M(2)
a

//M(3)
a

//

<<

M(4)
a

x

��

M(0)
x

//M(1)
x

//M(2)
x

//

""

<<

M(3)
x

//M(4)
x

b

��

M(0)
b

//M(1)
b

//

<<

M(2)
b

//M(3)
b

//

!!

M(4)
b

ϵ+ M(0)

ϵ+
//

==

M(1)

ϵ+
//M(2)

ϵ+
//M(3)

ϵ+
//M(4)

ϵ+

Figure 56.8: BP dynamical bnet for the bnet Fig.56.7.

ϵ+
//
boo xoo aoo ϵ−oo

oo

ϵ+ boo
//
xoo aoo
oo

ϵ−oo

ϵ+ boo xoo
//

oo
aoo ϵ−oo

ϵ+ boo
oo

xoo aoo
//
ϵ−oo

Figure 56.9: Steps encoded in the bnet Fig.56.8. Note the similarity of this figure to
Fig.56.1 (d) for soldier counting.

sending events are portrayed in chronological order in Fig.56.9. In that figure, π
messages are indicated by dashed red arrows, and λ messages by dotted red arrows.
These steps, or message sending events, lead to an updating of the memory matrices
that we are solving for. Each step propagates information between the memory nodes.
In the usual Pearl BP algo, the evidence nodes initiate the BP chain of message passing
events. These events continue until the memory matrices reach an equilibrium and
the CSE is solved.

To use bnet Fig.56.8, we need to specify the initial conditions (i.e., the value
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ofM(0)
xi for all i). For that, one can use

π(0)
px

0
⇐x0

= P (x0) , (56.38)

λ(0)cxi⇒xnx−1
(xnx−1) = δ(xnx−1, x

′
nx−1) . (56.39)

All otherM(0)
xi entries for all i can be set to 1.

The TPMs, printed in blue, for bnet Fig.56.8, are as follows.

P (M(t)
xi
|M(t−1)

n∈nb(xi)
,M(t−1)

xi
) = AB , (56.40)

where

A =


1(M(t)−

xi =M(t−1)+
px

i
) if input from px

i

1(M(t)+
xi =M(t−1)−

cxi ) if input from cxi

, (56.41)

and

B = 1(M(t)OUT
xi

= C(M(t)IN
xi

)) . (56.42)

The function C, which we will call the BP local computation, maps M(t)IN
xi into

M(t)OUT
xi . More explicitly, C is defined so that

B = BπBλ (56.43)

where

Bπ =
∏
x

1

π(t)
b⇐x(x)︸ ︷︷ ︸
OUT

=
∑
a

P (x|a) π(t)
x⇐a(a)︸ ︷︷ ︸
IN

 (56.44)

and

Bλ =
∏
a

1

λ(t)x⇒a(a)︸ ︷︷ ︸
OUT

=
∑
x

P (x|a)λ(t)b⇒x(x)︸ ︷︷ ︸
IN

 . (56.45)

The basic idea behind Eq.(56.42), which we will call the memory updating
equation, is simple: the memory overlap conditions translate the information from
time t− 1 to t, and then the local computation translates IN to OUT at fixed time
t.
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56.4 BP Algorithm for Polytrees
Consider Fig.56.10, which illustrates a bnet node x receiving and sending messages
to its neighbors. The π messages (probability functions) travel downstream (i.e.,
they carry info in the direction of the graph arrows, towards the future) and are
indicated by a dashed arrow or by a left double arrow⇐. The λ messages (likelihood
functions) travel upstream (i.e., they carry info opposite to direction of the graph
arrows, towards the past) and are indicated by a dotted arrow or by a right double
arrow ⇒.

Note that argument arg of the π(arg) and λ(arg) functions is always the same
as the letter in the subscript that is closest to the argument.

Note that in Fig.56.10, we indicate messages that travel “downstream" (resp.,
“upstream"), by arrows with dashed (resp., dotted) lines as shafts. Mnemonic: think
of the shaft as a velocity vector field for the message. You travel faster when you
swim downstream as opposed to upstream.

pa(x) = parents of node x
ch(x) = children of node x
nb(x) = pa(x) ∪ ch(x) = neighbors of node x

Figure 56.10: Node x receiving and sending messages to its neighbors. (neighbors=
parents and children).

We define a memory matrixMx for node x as

Mx = [M+
x ,M−

x ] , (56.46)

where + =future, − =past, and

M+
x =

[
πb⇐x(·) λb⇒x(·)

]
b∈ch(x) = [M+

b,x]b∈ch(x) , (56.47)

417



M−
x =

[
πx⇐a(·)
λx⇒a(·)

]
a∈pa(x)

= [M−
x,a]a∈pa(x) . (56.48)

Note that

M−
x,a =M+

a,x (56.49)

for every arrow x ← a. We will refer to Eqs.(56.49) as the memory overlap con-
ditions.

We will also use a permuted version of the memory matrix

M′
x = [MOUT

x ,MIN
x ] , (56.50)

where

MOUT
x =

(
[πb⇐x(·)]b∈ch(x)
[λx⇒a(·)]a∈pa(x) ,

)
= [MOUT

x,n ]n∈nb(x) , (56.51)

MIN
x =

(
[πx⇐a(·)]a∈pa(x)
[λb⇒x(·)]b∈ch(x)

)
= [MIN

x,n]n∈nb(x) . (56.52)

For times t = 0, 1, . . . , T − 1, we calculateM(t)
x in two steps: first we calculate

M(t)IN
x from earlier memories at time t− 1, then we calculateM(t)OUT

x :
An evidence node is a node whose TPM is a delta function set to a particular

state of the node. We will assume, without loss of generality, that all evidence nodes
are leaf nodes. If that is not the case, any evidence node e that is not a leaf node,
can be given a new companion leaf node l connected to e by an arrow l ← e, and
such that l has a delta function TPM.

1. CalculatingM(t)IN
x from signals received from n ∈ nb(x), sent at earlier

time t− 1:

Set

M(t)−
x,a |π =M(t−1)+

a,x |π , (56.53)

for all a ∈ pa(x), and
M(t)+

b,x |λ =M
(t−1)−
x,b |λ , (56.54)

for all b ∈ ch(x). By X|λ (resp., X|π) we mean the λ (resp., π) component of
X.

2. Calculating M(t)OUT
x from already calculated M(t)IN

x :

Let ana = (ai)i=0,1,...,na−1 denote the parents of x and bnb = (bi)i=0,1,...,nb−1 its
children.

Define

418



Figure 56.11: Subgraph of a bnet showing two cases (RULE 1 and RULE 2) of message
info flow. The yellow node is a gossip monger. It receives messages from all the green
nodes, and then it relays a joint message to the red node. Union of green nodes and
the red node = full neighborhood of yellow node. There are two possible cases: the
red node is either a parent or a child of the yellow one. As usual, we use arrows with
dashed (resp., dotted) shafts for downstream (resp., upstream) messages. Blue boxes
indicate Markov chain case.

πx(x) =
∑
ana

P (x|ana)
∏
i

πx⇐ai
(ai) (56.55)

= Eana [P (x|ana)] (56.56)

(boundary case: if x is a root node, use πx(x) = P (x).) and

λx(x) =
∏
i

λbi⇒x(x) . (56.57)

(boundary case: if x is a leaf node, use λx(x) = 1.)

• RULE 1: (red parent)
From the λx⇒a panel of Fig.56.11, we get

λx⇒ai
(ai)︸ ︷︷ ︸

OUT

= N (!ai)
∑
x

λx(x)︸ ︷︷ ︸
IN

∑
(ak)k ̸=i

P (x|ana)∏
k ̸=i

πx⇐ak
(ak)︸ ︷︷ ︸

IN

 (56.58)

= N (!ai)
∑
x

[
λx(x)E(ak)k ̸=i

[P (x|ana)]
]

(56.59)

= N (!ai)E(ak)k ̸=i
Ex|anaλx(x) (56.60)
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(boundary case: if x is a root node, use λx⇒ai
(ai) = N (!ai).)

• RULE 2: (red child)
From the πb⇐x panel of Fig.56.11, we get

πbi⇐x(x)︸ ︷︷ ︸
OUT

= N (!x) πx(x)︸ ︷︷ ︸
IN

∏
k ̸=i

λbk⇒x(x)︸ ︷︷ ︸
IN

(56.61)

(boundary case: if x is a leaf node, use πbi⇐x(x) = N (!x)πx(x) .)

In the above equations, if the range set of a product is empty, then define the product
as 1; i.e.,

∏
k∈∅ F (k) = 1.

Claim: Define

BEL(t)(x) = N (!x)λ(t)x (x)π(t)
x (x) . (56.62)

Then

lim
t→∞

BEL(t)(x) = P (x|ϵ) . (56.63)

This says that the belief in x = x converges to P (x|ϵ) and it equals the product of
messages received from all parents and children of x = x.

56.4.1 How BP algo for polytrees reduces to the BP algo for
Markov chains

It is instructive to see how the BP algo for polytrees reduces to BP algo for Markov
chains.

For a Markov chain, node x has a single parent (i.e., ancestor) a and a single
child b.

Therefore, Eqs.(56.55) and (56.57) reduce to

πx(x) =
∑
a

P (x|a)πx⇐a(a) (56.64)

and

λx(x) = λb⇒x(x) . (56.65)

RULE 1 given by Eq.(56.58) reduces to

λx⇒a(a) = N (!a)
∑
x

λx(x)P (x|a) (56.66)

= N (!a)
∑
x

λb⇒x(x)P (x|a) (56.67)
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RULE 2 given by Eq.(56.61) reduces to

πb⇐x(x) = N (!x)πx(x) (56.68)

=
∑
a

P (x|a)πx⇐a(a) . (56.69)

56.5 Derivation of BP Algorithm for Polytrees
This derivation is taken from the 1988 book Ref.[55] by Judea Pearl, where it is
presented very lucidly. We only made some minor changes in notation.
Notation

The BP algorithm yields an expansion for P (x|ϵ).
x= the focus node, arbitrary node of bnet that we are focusing on to calculate

its P (x|ϵ).
(ai)i=0,1,...,na−1. = parent nodes (mnemonic: a=ancestor) of x
(bi)i=0,1,...,nb−1. = children nodes of x.
ϵ= set of nodes for which there is evidence; that is, ϵ = ϵ, so the state of these

nodes is fixed.
ϵ−x = ϵ ∩ an(x) (evidence in past of x)4

ϵ−xai = ϵ−x ∩ an(ai).
Note that ϵ−x = ∪iϵ−xai
ϵ+x = ϵ ∩ [de(x) ∪ x] (evidence in future of x)
ϵ+xbi = ϵ+x ∩ [de(bi) ∪ bi].
Note that ϵ+x = ∪iϵ+xbi
Note that ϵ = ϵ+x ∪ ϵ−x

πx(x) = P (x|ϵ−x ) (56.70)

πx⇐ai
(ai) = P (ai|ϵ−xai) (56.71)

πbi⇐x(x) = P (x|ϵ−xbi) (56.72)

λx(x) = P (ϵ+x |x) (56.73)

λbi⇒x(x) = P (ϵ+xbi |x) (56.74)

λx⇒ai
(ai) = P (ϵ+xai |ai) (56.75)

4Careful: Chapter 4 of Ref.[55] uses − indicate the future and + to indicate the past. This is the
opposite of our notation.
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Expansions of λx(x) and πx(x) into products of single node messages.

P (x|ϵ−x )︸ ︷︷ ︸
πx(x)

= P (x| ∪i ϵ−xai) (56.76)

=
∑
ana

P (x|ana)P (ana| ∪i ϵ−xai) (56.77)

=
∑
ana

P (x|ana)
∏
i

P (ai|ϵ−xai)︸ ︷︷ ︸
πx⇐ai (ai)

(56.78)

P (ϵ+x |x)︸ ︷︷ ︸
λx(x)

=
∏
i

P (ϵ+xbi |x)︸ ︷︷ ︸
λbi⇒x(x)

(56.79)

Note that past and future evidences ϵ−x and ϵ+x that are causally connected to
x are conditionally independent at fixed x:

P (ϵ+x , ϵ
−
x |x) = P (ϵ+x |x)P (ϵ−x |x) . (56.80)

This observation is key to the proof of the following claim:

Claim 86

P (x|ϵ+x , ϵ−x ) = P (ϵ+x |x)P (x|ϵ−x )
1

P (ϵ+x |ϵ−x )
(56.81)

= N (!x)P (ϵ+x |x)P (x|ϵ−x ) (56.82)
= N (!x) (ϵ+x ← x← ϵ−x ) (56.83)
= N (!x)λx(x)πx(x) (56.84)

proof:

P (x|ϵ+x , ϵ−x ) = P (ϵ+x , ϵ
−
x |x)

P (x)

P (ϵ+x , ϵ
−
x )

(56.85)

= P (ϵ+x |x)P (ϵ−x |x)
P (x)

P (ϵ+x , ϵ
−
x )

(56.86)

= P (ϵ+x |x)P (x|ϵ−x )
P (ϵ−x )

P (ϵ+x , ϵ
−
x )

(56.87)

= P (ϵ+x |x)P (x|ϵ−x )
1

P (ϵ+x |ϵ−x )
(56.88)

QED
Next we prove BP rules 1 and 2.
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Figure 56.12: This figure is used in the derivation of the BP RULE 1.

• RULE 1 (red parent)

Note that

ϵ+x ∪ ∪k ̸=iϵ−xak = (ϵ+x ∪ ϵ−x )− ϵ−xai (56.89)

= ϵ+xai (56.90)

Let y = (ak)k ̸=i and ϵ−y = (ϵ−xak)k ̸=i.

P (ϵ+xai |ai)︸ ︷︷ ︸
λx⇒ai (ai)

= P (ϵ+x , ϵ
−
y |ai) (56.91)

=
∑
x

∑
y

P (ϵ+x , ϵ
−
y |x, y)P (x, y|ai) (56.92)

=
∑
x

∑
y

P (ϵ+x |x)P (ϵ−y |y)P (x|y, ai)P (y|ai) (56.93)

= P (ϵ−y )
∑
x

∑
y

P (ϵ+x |x)
P (y|ϵ−y )
P (y)

P (x|y, ai)P (y|ai)︸ ︷︷ ︸
=P (y)

(56.94)

= N (!ai)
∑
x

∑
y

P (ϵ+x |x)P (x| y, ai︸︷︷︸
ana

)P (y|ϵ−y ) (56.95)

= N (!ai)
∑
x

P (ϵ+x |x)︸ ︷︷ ︸
λx(x)

∑
(ak)k ̸=i

P (x|ana)
∏
k ̸=i

P (ak|ϵ−xak)︸ ︷︷ ︸
πx⇐ak

(ak)

(56.96)
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Figure 56.13: This figure is used in the derivation of the BP RULE 2.

• RULE 2 (red child)

Note that

(∪k ̸=iϵ+xbk) ∪ ϵ
−
x = (ϵ+x ∪ ϵ−x )− ϵ+xbi (56.97)

= ϵ−xbi (56.98)

P (x|ϵ−xbi)︸ ︷︷ ︸
πbi⇐x(x)

= P (x|(ϵ+xbk)k ̸=i, ϵ
−
x ) (56.99)

= N (!x)P ((ϵ+xbk)k ̸=i|x)P (x|ϵ
−
x ) (56.100)

= N (!x)

∏
k ̸=i

P (ϵ+xbk |x)︸ ︷︷ ︸
λbk⇒x(x)

P (x|ϵ−x )︸ ︷︷ ︸
πx(x)

(56.101)

56.6 Example of BP algo for a Tree
In this section, we describe how to apply the BP algo to the tree bnet Fig.56.14. In
Fig.56.14, if we replace each integer i by the random variable Ai, we get an original
bnet, and if we replace each i byMAi

, we get the BP memory bnet of the original
bnet. In Fig.56.14, the magenta nodes are evidence nodes and the green ones aren’t.
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We want to solve for the memory matrices of the memory bnet. To do so,
we use the BP dynamical bnet Fig.56.15. The steps encoded in the dynamical
bnet are shown in Fig.56.16. Fig.56.16 has frames in chronological order, showing the
direction of travel of the π&λ information. This sequence of frames also indicates
the order in which we solve for the entries of the memory matrices. The information
first emanates from the evidence nodes. It propagates generally upstream, although
some nodes can generate downstream flow. Some of the info reaches the root node
and is reflected there. The root node is the only one that is capable of reflection (i.e.,
instant output along an arrow, in response to input along that arrow). Eventually,
all info reaches the leaf nodes via downstream propagation and is absorbed there.

Figure 56.14: Example tree bnet used to illustrate BP.
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//M(5)
A9

Figure 56.15: BP dynamical bnet for the bnet Fig.56.14.
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Figure 56.16: Steps encoded in the bnet Fig.56.15.
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56.7 Bipartite bnets
By a bipartite bnet we will mean a bnet in which all nodes are either root nodes
(parentless) or leaf nodes (childless). BP simplifies when dealing with bipartite bnets.
Next, we will explain how it simplifies. But before doing so, let us define tree bnets
and show how these can be replaced by equivalent bipartite bnets.

A tree bnet is a bnet for which all nodes have exactly one parent except for
the apex root node which has none. A tree bnet is very much like the filing system
in a computer.

One can map a tree bnet (the “source") into an equivalent bipartite bnet (the
“image") as follows. Replace each arrow

x // y (56.102)

of the tree bnet by

x // Py|x yoo . (56.103)

For example, the tree bnet Fig.56.17 has the image bipartite bnet given by Fig.56.18.
The bnet Fig.56.19 is just a different way of drawing the bnet Fig.56.18.

A

�� ((
A0

�� !!

A1

A00 A01

Figure 56.17: Example of a tree bnet.

The TPMs, printed in blue, for the image bipartite bnet Fig.56.18, are as
follows. We express the TPMs of the image bnet in terms of the TPMs of the source
bnet Fig.56.17. Let

P (Py|x|x, y) = Py|x(y|x)δ(Py|x, 1) + (1− Py|x(y|x))δ(Py|x, 0) (56.104)

for all the leaf nodes Py|x ∈ {0, 1} of the image bipartite bnet. Also, let

Py(y) = arbitrary prior (56.105)
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A

�� **
PA0|A PA1|A

A0

OO

�� $$

A1

OO

PA00|A0
PA01|A0

A00

OO

A01

OO

Figure 56.18: Bipartite bnet corresponding to tree bnet Fig.56.17.

A

!! ((

A0

�� )) ++

A1

��

A00

��

A01

��
PA0|A PA1|A PA00|A0

PA01|A0

Figure 56.19: Different way of drawing the bnet Fig.56.18.

for all the root nodes y of the image bipartite bnet except when y corresponds to the
root node A of the source tree bnet. In that exceptional case,

Py(y) = PA(y) . (56.106)

56.8 BP for bipartite bnets (BP-BB)
For a bipartite bnet as defined above, with root nodes xi and leaf nodes f

α
, let

nb(i) = {α : f
α
∈ nb(xi)} , (56.107)

nb(α) = {i : xi ∈ nb(fα)} , (56.108)
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mα⇐i(xi) = πf
α
⇐xi

(xi) , (56.109)

mα⇒i(xi) = λf
α
⇒xi

(xi) , (56.110)

Figure 56.20: Fig.56.11 becomes this figure for the special case of a bipartite bnet.
Union of green nodes and the red node = full neighborhood of yellow node. There
are two possible cases: the red node is either a parent or a child of the yellow node.

Next we will show how to find m(t)
α⇐i and m(t)

α⇒i from m
(t−1)
α⇐i and m(t−1)

α⇒i .

1. Traversing an x (i.e., root) node.

See the mf
2
⇐x2

panel of Fig.56.20.

For i = 0, 1, . . . , nx− 1, if α ∈ nb(i), then,

m
(t)
α⇐i(xi) =

∏
β∈nb(i)−α

m
(t−1)
β⇒i (xi) , (56.111)

whereas if α /∈ nb(i)

m
(t)
α⇐i(xi) = m

(t−1)
α⇐i (xi) . (56.112)

2. Traversing an f (i.e., leaf) node.

See the mf
2
⇒x2

panel of Fig.56.20.

For α = 0, 1, . . . , nf − 1, if i ∈ nb(α), then

m
(t)
α⇒i(xi) =

∑
(xk)k∈nb(α)−i

fα(xnb(α))
∏

k∈nb(α)−i

m
(t−1)
α⇐k (xk) (56.113)

= E
(t−1)
(xk)k∈nb(α)−i

[fα(xnb(α))] , (56.114)

whereas if i /∈ nb(α)

m
(t)
α⇒i(xi) = m

(t−1)
α⇒i (xi) . (56.115)

430



In the above equations, if the range set of a product is empty, then define the
product as 1; i.e.,

∏
k∈∅ F (k) = 1.

Claim:

P (xi|ϵ) = lim
t→∞
N (!xi)

∏
α∈nb(i)

m
(t)
α⇒i(xi) (56.116)

and

P (xnb(α)|ϵ) = lim
t→∞
N (!xnb(α))fα(xnb(α))

∏
k∈nb(α)

m
(t)
α⇐k(xk) . (56.117)

56.8.1 BP-BB and general BP agree on Markov chains

It is instructive to compare the belief values (i.e., P (xi|ϵ)) obtained by applying the
general (i.e., polytree) BP and BP-BB algorithms to a Markov chain. Next we show
that both algorithms yield the same belief values.

2

������

β α

^^ 2

���� ��
β

@@

α

(a) (b)

Figure 56.21: Traversing a root node of a Markov chain (a)Propagation towards left
(i.e., towards future). (b)Propagation towards right (i.e., towards past).

Consider the BP-BB rule for traversing a root node. When traveling towards
the left as in Fig.56.21 (a), it implies that

mα⇒2(x2) = mβ⇐2(x2) , (56.118)

and when traveling towards the right as in Fig.56.21 (b), it implies that

mβ⇒2(x2) = mα⇐2(x2) . (56.119)

Now consider the BP-BB rule for traversing a leaf node. When traveling to
the left as in Fig.56.22 (a), it implies that

mα⇒2(x2)︸ ︷︷ ︸
λ

=
∑
x1

P (x2|x1)mα⇐1(x1)︸ ︷︷ ︸
π

. (56.120)

One can rewrite the left and right hand sides (LHS, RHS) of Eq.(56.120) as follows
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(a) (b)

Figure 56.22: Traversing a leaf node of a Markov chain (a)Propagation towards left
(i.e., towards future). (b)Propagation towards right (i.e., towards past).

RHS =
∑
x1

P (x2|x1)πα⇐1(x1) , (56.121)

and

LHS = mα⇒2(x2) = mβ⇐2(x2) = πβ⇐2(x2) , (56.122)

Therefore

πβ⇐2(x2)
∑
x1

P (x2|x1)πα⇐1(x1) . (56.123)

Once again, consider the BP-BB rule for traversing a leaf node. When traveling
to the right as in Fig.56.22 (b), it implies that

mα⇒1(x1)︸ ︷︷ ︸
λ

=
∑
x2

P (x2|x1)mα⇐2(x2)︸ ︷︷ ︸
π

. (56.124)

One can rewrite the left and right hand sides (LHS, RHS) of Eq.(56.124) as follows

RHS = =
∑
x2

P (x2|x1)πα⇐2(x2) (56.125)

=
∑
x2

P (x2|x1)λβ⇒2(x2) , (56.126)

and

LHS = λα⇒1(x1) . (56.127)

Therefore,

λα⇒1(x1) =
∑
x2

P (x2|x1)λβ⇒2(x2) . (56.128)
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Finally, note that Eq.(56.116) becomes

P (x2|ϵ) = N (!x2)mβ⇒2(x2)mα⇒2(x2) (56.129)
= N (!x2)mα⇐2(x2)mα⇒2(x2) (56.130)
= N (!x2)πα⇐2(x2)λα⇒2(x2) (56.131)
= N (!x2)P (x2|ϵ−)P (x2|ϵ+) (56.132)

and Eq.(56.117) becomes

P (x2, x1) = N (!x2, !x1)P (x2|x1)mα⇐1(x1)mα⇐2(x2) (56.133)
= N (!x2, !x1)P (x2|x1)πα⇐1(x1)πα⇐2(x2) . (56.134)

56.8.2 BP-BB and general BP agree on tree bnets.

It is instructive to compare the belief values (i.e., P (xi|ϵ)) obtained by applying the
general (i.e., polytree) BP and BP-BB algorithms to a tree bnet. Next we show that
both algorithms yield the same belief values.

Figure 56.23: Subgraph of a tree bnet. This is the same as Fig.56.11, except that
here the yellow node has a single parent because this is a subgraph of a tree bnet, not
of an arbitrary bnet like Fig.56.11. The subgraph has been converted to a subgraph
of a bipartite bnet by inserting a collider leaf node, labeled by a Greek letter, at the
center of each edge of the tree bnet. Red arrows indicate the direction of message
info flow.

Applying to the left panel of Fig.56.23 the BP-BB rule for traversing a root
node, we get
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mα⇐x(x) =
∏
i

mβi⇒x(x) . (56.135)

Applying to the left panel of Fig.56.23 the BP-BB rule for traversing a leaf node, we
get

mα⇒a(a) = N (!a)
∑
x

mα⇐x(x)P (x|a) . (56.136)

Combining Eqs.(56.135) and (56.136), we get

mα⇒a(a) = N (!a)
∑
x

P (x|a)
∏
i

mβi⇒x(x) , (56.137)

which can be rewritten as

λx⇒a(a) = N (!a)
∑
x

P (x|a)
∏
i

λbi⇒x(x)︸ ︷︷ ︸
λx(x)

. (56.138)

Eq.(56.138) is just RULE 1 for general BP.
Applying to the right panel of Fig.56.23 the BP-BB rule for traversing a root

node, we get

mβi⇐x(x) = N (!x)mα⇒x(x)
∏
k ̸=i

mβk⇒x(x) (56.139)

Applying to the right panel of Fig.56.23 the BP-BB rule for traversing a leaf node,
we get

mα⇒x(x) =
∑
a

P (x|a)mα⇐a(a) (56.140)

=
∑
a

P (x|a)πx⇐a(a) (56.141)

= πx(x) . (56.142)

Combining Eqs.(56.139) and (56.142), we get

πbi⇐x(x) = N (!x)πx(x)
∏
k ̸=i

λbk⇒x(x) . (56.143)

Eq.(56.143) is just RULE 2 of general BP.
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56.9 BP-BB and sum-product decomposition
BP-BB yields what is often referred to as a sum-product decomposition. I don’t
like that name because it is unnecessarily confusing, and it fails to convey the recursive
nature5 of the decomposition. I prefer to call it a recursive sum of products
(RSOP) decomposition, and will call it so henceforth in this chapter.

Expressing the marginals of a bnet as RSOPs, which is what BP does, reduces
the complexity of the calculation. (i.e., the total number of additions and multiplica-
tions that need to be performed) That makes using the BP algo very advantageous.
For instance, consider a Markov chain xn−1 ← · · · ← x1 ← x0, where xi ∈ {0, 1, 2}
for all i. Note that if we calculate P (xn−1) as follows

P (xn−1) =

[∑
xn−2

P (xn−1|xn−2) . . .

[∑
x1

P (x2|x1)

[∑
x0

P (x1|x0)P (x0)

]]
. . .

]
,

(56.144)
we need to perform 2(n − 1) additions and 3(n − 1) multiplications. On the other
hand, if we calculate P (xn−1) as follows

P (xn−1) =
∑
xn−2

. . .
∑
x1

∑
x0

P (xn−1|xn−2) . . . P (x2|x1)P (x1|x0)P (x0) , (56.145)

we need to perform 3n − 1 additions and 3n(n− 1) multiplications.

5By “recursive nature", we mean bootstrapped definitions that lead to nested sums. The recursive
nature of BP is evident from RULES 1 and 2 that define λ’s and π’s in terms of other λ’s and π’s.
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Chapter 57

Message Passing in Quantum
Mechanics

See Ref.[85].
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Chapter 58

Meta-learners for estimating ATE

This section is based on the final 2 chapters of Ref.[15].
The Average Treatment Effect (ATE) is defined in Chapter 72.
Economists are huge fans of Linear Regression (LR), and traditionally calculate

ATE using LR. But in recent times, they have begun to calculate ATE using Machine
Learning (ML) instead. This chapter describes various methods that economists and
others have devised for calculating ATE with ML. These methods are called meta-
learners because they involve multiple ML or LR steps.

Using ML to calculate ATE captures non-linear trends whose exclusion might
sometimes lead to a poor result. On the other hand, ML is more expensive com-
putationally than LR, and it introduces the danger of overfitting, a danger which is
nonexistent with LR.

Below, we represent each Linear Regression (LR) step as follows. We list a
dataset; i.e., a set of tuples indexed by the individuals σ of a population Σ such that
|Σ| = nsam. The independent variables of the LR (i.e., xσ) are unboxed and the
dependent variable (a.k.a. target feature) (i.e., yσ) is shown inside a box. Then we
show an arrow with the superscript “LR-fit", followed by the fit function obtained by
performing the LR.1

{(σ, xσ = [xσi ], y
σ ) : σ ∈ Σ} LR−fit−−−−→ ŷ(x) = α + xiβi (58.1)

Analogously, below, we represent each Supervised Machine Learning (ML) step
as follows.

{(σ, xσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(x) (58.2)

Henceforth, we will use δ(x)(≈ ATE) to denote the treatment effect.

• S (Single)-learner
1In this chapter, we will occasionally use the Einstein summation convention; i.e., implicit sum

over repeated indices.
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{(σ, xσ, dσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(d, x) (58.3)

δ(x) = ŷ(1, x)− ŷ(0, x) (58.4)

• T (Twin)-learner

{(σ, xσ, dσ = 0, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ0(x) (58.5)

{(σ, xσ, dσ = 1, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ1(x) (58.6)

δ(x) = ŷ1(x)− ŷ0(x) (58.7)

• X (Cross)-learner

do T-learner, get ŷ0(x), ŷ1(x)

{(σ, xσ, dσ = 0, yσ − ŷ1(xσ) ) : σ ∈ Σ} ML−fit−−−−→ Y0(x) (58.8)

{(σ, xσ, dσ = 1, yσ − ŷ0(xσ) ) : σ ∈ Σ} ML−fit−−−−→ Y1(x) (58.9)

δ(x) =
1

2
[Y1(x)− Y0(x)] (58.10)

• De-biased (a.k.a. Orthogonal) ML

Standard supervised ML is performed with two features, the independent fea-
ture and the dependent or target feature. Supervised ML has a target feature.
Unsupervised ML doesn’t.

In De-biased LR, we do LR with two residuals. Let’s call them the indepen-
dent residual and the dependent or target residual. These two residuals
are calculated with the help of two previously performed LR steps.

In De-biased ML, we do ML or LR (either one) with two residuals. These
two residuals are calculated with the help of two previously performed ML steps
(instead of two LR steps).

The FWL theorem discussed in Chapter 28 shows how to do De-biased LR.
Next, we will describe how to do De-biased ML.

We start by doing two ML steps:

{(σ, xσ, dσ ) : σ ∈ Σ} ML−fit−−−−→ d̂(x) (58.11)
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{(σ, xσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(x) (58.12)

After these two ML steps, we do either LR or ML to get δ(x).

Let

∆dσ = dσ − d̂(xσ) (58.13)

∆yσ = yσ − ŷ(xσ) (58.14)

Options for the final learning step that calculates δ(x):

1. Do a standard LR to get a δ(x) that is a constant (i.e., x independent):

{(σ,∆dσ, ∆yσ ) : σ ∈ Σ} LR−fit−−−−→ Y(∆d) = α +∆dδ (58.15)

δ = coefficient of ∆d in Y(∆d). (58.16)

2. Do a LR with a x ∗ d cross term to get a δ(x) that is linear in x:

{(σ, xσ,∆dσ, ∆yσ ) : σ ∈ Σ} LR−fit−−−−→ Y(∆d, x) = α0 + xβ0 +∆d(α1 + xβ1)

(58.17)

δ(x) = Y(∆d|d=1, x)− Y(∆d|d=0, x) = α1 + xβ1 (58.18)

3. Do ML with a weighted cost function to get a general fit δ̂(x).
The cost function used in standard ML (see Eq.(58.2)) is:

C = 1

nsam

∑
σ

[yσ − ŷ(xσ)]2 (58.19)

Define the cost function in this case as

C =
1

nsam

∑
σ

[
∆yσ − δ̂(xσ)∆dσ

]2
(58.20)

=
1

nsam

∑
σ

[∆dσ]2
[
∆yσ

∆dσ
− δ̂(xσ)

]2
(58.21)

This is a weighted cost function with weights [∆dσ]2.

{(σ, xσ, ∆yσ

∆dσ
) : σ ∈ Σ} ML−fit−−−−→ δ̂(x) (58.22)

439



4. Do ML with ∆dσ as an independent feature to get a general fit δ̂(∆d, x):

{(σ, xσ,∆dσ, ∆yσ

∆dσ
) : σ ∈ Σ} ML−fit−−−−→ δ̂(∆d, x) (58.23)

δ(x) = δ̂(∆d|d=1, x) (58.24)
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Chapter 59

Missing Data, Imputation

This chapter assumes that the reader has read some parts of Chapter 26 on the
Expectation Maximization (EM) algo and Chapter 51 on Markov Chain Monte Carlo
(MCMC).

h0 x0 x1 x2
1 NA 0 1 1
2 NA 0 0 0
3 NA 1 1 0
4 NA NA 1 NA
5 NA 0 NA 1
6 NA 0 0 1

h0 x0 x1 x2 m
1 NA 0 1 1 (0,0,0)
2 NA 0 0 0 (0,0,0)
3 NA 1 1 0 (0,0,0)

4 NA

0
0
1
1

1

0
1
0
1

(1,0,1)

5 NA 0 0
1 1 (0,1,0)

6 NA 0 0 1 (0,0,0)

Table 59.1: Left Table: Dataset with nsam = 6 and some missing entries, for
4 binary variables h0, x0, x1, x2. NA=not available. The h0 column is completely
missing because h0 is an unobserved variable. Right Table: All possibilities for
xi = NA cells of left table have been enumerated. A new column labeled m has been
added. mi = 1(xi is missing) for i = 0, 1, 2.

Suppose that you have compiled a dataset x⃗ = (x[σ])σ=0,1,...,nsam−1 where
x = (x0, x1, . . . , xnx−1) from a study or survey. It consists of nsam number of samples
(sample= row), and nx columns (each column is a different feature, or observation).
Suppose that some of the cells in this matrix are empty. Throwing away all the
incomplete rows is okay if the number of incomplete rows is much smaller than nsam.
If not, throwing them away would throw away a substantial amount of information
contained in all the filled cells in those incomplete rows, plus it might bias your
dataset. This chapter deals with how to fill those empty cells with plausible fake
data. A fancy name for this process is imputation. There is no unique way of
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fabricating fake data, but some fakes are better than others by some metrics. This
chapter will consider two popular ways (EM and MCMC) of filling those empty cells
with their “most likely" values based on the cells of the dataset that aren’t missing,
and also based on some bnet model that is expected to describe well the dataset.

Notation: a⃗ = (a[σ])σ=0,1,...,nsam−1, where nsam is the number of samples. Will
sometimes denote a[σ] by aσ.

For concreteness, we will apply the concepts of this chapter to the dataset with
missing data given by Table 59.1.

59.1 Imputation via EM
We begin by augmenting Fig.26.1 (the first figure in Chapter 26) by adding to it
a new node m⃗ called the missingness variable. Recall that node θ represents
the unknown parameters, node x⃗ represents the observed variables, and node
h⃗ represents the hidden variables. Both θ and h⃗ are hidden (i.e., unobserved).
Fig.59.1 shows 3 popular ways of connecting node m⃗ to the other nodes in the graph
Fig.26.1.

θ

���� ��
m⃗ x⃗ h⃗oo

θ

���� ��
m⃗ x⃗oo h⃗oo

θ

���� ��
m⃗ x⃗oo h⃗oogg

Seldom assumed MAR not-MAR (NMAR)

Figure 59.1: The left bnet is seldom assumed. The middle bnet is referred to as the
MAR (missing at random) assumption. The right bnet is referred to as the not-MAR
(NMAR) assumption.

From Fig.59.1, we have

P (m⃗|x⃗, h⃗, θ) =


P (m⃗|θ) Seldom assumed. Called missing-CAR (MCAR)
P (m⃗|x⃗, θ) MAR
P (m⃗|x⃗, h⃗, θ) not-MAR (NMAR)

.

(59.1)
For doing imputation via EM, we connect node m⃗ as shown in the middle bnet

(called MAR) of Fig.59.1.
For the example of Table 59.1, we have variables m⃗, x⃗ and h⃗ whose values

range over the following sets:
x⃗ = (x⃗0, x⃗1, x⃗2)

h⃗ = (h⃗0)
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θ

�� ����
m⃗ x⃗oo h⃗oo

= θ

||

��

		

��

��

��

""

��

��

m[0] x[0]oo h[0]oo

m[1] x[1]oo h[1]oo

m[2] x[2]oo h[2]oo

Figure 59.2: MAR bnet with nsam = 3.

h0[σ] ∈ {0, 1},
xi[σ] ∈ {0, 1} for i = 0, 1, 2,
mi[σ] ∈ {0, 1} for i = 0, 1, 2.

m[0] x[0]oo h[0]oo = m[0] x0[0]oo

��

��

h[0]

||

��

oo

x1[0]

bb

��
x2[0]

YY

Figure 59.3: Our example for imputation via EM assumes this bnet between nodes
m[σ], x[σ], h[σ].

For concreteness, we will assume that the Markov chain m[σ] ← x[σ] ← h[σ]
has a finer grained DAG structure given by Fig.59.3. where we will omit the dashed
arrows. If one doesn’t want to assume that the data can be fitted well by the bnet of
Fig.59.3 without the dashed arrows, one can include those arrows too, at the expense
of more unknown parameters (i.e., degrees of freedom) to be lumped into θ. We will
parameterize the TPMs corresponding to Fig.59.3 using a Categorical Distribution
for each column of the TPMs. We will thus assume that the TPMs, printed in blue,
for bnet Fig.59.3, are as follows.

P (hσ0 |θ) = 1− θ0
1 θ0

(59.2)
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P (xσ0 |θ) = 0 1− θ1
1 θ1

(59.3)

P (xσ1 | xσ0 , hσ, θ) =
00 01 10 11

0 1− θ2 1− θ3 1− θ4 1− θ5
1 θ2 θ3 θ4 θ5

(59.4)

P (xσ2 | xσ1 , xσ0 , θ) =
00 01 10 11

0 1− θ6 1− θ7 1− θ8 1− θ9
1 θ6 θ7 θ8 θ9

(59.5)

P (mσ|xσ, θ) = 1

nsam
P ((xi)∀i∋mi=1 | (xi)∀i∋mi=0, θ) (59.6)

Eq.(59.6) can be illustrated as follows. In Table 59.2, we added a P (m) column
to Table 59.1.

h0 x0 x1 x2 m P (m)
1 NA 0 1 1 (0,0,0) 1

nsam

2 NA 0 0 0 (0,0,0) 1
nsam

3 NA 1 1 0 (0,0,0) 1
nsam

4 NA

0
0
1
1

1

0
1
0
1

(1,0,1)

1
nsam

P (x0 = 0, x2 = 0 | x1 = 1, θ)
1

nsam
P (x0 = 0, x2 = 1 | x1 = 1, θ)

1
nsam

P (x0 = 1, x2 = 0 | x1 = 1, θ)
1

nsam
P (x0 = 1, x2 = 1 | x1 = 1, θ)

5 NA 0 0
1 1 (0,1,0)

1
nsam

P (x1 = 0 | x0 = 0, x2 = 1, θ)
1

nsam
P (x1 = 1 | x0 = 0, x2 = 1, θ)

6 NA 0 0 1 (0,0,0) 1
nsam

Table 59.2: P (m) column added to Table 59.1. Note that
∑

m P (m) = 1.

θ = (θi)i=0,1,...,9 (59.7)

P (mσ, xσ, hσ|θ) = P (mσ|xσ, θ)P (xσ|hσ, θ)P (hσ|θ) (59.8)

P (xσ|hσ, θ) = P (xσ2 |xσ1 , xσ0 , θ)P (xσ1 |xσ0 , hσ, θ)P (xσ0 |θ) (59.9)
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P (xσ1 |xσ0 , θ) =
∑
h

P (xσ1 |xσ0 , hσ, θ)P (hσ|θ) (59.10)

P (xσ|θ) = P (xσ2 |xσ1 , xσ0 , θ)P (xσ1 |xσ0 , θ)P (xσ0 |θ) (59.11)

Q(θ|θ(t)) =
∑
m⃗,⃗h

P (m⃗, h⃗ | x⃗, θ(t)) lnP (m⃗, x⃗, h⃗|θ) (59.12)

=
∑
m⃗,⃗h

[∏
σ

P (mσ, hσ | xσ, θ(t))

]
ln

[∏
σ

P (mσ, xσ, hσ|θ)

]
(59.13)

=
∑
σ

∑
mσ ,hσ

P (mσ, hσ | xσ, θ(t)) lnP (mσ, xσ, hσ|θ) (59.14)

=
∑
σ

∑
mσ ,hσ

P (mσ, hσ, xσ | θ(t))
P (xσ | θ(t))

lnP (mσ, xσ, hσ|θ) (59.15)

Once you find optimal parameters θ∗ by recursing this Q(θ|θ(t)), you can eval-
uate numerically the P (m) column of Table 59.2. In Table 59.2, out of the 4 sub-rows
for row 4, choose the one with the highest probability. Similarly, out of the 2 sub-rows
for row 5, choose the one with the highest probability.

59.2 Imputation via MCMC
A simple and popular way to do imputation via MCMC is described in Ref.[75]. It
goes as follows.

Let
H[σ] = (h[σ],m[σ]) (59.16)

for σ = 0, 1, . . . , nsam−1. Initialize θ(0) to a random value within the allowed ranges.
Do the following 2 steps, for t = 0, 1, . . . , T − 1, where T is large enough that θ(t)
has reached a steady value that is independent of θ(0). To do the sampling, use a
standard sampling technique such as Gibbs sampling.

• STEP 1: For σ = 0, 1, . . . , nsam− 1, find a sample

(Hσ)(t+1) ∼ P (Hσ|xσ, θ(t)) . (59.17a)

• STEP 2: Find a sample
θ(t+1) ∼ P (t+1)(θ) (59.17b)

where
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P (t+1)(θ) = N (!θ)P (x⃗, H⃗(t+1)|θ) (59.17c)

= N (!θ)
∏
σ

P (xσ, (Hσ)(t+1)|θ) . (59.17d)

Fig.59.4 illustrates this two step recursive process using a bnet.

x⃗

!! (( ++
θ(0)

  

θ(1)

!!

θ(2)

!!

θ(3)

H⃗
(1)

OO

H⃗
(2)

OO

H⃗
(3)

OO

x⃗

== 66 44

Figure 59.4: bnet illustrating Eqs.(59.17) for doing imputation via MCMC. The same
node x⃗ appears twice to make the graph clearer.

59.3 Multiple Imputations
Multiple imputations means calculating θ∗ (i.e., the optimum θ) and the concomi-
tant dataset x⃗∗, H⃗∗ , via any method (such as EM or MCMC), a large number of times,
starting from different, randomly chosen θ(0) initial parameters. Then calculating the
average and the variance of θ∗, x⃗∗, H⃗∗ and functions thereof.
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Chapter 60

Modified Treatment Policy

This chapter is based primarily on Ref. [24]. Refs. [26] and [27] were also very helpful.
A Modified Treatment Policy (MTP) is a generalization of the Potential

Outcomes (PO)1 model so as to modify the original treatment. This is accomplished
by adding a modified treatment dose node x̃ acting as a mediator between the treat-
ment dose node x and the treatment effect node y (i.e., by considering x→ x̃→ y).

60.1 One time MTP
Consider a typical PO bnetG and its corresponding imagined bnetGim2 (see Fig.60.1)2.
A MTP adds a Bayesian prior to the node x̃ in Gim2. The prior depends on the treat-
ment dose variable (a.k.a. exposure variable) x and its parents pa(x) = c. This adds
to Gim2 new arrows c→ x̃ and x→ x̃ (see Fig.60.2).

The TPM, printed in blue, for node x̃ of the imagined bnet Gim2 in Fig.60.2,
is as follows

P (x̃ = x̃;x) = δ(x̃, x) (60.1)

The TPM, printed in blue, for node x̃ of the modified imagined bnet Gim2,mod

in Fig.60.2, is as follows
P (x̃ = x̃|x = x, c) = prior (60.2)

Hence, node x̃ has a totally informative, parametric (frequentist) prior in Gim2,
and it has a more general (Bayesian) prior in Gim2,mod.

The following assumptions will be made about bnet Gim2,mod:

1. Consistency (a.k.a. SUTVA)
1PO theory is discussed in Chapter 72.
2Ref.[24] uses the notation L = c, A = x, Y = y, Q = x̃, Yq = y(x̃). Furthermore, it does not

display a DAG.
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c

�� ��
x // y

c

��

  ((
y(0)

""

y(1)

��
x // y

c

��

!! ))
y(0)

""

y(1)

��
x x̃ = x̃ // y

G Gim1 = Ix→yG Gim2 = Ix̃→yIx→y(x̃)G

( As usual in this book, Sa denotes the set of values that a random variable a can
assume. Imagine operators such as Ix→y and Ix→y(x̃) are discussed in Chapter 12. )

Figure 60.1: G is one of the simplest possible bnets considered in PO theory. In the
usual PO theory, one only considers the bnet Gim1. In MTP theory, one considers
the bnet Gim2. For Gim2, x̃ ∈ Sx̃ = Sx = {0, 1}.

pa(x) = c

��

pa′(y)

��
[y(x̃)]x̃∈Sx̃

��
x x̃ = x̃ // y

pa(x) = c

�� ��

pa′(y)

��
[y(x̃)]x̃∈Sx̃

��
x // x̃ // y

Gim2 Gim2,mod

Figure 60.2: In this figure, Gim2 is the generalization of the Gim2 in Fig.60.1. Note
that pa′(y) are the parents in G of y, excluding x. Note that Sx̃ ⊂ Sx.

The TPM, printed in blue, for node y of the modified imagined bnet Gim2,mod

in Fig.60.2, is as follows

P (y | x̃, {y(x̃′)}x̃′∈Sx̃
) = 1( y =

∑
x̃′∈Sx̃

y(x̃′)1(x̃′ = x̃) ) (60.3)

When Sx̃ = {0, 1}, this becomes the more familiar statement from standard PO
theory:

P (y | x̃, {y(0), y(1)}) = 1( y = y(0)(1− x̃) + y(1)x̃ ) (60.4)
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An immediate consequence of this deterministic TPM for node y is that

P (y = y|x̃, pa′(y) = ξ) = P (y(x̃) = y|x̃, pa′(y) = ξ) (60.5)

2. Ignorability (a.k.a. conditional independence assumption (CIA))

P (y(x̃′) = y|x̃, pa′(y) = ξ) = P (y(x̃′) = y|pa′(y) = ξ) (60.6)

CIA follows from the structure of the DAG Gim2,mod, because in that DAG,
fixing the value of pa′(y) blocks messages from x̃ to y(x̃) (i.e., for all x̃ ∈ Sx̃, we
have x̃ ⊥ y(x̃)|pa′(y).)

3. Identifiability

We must have
Sx̃ ⊂ Sx (60.7)

inGim2,mod or else queries of the type P (y(x̃) = y|pa′(y) = ξ) are not identifiable.
This is clear because if x̃ ̸∈ Sx, then we have no information of the type

P (y = y|x̃, pa′(y) = ξ) = P (y(x̃) = y|pa′(y) = ξ) . (60.8)

4. Positivity

Define the following 2 propensities for x ∈ Sx and x̃ ∈ Sx̃:

gx|c = P (x = x|c) (60.9)

g̃x̃|c = P (x̃ = x̃|c) (60.10)

Positivity for Gim2,mod is the requirement that

0 < gx̃|c < 1 for all x̃ ∈ Sx̃ and c ∈ Sc (60.11)

If gx̃|c is deterministic, then this requirement is not satisfied, and we cannot do
IPW (i.e., inverse propensity weighing).

Note that using a MTP can allow IPW to be performed in cases when the
propensity gx|c is anomalous (i.e., is either not defined or violates positivity) for
some x ∈ Sx, but is not anomalous for all x̃ ∈ Sx̃, where Sx̃ is some proper
subset of Sx.
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The probability distribution P (x̃|x, c) (i.e., the x̃ prior for Gim2,mod) is called
the MTP. An MTP can be either deterministic or probabilistic. An MTP that
depends (resp., does not depend) on x is said to be dynamic (resp., static), because
x̃ depends (resp., does not depend) on the previous value of x.

1. Deterministic MTP

Suppose Sx̃ ⊂ Sx and we are given a function x̃c(·) : Sx → Sx̃. Then let the
TPM, printed in blue, for node x̃, be as follows:

P (x̃ = x̃|x = x, c) = δ(x̃, x̃c(x)) (60.12)

Figure 60.3: Two possible maps x̃c : [a, b]→ [a, b] for a deterministic MTP.

Examples of x̃c(x):

• threshold in the value of x for small values of x. (See Fig.60.3)
Let Sx = [a, b] where a < b. For some θ ∈ [a, b] and u(c) ∈ [a, b], set

x̃c(x) =

{
θ if x ≤ u(c)
x if x > u(c)

(60.13)

• upshift in the value of x for small values of x. (See Fig.60.3)
Let Sx = [a, b] where a < b. For some ∆x > 0, and u(c) ∈ [a, b], set

x̃c(x) =


(x+∆x) if x < u(c) and (x+∆x) ∈ [a, b]
x if x > u(c)
b if (x+∆x) > b

(60.14)

2. Stochastic MTP

For some convenient, user specified, probability distribution P (x̃|x′, x, c), where
x̃ ∈ Sx̃, x, x′ ∈ Sx, and c ∈ Sc, let the TPM, printed in blue, for node x̃, be as
follows:
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P (x̃|x, c) =
∑
x′∈Sx

P (x̃|x′, x, c) P (x = x′|c)︸ ︷︷ ︸
unmodified propensity

(60.15)

Examples

• Suppose we are given a function xc : Sx̃ → Sx. (xc(x̃) could be the inverse,
if it exists, of the function x̃c(x) defined in the deterministic TPM case.)

P (x̃|x, c) = P (x = xc(x̃)|c)∑
x̃ numerator

(60.16)

• Suppose Sx = Sx̃ = {0, 1}, θ ∈ R, and let

P (x̃|x, c) = [π(x|c)]x̃[1− π(x|c)]1−x̃ (60.17)

where

π(x|c) = θxP (x = x|c)∑
x numerator

(60.18)

60.2 ∆|c estimand
Let

Y|x,c =
∑
y

yP (y(x) = y | x, c) (60.19)

=
∑
y

yP (y = y | x, c) (60.20)

Ỹ|x̃=x̃,c =
∑
y

yP (y(x̃) = y | x̃, c) (60.21)

=
∑
y

yP (y = y | x̃, c) (60.22)

Ỹ|x=x,c =
∑
x̃

Ỹ|x̃=x̃,cP (x̃|x, c) (60.23)

Y|c =
∑
x

Y|x,cP (x|c), Y =
∑
c

P (c)Y|c (60.24)

Ỹ|c =
∑
x

Ỹ|x=x,cP (x|c), Ỹ =
∑
c

P (c)Ỹ|c (60.25)
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Note that there are two Ỹ , namely Ỹ|x=x,c and Ỹ|x̃=x̃,c.
Define the ∆|c estimand by:

∆|c = Y|c − Ỹ|c, ∆ =
∑
c

P (c)∆|c (60.26)

∆|c measures the difference between the real world represented by Y|c and a modified
world represented by Ỹ|c.

Claim 87 Consider the deterministic MTP case P (x̃|x, c) = δ(x̃, x̃c(x)), where the
function x̃ = x̃c(x) is invertible with inverse x = xc(x̃) for some x ∈ X ⊂ R. Then,

Ỹ|x=x,c = Y|xc(x̃),c (60.27)

proof:

Ỹ|x=x,c =
∑
x̃

∑
y

yP (y = y | x̃ = x̃, c)δ(x̃, x̃c(x)) (60.28)

=
∑
y

yP (y = y | x̃ = x̃c(x), c) (60.29)

=
∑
y

yP (y = y | x = xc(x̃), c) (60.30)

= Y|xc(x̃),c (60.31)

QED
Henceforth in this chapter, we will restrict our attention to the deterministic

MTP case in which P (x̃|x, c) = δ(x̃, x̃c(x)). We will also assume that the domain Xc

of x̃c(x) is a union of disjoint sets Xj
c for j = 1, 2, . . . , nj(c), and that on each set Xj

c,
x̃c(x) is invertible and differentiable.

X = Sx
Xj
c ∩ Xj′

c = ∅ for j ̸= j′

Xc = ∪nj(c)j=1 Xj
c ⊂ X

(60.32)

x̃c(x) =

nj(c)∑
j=1

1(x ∈ Xj
c)x̃

j
c(x) (60.33)

P (x̃|x, c) = δ(x̃, x̃c(x)) =
∑
j

1(x ∈ Xj
c)δ(x̃, x̃

j
c(x)) (60.34)

(x̃jc)
−1(x̃) = xj(x̃) (60.35)
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X̃j
c = x̃jc(Xj

c) = {x̃jc(x) : x ∈ Xj
c} (60.36)

PXc = P (x ∈ Xc) (60.37)

Claim 88
Ỹ|c =

1

PXc

Ex̃|c[λc(x̃)Y|xc(x̃),c] , (60.38)

Y|c =
1

PXc

Ex̃|c[λc(x̃)Y|x̃,c] (60.39)

and

PXc = Ex̃|c[λc(x̃)] (60.40)
where3

λc(x̃) =
∑
j

1(x̃ ∈ X̃j
c)
dxjc(x̃)

dx̃

P (x = xjc(x̃)|c)
P (x̃ = x̃|c)︸ ︷︷ ︸

=1

(60.41)

proof:

Ỹ|c =
1

PXc

∫
x∈Xc

dx P (x|c)
∑
y

yP (y|x̃ = x̃c(x), c) (60.42)

=
1

PXc

∑
j

∫
x∈Xj

c

dx P (x|c)
∑
y

yP (y|x̃ = x̃jc(x), c) (60.43)

=
1

PXc

∑
j

∫
x̃∈X̃j

c

dx̃
dxjc(x̃)

dx̃
P (x̃|c)P (x = xjc(x̃)|c)

P (x̃|c)
∑
y

yP (y|x = xjc(x̃), c)︸ ︷︷ ︸
Y
|xjc(x̃),c

(60.44)

=
1

PXc

∫
x̃∈X̃c

dx̃ P (x̃|c)λc(x̃)Y|xc(x̃),c (see Eq(60.41)) (60.45)

=
1

PXc

Ex̃|c[λc(x̃)Y|xc(x̃),c] (60.46)

To get Eq.(60.39), replace Y|xc(x̃),c by Yx̃,c in Eq.(60.38).
To get Eq.(60.40), replace Y|xc(x̃),c by 1 in Eq.(60.38).

QED
From the last claim, it follows that

∆|c =
Ey,x̃|c

[
λc(x̃)(y − Y|xc(x̃),c)

]
Ex̃|c[λc(x̃)]

(60.47)

3λc(x̃) is just a piecewise Jacobian. In Ref.[24], the part of Eq.(60.41) which is marked as being
equal to 1 is incorrectly assumed to be different from 1.
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60.3 Estimates of ∆|c

60.3.1 Empirical estimate of ∆|c
Consider a population Σ of individuals σ ∈ Σ, with |Σ| = N .

Let
Nc =

∑
σ

δ(cσ, c) , (60.48)

P (σ|c) = δ(cσ, c)

Nc

, (60.49)

and

Eσ|c[ξσ] =
∑
σ

P (σ|c)ξσ . (60.50)

Then set

∆̂|c =
Eσ|c

[
λc(x̃σ)(yσ − Y|xc(x̃σ),c)

]
Eσ|c[λc(x̃σ)]

(60.51)

60.3.2 OR estimate of ∆|c
Outcome Regression (OR) estimate of ∆|c.

Calculate the following estimates in this order: τ̂ → ∆̂|c.
Steps:

1. Calculate τ̂

Let
XT = [1, x̃, c], XT

σ = [1, x̃σ, cσ] . (60.52)

Use Generalized Linear Modeling (GLM)4 to approximate yσ:

yσ ≈ ŷ(XT
σ τ̂) (60.53)

ŷ(XT
σ τ̂) = g−1(XT

σ τ̂) (60.54)

where g() is the link function.

2. Calculate ∆̂|c

∆̂|c =
Eσ|c[λc(x̃σ)(yσ − ŷ(XT

σ τ̂))]

Eσ|c[λc(x̃σ)]
(60.55)

4GLM is discussed in Chapter 32.
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Claim 89 (Asymptotic behavior of OR estimate)
As N →∞, √

Nc(∆̂|c −∆∗
|c)→ N (0,V) (60.56)

where

V = Eσ|c[(IFσ)
2] (60.57)

IFσ =
Rσ(τ̂ , ∆̂|c) +B(τ̂)

C
(60.58)

Rσ(τ,∆|c) = λc(x̃σ)(yσ − ŷ(XT
σ τ)−∆|c) (60.59)

C = −Eσ|c[λc(x̃σ)] (60.60)

B(τ) =
∑
i

Eσ|c

[
λc(x̃σ)

∂ŷ(XT
σ τ)

∂τi

]
Eσ|c[Si,σ(τ)]

Eσ|c

[
∂Si,σ(τ)

∂τi

] (60.61)

(Note that index i labels the components of the column vector τ)

proof:
Eq.(60.55) that defines the OR estimate can be rewritten as

0 = Eσ|c[λc(x̃σ)(yσ − ŷ(XT
σ τ̂)− ∆̂|c)︸ ︷︷ ︸

Rσ(τ̂ ,∆̂|c)

] (60.62)

If we Taylor expand Rσ(τ̂ , ∆̂|c) to first order in each of its 2 estimator arguments, we
get

Eσ|c[Rσ(τ̂ , ∆̂|c)] =



Eσ|c[Rσ(τ
∗,∆∗

|c)]︸ ︷︷ ︸
A

+
∑

iEσ|c

[
∂Rσ(τ

∗,∆∗
|c)

∂τ ∗i

]
︸ ︷︷ ︸

Bi

(τ̂i − τ ∗i )

+Eσ|c

[
∂Rσ(τ

∗,∆∗
|c)

∂∆∗
|c

]
︸ ︷︷ ︸

−C

(∆̂|c −∆∗
|c)

(60.63)
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Solving the last equation for ∆̂|c −∆∗
|c yields

∆̂|c −∆∗
|c =

A+

B︷ ︸︸ ︷∑
i

Bi(τ̂i − τ ∗i )

C
(60.64)

Assuming yσ ∈ {0, 1}, define the Cross Entropy and its first derivative with
respect to τi by

CEσ =
∑
yσ=0,1

yσ ln ŷ(X
T
σ τ) (60.65)

Si,σ(τ) =
∂CEσ
∂τi

(60.66)

In this notation, according to the maximum likelihood principle, the best choice of
parameters τi must satisfy

0 = Eσ|c[Si,σ(τ̂)] (60.67)

If we Taylor expand Si,σ(τ̂) to first order in its estimator argument, we get

Eσ|c[Si,σ(τ̂)] = Eσ|c[Si,σ(τ
∗)] + Eσ|c

[
∂Si,σ(τ

∗)

∂τi

]
(τ̂i − τ ∗i ) (60.68)

Hence,

τ̂i − τ ∗i = −
Eσ|c[Si,σ(τ

∗)]

Eσ|c

[
∂Si,σ(τ∗)

∂τi

] . (60.69)

Now putting our previous results together, we get

A = Eσ|c[Rσ(τ
∗,∆∗

|c)] (60.70)

= Eσ|c[λc(x̃σ)(yσ − ŷ(XT
σ τ

∗)−∆∗
|c)] (60.71)

Bi = −Eσ|c
[
λc(x̃σ)

∂ŷ(XT
σ τ

∗)

∂τ ∗i

]
(60.72)

B(τ ∗) =
∑
i

Bi(τ̂i − τ ∗i ) (60.73)

=
∑
i

Eσ|c

[
λc(x̃σ)

∂ŷ(XT
σ τ

∗)

∂τ ∗i

]
Eσ|c[Si,σ(τ

∗)]

Eσ|c

[
∂Si,σ(τ∗)

∂τi

] (60.74)

C = −Eσ|c[λc(x̃σ)] (60.75)
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IFσ =
Rσ(τ̂ , ∆̂|c) +B(τ̂)

C
(60.76)

V = Eσ|c[(IFσ)
2] (60.77)

QED

60.4 Other Estimands besides ∆|c

Suppose x̃0, x̃1 ∈ Sx̃. Define the Modified ATE (MATE) by

MATE|c = Ỹ|x̃=x̃1,c − Ỹ|x̃=x̃0,c (60.78)

MATE =
∑
c

P (c)MATE|c (60.79)

60.5 Multi-time MTP
A g-formula is any formula that defines recursively the full probability distribution of
a bnet. In other words, it’s a recursive definition of a Dynamical Bayesian Network.5

Let’s define a g-formula6 for Multi-time (a.k.a. longitudinal) MTP (LMTP).
Consider t = 1, 2, . . . , nt,
For nt = 1,

c1

�� ��
x1 // y

c1

��

�� ��

x1

��
x̃1 // y

(60.80)

P (y, x1, c1) = P (y|x1, c1)P (x1|c1)P (c1) (60.81)

P (y, x̃1, x1, c1) = P (y|x̃1, c1)P (x1|c1)P (x̃1|x1, c1)P (c1) (60.82)

For nt = 2,
5Dynamical Bayesian Networks are discussed in Chapter 25.
6Chapter 30 defines a different g-formula that we call a sequential backdoor g-formula.
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c1

��

//

  

c2

�� ��
x1 //

>>

x2 // y

c1

��

//

�� ��

  

c2

��

�� ����

x1

��

x2

��
x̃1

??

GG

// x̃2 // y

(60.83)

P (y, x≤2, c≤2) =


P (x1|c1)P (c1)
∗P (x2|x1, c2,1)P (c2|x1, c1)
∗P (y|x2, c2)

(60.84)

P (y, x̃≤2, x≤2, c≤2) =


P (x1|c1)P (x̃1|x1, c1)P (c1)
∗P (x2|x̃1, c2,1)P (x̃2|x2, c2,1)P (c2|x̃1, c1)
∗P (y|x̃2, c2)

(60.85)

For nt = 3,

c1

��

//

  

c2

��

//

  

c3

�� ��
x1 //

>>

x2 //

>>

x3 // y

c1

��

//

��

  

��

c2

��

//

��

  

��

c3

��

���� ��

x1

�� ��

x2

�� ��

x3

��
x̃1

??

GG

// x̃2

??

GG

// x̃3 // y

(60.86)

P (y, x≤3, c≤3) =


P (x1|c1)P (c1)
∗P (x2|x1, c2,1)P (c2|x1, c1)
∗P (x3|x2, c3,2)P (c3|x2, c2)
∗P (y|x3, c3)

(60.87)

P (y, x̃≤3, x≤3, c≤3) =


P (x1|c1)P (x̃1|x1, c1)P (c1)
∗P (x2|x̃1, c2,1)P (x̃2|x̃1, x2,1, c2,1)P (c2|x̃1, c1)
∗P (x3|x̃2, c3,2)P (x̃3|x̃2, x3,2, c3,2)P (c3|x̃2, c2)
∗P (y|x̃3, c3)

(60.88)

In general,

P (y, x≤nt, c≤nt) =

{ ∏nt
t=1{P (xt|xt−1, ct,t−1)P (ct|xt−1, ct−1)}
∗P (y|xnt, cnt)

(60.89)

P (y, x̃≤nt, x≤nt, c≤nt) =

{ ∏nt
t=1 P (xt|x̃t−1, ct,t−1)P (x̃t|x̃t−1, xt,t−1, ct,t−1)P (ct|x̃t−1, ct−1)
∗P (y|x̃nt, xnt, cnt)

(60.90)
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Note that Ref.[26] by Hernán and Robins (HR) uses the notation Lt = ct,
At = xt for t = 1, 2, . . . , nt. Hence, the nt = 3 bnet Eq.(60.86), written in the HR
notation, is as follows (before and after adding the Ã nodes):

L1

��

//

  

L2

��

//

  

L3

�� ��
A1

//

>>

A2
//

>>

A3
// y

L1

��

//

��

  

��

L2

��

//

��

  

��

L3

��

��
��

A1

�� ��

A2

�� ��

A3

��

Ã1

??

// Ã2

??

// Ã3
// y

(60.91)

HR doesn’t actually display the Ã nodes in its DAGs. Furthermore, in HR, nodes At
and Lt have parent nodes that are time steps 0, 1, 2, 3, . . . in the past. I, on the other
hand, do not draw or consider parents that are more than one time steps in the past,
because I assume the effect of those parents is negligible to first approximation.
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Chapter 61

Monty Hall Problem

c

��

y

��
m

Figure 61.1: Monty Hall Problem.

Mr. Monty Hall, host of the game show “Let’s Make a Deal", hides a car
behind one of three doors and a goat behind each of the other two. The contestant
picks Door No. 1, but before opening it, Mr. Hall opens Door No. 2 to reveal a goat.
Should the contestant stick with No. 1 or switch to No. 3?

The Monty Hall problem can be modeled by the bnet Fig.61.1, where

• c= the door behind which the car actually is.

• y= the door opened by you (the contestant), on your first selection.

• m= the door opened by Monty (game host)

We label the doors 1,2,3 so Sc = Sy = Sm = {1, 2, 3}.
The TPMs, printed in blue, for this bnet, are as follows:

P (c) =
1

3
for all c (61.1)

P (y) =
1

3
for all y (61.2)
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P (m|c, y) = 1(m ̸= c)

[
1

2
1(y = c) + 1(y ̸= c)1(m ̸= y)

]
(61.3)

It’s easy to show that the above node probabilities imply that

P (c = 1|m = 2, y = 1) =
1

3
(61.4)

P (c = 3|m = 2, y = 1) =
2

3
(61.5)

So you are twice as likely to win if you switch your final selection to be the
door which is neither your first choice nor Monty’s choice.

The way I justify this to myself is: Monty gives you a piece of information. If
you don’t switch your choice, you are wasting that info, whereas if you switch, you
are using the info.
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Chapter 62

Multi-armed Bandits

Figure 62.1: Multi-armed bandit (MAB).

Figure 62.2: Bernoulli MAB (Bern-MAB) with 4 arms. For a Bern-MAB, the con-
ditional probability distribution P (r|a) for reward r, given arm a, is initially totally
unknown to the gambler (agent), but it is known by the environment to be a Bernoulli
distribution P (r|a) = µra(1− µa)1−r for r ∈ {0, 1}, where 0 < µa < 1 for each a. The
percentages shown are µa for each arm a.
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This chapter is mostly based on Refs. [63] and [94].
Multi-armed Bandits (MABs) are a simple version of Reinforcement Learning

(RL). RL is discussed in Chapter 78.
The term “one-armed-bandit" is a humorous term for what is also called a

slot machine. A slot machine is a gambling device which has a slot into which you
put coins or tokens for the privilege of being allowed to pull down a lever (arm) on
one side of the device. This action generates a random combination of three shapes,
which may or may not, depending on their combination, entitle the player to a money
award.

Multi-armed bandit (MAB) is the name given to the optimization problem
that considers an agent (gambler) that is playing multiple one-armed-bandits, each
with a possibly different odds of winning. The optimization problem is to determine
an efficient schedule whereby the gambler can converge on the device with the highest
odds of winning.

MABs are often used in marketing as an alternative to A/B testing. These
2 methods yield different information but overlap in that they both can discover
consumer preferences.

The MAB problem is an optimization problem (i.e., finding the maximum of
a reward function or the minimum of a cost function). As with any minimization
problem, an algorithm to solve it runs the danger of converging to a local minimum
that isn’t the global (i.e., the overall) minimum. This danger can be diminished by
doing both exploration and exploitation. Algorithms that do no exploration, only
exploitation, are said to be greedy, and they are at the highest risk of converging to
a non-global minimum.

62.1 Bnet for MAB

s<0
//

��

s<1
//

��

s<2

��

· · ·

a0

<<

��

a1

<<

��

a2

��
r0

EE

r1

EE

r2

Figure 62.3: Bnet for a multi-armed bandit (MAB).

Let
t ∈ {0, 1, 2, . . .} be the time slice (step),
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at ∈ {0, 1, . . . , Na− 1} = Sa be the arm of bandit that is pulled at time t, out
of Na arms. In RL language, it’s also the action taken.

rt ∈ R be the reward at time t,
s<t = [(aτ , rτ )︸ ︷︷ ︸

sτ

: τ < t] be the state at time t.

Fig.62.3 shows a bnet for a MAB. The TPMs, printed in blue, for this bnet,
are as follows.

P (s<t|s<t−1, at−1, rt−1)) = 1(s<t = s<t−1 ∪ (at−1, rt−1)) (62.1)

For t = 0, s<0 = ∅, so choose a random a0.

P (at|s<t) = 1(at = a∗t ) (agent’s response) , (62.2)

where a∗t depends on the strategy (a.k.a. policy) being used by the gambler
(agent). We consider various strategies below. a∗t is defined solely in terms of
empirical data (i.e., at, rt values) collected from previous time-slices. That is the
only type of information that the gambler is privy to. a∗0 is chosen at random. The
formulae for a∗t that we give below for various strategies should only be used for t > 0.

P (rt|at) = Pr|a(rt|at) (environment’s response) . (62.3)

Pr|a is a probabilistic model that models the environment in which the agent lives.
This assumes that the at (and the rt) are i.i.d. Pr|a depends on parameters whose
values are known by the environment, but are not known a priori by the gambler. In
fact, the goal of this exercise is for the gambler to find ever more accurate estimates
of those parameters, using only the empirical data he/she can collect from the past,
starting from total ignorance about those parameters.

For a Bernoulli MAB (Bern-MAB), the conditional probability distribu-
tion Pr|a is a Bernoulli distribution

P (r|a) = µra(1− µa)1−r (62.4)

for r ∈ {0, 1}, where 0 < µa < 1 for each a. The parameters µa are initially unknown
to the gambler. Note that E[r|a] =

∑
r rP (r|a) = P (r = 1|a) = µa.

For a Gaussian MAB, the conditional probability distribution Pr|a is a Nor-
mal (Gaussian) distribution

P (r|a) = N (r;µa, σ
2
a) . (62.5)

for r ∈ R. The parameters µa, σ2
a are initially unknown to the gambler.
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62.2 Reward functions
For a ∈ Sa, define the Long term Average Reward for action a by

µa = Q(a) = E|a[r] =
∑
r

rP (r|a) . (62.6)

Let

a∗ = argmax
a

Q(a) (62.7)

µ∗ = max
a
Q(a) = Q(a∗) (62.8)

∆a = µ∗ −Q(a) (62.9)

µa, a
∗, µ∗ and ∆a are not known to the gambler.

Define the Instantaneous (at time t) Average Reward for action a by

Qt(a) =
1

Nt(a)

t∑
τ=0

rτ1(aτ = a) (62.10a)

where

Nt(a) = Nin +
t∑

τ=0

1(aτ = a) (62.10b)

Nin > 0 insures that we never divide by zero. Note that Eqs.(62.10) can be stated
recursively as

Nt(a)Qt(a) = Nt−1(a)Qt−1(a) + rt1(at = a) (62.11a)

Nt(a) = Nt−1(a) + 1(at = a) (62.11b)

with Q−1(a) = 0 and N−1(a) = Nin for all a. We assume that at large t, Nin << Nt(a)
for all a. For instance, one can use Nin = 1.

Q(a) is not known to the gambler but Nt(a) and Qt(a) are because they are
empirical.

We will write a hat over random variables that are defined by an empirical
probability distribution.1 Whereas we assume that at and rt are i.i.d., we will not
assume that ât and r̂t are i.i.d. for finite times t. What we will assume is that as
t→∞,

1An alternative convention is to not distinguish between ât and at, or between r̂t and rt, but to
distinguish between P (rt|at) and P̂ (rt|at), where P̂ () is an empirical estimate of P ().

465



ât → a , r̂t → r (62.12)

Note that ∑
a

Nt(a)

t+ 1
= 1 (62.13)

so define

P (ât = a) =
Nt(a)

t+ 1
. (62.14)

Thus

E[Q(ât)] =
∑
a

P (ât = a)Q(a) . (62.15)

Claim 90
Qt(a) = E|ât=a [̂rt] (62.16)

proof:
Note that

∑
r

t∑
τ=0

1(aτ = a, rτ = r)

Nt(a)
= 1 . (62.17)

so define

P (r̂t = r|ât = a) =
t∑

τ=0

1(aτ = a, rτ = r)

Nt(a)
. (62.18)

Thus

Qt(a) =
∑
r

r
t∑

τ=0

1(aτ = a, rτ = r)

Nt(a)
(62.19)

=
∑
r

rP (r̂t = r|ât = a) (62.20)

= E|ât=a [̂rt] (62.21)

QED

Claim 91 As t→∞,

Qt(a)→ Ea=a[r] = Q(a) (62.22)

E[Q(ât)]→ E[Q(a)] (62.23)
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proof: This is clear from ât → a and r̂t → r and Claim 90.
QED

62.3 Regret functions
Define the Instantaneous (at time t) Average Regret (I-Regret) by

IRegt = µ∗ − E[Q(ât)] = E[∆ât
] (62.24)

and the Cumulative (for times ≤ t) Average Regret (C-Regret) by

CRegt =
t∑

τ=0

IRegτ . (62.25)

Note that

CRegt =
t∑

τ=0

E[∆âτ
] (62.26)

=
∑
a

∆a

t∑
τ=0

Nτ (a)

τ + 1
(62.27)

Let

ρt =
1

t+ 1

t∑
t=0

rt . (62.28)

Define the Cumulative Average Reward (C-Reward) by

CRewt = E|ât=a[(t+ 1)ρ̂
t
] . (62.29)

It can be shown that minimizing the C-Regret is equivalent to maximizing the C-
Reward.

Claim 92 As t→∞,

IRegt → E[∆a] (62.30)

proof: This is clear from ât → a and r̂t → r.
QED
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62.4 Strategies with random exploration
In this section, we consider MAB algorithms that explore all values of the action a
at random. In the section following this one, we consider MAB algorithm that do a
more deliberate search of the action space.

62.4.1 ϵ-greedy algorithm

Recall that at ∈ {0, 1, . . . , Na − 1} = Sa. The user of the algorithm specifies an
ϵ ∈ [0, 1] which measures the amount of exploration to be conducted.

At

��
g
t

??

// at

Figure 62.4: Extra structure added to MAB Bnet Fig.62.3 for ϵ-greedy algorithm.

For each t, add extra the structure shown in Fig.62.4 to the MAB bnet Fig.62.3.
g
t
∈ {0, 1} and at, At ∈ Sa. (“g" stands for greedy). The TPMs, printed in blue, for

the new nodes, are as follows

P (gt) =

{
ϵ (exploration) if gt = 0
1− ϵ (exploitation) if gt = 1

. (62.31)

P (At|gt) =
{ 1

Na
(exploration) if gt = 0

1(At = 0) (exploitation) if gt = 1
(62.32)

P (at|At, gt) =
{
1(at = At) (exploration) if gt = 0
1(at = a∗t ) (exploitation) if gt = 1

(62.33)

where a∗t is defined as follows:

a∗t = argmax
a

Qt−1(a) . (62.34)
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As t→∞,

Nt(a)

t+ 1
= P (ât = a) (62.35)

→ P (a, gt = 0)ϵ+ P (a, gt = 1)(1− ϵ) (62.36)
≥ P (a, gt = 0)ϵ (62.37)

=
ϵ

Na

(62.38)

Hence

IRegt =
∑
a

∆a

t∑
τ=0

Nτ (a)

τ + 1
(62.39)

≥ ϵ

Na

∑
a

∆a (62.40)

and CRegt ≥ N (!t)(t+ 1).

62.4.2 ϵt-greedy algorithm

Replace time-independent constant ϵ in the ϵ-greedy algorithm by a time dependent
function ϵt.

62.5 Strategies with nonrandom exploration

62.5.1 Upper Confidence Bounds (UCB) algorithms

A MAB algorithm that maximizes merely Qt(a) to get a∗t is totally greedy (i.e., does
no exploration, only exploitation). This doesn’t work too well because once the algo
finds a particular a∗t , it sticks with it. For times t after that, the Qt(a) for all a stay
more or less the same. The Nt(a) for a ̸= a∗t also stay the same. Only Nt(a

∗
t ) increases.

To avoid this problem, Upper Confidence Bounds (UCB) algorithms maximize
an effective Qt(a)eff = Qt(a) + Ut(a), where Ut(a) > 0, instead of maximizing merely
Qt(a) to get a∗t . Ut(a) is proportional to 1/

√
Nt(a) (that’s a property of UCBs).

Adding Ut(a) to Qt(a) gives those a with low Na(a) a Qt(a)eff >> Qt(a). This
encourages exploration of a different from a∗t = argmaxQt(a). In conclusion, for all
UCB algorithms, we have

a∗t = argmax
a

[Qt−1(a) + Ut−1(a)] (62.41)

Different UCB algos differ only in the definition of Ut(a).
Next, we consider two UCB algorithms, frequentist UCB (UCB1), and Bayesian

UCB.

469



Frequentist UCB (UCB1) algorithm

Claim 93 (Hoeffding’s Inequality- HI) Let x0, x1, . . . , xT−1 be i.i.d. random variables
such that 0 ≤ xt ≤ 1 for all t. Let mT−1 =

1
T

∑T−1
t=0 xt denote the sample mean. Then

for u > 0, we have:

P
(
E[x] > mT−1 + u

)
≤ e−2Tu2 . (62.42)

proof: See Ref.[132].
QED

Let2

xT =
{
xt : t ∈ Z[0,T−1]

}
(62.43)

and

r≤t−1(a) = {rτ : aτ = a, τ ∈ Z[0,t−1]} . (62.44)

Note that xT has T components and r≤t−1(a) has Nt−1(a) components. If we apply
the HI with xT replaced by r≤t−1(a), we get

P (Q(a) > Qt−1(a) + Ut−1(a)) ≤ e−2Nt−1(a)[Ut−1(a)]2 (62.45)

If we define a threshold probability p by

p = e−2Nt−1(a)[Ut−1(a)]2 , (62.46)

then

Ut−1(a) =

√
− ln p

2Nt−1(a)
(62.47)

If we choose p = (t− 1)−α,

a∗t = argmax
a

[
Qt−1(a) +

√
α(t− 1)

2Nt−1(a)

]
(62.48)

Bayesian UCB algorithm

Claim 94 3 4 (Bayesian updating of mean and deviation. See Fig.62.5.)
Suppose

2As usual, we define Z[a,b] = {a, a+ 1, a+ 2, . . . , b} for a < b.
3For a standard deviation σ, the precision τ is defined as τ = 1

σ2 .
4x|λ ∼ D(λ) means that P (x|λ) = D(x;λ). N () stands for the Normal distribution and Gamma()

for the Gamma distribution. See Ref.[126] for a discussion of the Gamma distribution.
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xn = [xi] , xi are i.i.d. with xi|µ, τ ∼ N (µ, τ) (62.49)

µ|τ ∼ N (µ0, n0τ) (62.50)

τ ∼ Gamma(α, β) . (62.51)

Then the posterior is

µ|τ, xn ∼ N
(
nx+ n0µ0

n+ n0

, (n+ n0)τ

)
(62.52)

τ |xn ∼ Gamma

(
α +

n

2
, β +

1

2

∑
i

(xi − x)2 +
nn0

2(n+ n0)
(x− µ0)

2

)
(62.53)

proof: See Ref.[32].
QED

α

  

β

~~

µ
0

  

τ 0

~~
Gamma
τ

''

// Normal
µ

wwNormal

xn

Gamma
τ // Normal

µ

xn

==aa

Figure 62.5: Prior and Posterior Bnets in Claim 94.

In the Bayesian UCB algorithm, we use

a∗t = argmax
a

Eµa,σa|s<t

[
µa + c

σa√
Nt−1(a)

]
(62.54)

for some c > 0.
Eq.62.54 requires that we know P (µa, σa|s<t) ; i.e., the posterior distribution

of µa, σa assuming the prior history s<t. This follows from Bayes theorem if we assume
a Normal distribution for the likelihood P (s<t|µa, σa) and we assume conjugate priors
for P (µa, σa). More precisely, if we replace xn by s<t in Claim 94, then

P (µa, τa|s<t) = P (µa|τa, s<t)P (τa|s<t) (62.55)

where P (µa|τa, s<t) and P (τa|s<t) are given by Claim 94.
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62.5.2 Thompson Sampling MAB (TS-MAB) algorithm

Bnet for general TS-MAB algorithm

s<0
//

��

s<1
//

��

s<2

��

· · ·

λ0

��

// λ1

��

// λ2

��
a0

FF

��

a1

FF

��

a2

��
r0

II

r1

II

r2

Figure 62.6: Bnet for TS-MAB algorithm.

The Thompson Sampling MAB (TS-MAB) algorithm is described by the bnet
Fig.62.6. This bnet differs from the bnet Fig.62.3 in that it includes new nodes λt.
The TPMs, printed in blue, for bnet Fig.62.6, are as follows.

P (s<t|s<t−1, at−1, rt−1) = same as for Fig.62.3 (62.56)

P (λt|s<t, λt−1) = 1(λt = λ∗t (s<t, λt−1)) (62.57)

where λ∗t is a function to be defined below.

P (at|λt) = 1[at = at(λt)] (Agent’s response) (62.58)

where at(λt) is a function to be described below.

P (rt|at) = same as for Fig.62.3. (Environment’s response) (62.59)

Let

Qt(a, λt) =
∑
r

rP (r̂t = r|ât = a, λt) (62.60)

= E|ât=a,λt [̂rt] . (62.61)

Define
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at(λt) = argmax
a

Qt(a, λt) . (62.62)

Note that

P (at|s<t) =
∑
λt

P (λt|s<t)1[Qt(at, λt) = max
a
Qt(a, λt)] (62.63a)

=
∑
λt

P (λt|s<t)1[at = at(λt)] (62.63b)

= Eλt|s<t{1[at = at(λt)]} . (62.63c)

If we further assume that P (λt|s<t) is a delta function, then Eqs.(62.63) reduce to

P (at|s<t) = 1[at = at(λ
∗
t )] (62.64)

TS-MAB algorithm with Beta agent and Bernoulli environment

The Beta distribution Beta(x;α, β) (see Ref.[105]) is defined for α > 0, β > 0 and
x ∈ [0, 1]. Since x ∈ [0, 1], x can be interpreted as a probability. The mean and
variance of the Beta distribution are

E[x] =
α

α + β
, (62.65)

⟨x, x⟩ = αβ

(α + β)2(α + β + 1)
. (62.66)

From this mean and variance, we see that if we increase α by one and leave β the
same, the mean moves towards 1 and the variance decreases. Likewise, if we increase
β by 1 and leave α the same, the mean moves towards 0 and the variance decreases.

Let

αat =
t∑

τ=0

1(rτ = 1, aτ = a) (62.67)

βat =
t∑

τ=0

1(rτ = 0, aτ = a) (62.68)

λat = (αat−1, β
a
t−1) (62.69)

λt = [(αat−1, β
a
t−1) : a ∈ Sa] (62.70)
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Qt(a, λt) =
∑
r

rBeta(r;αat−1, β
a
t−1) (62.71a)

=
αat−1

αat−1 + βat−1

(62.71b)

The TS-MAB algorithm for a Beta agent and Bernoulli environment can be
described by the bnet Fig.62.6. For this special case of bnet Fig.62.6, the TPMs,
printed in blue, are as follows.

P (s<t|s<t−1, at−1, rt−1) = same as for Fig.62.6 (62.72)

P (λat |s<t, λt−1) = 1(λat = λ∗at ) =


1(λat = λat−1) if a ̸= at−1

1(λat = (αat−2 + 1, βat−2)) if at−1 = a and rt−1 = 1
1(λat = (αat−2, β

a
t−2 + 1)) if at−1 = a and rt−1 = 0

(62.73)

P (at|λt) = 1(at = at(λt)) (62.74)
= 1(at = argmax

a
Qt(a, λt)︸ ︷︷ ︸

see Eq.(62.71).

) (Beta agent response) (62.75)

P (rt|at) = µrtat(1− µat)
rt (Bernoulli environment response) . (62.76)

µa known to environment but unknown to agent.

TS-MAB algorithm, skeletal reprise

The TS-MAB algorithm is not very complicated but explaining it with precision
requires nightmarishly many indices. Here is a pedagogical reprise of what we have
said so far, where we have stripped out some of the inessential indices.

P (λ) = 1(λ, λ∗) (62.77)

P (a|λ) = 1(a = a(λ)) (62.78)

= 1(a = argmax
a

∑
r

rP (r̂ = r|â = a, λ)) (62.79)

= 1(a = argmax
a

∑
r

rBeta(r;λa)) (Beta agent response) (62.80)
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Define q() by
q(r;λa) = P (r̂ = r|â = a, λ) (62.81)

• PRIOR:

P (a) =
∑
λ

P (λ)P (a|λ) (62.82)

= P (a|λ∗) (62.83)

= 1(a = argmax
a

∑
r

rq(r;λ∗a) (62.84)

1. Use fact that q =Beta∑
r

rBeta(r;λ∗a) =
α∗a

α∗a + β∗a (62.85)

2. Don’t use fact that q =Beta.
For each a, get samples rσ ∼ q(r;λ∗a) for σ = 0, 1, . . . , nsam − 1 and
estimate

∑
r

rq(r;λ∗a) ≈ 1

nsam

∑
σ

rσq(rσ;λ∗a) . (62.86)

This sampling is why TS is called a sampling.

• LIKELIHOOD:

P (r|a) = µra(1− µa)r (Bernoulli environment response) (62.87)

62.5.3 Grad-MAB algorithm

Let

λt+1(a) = λt(a) + ηrt[1(at = a)− πt(a)] (62.88)

for some η > 0, where πt(a) is defined by

πt(a) = P (at = a|λt) =
eλt(a)∑
a e

λt(a)︸ ︷︷ ︸
softmax(λt)(a)

. (62.89)

The λt(a) are called scores at time t. Let

a∗t = argmax
a

πt(a) (62.90)
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Figure 62.7: Bnet for Grad-MAB algorithm.

The Gradient MAB (Grad-MAB) algorithm is described by the bnet Fig.62.7.
This bnet differs from the bnet Fig.62.3 in that it includes new nodes λt. The TPMs,
printed in blue, for bnet Fig.62.7, are as follows.

P (λt+1 = λ|at, rt, λt) = 1(λ = λt+1 given by Eq.(62.88). (62.91)

P (at|λt) = 1(at = a∗t ) or, alternatively, = P (at = at|λt) = πt(at) (agent’s response)
(62.92)

P (rt|at) = Pr|a(rt|at) (environment’s response) . (62.93)

Motivation:
Define the Instantaneous Average Reward by

Rt(λt) =
∑
a

P (at = a|λt)Ert|at=a[rt] = Ert,at|λt [rt] . (62.94)

We will assume that as t → ∞, at → a, rt → r and λt → λ. Therefore,
Rt(λt)→ Er,a|λ[r] = Er|λ[r].

Note that if Ert|at=a[rt] = B, where B is independent of a, then Rt(λt) = B
and ∂Rt

∂λt(a)
= 0.

Claim 95 The gradient of Rt(λt) is

∂Rt

∂λt(a)
= Ert,at|λt [g(rt, at|a, λt)] (62.95)

where
g(rt, at|a, λt) = rt[1(at = a)− πt(a)] (62.96)
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proof:

∂Rt

∂λt(a)
=

∑
a′

∂πt(a
′)

∂λt(a)
Ert|at=a′ [rt] (62.97)

=
∑
a′

πt(a
′)
∂ ln πt(a

′)

∂λt(a)
Ert|at=a′ [rt] (62.98)

=
∑
a′

πt(a
′)

∂

∂λt(a)

[
ln

exp[λt(a
′)]∑

a exp[λt(a)]

]
Ert|at=a′ [rt] (62.99)

=
∑
a′

πt(a
′)[1(a′ = a)− πt(a)]Ert|at=a′ [rt] (62.100)

=
∑
a′

P (at = a′|λt)Ert|at=a′ [rt(1(a
′ = a)− πt(a))] (62.101)

= Ert,at|λt [g(rt, at|a, λt)] (62.102)

QED
Eq.(62.88) can be written as

λt+1(a) = λt(a) + ηg(rt, at|a, λt) (62.103)
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Chapter 63

Naive Bayes

c

��   (( **x0 x1 x2 x3

Figure 63.1: bnet for Naive Bayes with 4 features

Class node c ∈ Sc. |Sc| = nc= number of classes.
Feature nodes xi ∈ Sxi for i = 0, 1, 2, . . . , F − 1. F=number of features.
Define

x. = [x0, x1, . . . , xF−1] . (63.1)

For the bnet of Fig.63.1,

P (c, x.) = P (c)
F−1∏
i=0

P (xi|c) . (63.2)

Given x. values, find most likely class c ∈ Sc.
Maximum a Posteriori (MAP) estimate:

c∗ = argmax
c

P (c|x.) (63.3)

= argmax
c

P (c, x.)

P (x.)
(63.4)

= argmax
c

P (c, x.) . (63.5)
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Chapter 64

Neural Networks

In this chapter, we discuss Neural Networks (NNs) of the feedforward kind, which
is the most popular kind. In their plain, vanilla form, NNs only have deterministic
nodes. But the nodes of a bnet can be deterministic too, because the TPM of a node
can reduce to a delta function. Hence, NNs should be expressible as bnets. We will
confirm this in this chapter.

Henceforth in this chapter, if we replace an index of an indexed quantity by a
dot, it will mean the collection of the indexed quantity for all values of that index.
For example, x. will mean the array of xi for all i.

x0
(( $$

��   ((

// x1
((

~~ ��   

// x2

vv ~~ ��

// x3

tt ww ��
h00

�� ��

h01

�� ��

h02

ww ��
h10

��   

h11

~~ ��
Y 0 Y 1

Figure 64.1: Neural Network (feed forward) with 4 layers: input layer x., 2 hidden
layers h0., h1. and output layer Y .

Consider Fig.64.1.
xi ∈ {0, 1} for i = 0, 1, 2, . . . , nx− 1 is the input layer.
hλi ∈ R for i = 0, 1, 2, . . . , nh(λ)−1 is the λ-th hidden layer. λ = 0, 1, 2, . . . ,Λ−

2. A NN is said to be deep if Λ > 2; i.e., if it has more than one hidden layer.
Y i ∈ R for i = 0, 1, 2, . . . , ny − 1 is the output layer. We use a upper case y

here because in the training phase, we will use pairs (x.[σ], y.[σ]) where yi[σ] ∈ {0, 1}
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for i = 0, 1, . . . , ny − 1. Y = ŷ is an estimate of y. Note that lower case y is either 0
or 1, but upper case y may be any real. Often, the activation functions are chosen so
that Y ∈ [0, 1].

The number of nodes in each layer and the number of layers are arbitrary.
Fig.64.1 is fully connected (a.k.a. dense), meaning that every node of a layer is
impinged arrow coming from every node of the preceding layer. Later on in this
chapter, we will discuss non-dense layers.

Let wλi|j, b
λ
i ∈ R be given, for i ∈ Z[0,nh(λ)), j ∈ Z[0,nh(λ−1)), and λ ∈ Z[0,Λ).

The TPMs, printed in blue, for bnet Fig.64.1, are as follows.

P (xi | xi−1, xi−1, . . . , x0) = given (64.1)

P (hλi | hλ−1
. ) = δ

(
hλi ,Aλi (

∑
j

wλi|jh
λ−1
j + bλi )

)
, (64.2)

where P (h0i |h−1) = P (h0i |x).

P (Yi | hΛ−2
. ) = δ

(
Yi,AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j + bΛ−1
i )

)
. (64.3)

64.1 Activation Functions Aλi : R→ R
Activation functions must be nonlinear. Why? Because if they were all linear, the
NN mapping would be a bijection (1-1 onto map), and its domain and range would
be the same. That is not what you want for a classifier. For a classifier, you want the
range to be much smaller than the domain.

• Step function (Perceptron)

A(x) = 1(x > 0) (64.4)

Zero for x ≤ 0, one for x > 0.

• Sigmoid function

A(x) = 1

1 + e−x
= smoid(x) (64.5)

Smooth, monotonically increasing function. smoid(−∞) = 0,smoid(0) = 1/2,
smoid(∞) = 1.
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• Hyperbolic tangent

A(x) = tanh(x) =
ex − e−x

ex + e−x
(64.6)

Smooth, monotonically increasing function. tanh(−∞) = −1,tanh(0) = 0,
tanh(∞) = 1.

Odd function:
tanh(−x) = − tanh(x) (64.7)

Whereas smoid(x) ∈ [0, 1], tanh(x) ∈ [−1, 1].

• ReLU (Rectified Linear Unit)

A(x) = x1(x > 0)︸ ︷︷ ︸
x+

= max(0, x) . (64.8)

Compare this to the step function 1(x > 0).

• Swish
A(x) = x smoid(x) (64.9)

• Softmax

A(xi|x.) =
exi∑
i e
xi

= softmax(x.)(i) (64.10)

The softmax definition implies that the bnet nodes within a softmax layer are
fully connected by arrows to form a “clique".

64.2 Weight optimization via supervised training and
gradient descent

The bnet of Fig.64.1 is used for classification of a single data point x.. It assumes
that the weights wλi|j, b

λ
i are given.

To find the optimum weights via supervised training and gradient descent, one
uses the bnet Fig.64.2.

In Fig.64.2, the nodes in Fig.64.1 become sampling space vectors. For example,
x. becomes x⃗., where the components of x⃗. in sampling space are x.[σ] ∈ {0, 1}nx for
σ = 0, 1, . . . , nsam(x⃗)− 1. nsam(x⃗) is the number of samples in the whole dataset.

To train a NN bnet with a dataset, the standard procedure is to split the
dataset into 3 parts (I like to call them the ttt datasets):

1. training dataset,
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2. tuning (a.k.a. validation) dataset, for tuning of hyperparameters like
nsam(x⃗), Λ, and nh(i) for each i.

3. testing dataset

Weights only change while training on the training dataset. While the model is
being trained, its performance is periodically tested on the tuning dataset. Training
continues until performace on the tuning dataset no longer improves. After that
happens, the model is finally applied to the testing dataset.

The training dataset is split into batches. An epoch is a pass through all the
batches in the training dataset.

Define
W λ
i|j = [wλi|j, b

λ
i ] . (64.11)

The TPMs, printed in blue, for bnet Fig.64.2, are as follows.

x⃗.

��

// y⃗.

��

W 0
.|., // h⃗0.

��

W 1
.|.

// h⃗1.

��

W 2
.|.

// h⃗2.

��

W .
.|.

>>

FF

II

55
Y⃗ . // E // (W ′)..|.

Figure 64.2: bnet for finding optimum weights of the bnet Fig.64.1 via supervised
training and gradient descent.

P (x.[σ]) = given . (64.12)

P (y.[σ] | x.[σ]) = given . (64.13)
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P (hλi [σ] | hλ−1
. [σ]) = δ

(
hλi [σ],Aλi (

∑
j

wλi|jh
λ−1
j [σ] + bλi )

)
(64.14)

P (Yi[σ] | hΛ−2
. [σ]) = δ

(
Yi[σ],AΛ−1

i (
∑
j

wΛ−1
i|j hΛ−2

j [σ] + bΛ−1
i )

)
(64.15)

P (W .
.|.) = given (64.16)

The first time it is used, W .
.|. is arbitrary. After the first time, it is determined by

previous stage.

P (W λ
.|.|W .

.|.) = δ(W λ
.|., (W

.
.|.)

λ) (64.17)

P (E|y⃗., Y⃗ .) = 1

nsam(x⃗)

∑
σ

∑
i

d(yi[σ], Yi[σ]) , (64.18)

where

d(y, Y ) = |y − Y |2 . (64.19)

If y, Y ∈ [0, 1], one can use this instead

d(y, Y ) = XE(y → Y ) = −y lnY − (1− y) ln(1− Y ) . (64.20)

P ((W ′)λi|j|E ,W .
.|.) = δ((W ′)λi|j,W

λ
i|j − η∂Wλ

i|j
E) (64.21)

η > 0 is called the learning rate. This method of minimizing the error E is called
gradient descent. W ′ −W = ∆W = −η∂WE so ∆E = −1

η
(∆W )2 < 0.

64.3 Non-dense layers
The TPM for a non-dense layer is of the form:

P (hλi [σ] | hλ−1
. [σ]) = δ(hλi [σ], H

λ
i [σ]) , (64.22)

where Hλ
i [σ] will be specified below for each type of non-dense layer.
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• Dropout Layer

The dropout layer was invented in Ref.[72]. To dropout nodes from a fixed
layer λ: For all i of layer λ, define a new node rλi with an arrow rλi → hλi . For
r ∈ {0, 1}, and some p ∈ (0, 1), define

P (rλi = r) = [p]r[1− p]1−r (Bernoulli dist.) . (64.23)

Now one has

P (hλi [σ] | hλ−1
. [σ], rλi ) = δ(hλi [σ], H

λ
i [σ]) , (64.24)

where

Hλ
i [σ] = Aλi (rλi

∑
j

wλi|jh
λ−1
j [σ] + bλi ) . (64.25)

This reduces overfitting. Overfitting might occur if the weights follow too closely
several similar batches. This dropout procedure adds a random component to
each batch making groups of similar batches less likely.

The random rλi nodes that induce dropout are only used in the training bnet
Fig.64.2, not in the classification bnet Fig.64.1. We prefer to remove the rλi
stochasticity from classification and for Fig.64.1 to act as an average over sam-
pling space of Fig.64.2. Therefore, if weights wλi|j are obtained for a dropout
layer λ in Fig.64.2, then that layer is used in Fig.64.1 with no rλi nodes but with
weights

〈
rλi
〉
wλi|j = pwλi|j.

Note that dropout adds non-deterministic nodes to a NN, which in their vanilla
form only have deterministic nodes.

• Convolutional Layer

• 1-dim
Filter function F : {0, 1, . . . , nf − 1} → R.
σ=stride length
For i ∈ {0, 1, . . . , nh(λ)− 1}, let

Hλ
i [σ] =

nf−1∑
j=0

hλ−1
j+iσ[σ]F(j) . (64.26)

For the indices not to go out of bounds in Eq.(64.26), we must have

nh(λ− 1)− 1 = nf − 1 + (nh(λ)− 1)σ (64.27)
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so
nh(λ) =

1

σ
[nh(λ− 1)− nf ] + 1 . (64.28)

• 2-dim
hλi [σ] becomes hλ(i,j)[σ]. Do 1-dim convolution along both i and j axes.

• Pooling Layers (MaxPool, AvgPool)

Here each node i of layer λ is impinged by arrows from a subset Pool(i) of the
set of all nodes of the previous layer λ − 1. Partition set {0, , 1, . . . , nh(λ −
1) − 1} into nh(λ) mutually disjoint, nonempty sets called Pool(i), where i ∈
{0, 1, . . . , nh(λ)− 1}.

• AvgPool

Hλ
i [σ] =

1

|Pool(i)|
∑

j∈Pool(i)

hλ−1
j [σ] (64.29)

• MaxPool
Hλ
i [σ] = max

j∈Pool(i)
hλ−1
j [σ] (64.30)

64.4 Autoencoder NN
If the sequence

nx, nh(0), nh(1), . . . , nh(Λ− 2), ny (64.31)

first decreases monotonically up to layer λmin, then increases monotonically until
ny = nx, then the NN is called an autoencoder NN. Autoencoders are useful for
unsupervised learning and feature reduction. In this case, Y estimates x. The layers
before layer λmin are called the encoder, and those after λmin are called the decoder.
Layer λmin is called the code.
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Chapter 65

Noisy-OR gate

The Noisy-OR gate was first proposed by Judea Pearl in his 1988 book Ref.[55].

x0

((

x1

��

x2

��

π0

��

π1

��

π2

��
λ // y

Figure 65.1: Noisy-OR gate y ∈ {0, 1} with n = 3, Boolean inputs (xi)i=0,1,2 and
parameters λ, (π)i=0,1,2.

Let
λ ∈ [0, 1] =gate lea.k.a.ge.
y ∈ {0, 1} = gate output
xn = (xi)i=0,1,...,n−1, where xi ∈ {0, 1} are gate inputs.
πn = (πi)i=0,1,...,n−1, where πi ∈ [0, 1] are gate parameters.
The TPM, printed in blue, for the Noisy-OR gate y shown in Fig.65.1, is as

follows.

P (y = 1|xn, λ, πn) = 1− (1− λ)
∏
i

[1− πixi] (65.1)

P (y = 0|xn, λ, πn) = 1− P (y = 1|xn, λ, πn) (65.2)

Note that if λ = 0 and πi = 1 for all i, then this becomes a deterministic
OR-gate. Indeed,
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P (y = 1|xn, λ = 0, πn = 1n) = 1−
∏
i

[1− xi] = ∨n−1
i=0 xi , (65.3)

so

P (y|xn, λ = 0, πn = 1n) = δ(y,∨n−1
i=0 xi) . (65.4)

65.1 3 ways to interpret the parameters πi
1. Note that if λ = 0 and xn is one hot (i.e., xn = eni , where eni is the vector with

all components zero except for the i-th component which equals 1), then

P (y = 1|xn = eni , λ = 0, πn) = 1− [1− πi] = πi . (65.5)

This gives an interpretation to the parameters πi.

h0

��

h1

��

h2

��

x0

  

x1

��

x2

~~
A0

  

A1

��

A2

~~
λ // y

Figure 65.2: Fig.65.1 after replacing parameters (πi)i=0,1,2 by hidden nodes (hi)i=0,1,2.

2. Another way of interpreting the parameters πi is to associate each of them with
a hidden variable hi ∈ {0, 1} whose average equals πi. More precisely, consider
Fig.65.2.

Let xi, hi, Ai, y ∈ {0, 1}.
The TPMs, printed in blue, for the bnet Fig.65.2, are as follows:

P (hi) = πiδ(hi, 1) + (1− πi)δ(hi, 0) (65.6)

P (Ai|hi, xi) = δ(Ai, hi ∧ xi) = δ(Ai, hixi) (65.7)

487



P (y = 1|An) = 1− (1− λ) ∧n−1
i=0 Ai (65.8)

= 1− (1− λ)
∏
i

(1− Ai) (65.9)

P (y = 0|An) = 1− P (y = 1|An) (65.10)

Note that

P (y = 1|xn, λ) =
∑
hn

∑
An

[
1− (1− λ)

∏
i

(1− Ai)

]
[
∏
i

δ(Ai, hixi)]P (h
n)

(65.11)

= Ehn

[
[1− (1− λ)

∏
i

(1− hixi)

]
. (65.12)

But

Ehi [hixi] =
∑
hi=0,1

P (hi)hixi = πixi (65.13)

so

P (y = 1|xn, λ) = 1− (1− λ)
∏
i

(1− πixi) . (65.14)

3. Another way to interpret the parameters πi is to associate each of them with a
vector of samples h⃗i whose average is πi. More precisely, consider Fig.65.3.

Suppose hi ∈ {0, 1} and define

Phi(hi) = πiδ(hi, 1) + (1− πi)δ(hi, 0) . (65.15)

Suppose h⃗i = (hi[σ])s=0,1,...,nsam−1 and the Boolean samples hi[σ] ∈ {0, 1} are
i.i.d. with hi[σ] ∼ Phi for all σ.

Note that for each i, an estimate P̂hi(hi) of Phi(hi) can be obtained from the
vector of samples h⃗i as follows:

P̂hi(hi) =
1

nsam

nsam−1∑
σ=0

1(hi[σ] = hi) . (65.16)
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h⃗0

��

h⃗1

��

h⃗2

��

x0

  

x1

��

x2

~~
A0

  

A1

��

A2

~~
λ // y

Figure 65.3: Fig.65.2 after replacing the hidden nodes (hi)i=0,1,2 by vectors of samples
(h⃗i)i=0,1,2.

Let xi, hi[σ], Ai, y ∈ {0, 1}.
The TPMs, printed in blue, for the bnet Fig.65.3, are as follows:

P (⃗hi) =
nsam−1∏
σ=0

Ph(hi[σ]) (65.17)

P (Ai | h⃗i, xi) = δ(Ai,
1

nsam

∑
σ

hi[σ] ∧ xi) (65.18)

= δ(Ai, πixi) (65.19)

P (y = 1|An) = 1− (1− λ) ∧n−1
i=0 Ai (65.20)

= 1− (1− λ)
∏
i

(1− Ai) (65.21)

P (y = 0|An) = 1− P (y = 1|An) (65.22)

Note that
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P (y = 1|xn, λ, h⃗n) =
∑
An

[
1− (1− λ)

∏
i

(1− Ai)

]∏
i

δ(Ai, πixi) (65.23)

= 1− (1− λ)
∏
i

(1− πixi) . (65.24)
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Chapter 66

Non-negative Matrix Factorization

Based on Ref.[157].
Given matrix V , factor it into product of two matrices

V = WH , (66.1)

where all 3 matrices have non-negative entries.
V ∈ Rnv×na

≥0 : visible info matrix
W ∈ Rnv×nh

≥0 : weight info matrix
H ∈ Rnh×na

≥0 : hidden info matrix
Usually, nv > nh < na so compression of information (a.k.a. dimensional

reduction, clustering)

66.1 Bnet interpretation
Express node v as a chain of two nodes.

v aoo = w hoo aoo

Figure 66.1: Bnet interpretation of non-negative matrix factorization.

The TPMs, printed in blue, for bnet Fig.66.1, are as follows.

P (v = w|a) = Vw,a∑
w Vw,a

(66.2)

P (w|h) = Ww,h∑
wWw,h

(66.3)
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P (h|a) =
∑

wWw,h∑
w Vw,a

Hh,a (66.4)

66.2 Simplest recursive algorithm
Initialize: Choose nh. Choose W (0) and H(0) that have non-negative entries.

Update: For n = 0, 1, . . . , do

H
(n+1)
i,j ← H

(n)
i,j

[(W (n))TV ]i,j

[(W (n))T W (n)H(n)︸ ︷︷ ︸
≈V

]i,j
(66.5)

and

W
(n+1)
i,j ← W

(n)
i,j

[V (H(n+1))T ]i,j

[W (n)H(n+1)︸ ︷︷ ︸
≈V

(H(n+1))T ]i,j
. (66.6)

After each step, record error defined by

E (n) =∥ V −W (n)H(n) ∥2 . (66.7)

Using 2-norm, a.k.a. Frobenius matrix norm. Continue until reach acceptable error.
Can also use Kullback-Leibler divergence for error:

E =
∑
a

P (a)DKL(P (v = w|a) ∥
∑
h

P (w|h)P (h|a)) , (66.8)

for some arbitrary choice of prior P (a). For example, can choose P (a) uniform.
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Chapter 67

Observationally Equivalent DAGs

This chapter is based on Chapter 1 of Ref.[57] and on a blog post by Bruno Gonçalves
(Ref.[19]).

A probability distribution P is compatible with a DAG G if P and G
have the same random variables, and they can be combined to form a bnet without
contradictions; i.e., one can calculate all the TPMs from P and multiply them together
to obtain P again. Let

P(G) = {P : P is compatible with G} . (67.1)

Two DAGs G and G′ are observationally equivalent (OE) if P(G) =
P(G′). Hence, any total probability distribution that is compatible with one of them
is compatible with the other. For example, a→ b and a← b are OE because

P (a|b)P (b) = P (a, b) = P (b|a)P (a) . (67.2)

We’ll say two bnets are OE if their DAGs are OE.
Two DAGs G and G′ are d-separation equivalent if DS(G) = DS(G′). See

Chapter 23 for definition of DS(G).

Claim 96 Two DAGs are OE iff their DAGs are d-separation equivalent.

The skeleton of a DAG is its underlying undirected graph.
A v-structure in a DAG consists of two arrows converging to a node and

such that their tails are not connected by a third arrow. Fig.67.1 shows in red all the
v-structures of a particular DAG.

Claim 97 Observational Equivalence Theorem (by Verma and Pearl, 1990)
Two DAGs are OE iff they have the same skeletons and the same v-structures.

67.1 Examples
The 3 DAGs in Fig.67.2 are OE. They form an equivalence class of OE DAGs that
represent the same probability distribution. This equivalence class of DAGs can be
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z1

��

!!

z2

��

}}
z3

~~ !!
x // w // y

(a)

z1

��

!!

z2

��

}}
z3

~~   
x // w // y

(b)

z1

��

!!

z2

��

}}
z3

~~   
x // w // y

(c)

Figure 67.1: Example showing in red all v-structures of a particular DAG.

x1

}} !!
x2

!!

x3

}}
x4

��
x5

(a)

x1

!!
x2

!!

==

x3

}}
x4

��
x5

(b)

x1

}}
x2

!!

x3

}}

aa

x4

��
x5

(c)

Figure 67.2: These 3 DAGs are observationally equivalent (OE).

represented by the partially directed graph Fig.67.3. These 3 DAGs can be proven to
be OE in the following 3 ways:

1. Write the generic probability distributions represented by the 3 DAGs, and
show that they are equal, as we did in Eq.(67.2). That is the low brow way of
proving OE.

2. Use d-separation (see Chapter 23). Consider DAG (a) first. Rename the nodes
as τ j with j = 1, 2, . . . so that the names are in topological order (i.e., so that
the parents of τ j have indices that are smaller than j). The node names xj
of DAG (a) are already in topological order, so we skip this step for DAG (a).
Now write down its total probability distribution and notice which parents of a
fully connected DAG were omitted.
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x1

x2

  

x3

~~
x4

��
x5

Figure 67.3: This partially directed graph represents the 3 DAGs in Fig.67.2.

P (x1, x2, x3, x4, x5) = P (x5|x4)︸ ︷︷ ︸
x3,x2,x1 omitted

P (x4|x3, x2)︸ ︷︷ ︸
x1 omitted

P (x3|x1)︸ ︷︷ ︸
x2 omitted

P (x2|x1)P (x1) (67.3)

The observations of which parents were omitted can be stated in d-separation
lingo as the following 3 orthogonality relations:1

x3 ⊥P x2 | x1 (67.4a)
x4 ⊥P x1 | x2, x3 (67.4b)

x5 ⊥P (x1, x2, x3)& | x4 . (67.4c)

Going through the same procedure for the other 2 DAGs yields, for each of
them, an equivalent set of 3 orthogonality equations.2

This is enough to conclude that the 3 DAGs of Fig.67.2 are OE.
Note that Eqs.(67.4) encompass all that there is to say about the observability
of DAG (a). These 3 equations can be checked empirically to assess how well
the DAG fits the data. For example, one can do OLS (ordinary least squares)
regression x5 ∼ x1+x2+x3+x4 on the data, i.e., try to fit x5 = β0+

∑4
i=1 βixi

to the data, and find that, to a good approximation, β1 = β2 = β3 = 0.

3. Use the OE Theorem. All three DAGs have the same skeleton, and the same
single v-structure x2 → x4 ← x3.

1Normally, if we had changed from the original node names to the τ j node names, these orthog-
onality relations would first be stated in terms of the τ j names, and we could translate them so that
they were stated in terms of the original node names. But for DAG (a) there was no need to use
the τ j names.

2The xj node names are no longer in topological order for DAGs (b) and (c) so for them you
should go through the intermediate step of renaming the nodes τ j , and then, after obtaining the
orthogonality relations in terms of the τ j names, translating them back to the original xj names.
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Chapter 68

Omitted Variable Bias

This paper is loosely based on Refs.[11] and [9].
This chapter assumes that the reader has read Section C.28 on Linear Regres-

sion (LR) and Section 72.12 which is an introduction to sensitivity analysis for the
Potential Outcomes (PO) model.

We will use the terms “PO Sensitivity Analysis" and “Omitted Variable
Bias (OVB)" to mean the same thing. In this chapter, we consider 2 types of OVB.
LDEN bnets for these two cases are depicted in Fig.68.1. In Fig.68.1(a), the omitted
variable is a confounder, and in Fig.68.1 (b), it’s a mediator.

Next we express OVB for these two cases as a product of gains along a path
that goes through the unobserved node, and then we re-express the OVB in terms of
correlations between the nodes.

ϵd

��

ϵc

��

ϵy

��

ϵx

��

c

α′

��

β′

��

x

α
��

β
��

d
δ

// y

ϵd

��

ϵm

��

ϵy

��

ϵx

��

m

µ

��

x

α
~~ β

  
d

δ
//

λ

FF

y

(a) (b)

Figure 68.1: LDEN bnets used to do PO sensitivity analysis. Node c in (a) is an
unobserved confounder, and node m in (b) is an unobserved mediator.

CASE (a), confouder
Consider the LDEN bnet of Fig.68.1(a), whose structural equations, printed

in blue, are as follows:
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c = ϵc
x = ϵx
d = αx+ α′c+ ϵd
y = δd+ βx+ β′c+ ϵy

(68.1)

In Section 72.12, we showed that for confounder case (a),

OV Bcon = ATE − ATE|β′=0 =
β′

α′ (68.2)

This result is easy to understand. ATE|β′=0 = δ due to the directed path d → y,
whereas ATE = δ + β′

α′ due to the two directed paths d → y and d → c → y. Note
that traveling from c to d has gain α′, so traveling in the opposite direction has gain
1
α′ .

Next we express OV Bcon in terms of correlations between the nodes of the
bnet.

Claim 98

OV Bcon =
β′

α′ =
[ρy,cσy]

|d,x

[ρd,cσd]|x
(68.3)

If σϵm = σϵd = 0, then ρy,c = ρd,c = 1 and

OV Bcon =
σ
|d,x
y

σ
|x
d

(68.4)

proof: 1

Note that 〈
c, ϵd

〉
= 0 |x (68.5)

because the paths from c to ϵd are blocked by colliders. Hence,〈
d, ϵd

〉
=
〈
α′c+ ϵd, ϵd

〉
=
〈
ϵd, ϵd

〉
|x (68.6)

⟨d, d⟩ =
〈
α′c+ ϵd, α

′c+ ϵd
〉
= (α′)2 ⟨c, c⟩+

〈
ϵd, ϵd

〉
|x (68.7)

σd = |α′|σc

√
1 +

(
σϵd
α′σc

)2

|x (68.8)

1We use “ |x" at the end of a line to mean all averages in that line are taken at fixed x = x.
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ρd,c =
⟨d, c⟩√
⟨d, d⟩ ⟨c, c⟩

|x (68.9)

=

〈
α′c+ ϵd, c

〉√〈
α′c+ ϵd, α

′c+ ϵd
〉
⟨c, c⟩

|x (68.10)

=
α′ ⟨c, c⟩√

((α′)2 ⟨c, c⟩+
〈
ϵd, ϵd

〉
) ⟨c, c⟩

|x (68.11)

=
α′σc√

(α′σc)2 + σ2
ϵd

|x (68.12)

=
sign(α′)√
1 +

(
σϵd
α′σc

)2 |x (68.13)

⟨c, d⟩ = α′ ⟨c, c⟩ |x (68.14)

α′ =
⟨c, d⟩
⟨c, c⟩

= ∂cd = ρc,d
σd
σc

|x (68.15)

All equations between Eq.(68.5) and this point, remain valid if we make the
following replacements:

d → y
ϵd → ϵy
c → c
α′ → β′

|x → |d, x

(68.16)

In particular, the following are true

σy = |β′|σc

√
1 +

( σϵy

β′σc

)
|d, x (68.17)

ρy,c =
sign(β′)√
1 +

(
σϵy

β′σc

)2 |d, x (68.18)

β′ = ∂cy = ρy,c
σy

σc
|d, x (68.19)

Combining our newly found expressions for for α′ and β′, we get

β′

α′ =

[
ρy,cσy

σc

]|d,x [ σc
ρd,cσd

]|x
(68.20)
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Now note that
σ2
c =

〈
ϵc, ϵc

〉
(68.21)

which is independent of d and x, so

σ|x
c = σ|d,x

c (68.22)

Therefore,

β′

α′ =
[ρy,cσy]

|d,x

[ρd,cσd]|x
(68.23)

QED
CASE (b), mediator

Consider the LDEN bnet of Fig.68.1(b), whose structural equations, printed
in blue, are as follows: 

m = λd+ ϵm
x = ϵx
d = αx+ ϵd
y = δd+ βx+ µm+ ϵy

(68.24)

By an argument analogous to the one used previously in this chapter to prove
that OV Bcon = β′

α′ , we get

OV Bmed = ATE − ATE|µ=0 = λµ (68.25)

Next we express OV Bmed in terms of correlations between the nodes of the
bnet.

Claim 99 2

OV Bmed = λµ =
[ρy,mσy]

|d,x

σd

 ρd,m√
1− ρ2d,m


︸ ︷︷ ︸

tan θ

(68.26)

If | tan θ| ≤ η, then3

|OV Bmed| ≤

∣∣∣∣∣σ
|d,x
y

σd

∣∣∣∣∣ η (68.27)

2Eq.(68.26) appears in Ref.[11], but that paper claims it gives the bias for unobserved confounders
instead of unobserved mediators. But the formula for the bias for unobserved confounders is given
by Eq.(68.3).

3Recall that, by the Schwarz Inequality, |ρa,b| ≤ 1 for any correlation coefficient ρa,b =
⟨a,b⟩
σaσb

.
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proof:
Note that

⟨d, ϵm⟩ = 0 (68.28)

because paths from d to ϵm are blocked by a collider. Hence,

⟨d,m⟩ = λ ⟨d, d⟩ (68.29)

λ =
⟨d,m⟩
⟨d, d⟩

=
∂m

∂d
= ρd,m

σm
σd

(68.30)

Note that also 〈
m, ϵy

〉
= 0 |d, x (68.31)

because the paths from m to ϵy are blocked by a collider. Hence,〈
m, y

〉
= µ ⟨m,m⟩ |d, x (68.32)

µ =

〈
m, y

〉
⟨m,m⟩

=
∂y

∂m
= ρy,m

σy

σm
|d, x (68.33)

Combining our newly found expressions for λ and µ, we get

λµ = ρd,m
σm
σd

[
ρy,m

σy

σm

]|d,x
(68.34)

Let

eλ =
σϵm
λσd

(68.35)

Then

σ2
m = ⟨m,m⟩ (68.36)

=
〈
λd+ ϵm, λd+ ϵm

〉
(68.37)

= λ2 ⟨d, d⟩+
〈
ϵm, ϵm

〉
(68.38)

= λ2σ2
d

(
1 + e2λ

)
, (68.39)

and, since [σ2
d]

|d,x = 0, we have

[σ|d,x
m ]2 = σ2

ϵm
(68.40)

Hence,

σm

σ
|d,x
m

=
1

eλ

√
1 + e2λ (68.41)
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Furthermore,

⟨d,m⟩ =
〈
d, λd+ ϵm

〉
(68.42)

= λσ2
d (68.43)

so

ρd,m =
⟨d,m⟩
σdσm

(68.44)

=
λσd
σm

(68.45)

=
1√

1 + e2λ
(68.46)

Hence,

√
1− ρ2d,m =

eλ√
1 + e2λ

=

(
σm

σ
|d,x
m

)−1

(68.47)

λµ =
[ρy,mσy]

|d,x

σd

ρd,m√
1− ρ2d,m

(68.48)

QED
Note that both OV Bcon and OV Bmed are equal to a product FdFy of two

factors Fd and Fy. For OV Bcon

Fy = [ρy,cσy]
|d,x, Fd =

1

[ρd,cσd]|x
(68.49)

For OV Bmed,
Fy = [ρy,mσy]

|d,x, Fd =
ρd,m

σd
√

1− ρ2d,m
(68.50)

Fy is the same for the confounder and mediator cases, except that the node c in Fy
for the confounder case is changed to m in the mediator case. This is to be expected,
because in both cases the arrow from the unobserved node points into y. On the
other hand, Fd is different for the confounder and mediator cases, because in the
confounder case, the unobserved node c points into d, whereas in the mediator case,
d points into the unobserved node m.
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Chapter 69

Personalized Expected Utility

This chapter is based on Ref.[38].
This chapter assumes that the reader has already read Chapter 70 on Per-

sonalized Treatment Effects. Whereas Chapter 70 is concerned with finding bounds
for PNSz, this chapter will find bounds for EUz, which is called the Personalized
Expected Utility (PEU).

For y0, y1 ∈ {0, 1}, let us denote the conditional joint experimental (causal,
counterfactual) distribution by:

Py0,y1|z = P (y
0
= y0, y1 = y1|z) . (69.1)

Suppose we are given a Utility function1

αy0,y1 : {0, 1}2 → R (69.2)

Let2

β = α0,1 (y0 = 0, y1 = 1) compliers
γ = α1,1 (y0 = 1, y1 = 1) always takers
θ = α0,0 (y0 = 0, y1 = 0) never takers
δ = α1,0 (y0 = 1, y1 = 0) defiers

(69.3)

1Ref.[38] refers to the utility function as the benefit function.
2The notation β, γ, θ, δ won’t be used again in this chapter. We mention it here so the reader

can translate to and from our equations and the equations in Ref.[38] where this β, γ, θ, δ notation
is used.
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x = 0 x = 1 //

y = 0 y
0
= 0

α0,1

α0,0
y
1
= 0

y = 1

��

y
0
= 1

α1,0

α1,1
y
1
= 1

(69.4)

Define the personalized expected utility (PEU) by

EU = E[αy
0
,y

1
] = αi,jPi,j (69.5)

and the conditional PEU by

EUz = E|z[αy
0
,y

1
] = αi,jPi,j|z (69.6)

Note that

EU =
∑
z

P (z)EUz . (69.7)

Above, we are using the Einstein summation convention (repeated indices are to be
summed over) for the indices i, j ∈ {0, 1}.

Compare the definition of EUz with that of two other causal effects used in
his book:

PNSz = P0,1||z = P (compliers|z) (69.8)

Uplift = ATEz = E1|1,z − E1|0,z (69.9)

As we shall see, EUz contains the information in PNSz and ATEz, plus much more.
One can find the stratum z∗ such that z∗ = argmaxATEz (as is done A/B=

RCT testing) or z∗ = argmax
z

EUz or z∗ = argmax
z

PNSz. This is called the unit

selection problem. It’s called “unit selection" rather than “stratum selection" be-
cause once the stratum z∗ is found, one can find a unit (i.e., individual) within that
stratum.

69.1 Goal of PEU Theory
Everything that we said in Chapter 70 in the section entitled “Goal of PTE Theory"
applies to PEU theory too, if we just replace PNSz by EUz. As in Chapter 70, we
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will consider two types of bounds (for EUz instead of PNSz): (1) Bounds for an
unspecified bnet, (2) Bounds for specific bnet families.

Here is an explanation of why EUz varies within a bounded region, something
that might not be obvious to the beginner. In Fig.69.1, we represent the utility
function αy0,y1 by a unit vector α̂, the probability distribution Py0,y1|z by a vector P⃗ ,
and EUz by the dot product P⃗ · α̂. When the probability vector P⃗ varies within a
bounded region (shown in green), this causes the dot product EUz = P⃗ · α̂ to vary
within a bounded interval (also shown in green).

Figure 69.1: Bounds (shown in green) on the probability vector P⃗ induce bounds
(shown in green) on the dot product EUz = P⃗ · α̂. Here α̂ is a unit vector that stands
for a normalized utility function. α̂ does not vary but P⃗ does.

69.2 Bnets for PEU Theory
Everything that we said in Chapter 70 in the section entitled “Bnets for PTE Theory"
applies to PEU theory too, if we just replace PNSz by EUz.

69.3 Bounds on EU for unspecified bnet
Define the balanced utility by

αB = α0,0 + α1,1 , (69.10)

the unbalanced utility by
αU = α1,0 + α0,1 , (69.11)

and their difference by:

σ = αU − αB . (69.12)

We will also use the abbreviations:

α1−0,j = α1,j − α0,j (69.13)

and

αj,1−0 = αj,1 − αj,0 . (69.14)
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Claim 100 In general, max p[1...4] ≤ EUz ≤ min p[5...8] if σ < 0

max p[5...8] ≤ EUz ≤ min p[1...4] if σ > 0
(69.15)

where3 

p1 = α0,1−0E1|1,z + αj,0Ej|0,z

p2 = α0−1,1E0|0,z + α1,jEj|1,z

p3 = p5 + σO∗,∗|z

p4 = p1 − σE1|0,z + σ(1−O∗,∗|z)

(69.16)



p5 = α1,1−0E1|1,z + αj,0Ej|0,z

p6 = p1 − σE1|0,z

p7 = p5 − σE1|0,z + σP (y = 1|z)

p8 = p1 − σP (y = 1|z)

(69.17)

proof: See Ref[38] or use the MRP (Matrix Representation of Probabilities) defined
in Chapter 70.
QED

Later on, we will see that under monotonicity, these bounds collapse to a point
estimate of EUz. But what if monotonicity doesn’t hold? In such cases, one can use
the midpoint of the bounds as a non-rigorous point estimate of EUz.

Claim 101 In general,

P0,0|z = E0|1,z − P1,0|z (69.18)

P1,1|z = E1|0,z − P1,0|z (69.19)

P0,1|z = 1− P0,0|z − P1,1|z − P1,0|z (69.20)
= 1− E0|1,z − E1|0,z + P1,0|z (69.21)

proof:

P0,0|z + P1,0|z = P (y
1
= 0|z) = E0|1,z (69.22)

3p[a...b] = (pa, pa+1, . . . pb) for integers a, b such that a < b.
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P1,1|z + P1,0|z = P (y
0
= 1|z) = E1|0,z (69.23)

QED
Recall the definition of monotonicity. Monotonicity holds iff

P (y
0
= 1, y

1
= 0) = 0 . (69.24)

Claim 102 In general,

EUz = α0,0P0,0|z + α1,1P1,1|z + α0,1P0,1|z + α1,0P1,0|z (69.25)

Hence, if monotonicity holds, or α1,0 = 0, then

EUz = α0,0P0,0|z + α1,1P1,1|z + α0,1P0,1|z (69.26)

proof: Trivial
QED

Claim 102 is trivial, but it provides a good motivation and inspiration for the
following less trivial claim.

Claim 103 In general,

EUz = α0,0 E0|1,z︸ ︷︷ ︸
=1−E1|1,z

+α1,1E1|0,z + α0,1 (1− E0|1,z − E1|0,z)︸ ︷︷ ︸
=E1|1,z−E1|0,z=ATEz

+σP1,0|z (69.27)

Hence, if monotonicity holds, or σ = 0, then

(EUz)σ=0 = α0,0E0|1,z + α1,1E1|0,z + α0,1ATEz (69.28)

proof: In general,

EUz =


α0,0P0,0|z

+α1,1P1,1|z
+α0,1P0,1|z
+α1,0P1,0|z

=


α0,0(E0|1,z − P1,0|z)

+α1,1(E1|0,z − P1,0|z)
+α0,1(1− E0|1,z − E1|0,z + P1,0|z)

+α1,0P1,0|z

(69.29)

Hence,
EUz = (EUz)σ=0 + σP1,0|z (69.30)

QED
Perhaps this will make Claim 103 less mysterious to you. Note that Claims

102 and 103 imply the following:[
∂EUz
∂α1,0

]
α0,0,α1,1,α0,1

=

[
∂EUz
∂σ

]
α0,0,α1,1,α0,1

= P1,0|z (69.31)
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69.4 Bounds on EU for specific bnet families
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Chapter 70

Personalized Treatment Effects

This chapter is based on the work of Pearl et al, as reported in Refs. [78] and [44].
Recall from Chapter 72 on Potential Outcomes (PO) and Beyond, that the

Average Treatment Effect (ATE) is defined as

ATE = E[y
1
− y

0
] (70.1)

= P (y
1
= 1)− P (y

0
= 1) (70.2)

The Conditional ATE (CATE) is defined as the conditional expected value

ATEz = E|z[y1 − y0] (70.3)
= P (y

1
= 1|z)− P (y

0
= 1|z) . (70.4)

Note that

ATE =
∑
z

P (z)ATEz (70.5)

Personalized Treatment Effect (PTE) theory as envisioned by Pearl is
the study of bounds for “personalized" treatment effects such as

PNS = P (y
1
− y

0
= 1) (70.6)

and

PNSz = P (y
1
− y

0
= 1|z) . (70.7)

They are said to be personalized because they are averages over a single ensemble
(i.e., population) of individuals σ with probability P (yσ0 , yσ1 ). ATE, on the other hand,
is not personalized, because it equals the difference of two of those averages. Person-
alized effects equal the probability of a single event/person, whereas ATE equals the
difference of the probabilities of 2 events/persons.
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If the conditioning z is fine grained enough to pick out a single individual σ
(i.e., if z = σ), then we get

PNSσ = 1(yσ1 − yσ0 = 1) (70.8)

whereas
ATEσ = 1(yσ1 = 1)− 1(yσ0 = 1) (70.9)

ATE and PNS measure different things. PNS measures the probability that
a single person will switch outcomes from 0 to 1 when he/she switches treatments
from 0 to 1. ATE measures the difference in populations between those who survive
taking the drug and those who survive without it.

One very promising field in which PTE theory can be applied is in Person-
alized Causal Medicine. For example, suppose we want to use PNSz, where the
conditioning is on the sex of the patient (i.e., z = male, female), to advice a female
patient whether to take a cancer drug or not.

70.1 Goal, Strategy and Rationale of PTE theory
In this section, we described briefly the goal,strategy and rationale behind PTE the-
ory.

Figure 70.1: We use patient data to calculate at each step, increasingly tighter bounds
bj, b

′
j, Bj, B

′
j for PNSz and ATEz, ending in point bounds for both quantities.

The goal of PTE theory, as described by Fig.70.1, is to find increasingly tighter
bounds for PTEs such as PNS, PNSz, ATE, ATEz, etc..

We say bounds, because it is not always possible to give a point estimate for
PNS and other PTEs. If a point estimate for a PTE named Q is achievable, we say
Q is identifiable. The same definition of identifiability has been used before in this
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book for ATE. It’s possible that ATE is identifiable, but PNS isn’t, or vice versa, for
certain kinds of data; i.e., both quantities need not become identifiable simultaneous
at the same step above.

The bounds given by PTE theory are as tight as possible, depending on the
available data, and on what bnet model assumptions the user is willing to make. We
will consider two types of bounds: (1) Bounds for an unspecified bnet, (2) bounds for
specific bnet families. Bounds for (2) will be tighter than bounds for (1).

The bounds are calculated from two types of data: Observational Data
(OD) and Experimental Data (ED).

For OD, one allows the patient to choose whether to take a drug or not (x =
0, 1), and then we conduct a survey to record his/her value for x and whether the
treatment worked or not (y = 0, 1).

For ED, one conducts a RCT (Randomized Controlled Trial) instead of a
survey. In the case of ED, we record, as in OD, the (x, y) for each patient, but the
value of x for each patient is selected by the experimenter, at random, and, once
selected, it is compulsory for the patient.

Unlike ED, OD is likely to be confounded, but it can still shed additional
information that serves to tighten the bounds on PNSz or other PTEs.

OD is usually collected first because it is easier and cheaper to collect than
ED. Sometimes ED is too expensive or difficult or even impossible to collect, so only
OD is available. Sometimes several ED (resp., several OD) need to be merged, before
merging the merged ED with the merged OD. Pearl’s PTE theory allows us to fuse
together all the available data in all these types of situations.

Some purists such as the advocates of EBM (Evidence Based Medicine)
advocate the use of only ED (i.e., only RCTs), no OD. This is reasonable in certain
administrative professions to keep partisanship and chicanery out of the decision
making process, but in other professions, throwing away OD would be foolish. A
case in the history of medicine where OD was essential, was the case of John Snow
(see Chapter 18). John Snow didn’t have an RCT, but he was able to use OD to
determine the driver of the cholera epidemic in London. He saved countless lives by
doing so. An EBM purist would have thrown out his OD because it wasn’t an RCT.

In the usual case, OD is collected first to aid in the design of an RCT, and
then an RCT is conducted to collect ED. In this case, an EBM purist would throw
away the OD, and only calculate an estimate of ATE. What PTE theory suggests is
to calculate both, an estimate of ATE and bounds for PNS. Why? Because ATE and
PNS measure different things. ATE utilizes only ED whereas PNS utilizes both OD
and ED. Also, PNS is more personalized than ATE.

An RCT is called that because one chooses “at random", a subset Σ of a huge
population Σ∞, and then one splits Σ, again at random, into 2 subset, Σcontrol and
Σtreated. All patients in Σcontrol (resp., Σtreated) are not treated (resp., treated). Ran-
domization (i.e. choosing Σ, Σcontrol, Σtreated), if perfect, averages out ( i.e., cancels
out) the effect of all confounders. The problem is that in practice, ideal random-

510



ization is hard to achieve. Hence, ideal RCTs are hard to achieve (and costly), plus
they don’t shed light on the confounders and mechanism involved. By mechanism, I
mean a DAG.1 A DAG is a hypothesis, and RCTs don’t test it, whereas observational
studies do. So it’s a good idea to do a series of well designed observational studies
(much cheaper than an RCT), with a hypothesis DAG, before doing the RCT. This
elucidates the DAG, and helps design an RCT that achieves a good approximation
to randomization.

Some people object to CI (Causal Inference) in general on the grounds that the
causal DAGs are adhoc, arbitrary, a sort of unscientific voodoo. I think it’s because
they fail to grasp the true meaning and purpose of DAGs. I discuss this further in
Section E.6.

70.2 Bnets for PTE theory
Let 0 = 1 and 1 = 0.
Whenever we write P (a = x, b), we mean P (a = x, b = b).
In this chapter, we will not use the notation P (y) and P (y′) used by Pearl to

discuss PTE theory. Instead, we will use P (y = 1) and P (y = 0) to denote his P (y)
and P (y′), respectively.

On the other hand, in this chapter we will change the names of variables
d, y, z, y(d) used in Chapter 72 on Potential Outcomes (PO) to the names favored by
Pearl. Hence, we will replace d, y, x, y(d) by x, y, z, y

x
, respectively.

PTE theory considers bnets of the form Fig.70.2. The bnet considered in
Rubin’s PO theory is a very simple special case of this where the box labeled “multiple
nodes" is absent and there is an arrow pointing from z to x.

The TPM, printed in blue, for node y of bnet Fig.70.2 is as follows:

P (y|y0, y1, x) = δ(y, yx) (70.10)

This TPM is used frequently in PTE theory. If x, y0, y1 are arguments of P (),
this TPM implies that one can swap y

x
= yx and y = yx inside P (). For example,

P (y0, y1, x) = P (y
x
= yx, yx, x) (70.11)

= P (y = yx, yx, x) (70.12)

According to Pearl, the defining property of yx is that

P (y
x
= y) = P (y = y|Dx = x) (70.13)

1Note that DAGs are not unique. Some are a better causal fit than others for the physical
situation being considered. See Chapter 34 for a discussion of Goodness of Causal Fit.
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x // y

Figure 70.2: Type of Bnet considered in PTE theory. The box labeled “multiple
nodes" contains various observed and hidden nodes with arrows to or from node x
and to or from node z. z can be a multinode. z is shown as hidden but could be
observed instead.

Pearl likes to call Eq.(70.13) the 1st Law. The 1st Law is also a consequence of bnet
Fig.70.2 and the TPM Eq.(70.10). Indeed, Dx = x means one should amputate all
arrows entering node x, and one should set the TPM of x to a delta function centered
at x. If that is done, then the values of y and y

x
must be equal, because the TPM at

node y is a delta function that enforces this equality.

70.3 ATE = PB − PH
Define the probability of benefit (PB) (a.k.a. Probability of Necessity and
Sufficiency (PNS)) by

PB = PNS = P (y
0
= 0, y

1
= 1) (70.14)

and the probability of harm (PH) by

PH = P (y
0
= 1, y

1
= 0) (70.15)

Claim 104
PB = P (y

1
− y

0
= 1) (70.16)

PH = P (y
1
− y

0
= −1) (70.17)

proof:
y
1
− y

0
= 1 iff (y

1
= 1 and y

0
= 0).

y
1
− y

0
= −1 iff (y

1
= 0 and y

0
= 1).

QED

Claim 105
ATE = PB − PH (70.18)
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proof:

ATE = Eσ[y
σ
1 − yσ0 ] (70.19)

= E[y
1
− y

0
] (70.20)

=
∑
y

y[P (y
1
= y)− P (y

0
= y)] (70.21)

= P (y
1
= 1)− P (y

0
= 1) (70.22)

=
∑
y0

P (y0, y1 = 1)−
∑
y1

P (y
0
= 1, y1) (70.23)

= P (y
0
= 0, y

1
= 1)︸ ︷︷ ︸

PB

−P (y
0
= 1, y

1
= 0)︸ ︷︷ ︸

PH

(70.24)

QED
See Fig.70.3 for an illustration of the constant ATE contours in the (PB, PH)

plane.
See also Fig.70.4 for a vector representation of the identity ATE = PB−PH.
See also Fig.70.5 for an illustration of the region of possible points in the

(ATE,PB) plane.

Figure 70.3: Shown in pink, the probability simplex {(x, y) : x ≥ 0, y ≥ 0, x+ y ≤ 1}
with x = PB and y = PH. All points of that simplex are possible. Also shown are
the constant ATE contours in the (PB, PH) plane.

70.4 Probabilities Relevant to PTE theory
Note2

2To translate this section from our notation to the notation used by Tian and Pearl in Ref.[78],
replace P (y

1
= i, y

0
= j, x = k)→ pi,j,k O1,0 → P (x, y′), O0|1 → P (y′|x), E0|1 → P (y′x), etc.
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Figure 70.4: The identity ATE = PB−PH can be visualized as a vector sum in one
dimension, where PB, PH ∈ [0, 1] and ATE ∈ [−1, 1].

Figure 70.5: Shown in pink, the region of possible points in the (ATE,PB) plane.
max(0, ATE) ≤ PB ≤ (ATE + 1)/2.

Let x, y ∈ {0, 1} and z ∈ Sz for some finite, not necessarily binary set Sz.
Define

Px′,y′|x,y = P (y
x′
= y′|x, y) (70.25)

observational (non-causal) probabilities

Ox,y = P (x = x, y = y) (70.26)

Oy|x = P (y = y|x = x) (70.27)

πx = P (x = x) (70.28)

experimental (causal) probabilities

Ey|x = P (y
x
= y) (70.29)

Average Treatment Effect (ATE)

ATE = P (y
1
= 1)− P (y

0
= 1) (70.30)

= E1|1 − E1|0 (70.31)
= E1|1 + E0|0 − 1 (70.32)
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Conditional ATE (CATE)

ATEz = P (y
1
= 1|z)− P (y

0
= 1|z) (70.33)

= E1|1,z + E0|0,z − 1 (70.34)

Average Causal Effect

ACE = P (y = 1|Dx = 1)− P (y = 1|Dx = 0) (70.35)

Note that
ACE = P (y = 1|Dx = 1)︸ ︷︷ ︸

P (y
1
=1)

−P (y = 1|Dx = 0)︸ ︷︷ ︸
P (y

0
=1)

= ATE (70.36)

Conditional ACE (CACE)
This is what is called ACEz in Chapter 72. Note that ACEz = ATEz.
Effect of Treatment on the Treated (ETT) (i.e., ATE for the treated)

ETT = P (y
1
= 1|x = 1)︸ ︷︷ ︸

E1

−P (y
0
= 1|x = 1)︸ ︷︷ ︸

E0

(70.37)

Note that

E1π1 = P (y
1
= 1, x = 1) (70.38)

= O1,1 (70.39)

and

E0π1 = P (y
0
= 1, x = 1) (70.40)

= P (y
0
= 1)− P (x = 0, y

0
= 1)︸ ︷︷ ︸

P (x=0,y=1)

(70.41)

= E1|0 −O0,1 (70.42)

so

ETTπ1 =
∑
x

Ox,1 − E1|0 (70.43)

Probability of Necessity (PN)3

PN = P0,0|1,1 (70.44)

3I like to call PN the Probability of Nullifying, because it goes from 11 to 00
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Probability of Sufficiency (PS)4

PS = P1,1|0,0 (70.45)

Probability of Necessity and Sufficiency (PNS) (a.k.a. Probability
of Benefit (PB))

PNS = PB = P (y
0
= 0, y

1
= 1) (70.46)

Henceforth, we will use PNS3 to denote the trio

PNS3 = (PNS, PN, PS) . (70.47)

Probability of Harm (PH)

PH = P (y
0
= 1, y

1
= 0) (70.48)

Risk ratio or relative risk (RR)

RR =
O1|1

O1|0
(70.49)

Excess Risk Ratio (ERR)

ERR =
O1|1 −O1|0

O1|1
= 1− 1

RR
(70.50)

Corrected ERR (CERR)

CERR = ERR +
O1|0 − E1|0

O1,1

(70.51)

You might be wondering how P (y
x
= y|x = 0) and P (y

x
= y|x = 1) for

x, y ∈ {0, 1}2 are related to Oy|x and Ey|x. The following claim shows how.

Claim 106
P (y

x
= y|x = x) = Oy|x (70.52a)

P (y
x
= y|x = x) =

Ey|x −Oy|xπx
πx

(70.52b)

proof: Before we begin the proof, note that summing both sides of Eqs.(70.52) gives
1 = 1, so these 2 equations pass that test.

P (y
x
= y|x = x) = P (y = y|x = x) = Oy|x (70.53)

4I like to call PS the Probability of Surging, because it goes from 00 to 11
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P (y
x
= y|x = x) =

P (y
x
= y, x = x)

πx
(70.54)

=
P (y

x
= y)− P (y

x
= y, x = x)

πx
(70.55)

=
P (y

x
= y)− P (y

x
= y|x = x)πx

πx
(70.56)

=
Ey|x −Oy|xπx

πx
(70.57)

QED

Claim 107

P (y0, y1|x) = P (yx|x, y = yx)P (y = yx|x) (70.58)

=

yx

x

;;

// y = yx

OO (70.59)

proof:

P (y0, y1|x) =
P (y0, y1, x)

P (x)
(70.60)

=
P (yx, x, y = yx)

P (x)
(70.61)

=
P (yx|x, y = yx)P (x, y = yx)

P (x)
(70.62)

= P (yx|x, y = yx)P (y = yx|x) (70.63)

QED

Claim 108
PNS︸ ︷︷ ︸

P (y
0
=0,y

1
=1)

= PN ∗O1,1 + PS ∗O0,0 (70.64)

Hence, if we know any two of (PN,PS, PNS), we can calculate the third.
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proof:

P (y0, y1) =
∑
x

P (y0, y1|x)P (x) (70.65)

=
∑
x

P (yx|x, y = yx)P (x, y = yx) (see Claim 107.) (70.66)

=

{
P (y1|x = 0, y = y0)P (x = 0, y = y0)

+P (y0|x = 1, y = y1)P (x = 1, y = y1)
(70.67)

Thus,

P (y
0
= 0, y

1
= 1) =

{
P (y

1
= 1|x = 0, y = 0)P (x = 0, y = 0)

+P (y
0
= 0|x = 1, y = 1)P (x = 1, y = 1)

(70.68)

= PS ∗O0,0 + PN ∗O1,1 (70.69)

QED
Note that PNS refers to both y

0
and y

1
, PN refers only to y

0
and PS refers

only to y
1
. Thus, PN and PS serve to separate the pair of variables (y

0
, y

1
) and to

isolate them individually. Claim 108 is a quantitative expression of that separation.
Pearl likes to say that PNS belongs to Rung 3 because it’s a probability that

involves both y
0

and y
1
, and one of those two must be a counterfactual (an event

that never occurred). On the other hand, PN,PS,ATE, etc., are defined in terms
of probabilities that involve either y

0
or y

1
but not both. Probabilities that involve

only one of them, can be expressed with the do operator, so they belong to Rung 2.
Conditional probabilities like P (y|x) that involve neither y

0
nor y

1
belong to Rung

1.5

70.5 Symmetry
Define ∼ to be an operator that swaps zeros and ones in P (y

0
= y, y

1
= y′, x). Hence

[P (y
0
= y, y

1
= y′, x = x)]∼ = P (y

1
= y, y

0
= y′, x = x) (70.70)

(Px′,y′|x,y)∼ = Px′,y′|x,y (70.71)

(Ox,y)
∼ = Ox,y (70.72)

(Oy|x)
∼ = Oy|x (70.73)

5Probabilities such as P (y
0
= 1, y = 0, x = 1) = P (y

0
= 1, y

1
= 0, x = 1) are considered Rung 3.
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(πx)
∼ = πx (70.74)

(Ey|x)
∼ = Ey|x (70.75)

(PN)∼ = PS, (PS)∼ = PN (70.76)

(PNS)∼ = PNS (70.77)

(RR)∼ =
O0|0

O0|1
(70.78)

Recall

ERR =
O1|1 −O1|0

O1|1
= 1− 1

RR
(70.79)

Therefore, define

(ERR)∼ =
O0|0 −O0|1

O0|0
= 1− 1

(RR)∼
(70.80)

Note that

O1|1 −O1|0 = O1|1 +O0|0 − 1 (70.81)
= O0|0 −O0|1 (70.82)
= (O1|1 −O1|0)

∼ (70.83)

70.6 Linear Programming Problem
Probability Simplex

S =

P (y0, y1, x) :
P (y0, y1, x) ≥ 0
y0, y1, x ∈ {0, 1}∑1

y0=0

∑1
y1=0

∑1
x=0 P (y0, y1, x) = 1

 (70.84)

Note that S has 7 degrees of freedom (dofs).

1. observational (non-causal) constraints on S (3 constraints)

Ox,y = P (x, y) =
∑
y′

P (y
x
= y, y

x
= y′, x) for (x, y) ∈ {(0, 1), (1, 0), (1, 1)}

(70.85)

519



2. experimental (causal) constraints on S (2 constraints)6

E1|x = P (y
x
= 1) =

∑
x′

∑
y′

P (y
x
= 1, y

x
= y′, x = x′) for x ∈ {0, 1} (70.86)

S has 7 dofs but the 3 observational constraints reduce the number of dofs to
4. The 5 observational and experimental constraints reduce the number of dofs to 2.
S is embedded in R8 and then the 6 constraints (unit probability, 2 observational and
3 experimental) reduce it to the interior of a 6 or less sided figure in R2.

Henceforth, we will refer to the observational and experimental constraints
together as the minimal constraints.

This is half of a linear programming problem. Recall that a linear pro-
gramming problem can be stated as finding the column vector ξ that minimizes
a cost C = cT ξ subject to Aξ = b and ξ ≥ 0. Here we have no cost function or
minimization, but we have Aξ = b and ξ ≥ 0 where ξ = [P (y0, y1, x)]∀y0,y1,x. Also
b = [1, O0,1, O1,0, O1,1, E1|0, E1|1]

T , and A = a matrix of zeros and ones.
Note that

PNS = P (y
0
= 0, y

1
= 1) (70.87)

=
∑
x

P (y
0
= 0, y

1
= 1, x) (70.88)

PN = P (y
0
= 0|x = 1, y = 1) (70.89)

=
P (y

0
= 0, y

1
= 1, x = 1)

O1,1

(70.90)

PS = P (y
1
= 1|x = 0, y = 0) (70.91)

=
P (y

0
= 0, y

1
= 1, x = 0)

O0,0

(70.92)

70.7 Special constraints
• Exogeneity (a.k.a. no-confounding) holds for simplex S if y

x
⊥ x for

x ∈ {0, 1}. Hence

P (y
x
= 1)︸ ︷︷ ︸

E1|x

= P (y
x
= 1|x) = P (y = 1|x)︸ ︷︷ ︸

O1|x

for x ∈ {0, 1} (70.93)

6E0|x follows from E0|x = 1− E1|x.
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Exogeneity gives 2 constraints.

Note that exogeneity is the same thing as identifiability of P (y
x
= y) = P (y =

y|Dx = x). But identifiability (i.e., do-identifiability) is a more general concept.
One can speak of the identifiability of P (yx|z) or of P (y0, y1, a), etc. In general,
any expression with do operators is do-identifiable if it can be expressed as an
expression without do-operators.

• Strong Exogeneity holds for simplex S if (y
0
, y

1
)joint ⊥ x. Hence

P (y0, y1|x) = P (y0, y1) (70.94)

Strong exogeneity gives 3 constraints. Strong exogeneity implies exogeneity but
not the converse.7

• Monotonicity8 holds for simplex S if

PH = P (y
0
= 1, y

1
= 0) = 0 (70.95)

. Equivalently,

∑
x

P (y
0
= 1, y

1
= 0, x) = 0 (70.96)

which is true iff

P (y
0
= 1, y

1
= 0, x) = 0 for x ∈ {0, 1} (70.97)

Monotonicity gives 2 constraints.

Note that when PH = 0, PNS = ATE.

Claim 109 Monotonicity and exogeneity together imply strong exogeneity.

proof:
This proof is presented here for completeness. Later on, we will give a much

simpler proof of this result. I advise the reader to skip this proof on first reading of
this chapter.

7In this book, we use both (a, b)& ⊥ x and (a, b)joint ⊥ x. When we write (a, b)& ⊥ x, we
mean that a ⊥ x and b ⊥ x, or, equivalently, P (a|x) = P (a) and P (b|x) = P (b). When we write
(a, b)joint ⊥ x or simply (a, b) ⊥ x, we mean P (a, b|x) = P (a, b). Summing P (a, b|x) = P (a, b)
over a gives P (b|x) = P (b), and summing it over b gives P (a|x) = P (a). Hence we see that
(a, b)joint ⊥ x implies (a, b)& ⊥ x but not the converse. If a and b are independent at fixed x so that
P (a, b|x) = P (a|x)P (b|x) then (a, b)joint ⊥ x iff (a, b)& ⊥ x

8This property is called monotonicity because it’s equivalent to the statement that yσ0 ≤ yσ1 for all
individuals σ in the population. Indeed, yσ0 ≤ yσ1 includes the 3 cases (yσ0 , y

σ
1 ) = (0, 0), (1, 1), (0, 1),

but excludes the only other case, namely (1, 0).
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Let a ∈ {0, 1}.

P (y
a
= a, x) =

∑
a′

P (y
a
= a, y

a
= a′, x) (70.98)

= P (y
a
= a, y

a
= a, x) (by monotonicity) (70.99)

Thus,

P (y
a
= a|x = a) = P (y

a
= a, y

a
= a|x = a) (70.100)

and
P (y

a
= a) = P (y

a
= a, y

a
= a) (70.101)

By exogeneity, the left hand side of Eq.(70.100) and the left hand side of Eq.(70.101)
are equal, so the right hand sides of those equations must be equal too.

P (y
a
= a, y

a
= a|x = a) = P (y

a
= a, y

a
= a) (70.102)

This immediately implies9

P (y
a
= a, y

a
= a|x) = P (y

a
= a, y

a
= a) (70.103)

for x ∈ {0, 1}. This gives for a = 0

P (y
0
= 1, y

1
= 1|x) = P (y

0
= 1, y

1
= 1) (70.104)

and for a = 1
P (y

1
= 0, y

0
= 0|x)︸ ︷︷ ︸

P (y
0
=0,y

1
=0|x)

= P (y
1
= 0, y

0
= 0)︸ ︷︷ ︸

P (y
0
=0,y

1
=0)

(70.105)

Monotonicity itself gives

P (y
0
= 1, y

1
= 0|x) = 0 = P (y

0
= 1, y

1
= 0) (70.106)

The remaining strong exogeneity constraint, given by

P (y
0
= 0, y

1
= 1|x) = P (y

0
= 0, y

1
= 1) , (70.107)

follows because ∑
y0,y1

P (y0, y1|x) =
∑
y0,y1

P (y0, y1) = 1 (70.108)

QED
9If x ∈ {0, 1} and P (a|x = 0) = P (a), then P (a) − P (a, x = 0) = P (a)[1 − P (x = 0)], so

P (a, x = 1) = P (a)P (x = 1). Hence, P (a|x = 1) = P (a).
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70.8 Matrix representation of probabilities
Suppose ϵx(y0, y1) for x, y0, y1 ∈ {0, 1} are eight vectors in a vector space V . ϵx(y0, y1)
will only be used at position (y0, y1) of a 2×2 matrix, where the positions are defined
as follows:

y1

1

OO

(0, 1) (1, 1)

0 (0, 0) (1, 0)

0 1 // y0

(70.109)

When ϵx(y0, y1) is used inside a 2× 2 matrix, we will not write the argument (y0, y1),
leaving it implicit, unless confusion may arise. Thus, for example, we will represent

P
[
ϵ0(0, 1) 0

0 0

]
by P

[
ϵ0 0
0 0

]
.

For x ∈ {0, 1}, let

Py
0
,y

1
,x(0, 0, x) = P

[
0 0
ϵx 0

]
(70.110a)

Py
0
,y

1
,x(0, 1, x) = P

[
ϵx 0
0 0

]
(70.110b)

Py
0
,y

1
,x(1, 0, x) = P

[
0 0
0 ϵx

]
(70.110c)

Py
0
,y

1
,x(1, 1, x) = P

[
0 ϵx
0 0

]
(70.110d)

Define a map P [ ] : V → R that we will call the matrix representation of
probabilities (MRP) (mnemonic, Mr. P). We will assume that the map P [ ] is
linear. Hence, for instance,

P
[
4ϵ0 + 3ϵ1 −5ϵ0

0 0

]
= 4P

[
ϵ0 0
0 0

]
+ 3P

[
ϵ1 0
0 0

]
− 5P

[
0 ϵ0
0 0

]
(70.111)

Henceforth, we will use the abbreviation

ϵ+ = ϵ0 + ϵ1 (70.112)

Note that
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P
[
ϵ+ ϵ+
ϵ+ ϵ+

]
= 1 (70.113)

πx = P
[
ϵx ϵx
ϵx ϵx

]
(70.114)

E0|0 = P
[
ϵ+ 0
ϵ+ 0

]
, O0,0 = P

[
ϵ0 0
ϵ0 0

]
(70.115)

E0|1 = P
[

0 0
ϵ+ ϵ+

]
, O1,0 = P

[
0 0
ϵ1 ϵ1

]
(70.116)

E1|0 = P
[
0 ϵ+
0 ϵ+

]
, O0,1 = P

[
0 ϵ0
0 ϵ0

]
(70.117)

E1|1 = P
[
ϵ+ ϵ+
0 0

]
, O1,1 = P

[
ϵ1 ϵ1
0 0

]
(70.118)

P (y = 0) = O0,0 +O1,0 = P
[
ϵ0 0
ϵ+ ϵ1

]
(70.119)

P (y = 1) = O0,1 +O1,1 = P
[
ϵ1 ϵ+
0 ϵ0

]
(70.120)

PN ∗O1,1 = P
[
ϵ0 0
0 0

]
(70.121)

PS ∗O0,0 = P
[
ϵ1 0
0 0

]
(70.122)

PNS = P
[
ϵ+ 0
0 0

]
(70.123)

PH = P
[
0 0
0 ϵ+

]
(70.124)

ATE = PNS − PH = P
[
ϵ+ 0
0 −ϵ+

]
(70.125)

When PH = 0,

P (y = 1)|PH=0 = P
[
ϵ1 ϵ+
0 0

]
(70.126)

The special constraints of exogeneity, strong exogeneity and monotonicity have
a very simple in the MRP.
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Suppose that π0, π1 ≥ 1 and π0 + π1 = 1. Note that

ϵ+ = ϵ0
π0

or
ϵ+ = ϵ1

π1

 =⇒ ϵ+ =
ϵ0
π0

=
ϵ1
π1

(70.127)

Below, we will abbreviate

ϵ̂x =
ϵx
πx

(70.128)

for x ∈ {0, 1}.

Claim 110

(a) Exogeneity holds iff (“4 sides can change color")

P
[
ϵ̂0 0
ϵ̂0 0

]
= P

[
ϵ̂1 0
ϵ̂1 0

]
= P

[
ϵ+ 0
ϵ+ 0

]
(70.129a)

P
[
ϵ̂0 ϵ̂0
0 0

]
= P

[
ϵ̂1 ϵ̂1
0 0

]
= P

[
ϵ+ ϵ+
0 0

]
(70.129b)

P
[
0 ϵ̂0
0 ϵ̂0

]
= P

[
0 ϵ̂1
0 ϵ̂1

]
= P

[
0 ϵ+
0 ϵ+

]
(70.129c)

P
[

0 0
ϵ̂0 ϵ̂0

]
= P

[
0 0
ϵ̂1 ϵ̂1

]
P
[

0 0
ϵ+ ϵ+

]
(70.129d)

(b) Monotonicity holds iff

P
[
0 0
0 ϵx

]
= 0 (70.130)

for x ∈ {0, 1}.

(c) Strong exogeneity holds iff (“4 corners can change color")

P
[
ϵ̂0 0
0 0

]
= P

[
ϵ̂1 0
0 0

]
= P

[
ϵ+ 0
0 0

]
(70.131a)

P
[
0 ϵ̂0
0 0

]
= P

[
0 ϵ̂1
0 0

]
= P

[
0 ϵ+
0 0

]
(70.131b)

P
[
0 0
0 ϵ̂0

]
= P

[
0 0
0 ϵ̂1

]
= P

[
0 0
0 ϵ+

]
(70.131c)

P
[

0 0
ϵ̂0 0

]
= P

[
0 0
ϵ̂1 0

]
= P

[
0 0
ϵ+ 0

]
(70.131d)
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proof:
(a) This follows from the definitions of Ey|x and Ox,y for x, y ∈ {0, 1}, as stated

above in the MRP.
(b) This follows from the identity

Py
0
,y

1
,x(1, 0|x) = P

[
0 0
0 ϵx

πx

]
(70.132)

for x ∈ {0, 1}.
(c) This follows from definitions of Py

0
,y

1
,x(y0, y1, x) for y0, y1, x ∈ {0, 1}, as

stated above in the MRP.
QED

Note that it is obvious from Claim 110 that strong exogeneity implies exo-
geneity.

Claim 110 also makes it easy peasy to prove that exogeneity and monotonicity
imply strong exogeneity. Indeed, here is a much simpler proof than the one we
presented earlier.

Claim 111 Exogeneity and monotonicity imply strong exogeneity.

proof: Let’s call E(a), E(b), E(c), E(d) the four Eqs.(70.129) that define Exogeneity,
and SE(a), SE(b), SE(c), SE(d) the four Eqs.(70.131) that define Strong Exogeneity.

• Monotonicity implies the lower right entry is zero, so SE(c) is true.

• Setting to zero the lower right entry in E(c) and E(d) implies SE(b) and SE(d).

• Subtracting SE(d) from E(a) gives SE(a).

QED

70.9 Bounds on Exp. Probs. imposed by Obs. Probs.
Claim 112 In general,

Ox,1 ≤ E1|x ≤ 1−Ox,0 for x ∈ {0, 1} . (70.133)

In other words,

O1,1 ≤ E1|1 ≤ 1−O1,0 (70.134)

O0,1 ≤ E1|0 ≤ 1−O0,0 (70.135)

With monotonicity, we get the tighter bounds
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P (y=1)︷ ︸︸ ︷
O1,1 + O0,1︸︷︷︸

new

≤ E1|1 ≤ 1−O1,0 (70.136)

O0,1 ≤ E1|0 ≤
P (y=1)︷ ︸︸ ︷

1−O0,0 − O1,0︸︷︷︸
new

(70.137)

proof:

O1,1 ≤ E1|1 ≤ 1−O1,0︸ ︷︷ ︸
O1,1+O0,0+O0,1

(70.138)

has the MRP

P
[
ϵ1 ϵ1
0 0

]
≤ P

[
ϵ+ ϵ+
0 0

]
≤ P

[
ϵ1 ϵ1
0 0

]
+ P

[
ϵ0 0
ϵ0 0

]
+ P

[
0 ϵ0
0 ϵ0

]
(70.139)

which is obviously true.

O0,1 ≤ E1|0 ≤ 1−O0,0︸ ︷︷ ︸
O1,1+O0,1+O1,0

(70.140)

has the MRP

P
[
0 ϵ0
0 ϵ0

]
≤ P

[
0 ϵ+
0 ϵ+

]
≤ P

[
ϵ1 ϵ1
0 0

]
+ P

[
0 ϵ0
0 ϵ0

]
+ P

[
0 0
ϵ1 ϵ1

]
(70.141)

which is obviously true.

P (y = 1)|PH=0 ≤ E1|1 (70.142)

has the MRP

P
[
ϵ1 ϵ+
0 0

]
≤ P

[
ϵ+ ϵ+
0 0

]
(70.143)

which is obviously true.

E1|0|PH=0 ≤ P (y = 1)|PH=0 (70.144)

has the MRP

P
[
0 ϵ+
0 0

]
≤ P

[
ϵ1 ϵ+
0 0

]
(70.145)

which is obviously true.
QED
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70.10 Bounds on PNS3 for unspecified bnet
Claim 113 If P (a, b) is a probability distribution, then

max{0, P (a) + P (b)− 1} ≤ P (a, b) ≤ min{P (a), P (b)} (70.146)

proof: P (a|b) ≤ 1 and P (b|a) ≤ 1 implies P (a, b) ≤ P (b) and P (a, b) ≤ P (a). Hence,
P (a, b) ≤ min{P (a), P (b)}.

P (a) + P (b)− 1 =
∑
a′,b′

P (a′, b′) [δ(a, a′) + δ(b, b′)− 1]︸ ︷︷ ︸
T

(70.147)

≤ P (a, b) (T biggest when a = a′ and b = b′) (70.148)

QED

Figure 70.6: Minimal bounds for PNS. PNS is larger than maximum of the purple
segments and smaller than the minimum of the green ones. The purple segment of
almost zero length represents zero. The green segment interrupted by a thin green
line represents O0,0 + O1,1. Note that

∑
xOx,0 +

∑
xOx,1 = 1. When monotonicity

holds, PNS equals E1,1 + E0,0 − 1 which is the purple segment marked with a star.

Claim 114 Minimal bounds (see Fig.70.6)
If the minimal constraints hold for simplex S, then

max


0

E1|1 + E0|0 − 1
E0|0 −

∑
xOx,0

E1|1 −
∑

xOx,1

 ≤ PNS ≤ min


E1|1
E0|0

O1,1 +O0,0

E1|1 + E0|0 −O1,1 −O0,0

 (70.149)

max

{
0

E0|0−
∑

xOx,0

O1,1

}
≤ PN ≤ min

{
1

E0|0−O0,0

O1,1

}
(70.150)

max

{
0

E1|1−
∑

xOx,1

O0,0

}
≤ PS ≤ min

{
1

E1|1−O1,1

O0,0

}
(70.151)
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proof: These bounds were copied directly from Ref.[78], except the notation was
changed. In certain cases, we have slightly rewritten the bounds from Ref.[78] to
exhibit more explicitly their symmetry under swaps of zeros and ones. For example,
instead of using (E1|0, E1|1) as parameters, we use (E1|1, E0|0).

These bounds are obviously true in the MRP. Indeed, in the MRP, the following
holds. For PNS, we have

0

E1|1 + E0|0 − 1

E0|0 −
∑

xOx,0

E1|1 −
∑

xOx,1


=



0

P
[
ϵ+ 0
0 −ϵ+

]
P
[
ϵ1 0
0 −ϵ1

]
P
[
ϵ0 0
0 −ϵ0

]


(70.152)

PNS = P
[
ϵ+ 0
0 0

]
(70.153)



E1|1

E0|0

O1,1 +O0,0

E1|1 + E0|0 −O1,1 −O0,0


=



P
[
ϵ+ 0
ϵ+ 0

]
P
[
ϵ+ ϵ+
0 0

]
P
[
ϵ+ ϵ1
ϵ0 0

]
P
[
ϵ+ ϵ0
ϵ1 0

]


(70.154)

For PN , we have 0

E1|1 −
∑

xOx,1

 =

 0

P
[
ϵ0 0
0 −ϵ0

]  (70.155)

PN ∗O1,1 = P
[
ϵ0 0
0 0

]
(70.156)

 1

E1|1 −O1,1

 =

 1

P
[
ϵ0 ϵ0
0 0

]  (70.157)

For PS, we have 0

E0|0 −
∑

xOx,0

 =

 0

P
[
ϵ1 0
0 −ϵ1

]  (70.158)
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PS ∗O0,0 = P
[
ϵ1 0
0 0

]
(70.159)

 1

E0|0 −O0,0

 =

 1

P
[
ϵ1 ϵ1
0 0

]  (70.160)

The first two lines of the bound for PNS are a simple consequence of Claim
113. Indeed, Claim 113 implies

max

{
0

P (y0) + P (y1)− 1

}
≤ P (y0, y1) ≤ min

{
P (y0)
P (y1)

}
(70.161)

When y0 = 0, y1 = 1, we get

max

{
0

E0|0 + E1|1 − 1

}
≤ PNS ≤ min

{
E0|0
E1|1

}
(70.162)

QED
In Claim 114, note that

•
∑

xOx,y = P (y = y) for y = 0, 1.

• Let

E ′
0|0 = E0|0 −

∑
x

Ox,0 = P
[
ϵ1 0
0 −ϵ1

]
(70.163)

E ′
1|1 = E1|1 −

∑
x

Ox,1 = P
[
ϵ0 0
0 −ϵ0

]
(70.164)

ATE = E1|1 + E0|0 − 1 = E ′
1|1 + E ′

0|0 = P
[
ϵ+ 0
0 −ϵ+

]
(70.165)

• Claim 114 applies if we have both observational data (OD) and experimental
data (ED). If we only have OD (resp., ED), ignore all bounds that involve an
E (resp., involve an O) probability.

Hence, with only OD10

0 ≤ PNS ≤ O1,1 +O0,0 (70.166)
10The bounds Eq.(70.166) assume exogeneity does not hold. For the case when exogeneity does

hold, stronger bounds will be given later on in the chapter.
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and PN,PS ∈ [0, 1], whereas with only ED,

max

{
0

E1|1 + E0|0 − 1

}
≤ PNS ≤ min

{
E1|1
E0|0

}
(70.167)

and PN,PS ∈ [0, 1].

• At first blush, there seem to be 3 possible cases to consider: (1) Only OD.
(2) Both OD and ED. (3) Only ED. Actually, Case (1) plus the assumption
of exogeneity is the same as Case (3). Indeed, recall that exogeneity means
no confounding, and ED (i.e., an RCT) also has no confounding. So we don’t
have to consider Case (3) if we consider Case (1) without and with exogeneity.
Exogeneity is built into case (2), so case (2) without exogeneity is meaningless.

Claim 115 If minimal and exogeneity constraints hold for simplex S, then

max


0

O1|1 +O0|0 − 1

((((((((
O0|0 −

∑
xOx,0

((((((((
O1|1 −

∑
xOx,1

 ≤ PNS ≤ min


O1|1
O0|0

������O1,1 +O0,0

(((((((((((((
O1|1 +O0|0 −O1,1 −O0,0

 (70.168)

max

{
0

ERR

}
≤ PN ≤ min

{
1
O0|0
O1|1

}
(70.169)

max

{
0

(ERR)∼

}
≤ PS ≤ min

{
1
O1|1
O0|0

}
(70.170)

proof: Just replace Ey|x by Oy|x in the minimal bounds given in Claim 114.
The canceled terms do not improve the bounds and can be dropped. We show

this next using MRP.
In the MRP, the minimal bounds for PNS are

0

E1|1 + E0|0 − 1

E0|0 −
∑

xOx,0

E1|1 −
∑

xOx,1


=



0

P
[
ϵ+ 0
0 −ϵ+

]
P
[
ϵ1 0
0 −ϵ1

]
P
[
ϵ0 0
0 −ϵ0

]


(70.171)

PNS = P
[
ϵ+ 0
0 0

]
(70.172)
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E1|1

E0|0

O1,1 +O0,0

E1|1 + E0|0 −O1,1 −O0,0


=



P
[
ϵ+ 0
ϵ+ 0

]
P
[
ϵ+ ϵ+
0 0

]
P
[
ϵ+ ϵ1
ϵ0 0

]
P
[
ϵ+ ϵ0
ϵ1 0

]


(70.173)

If exogeneity holds, we can replace all E’s by O’s on the left hand sides. We can also
use ϵ+ = ϵ̂0 = ϵ̂1 on the right hand sides to conclude that

O1|1 +O0|0 − 1 = P
[
ϵ+ ϵ+ − ϵ+
0 −ϵ+

]
= P

[
ϵ̂x ϵ̂x − ϵ̂x
0 −ϵ̂x

]
=

1

πx
P
[
ϵx 0
0 −ϵx

]
(70.174)

for both x ∈ {0, 1}. Note that 1
πx
P
[
ϵx 0
0 −ϵx

]
will always be greater or equal to

P
[
ϵx 0
0 −ϵx

]
when P

[
ϵx 0
0 −ϵx

]
≥ 0 (if it’s negative, the 0 bound takes prece-

dence). Hence, the two canceled lower bound terms can be dropped. A similar
argument shows that the two canceled upper bound terms can be dropped too.
QED

Claim 116 If the minimal and strong exogeneity constraints hold for simplex S, then
the inequalities for exogeneity Claim 115 hold. In addition,

PN =
PNS

O1|1
(70.175)

and

PS =
PNS

O0|0
(70.176)

proof:

PN ∗O1|1 = P (y
0
= 0, y = 1|x = 1) (70.177)

= P (y
0
= 0, y

1
= 1) (70.178)

= PNS (70.179)

PS ∗O0|0 = P (y
1
= 1, y = 0|x = 0) (70.180)

= P (y
0
= 0, y

1
= 1) (70.181)

= PNS (70.182)
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QED

Claim 117 If the minimal and monotonicity constraints hold for simplex S, then

PNS = E1|1 + E0|0 − 1 (70.183)

PN =
E0|0 −

∑
xOx,0

O1,1

=

∑
xOx,1 − E1|0

O1,1

= CERR (70.184)

PS =
E1|1 −

∑
xOx,1

O0,0

=

∑
xOx,0 − E0|1

O0,0

= (CERR)∼ (70.185)

proof: These results can be easily proven using the MRP.
Note that

∑
xOx,1 − E1|0

O1,1

=
O1|1π1 +O1|0(1− π1)− E1|0

O1|1π1
(70.186)

= 1−
O1|0

O1|1
+
O1|0 − E1|0

O1,1

(70.187)

= CERR (70.188)

QED

Claim 118 If the minimal, exogeneity and monotonicity constraints hold for simplex
S, then PNS, PN ,PS are identifiable, and

PNS = O1|1 +O0|0 − 1 (70.189)

PN =
O0|0 −

∑
xOx,0

O1,1

=

∑
xOx,1 −O1|0

O1,1

= ERR (70.190)

PS =
O1|1 −

∑
xOx,1

O0,0

=

∑
xOx,0 −O0|1

O0,0

= (ERR)∼ (70.191)

proof: Set Ey|x = Oy|x in Claim 117.
QED
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70.11 Bounds on PNS3 for specific bnet families

70.12 Bounds on ATE imposed by Obs. Probs.
Claim 119

O0,0 +O1,1 − 1 ≤ ATE ≤ O0,0 +O1,1 (70.192)

proof:

O0,0 +O1,1 − 1 = P
[

0 −ϵ0
−ϵ1 −ϵ+

]
(70.193)

ATE = P
[
ϵ+ 0
0 −ϵ+

]
(70.194)

O0,0 +O1,1 = P
[
ϵ+ ϵ1
ϵ0 0

]
(70.195)

QED

70.13 Bounds on PNS in terms of ATE and Obs.
Probs.

Claim 120

max

{
0

ATE

}
≤ PNS ≤ min

{
O0,0 +O1,1

O0,1 +O1,0 + ATE

}
(70.196)

Hence,

max

{
0

ATE

}
≤ PNS ≤ min

{
1

1 + ATE

}
(70.197)

proof:
Note that

ATE = P
[
ϵ+ 0
0 −ϵ+

]
(70.198)

and

PNS = P
[
ϵ+ 0
0 0

]
(70.199)

so
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max

{
0

ATE

}
= max


0

P
[
ϵ+ 0
0 −ϵ+

]  ≤ P
[
ϵ+ 0
0 0

]
= PNS (70.200)

Next note that

O0,0 +O1,1 = P
[
ϵ+ ϵ1
ϵ0 0

]
(70.201)

O1,0 +O0,1 = P
[

0 ϵ0
ϵ1 ϵ+

]
(70.202)

O1,0 +O0,1 + ATE = P
[
ϵ+ ϵ0
ϵ1 0

]
(70.203)

so

PNS = P
[
ϵ+ 0
0 0

]
≤ min


P
[
ϵ+ ϵ1
ϵ0 0

]
P
[
ϵ+ ϵ0
ϵ1 0

]
 = min

{
O0,0 +O1,1

O1,0 +O0,1 + ATE

}
(70.204)

QED

70.14 Numerical Examples
I’ve written an open source Python program (See Ref[83]) that calculates the bounds
given in this chapter. The program is called “JudeasRx", in honor of Judea Pearl.
Fig.70.7 is an example of its interface with data entered by Boris Sobolev from a real
life case. JudeasRx considers z = g = gender ∈ {m, f}.
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Figure 70.7: Interface for the Python program JudeasRx, with data entered by Boris
Sobolev.
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Chapter 71

Plate Notation

In this chapter, we will use the Numpy-like tensor notation discussed in Section C.49.
In particular, note that [n] = [0 : n] = {0, 1, . . . , n− 1} and that T [n],[m] is an n×m
matrix.

Plate notation is often used in Machine Learning. See, for instance, Chapter
98 on Transformers Networks, for examples of plate notation.

Plate notation is used to describe, in a compact way, a family of equal,
disjoint sub-bnets of a bnet that are connected in parallel or in series. Suppose you
have a bnet containing as a subset, Λ disjoint node sets Sλ (“sub-bnets"), where
λ ∈ [Λ]. Suppose any two Sλ have the same number of equivalent nodes, and two
equivalent nodes have the same TPM.

In case the Sλ are connected in parallel (CIP): Rather than drawing all Λ
sets, we think of them as layers of a stack that come out of the page like a stack of
pancakes with the pancakes lying flat on the page. That way we only have to draw
one pancake instead of Λ. We only draw once instead of Λ times, each node and the
arrows entering and exiting that node. Quite a saving in labor and bnet complexity!
And a bnet can have more than one plate, and a node can belong to more than one
plate!

In case the Sλ are connected in series (CIS): Rather than drawing all Λ
sets, we think of them as links in a chain. That way we only have to draw one
link instead of Λ. We only draw once instead of Λ times, each node and the arrows
entering and exiting that node.

The simplest possible use of CIS plates is for representing a Markov chain.
This is illustrated in Fig.71.1.

Fig.71.2 gives an example of a bnet with 2 nested CIP plates1. The TPMs for
this bnet are of the following form (we print them in blue).

P (A[20]|Q[20],[10], K [20],[10], V [20],[10]) = (71.1a)

1Fig.71.2 and the blue TPMs were rendered with my free, open source software texnn (see
Ref.[90]) texnn can keep track of the tensor shapes of each node, for bnets with one or more plates.

537



y Aoo xoo

3 links

= y Aoo Aoo Aoo xoo

Figure 71.1: 3-link Markov chain represented in plate notation and without plates.

Q[20],[10]

##

K [20],[10] // A[20]

��

V [20],[10]

::

X

::

??

44

// Y

10 layers

20 layers

Figure 71.2: Example of a bnet with 2 nested CIP plates. In general, multiple plates
need not be nested.

P (K [20],[10]|X) = (71.1b)

P (Q[20],[10]|X) = (71.1c)

P (V [20],[10]|X) = (71.1d)

P (X) = (71.1e)
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P (Y |X,A[20]) = (71.1f)
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Chapter 72

Potential Outcomes and Beyond

This chapter is based on Ref.[12], a book by Stephen Cunningham entitled “Causal
inference: the mixtape".

The theory of potential outcomes (PO) was for the most part invented in a
seminal 1974 paper by Donald B. Rubin. Rubin has also made important extensions
to PO theory since 1974. However, he does not use Pearl’s causal DAGs to discuss PO
theory. Pearl has shown that PO theory can be substantially clarified and extended
by using the language of causal DAGs. The d-separation theorem and do operator
that we discuss in Chapters 23 and 72 are especially useful in this regard. In this
chapter, we stress the connection of PO theory to Pearl’s causal DAGs and bnets.

σ dσ yσ yσ(0) yσ(1)
Edith 0 5 5 .
Frank 0 7 7 .
George 0 8 8 .
Hank 0 10 10 .
Andy 1 10 . 10
Ben 1 5 . 5
Chad 1 16 . 16
Daniel 1 3 . 3

Table 72.1: PO dataset describing whether individual σ took a treatment drug (dσ =
1) or didn’t (dσ = 0). The treatment outcome is measured by the real number yσ.

Suppose a population of individuals σ = 0, 1, 2, . . . , nsam − 1 is given
(dσ = 1) or is not given (dσ = 0) a treatment decision dσ, and that the treatment
outcome (i.e., response) is measured by a real number yσ. Table 72.1 gives a
possible PO dataset for this scenario. As you can see from that table, each individual
either takes a drug or doesn’t, but not both. PO theory can be viewed as a missing
data (MD) problem. MD problems are discussed in Chapter 59. However, the PO
MD problem is much more specialized than the generic MD problems discussed in
Chapter 59. In the PO MD problem, we can fill in the blank cells by matching each
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individual that took the drug with another similar individual that didn’t. We will
have much more to say about this matching strategy later in this chapter.

One can define similar individuals as individuals that have the same value for
nx features xσ = (xσi )i=0,1,...,nx−1. One can add to Table 72.1 nx extra columns giving
the value of the feature vector xσ for each individual. Members of a population with
the same xσ are referred to as a subpopulation or stratum (i.e., layer).

In a randomized controlled trial (RCT) 1, the effect of the variable xσ on
the value of dσ is eliminated by randomizing the population and therefore making the
effect of xσ on dσ average out to zero. However, there are many situations in which
carrying out an RCT is not possible or desirable. PO theory is a way of predicting the
result of an RCT in situations where doing a real RCT is not possible or desirable.

In this chapter, xσ will be called the confounders. Implicit throughout this
chapter is the assumption that there are no unmeasured confounders. Because if
there are some unmeasured confounders, those can send secret messages that influence
the value that dσ takes. This would ruin the predictions of someone trying to predict
the results of an RCT without being privy to those secret messages. When there are
some unmeasured confounders, it might still be possible to predict the effect of
an RCT. This might be possible using instrumental variables. See Chapter 41 for a
discussion of instrumental variables.

72.1 G and Gden bnets, the starting point bnets

xσ

�� ��
dσ // yσ

ud

��

ux

��

uy

��

x

~~   
d // y

G Gden

Figure 72.1: Bnets G and Gden are our starting point in discussing PO theory. G is
for a single individual σ of the population. Bnet Gden is the DEN counterpart to G.
DEN (Deterministic with External Noise) bnets are discussed in Chapter 48.

1The term A/B test is often used to mean an RCT where A and B are the treated and con-
trol groups. However, sometimes the term is used to refer to an experiment that conditions on
confounders, which violates the definition of an RCT, and is the same as a PO test.
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In this chapter, we will abbreviate X[σ] = Xσ for X ∈ {d, x, y}, where σ ∈
{0, 1, 2, . . . , nsam− 1}.

For each individual (a.k.a. unit, sample) σ = 0, 1, 2, . . . nsam− 1, let:
dσ ∈ {0, 1} be the treatment decision or drug dose. It equals 1 if treated and

0 if untreated.
yσ ∈ R be the treatment potential outcome
xσ be the column vector of treatment confounders (a.k.a. covariates because

they are often used as covariates (i.e., independent variables) in linear regression.)
Consider bnets G and Gden in Fig.72.1. G reflects the language used in Ref.[12]

to discuss PO theory. And Gden reflects the language that Judea Pearl prefers to use
to discuss PO theory. Both languages are equivalent. To go from one language to
the other, one need only perform the following swaps, where u is the external noise
of the DEN bnet.

Xσ ↔ X(u) for X ∈ {d, x, y}.
P (σ) = 1

nsam
↔ P (u)∑

σ P (σ)(·)↔
∑

u P (u)(·)
The TPMs, printed in blue, for the bnet G in Fig.72.1, are as follows:

P (xσ) = Px(x
σ) (72.1)

P (dσ|xσ) = Pd|x(d
σ|xσ) (72.2)

P (yσ|dσ, xσ) = Py|d,x(y
σ|dσ, xσ) (72.3)

Now let:
d ∈ {0, 1} be the treatment decision. It equals 1 if treated and 0 if untreated
y ∈ R be the treatment potential outcome
x be the column vector of treatment confounders (a.k.a. covariates)
u = (ud, ux, uy) be the external noise
The TPMs, printed in blue, for the bnet Gden in Fig.72.1, are as follows:

P (x|ux) = 1( x = ux ) (72.4)

P (d|x, ud) = 1( d = fd(x, ud) ) (72.5)

P (y|d, x, uy) = 1( y = fy(d, x, uy) ) (72.6)
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If we linearize fy in Eq.(72.6), we get

y = δd+ βx+ uy , (72.7)

where δ, β ∈ R. Assuming that x, y ∈ R and d ∈ {0, 1}, Eq.(72.7) can be plotted.
The resulting plot is given in Fig.72.2. This plot is a very special case of the PO
problem, but it gives a crude idea of the “effects" δ = y(1) − y(0) that PO theory
gives estimates for. Any individual participating in the experiment experiences either
y(1) or y(0), but not both.

Figure 72.2: Plot of Eq.(72.7)

72.2 G bnet with nodes yσ(0), yσ(1) added to it.

xσ

�� ��
dσ // yσ

xσ

}}

��
[yσ(0), yσ(1)]

��
dσ

?
66

// yσ

G G+

Figure 72.3: Bnet G+ is bnet G with two new nodes yσ(0) and yσ(1) added to it.
The tuple node [yσ(0), yσ(1)] can also be represented by two nodes c → y(c), where
c ∈ {0, 1}.
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Consider Fig.72.3. Bnet G+ was obtained by adding two new nodes yσ(0) and
yσ(1) to bnet G. The TPMs, printed in blue, for bnet G+, are as follows. Note that
we define them in terms of the TPMs for bnet G.

P (xσ) = Px(x
σ) (72.8)

P (dσ|xσ) = Pd|x(d
σ|xσ) (72.9)

For c ∈ {0, 1},

P (yσ(c)|dσ, xσ) =
{
Py(c)|d,x(y

σ(c)|dσ, xσ) if INCLUDE arrow with question mark
Py(c)|x(y

σ(c)|xσ) if EXCLUDE arrow wit question mark
(72.10)

P (yσ|yσ(0), yσ(1), dσ) = = 1(yσ = dσyσ(1) + (1− dσ)yσ(0)) (72.11a)
= 1(yσ = yσ(dσ)) (72.11b)

Eq.(72.11) is often referred to as the SUTVA or Consistency assumption.
If we sum over the nodes y(0) and y(1) of this bnet, we should get the bnet

G. This is easy to check. Indeed,

P (yσ|dσ, xσ) =
∑
yσ(0)

∑
yσ(1)

1(yσ = yσ(dσ))P (yσ(0)|dσ, xσ)P (yσ(1)|dσ, xσ) (72.12)

=

{
Py(0)|d,x(y

σ|dσ, xσ) if dσ = 0

Py(1)|d,x(y
σ|dσ, xσ) if dσ = 1

. (72.13)

Henceforth, we will refer to the case where the question mark arrow is included
as the general case, and to the case when it’s excluded as the weak-d limit. Hence-
forth, we will first present results for the general case, and then describe how those
results change for the weak-d limit. Rubinologists always assume the weak-d limit,
but we find that with little effort, we can derive many results for general case, and
then compare those results to their weak-d limit. I find such comparisons instructive.

Note that in the general case, P (y(c) = y|d = d, x) for c, d ∈ {0, 1} are four
different probability distributions, and that P (y = y|d = d, x) is defined in terms
of two of them, the so called factual distributions with c = d. By measuring y,
we can’t access the other 2 probability distributions, the so called counter-factual
distributions with c ̸= d.

In the weak-d limit, P (y(c) = y|d = d, x) = P (y(c) = y|x) are two probability
distributions, and they both can be accessed by measuring y.
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72.3 Expected Values of treatment outcome yσ

It is convenient to define the following expected values of yσ in terms of the TPMs of
bnet G+:

Yc|d,x = Eσ|d,x[y
σ(c)]→ Ey(c)|d,x[y(c)] =

∑
y

yP (y(c) = y|d = d, x) (72.14)

Yc|d = Eσ|d[y
σ(c)]→ Ey(c)|d[y(c)] =

∑
x

Yc|d,xP (x|d) (72.15)

Yc|x = Eσ|x[y
σ(c)]→ Ey(c)|x[y(c)] =

∑
d

Yc|d,xP (d|x) (72.16)

Yc = Eσ[y
σ(c)]→ Ey(c)[y(c)] =

∑
x,d

Yc|d,xP (x, d) (72.17)

Note that in the weak-d limit,

Yc =
∑
x

Yc|d,xP (x) . (72.18)

Note also that in the weak-d limit, Yc|d,x is independent of d, but Yc|d can depend on
d if P (x|d) depends on d.

Y0|0,Y1|1 are said to be factual (indicating compliant patients) whereas Y0|1,Y1|0
are said to be counterfactual (indicating non-compliant patients).

Also let

Y|d,x = Eσ|d,x[y
σ]→ Ey|d,x[y] =

∑
y

yP (y = y|d = d, x) (72.19)

Y|d = Eσ|d[y
σ]→ Ey|d[y] =

∑
x

Y|d,xP (x|d) (72.20)

Y|x = Eσ|x[y
σ]→ Ey|x[y] =

∑
d

Y|d,xP (d|x) (72.21)

Y = Eσ[y
σ]→ Ey[y] =

∑
d

Y|d,xP (d, x) (72.22)

In the weak-d limit, Y|d,x is independent of d, but Y|d can still depend if P (x|d)
depends on d, then Y|d depends on d too.

72.4 Translation Dictionary
Table 72.2 gives a dictionary for translating from the standard PO notation of Ref.[12]
to our notation.
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In standard PO notation In our notation

i, individual (i.e., unit, sample) index σ

Di = di, treatment decision dσ = dσ

Yi = yi, treatment outcome yσ = yσ

Xi = xi, treatment confounders xσ = xσ

E[Yi(c)] Eσ[y
σ(c)] = Yc

E[Yi(c)|Di = d] Eσ|d[y
σ(c)] = Yc|d

E[Yi(c)|Di = d,Xi = x] Eσ|d,x[y
σ(c)] = Yc|d,x

E[Yi] Eσ[y
σ] = Y

E[Yi|Di = d] Eσ|d[y
σ] = Y|d

E[Yi|Di = d,Xi = x] Eσ|d,x[y
σ] = Y|d,x

Table 72.2: Dictionary for translating from standard PO notation of Ref.[12] to our
notation. c, d ∈ {0, 1}.

72.5 Y|d,x = Yd|d,x (SUTVA)

Claim 121 2

Y|d,x = Yd|d,x (72.23)

Y|d = Yd|d (72.24)

proof:

Y|d,x =
∑
y

yP ( y︸︷︷︸
=y(d) by Eq.(72.11)

= y|d, x) (72.25)

= Yd|d,x . (72.26)

Applying
∑

x P (x|d) to both sides of Eq.(72.23) gives Eq.(72.24).
QED

2In the standard PO notation, this is the frequently used identity

E[Y |D = d, x] = E[Y (d)|D = d, x]

.
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72.6 Conditional Independence Assumption (CIA)
The Conditional Independence Assumption (CIA) is said to hold if

(yσ(0), yσ(1), yσ)& ⊥P dσ|xσ . (72.27)

This is satisfied by G+ in the weak-d limit. To prove this, check that

(yσ(0), yσ(1), yσ) ⊥G+ d
σ|xσ (72.28)

and then invoke the d-separation theorem (see Chapter 23).
I think CIA only makes sense if the individuals are treatment blind (i.e., have

no knowledge of whether they are in the treated or control groups.) Otherwise, that
extra knowledge becomes a confounder not being included in x.

A Randomized Controlled Trial (RCT) is defined to satisfy Eq.(72.27)
without the xσ conditioning; i.e., it satisfies

(yσ(0), yσ(1), yσ)& ⊥P dσ . (72.29)

This means that in an RCT, the arrow from xσ to dσ in G+ is omitted.
Note that if we assume both CIA (i.e., weak-d limit) and SUTVA, we get

Y|d,x = Eσ|d,x[y
σ] (72.30a)

= Eσ[y
σ|dσ = d, xσ = x] (72.30b)

= Eσ[y
σ(d)|dσ = d, xσ = x] (by SUTVA) (72.30c)

= Eσ[y
σ(d)|xσ = x] (by CIA) (72.30d)

= Eσ|x[y
σ(d)] (72.30e)

= Yd|x . (72.30f)

In an RCT, Eq.(72.30f) is valid without the x conditioning.

72.7 Treatment Effects
A treatment effect is a a difference of two Yc|d. It is convenient to define the
following treatment effects. See Figs.72.4 and 72.5.

• average treatment effect (ATE).

ATE = Y1 − Y0 = δ (72.31)

• average treatment effect of the treated (ATT)

ATT = Y1|1 − Y0|1 (72.32)
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Figure 72.4: Different treatment effects. A treatment effect is a difference of two Yc|d.

Figure 72.5: Alternative representation of the same information that is contained in
Fig.72.4.

• average treatment effect of the untreated (ATU)

ATU = Y1|0 − Y0|0 (72.33)

• selection bias (SB)
SB = Y0|1 − Y0|0 (72.34)

• simple difference in outcomes (SDO)

SDO = Y1|1 − Y0|0 (72.35)

Let

πd = P (d = d) (72.36)

for d ∈ {0, 1}.
Note that there exist some linear constraints between these treatment effects.
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Y1 − Y0︸ ︷︷ ︸
ATE

= Y1|1π1 + Y1|0π0︸ ︷︷ ︸
Y1

− (Y0|1π1 + Y0|0π0)︸ ︷︷ ︸
Y0

(72.37)

= (Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

π1 + (Y1|0 − Y0|0)︸ ︷︷ ︸
ATU

π0 (72.38)

Y1|1 − Y0|0︸ ︷︷ ︸
SDO

= (Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

+Y0|1 − Y0|0︸ ︷︷ ︸
SB

(72.39)

Y1|1 − Y0|0︸ ︷︷ ︸
SDO

= (Y1|1 − Y0|1)π1 + (Y1|0 − Y0|0)π0︸ ︷︷ ︸
ATE

+Y0|1 − Y0|0︸ ︷︷ ︸
SB

+(Y1|1 − Y0|1)︸ ︷︷ ︸
ATT

π0

− (Y1|0 − Y0|0)︸ ︷︷ ︸
ATU

π0 (72.40)

By virtue of Eq.(72.38),

ATT = ATU =⇒ ATT = ATU = ATE (72.41)

and

ATE = 0 ⇐⇒ ATU

ATT
= −

(
π1
π0

)
. (72.42)

Whenever ATT = ATU , we will say there is T-U symmetry.
In general, SDO = ATT + SB, but if there is T-U symmetry, then SDO =

ATE + SB.
If there is T-U symmetry and zero bias SB = 0, then SDO = ATE = ATT =

ATU .
If there is a null result for an RCT (i.e., ATE = 0), T-U symmetry and zero

bias SB = 0, then SDO = ATE = ATT = ATU = 0.
Let

Yc,d|x = Yc|d,xP (d|x) (72.43)

For each E ∈ {ATE,ATT,ATU, SB, SDO}, we can define its restriction Ex to a fixed
stratum x by replacing each Yc|d with Yc,d|x. For example,

ATT = Y1|1 − Y0|1 so ATTx = Y1,1|x − Y0,1|x . (72.44)
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We can calculate E from Ex using

E = Ex[Ex] =
∑
x

P (x)Ex . (72.45)

72.8 Insights into what makes treatment effects equal
and Y1|0 = Y1

Figure 72.6: Figure 72.4 with added information about probability distributions used
to obtain each expected value Yc|d.

1. Is it possible for SDO = 0 but ATE ̸= 0 or vice versa, and what is going on
when this is true?

2. What is going on when two treatment effects are equal; for instance, when
ATT = ATU?

3. When is Y1|0 = Y1, and what is going on when this is true?

Fig.72.6 gives some intuition about what is going on when any of these things happen.
Recall that each expected value Yc|d is associated with a probability distribu-

tion Py(c)|d,x.

Yc|d =
∑
y

y
∑
x

Py(c)|d,x(y|d, x)P (x|d)︸ ︷︷ ︸
Py(c)|d(y|d)

(72.46)

for c, d ∈ {0, 1}. Fig.72.6 reminds us of which P is used to generate each Y . From
this figure, we see that
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1. A sufficient condition for SDO = 0 is that Py(1)|d=1 = Py(0)|d=0. A sufficient
condition for ATE = 0 is that Py(1)|x = Py(0)|x.

2. A sufficient condition for ATT = ATU is that Py(1)|d=1,x − Py(0)|d=1,x equals
Py(1)|d=0,x − Py(0)|d=0,x.

3. A sufficient condition for Y1|0 = Y1 is that Py(1)|d=0 = Py(1). Note that the CIA
implies that Py(1)|d=0,x = Py(1)|x always, but this does not imply that Py(1)|d=0 =
Py(1).

72.9 Gdo+ bnet

xσ

����
dσ // yσ

xσ

��
Ddσ = d̃σ // yσ

xσ

��
Ddσ // yσ

G Gdo = Ddσ(d̃σ)G Gdo+

Figure 72.7: Bnet Gdo = Ddσ(d̃σ)G is obtained by applying the do operator to node
dσ of bnet G. Bnet Gdo+ is obtained by adding a prior probability distribution P (d̃σ)
to node Ddσ of bnet Gdo.

Fig.72.7 shows how bnet Gdo is obtained by applying the do operator to bnet
G, and how bnet Gdo+ is obtained by adding a prior probability distribution to one
of the nodes of Gdo. In bnet Gdo, node dσ has been stripped of all outside influences
and fixed to a specific state d̃σ. This is what an RCT does.

The TPMs, printed in blue, for the bnets Gdo and Gdo+, are as follows. Note
that the TPMs for bnets Gdo and Gdo+ are defined in terms of the TPMs of bnet G.

P (xσ) = Px(x
σ) (72.47)

PDd(d̃) =
∑
x

Pd|x(d̃|x)Px(x) (72.48)

P (d̃σ) =

{
δ(d̃σ, d̃σ) for Gdo

PDd(d̃
σ) for Gdo+

(72.49)
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P (yσ|d̃σ, xσ) = Py|d,x(y
σ|d̃σ, xσ) (72.50)

Note that in Gdo,

P (y = y|Dd = d, x = x) = P (y|d = d, x) (72.51)

because, by the d-separation theorem, when we condition on the confounder x, we
block information from being transmitted from d to y through x, and this is equivalent
to amputating the arrow x→ d.

Using Eq.(72.51), we get

P (y = y|Dd = d) =
∑
x

P (y = y|Dd = d, x)P (x|Dd = d) (72.52)

=
∑
x

P (y|d, x)P (x) (72.53)

Eq.(72.53) is called the backdoor adjustment formula. It allows us to express a
probability with a do operator in its definition in terms of probabilities without do
operators.

72.10 ACE = ATE

Define the Average Causal Effect (ACE) by

ACE =
∑
y

y[P (y|Dd = 1)− P (y|Dd = 0)] (72.54)

=
∑
x

P (x)
∑
y

y[P (y|d = 1, x)− P (y|d = 0, x)] . (by Eq.(72.53) (72.55)

Claim 122 If we assume both SUTVA and CIA (i.e., weak-d limit), then

ACE = ATE (72.56)

proof:
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ACE =
∑
x

P (x)
∑
y

y[P (y = y|d = 1, x)− P (y = y|d = 0, x)] (72.57)

=
∑
x

P (x)[Y1|1,x − Y0|0,x] (by SUTVA) (72.58)

=
∑
x

P (x)[Y1|x − Y0|x] (by CIA) (72.59)

= Y1 − Y0 (72.60)
= ATE (72.61)

QED
We will say there is a null result in an RCT when ACE = 0. By the

previous claim, this is true iff ATE = 0 (assuming weak-d limit).

72.11 Good, Bad Controls
The bnet G+ of Fig.72.3, —the cornerstone of Rubin’s PO theory— is limited in
scope and is easily misapplied, leading to incorrect results. The problem is some
features that are available and could be conditioned on shouldn’t because they would
introduce spurious contributions to ATE. Such features are called “bad controls"3

Examples:

h1

��

��

h2

��

��
x

d // y

Figure 72.8: In this bnet, x is a bad control (i.e., should not be conditioned on).
Nodes h1 and h2 are hidden and therefore cannot be conditioned on.

1. Consider the bnet Fig.72.8, which Pearl calls M-bias, because it looks like an M.
In that figure, x is a “bad control" because calculating ATE by conditioning on

3In this section, the word “controls" refers to the covariates (i.e., independent variables), other
than d, in a regression with y as target (i.e., independent) variable. This should not be confused
with the control (i.e., untreated) individuals of a RCT.
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it, and using the formula ATE =
∑

x P (x)[Y1|x − Y0|x], yields a value of ATE
that is different from ACE. This value for ATE is unacceptable because it does
not give the result of an RCT whereas ACE defined in terms of do operators
always does. The reason4 ATE ̸= ACE for this figure is that in it, x is a
collider node, and conditioning on it allows rather than prevents information to
flow from d to y via the path d− h1 − x− h2 − y.

c1

�� ''

c2OO

��

77

ww
d //

��

c3 // y

��
c4

Figure 72.9: In this bnet, node c1 is a good control and nodes c2, c3, c4 are bad ones.

2. In Fig.72.9, node c1 is a good control and nodes c2, c3, c4 are bad ones.

Conditioning on c1 blocks path d− c1 − y, good

Conditioning on c2 opens path d− c2 − y, bad

Conditioning on c3 blocks path d− c3 − y, bad

Conditioning on c4 opens path d− c4 − y, bad

Pearl et al have a paper (Ref.[10]) that I highly recommend that gives 20
examples of good, neutral and bad controls in an ATE calculation. Those 20 examples
are also analyzed by my software SCuMpy (see Ref.[87]).

72.12 PO Confounder Sensitivity Analysis
There are various “sensitivity analysis" strategies that are commonly used (for exam-
ple, by the software PyWhy) as a sanity check for a PO analysis.

• vary columns of dataset

1. randomize y column (random outcome) This should make ATE = 0.

2. randomize x column (random common cause) This should make ATE =
0.

4We are using here arguments based on the d-separation theorem which is discussed in Chapter
23.
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3. randomize d column (placebo treatment dose) This should make ATE =
0.

4. add new column u, where u is an “unobserved common cause". This
should change ATE in a predictable manner. See below.

5. add new column u, where u is a “randomized common cause". This
should not change ATE.

• vary rows of dataset, either all of them or some of them. Replace them by a
dataset that should obey same DAG. This should not change ATE.

• vary good controls. If using a DAG that is more complicated than the naive
triangular PO DAG, vary from one set of good controls to another. This should
not change ATE.

ϵd

��

ϵc

��

ϵy

��

ϵx

��

c

α′

��

β′

��

x

α
��

β
��

d
δ

// y

Acϵd

��

Acϵx

��

Acϵy

��

Acx

α
|| β ""

Acd δ
// Acy

(a) (b)

Figure 72.10: LDEN bnets used to do PO confounder sensitivity analysis. Node c is
an unobserved common cause confounder. The operator Ac in bnet (b) annihilates c
(i.e., Acc = 0)

We end this section by deriving a formula for the change in ATE when an
unobserved common cause c is added to the naive triangular PO DAG. (See Fig.72.10)

Consider the LDEN bnet of Fig.72.10 (a), whose structural equations, printed
in blue, are as follows:

d = αx+ α′c+ ϵd (72.62)

y = βx+ β′c+ δd+ ϵy (72.63)

where ϵd and ϵy are root nodes with zero mean. Therefore,
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c =
1

α′ (d− ϵd − αx) (72.64)

y =

(
β − αβ′

α′

)
x+

(
δ +

β′

α′

)
(d− ϵd) + ϵy (72.65)

Yd|x,c = E[y(d)|x, c] = E[y|d, x, c] = βx+ β′c+ δd (72.66)

Yd|x = E[y(d)|x] = E[y|d, x] =
(
β − αβ′

α′

)
x+

(
δ +

β′

α′

)
d (72.67)

ATE = Ex[ATEx] = Ex[Y1|x − Y0|x] = δ +
β′

α′ (72.68)

ATE|β′=0 = δ (72.69)

ATE − ATE|β′=0 =
β′

α′ (72.70)

Note that the right hand side of Eq.(72.70) is the product of the gains along the path
d→ c→ y. The gain 1/α′ for d→ c equals the inverse of the gain α′ for c→ d.

Neither α′ nor β′ are observed, but the right hand side of Eq.(72.70) can be
bounded above by an observable quantity. This is done in Chapter 68.

72.13 (SDO,ATE) space

If we substitute yσ → yσ(dσ) and ym(σ) → yσ(1− dσ) into the estimate Eq.(72.83) for
ATE and the estimate Eq.(72.89) for SDO, we get

ÂTEx =
1

Nx

∑
σ∈Ax

(2dσ − 1)[yσ(dσ)− yσ(1− dσ)] (72.71)

=
1

Nx

∑
σ∈Ax

[yσ(1)− yσ(0)] (72.72)

and

ŜDOx =
1

N1,x

∑
σ∈Ax

dσyσ(dσ)− 1

N0,x

∑
σ∈Ax

(1− dσ)yσ(dσ) (72.73)

=
1

N1,x

∑
σ∈A1,x

yσ(1)− 1

N0,x

∑
σ∈A0,x

yσ(0) . (72.74)
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Recall that Ê = Ex[Êx] =
∑

x
Nx

N
Êx for E ∈ {ATE, SDO}.

Recall also that ACE = ATE = 0 is the null result in an RCT.
Suppose that the treatment outcome yσ has only two possible values, 0 and

1. Then, −1 ≤ ATE ≤ 1 and −1 ≤ SDO ≤ 1. But does ATE = 0 imply SDO = 0
or vice versa? Next, we answer that question and more by finding the region of
accessibility in the (SDO,ATE) plane, assuming yσ ∈ {0, 1}.
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σ dσ yσ(0) yσ(1)
1 0 1 0
2 0 1 0
3 0 1 0
4 1 1 0
5 1 1 0
6 1 1 0

(a) ATE = −1 (SDO = −1)
point A

σ dσ yσ(0) yσ(1)
1 0 0 1
2 0 0 1
3 0 0 1
4 1 0 0
5 1 0 0
6 1 0 0

(b) ATE = 1
2 (SDO = 0)

point B

σ dσ yσ(0) yσ(1)
1 0 0 1
2 0 0 1
3 0 0 1
4 1 0 1
5 1 0 1
6 1 0 1

(c) ATE = 1 (SDO = 1)
point C

Figure 72.11: Examples of PO datasets. Exploring ATE extremes.

σ dσ yσ(0) yσ(1)
1 0 1 1
2 0 1 1
3 0 1 1
4 1 0 0
5 1 0 0
6 1 0 0

(a) SDO = −1 (ATE = 0)
point D

σ dσ yσ(0) yσ(1)
1 0 1 0
2 0 1 0
3 0 1 0
4 1 1 1
5 1 1 1
6 1 1 1

(b) SDO = 0 (ATE = − 1
2 )

point E

σ dσ yσ(0) yσ(1)
1 0 0 0
2 0 0 0
3 0 0 0
4 1 1 1
5 1 1 1
6 1 1 1

(c) SDO = 1 (ATE = 0)
point F

Figure 72.12: Examples of PO datasets. Exploring SDO extremes.

Figure 72.13: Green parallelogram is accessible region in (SDO,ATE) plane, assum-
ing yσ ∈ {0, 1}. Each of the six points A, B, . . . F corresponds to one of the six tables
in Figs. 72.11 and 72.12. Segment DF corresponds to the null result in an RCT.
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72.14 Strata-Matching
For a situation described by the bnet G+ in the weak-d limit, we can match similar
individuals to fill the blank cells of Table 72.1. By “similar", we mean that they have
the same or almost the same value of xσ.

The reason the weak-d limit is required is because it implies that P (y(c)|d =
0, x) = P (y(c)|d = 1, x) for c ∈ {0, 1}, Hence, we can sample from a known factual
(c = d) distribution to fill the missing data in the unknown counterfactual (c ̸= d)
distribution.

72.14.1 Exact strata-matching

Estimates of Treatment Effects

For d ∈ {0, 1} and all strata x, define the sets of individuals Ad,x = {σ : dσ = d, xσ =
x}, Ax = A0,x ∪ A1,x and A = ∪xAx. Let Nd,x = |Ad,x|, Nx = |Ax| and N = |A|.

In an exact strata-matching, we match each individual with dσ = d, xσ = x
with exactly one individual with dσ = 1− d, xσ = x. Define a map m : A → A such
that, for each x, and for d ∈ {0, 1}, if σ ∈ Ad,x, then m(σ) ∈ A1−d,x This assumes A0,x

and A1,x are non-empty for all x. The purpose of map m() is to fill in the missing
data in the PO dataset. See Fig.72.3 for a pictorial representation of this.

yσ(0) yσ(1)

dσ = 0 yσ ym(σ)

dσ = 1 ym(σ) yσ

Table 72.3: Illustration of the purpose of the map m(). Note that yσ = yσ(dσ) and
ym(σ) = yσ(1− dσ).

Note that ∑
σ∈Ax

dσ

N1,x

=
∑
σ∈A1,x

1

N1,x

= 1 . (72.75)

Thus ∑
σ∈Ax

dσ

N1,x

yσ = Eσ|d=1,x[y
σ] = Y1|1,x (72.76)

Table 72.4 gives estimates of Yc|d,x
Recall that

Yc,d|x = Yc|d,xP (d|x) (72.77)

Hence,
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yσ(0) yσ(1)

dσ = 0 1
N0,x

∑
σ∈Ax

(1− dσ)yσ = Y0|0,x
1

N0,x

∑
σ∈Ax

(1− dσ)ym(σ) = Y1|0,x

dσ = 1 1
N1,x

∑
σ∈Ax

dσym(σ) = Y0|1,x
1

N1,x

∑
σ∈Ax

dσyσ = Y1|1,x

Table 72.4: Estimates of Yc|d,x.

yσ(0) yσ(1)

dσ = 0 1
Nx

∑
σ∈Ax

(1− dσ)yσ = Y0,0|x
1
Nx

∑
σ∈Ax

(1− dσ)ym(σ) = Y1,0|x

dσ = 1 1
Nx

∑
σ∈Ax

dσym(σ) = Y0,1|x
1
Nx

∑
σ∈Ax

dσyσ = Y1,1|x

Table 72.5: Estimates of Yc,d|x.

Yc,d|x = (Nd,xYc|d,x)
P (d|x)
Nd,x

(72.78)

= (Nd,xYc|d,x)
1

Nx

(72.79)

Table 72.5 gives estimates of Yc,d|x
The treatment effects E ∈ {ATE,ATT,ATU, SB, SDO} can be estimated

from the data via the following estimates.

ÂTEx =

Y1|x︷ ︸︸ ︷
Y1|1,xP (1|x) + Y1|0,xP (0|x)−

Y0|x︷ ︸︸ ︷
(Y0|1,xP (1|x) + Y0|0,xP (0|x)) (72.80)

=
1

Nx

[ÂTT xN1,x + ÂTUxN0,x] (72.81)

=
1

Nx

[∑
σ∈Ax

dσ[yσ − ym(σ)] +
∑
σ∈Ax

(1− dσ)[ym(σ) − yσ]

]
(72.82)

=
1

Nx

∑
σ∈Ax

(2dσ − 1)[yσ − ym(σ)] (72.83)

ÂTT x =

Y1,1|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

dσyσ−

Y0,1|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

dσym(σ) (72.84)

=
1

Nx

∑
σ∈Ax

dσ[yσ − ym(σ)] (72.85)
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ÂTUx =

Y1,0|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

(1− dσ)ym(σ)−

Y0,0|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

(1− dσ)yσ (72.86)

=
1

Nx

∑
σ∈Ax

(1− dσ)[ym(σ) − yσ] (72.87)

ŜBx =

Y0,1|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

dσym(σ)−

Y0,0|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

(1− dσ)yσ (72.88)

ŜDOx =

Y1,1|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

dσyσ−

Y0,0|x︷ ︸︸ ︷
1

Nx

∑
σ∈Ax

(1− dσ)yσ (72.89)

Suppose we do linear regression to fit a hyperplane y(x) to the dataset set
{(xσ, yσ) : σ}, and then we calculate ∂y

∂d
= δ. Out of all the treatment effects, this δ is

probably (?) closest to ACE = ATE. Note also that the linear regression method of
estimating δ does imputation (guesses missing values) by doing a linear fit. One can
also use machine learning to do a non-linear fit. In contrast, the estimates of treatment
effects presented in this section do imputation by non-linear strata-matching.

Example, estimation of treatment effects

For σ ∈ {1, 2, . . . , 10}, define

m(σ) =

{
σ + 5 if σ ≤ 5
σ − 5 if σ > 5

(72.90)

LetN(S) be the number of individuals σ that satisfy condition S. For example,
N(dσ = d) is the number of individuals such that dσ = d.

N1 = N(dσ = 1) = 5 (72.91)

N0 = N(dσ = 0) = 5 (72.92)

N = N0 +N1 = 10 (72.93)

Y1|1 =
1

N1

∑
σ

dσyσ =
4

5
(72.94)
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σ dσ yσ dσyσ (1− dσ)yσ dσym(σ) (1− dσ)ym(σ)

1 0 0 0 0 0 0

2 0 0 0 0 0 1

3 0 1 0 1 0 1

4 0 1 0 1 0 1

5 0 1 0 1 0 1

6 1 0 0 0 0 0

7 1 1 1 0 0 0

8 1 1 1 0 1 0

9 1 1 1 0 1 0

10 1 1 1 0 1 0

Table 72.6: Estimates of treatment effects are calculated for this example.

N(d, y) y = 0 y = 1
d = 0 2 3
d = 1 1 4

Table 72.7: N(dσ = d, yσ = y) for the data in Table 72.6.

Y0|0 =
1

N0

∑
σ

(1− dσ)yσ =
3

5
(72.95)

Y0|1 =
1

N1

∑
σ

dσym(σ) =
3

5
(72.96)

Y1|0 =
1

N0

∑
σ

(1− dσ)ym(σ) =
4

5
(72.97)

ATT = Y1|1 − Y0|1 =
1

5
(72.98)

ATE = ATT = ATU = SDO =
1

5
, SB = 0 (72.99)

This example is unusual in that it has a single stratum x, and for that stratum,
the treated and untreated populations are balanced (of equal size). Also, the map
m() is 1-1 onto. If, for instance, m(σ) = 6 for all σ ∈ A0 and m(σ) = 5 for σ ∈ A1,
then ATE,ATT,ATU, SDO would not all be same, and SB would not be zero.
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In fact, whenever there is a single balanced stratum and the map m() is 1-1 onto,
Eq.(72.99) can be proven to be true using the methods of section 72.8.

72.14.2 Approximate strata-matching

It is very often the case that one can’t find for a given individual σ another individual
that has opposite dσ but exactly the same value of xσ. In such cases, one can discard
all matchless individuals. But that would entail a loss of precious information. Instead
of discarding orphans, a better way is to relax our demands and match individual σ
with another individual m(σ) such that xσ and xm(σ) are very close in some metric.
Alternatively, the matching individual might not be real; it might be a composite of
individuals.

More precisely, for some arbitrary parameter ϵ > 0, and an individual σ, define
the strata-matching setMϵ(σ) by5

Mϵ(σ) = {m : dm = 1− dσ, dist(xσ, xm) ≤ ϵ} , (72.100)

where

dist(xσ, xm) = [xσ]T [Σ]−1xm , (72.101)

where Σ =
〈
xσ, [xm]T

〉
. This metric dist(xσ, xm) is called the Mahalanobis dis-

tance. We will call the case ϵ = 0 an exact strata-matching, and the case ϵ ̸= 0 an
approximate strata-matching.. To do an approximate strata-matching, replace
ym(σ) by ⟨y⟩Mϵ(σ) in the estimates given above for an exact strata-matching. ⟨y⟩Mϵ(σ)

is defined by

⟨y⟩Mϵ(σ) =
1

|Mϵ(σ)|
∑

m∈Mϵ(σ)

ym . (72.102)

72.14.3 Unbiased strata-matching estimates

The estimates we obtained via strata-matching are biased because strata-matching,
due to its non-uniqueness, introduces noise into the estimate. However, one can
define new bias-corrected estimates. Following Ref.[12], we will next find an unbiased
estimate of ATTx using the biased estimate of ATTx that we obtained by strata-
matching.

Let Ŷ|d,x be an estimate of Y|d,x = E|d,x[y] that is obtained, for example, via
Linear Regression.

Claim 123 The quantity
5One can use an ϵ that depends on σ. For example, let ϵ(σ, 5) satisfy |Mϵ(σ,5)(σ)| = 5.
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ÂTT
unbi

x =
1

Nx

∑
σ∈Ax

dσ
[
(yσ − ym(σ))− (Ŷ|0,xσ − Ŷ|0,xm(σ))

]
(72.103)

is an unbiased estimate of ATTx.

proof:
We begin by assuming a special case of SUTVA. Let

yσ = y(dσ) = Ŷ|dσ ,xσ + ϵσ (72.104)

where 〈
Ŷ|dσ ,xσ , ϵ

σ
〉
σ
= 0 (72.105)

Recall that the biased estimate of ATTx obtained by strata-matching is

ÂTT
bi

x =
1

Nx

∑
σ∈Ax

dσ(yσ − ym(σ)) (72.106)

where σ and m(σ) are matched (i.e., xσ ≈ xm(σ) and dm(σ) = 1− dσ).

ÂTT
bi

x =
1

Nx

∑
σ∈Ax

dσ
(
Ŷ|1,xσ − Ŷ|0,xm(σ)

)
(72.107)

+
1

Nx

∑
σ∈Ax

dσ(ϵσ − ϵm(σ)) (72.108)

ÂTT
bi

x =
1

Nx

∑
σ∈Ax

dσ
(
Ŷ|1,xσ − Ŷ|0,xσ

)
︸ ︷︷ ︸

ATTxunbi

(72.109)

+
1

Nx

∑
σ∈Ax

dσ
(
Ŷ|0,xσ − Ŷ|0,xm(σ)

)
︸ ︷︷ ︸

∆ATTx

(72.110)

+
1

Nx

∑
σ∈Ax

dσ(ϵσ − ϵm(σ))︸ ︷︷ ︸
Ex

(72.111)

ATTx
unbi = ÂTT

bi

x −∆ATTx︸ ︷︷ ︸
ÂTT

unbi

x

−Ex (72.112)
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By the Central Limit Theorem, for large Nx, this sum over σ ∈ Ax of i.i.d.
summands is normally distributed√

NxATT
unbi
x ∼ N (x; 0, var) (72.113)

The reason for the
√
Nx normalization is that we want the variance to be proportional

to Nx.

var = Nx

〈
ATT unbix , ATT unbix

〉
(72.114)

= Nx

〈
ÂTT

unbi

x , ÂTT
unbi

x

〉
+Nx ⟨Ex, Ex⟩ (72.115)

QED

72.15 Propensities
It is often the case that the discrete vector xσ has too many possible values to make
matching possible. In such cases, it is convenient to map the space of vectors xσ to
the real line. One very convenient choice for that map is the propensity score,
which is defined as

g(xσ) = P (dσ = 1|xσ) . (72.116)

P (dσ = 1|xσ) is easy to calculate from the dataset. g(x) = N1,x/Nx.

xσ

}}

��
[yσ(0), yσ(1)]

��
dσ

?
66

// yσ

xσ

yy ��
gσ

��

[yσ(0), yσ(1)]

��
dσ

?
55

// yσ

G+ Gps

Figure 72.14: Bnet Gps used when doing propensity scoring.

To use the propensity score, one replaces the bnet G+ by the bnet Gps as
shown in Fig.72.14. The TPMs, printed in blue, for the 2 nodes of Gps that differ
from the nodes of G+, are as follows:

P (gσ|xσ) = δ(gσ, g(xσ)) (72.117)
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P (dσ|gσ) = gσdσ + (1− gσ)(1− dσ) (72.118)

Note that these TPMs are self-consistent because

P (d|x) =
∑
g

P (d|g)P (g|x) (72.119)

= g(x)d+ [1− g(x)](1− d) (72.120)
= P (d = 1|x)d+ [1− P (d = 1|x)](1− d) (72.121)
= P (d|x) (72.122)

We would like to do propensity score strata-matching by matching g-
strata instead of x-strata. PO calculations for x- strata-matching use the TPMs for
P (d|x), P (x) and P (y|d, x). To do g- strata-matching using the same equations, but
with x replaced by g, we would need to solve for P (d|g), P (g) and P (y|d, g) in terms
of P (d|x), P (x) and P (y|d, x). We solve for those next.

From the TPMs for Gps, one has

P (d|g) = gd+ (1− g)(1− d) (72.123)

and

P (g) =
∑
x

P (g|x)︷ ︸︸ ︷
δ(g, g(x))P (x) . (72.124)

Next, note that

P (y|d, g) =
∑
x

P (y|d, x)P (x|g) (72.125)

so we need to find P (x|g). Since

P (x|g) =
P (g|x)P (x)

P (g)
(72.126)

=
δ(g, g(x))P (x)

P (g)
(72.127)

we finally get

P (y|d, g) =
∑
x

P (y|d, x)δ(g, g(x))P (x)
P (g)

. (72.128)
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Eq.(72.128) looks complicated, but all it is saying is that

P (y|d, g)P (g) =
∑

x∈g−1(g)

P (y|d, x)P (x) , (72.129)

where g−1(g) = {x : g(x) = g}. In general,∑
x

δ(g, g(x)) =
∑

x∈g−1(g)

(72.130)

Recall that for any treatment effect E ∈ {ATE,ATT,ATU, SB, SDO}, we
can estimate Ex, and then calculate E from it, using

E =
∑
x

P (x)Ex . (72.131)

Hence

E =
∑
g

∑
x

δ(g, g(x))P (x)Ex (72.132)

=
∑
g

∑
x∈g−1(g)

P (x)Ex (72.133)

Let
gd|x = gd(x) = P (d|x) (72.134)

for d ∈ {0, 1}. Note that g0|x+ g1|x = 1. We will refer to gd(x) for d ∈ {0, 1} as a two
propensities and to g1(x) as the propensity score.

Define
δy|x = P (y|d = 1, x)− P (y|d = 0, x) (72.135)

Note that

δy|x =
P (y, d = 1|x)

g1|x
− P (y, d = 0|x)

g0|x
(72.136)

=
P (y, d = 1|x)g0|x − P (y, d = 0|x)g1|x

g0|xg1|x
(72.137)

=
P (y, d = 1|x)− P (y|x)g(x)

g(x)(1− g(x))
(72.138)

Dividing each term in a sum over d ∈ {0, 1} by gd(x) is often called inverse prob-
ability (or propensity) weighting (IPW). gd(x) = P (d = d|x) is the likelihood
of strata x, so dividing each term by this likelihood increases the contribution to the
sum by less likely strata and decreases the contribution by more likely strata.
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Note that the backdoor adjustment formula can expressed as an IPW:

P (y|Dd = d) =
∑
x

P (y|d, x)P (x) (72.139)

=
∑
x

P (y, d, x)

P (d|x)
(72.140)

Note that ATE = ACE can be expressed in terms of propensities:

ACE =
∑
y

y[P (y|Dd = 1)− P (y|Dd = 0)] (72.141)

=
∑
x

P (x)
∑
y

y [P (y|d = 1, x)− P (y|d = 0, x)] (72.142)

=
∑
x

P (x)
∑
y

yδy|x︸ ︷︷ ︸
ACEx

(72.143)

Note that

P (y(c)|d) =
∑
x

P (y(c)|d, x)P (x|d) (72.144)

=
∑
x

P (y(c)|c, x)P (x|d) (by CIA) (72.145)

=
∑
x

P (y|c, x)P (x|d) (by SUTVA) (72.146)

It’s instructive to express all the other treatment effects besides ATE in terms
of propensities:

ATT =
∑
y

y[P (y(1) = y|d = 1)− P (y(0) = y|d = 1)] (72.147)

=
∑
x

P (x|d = 1)
∑
y

y [P (y|d = 1, x)− P (y|d = 0, x)] (by Eq.(72.146))

(72.148)

=
∑
x

P (x|d = 1)
∑
y

y δy|x (72.149)

=
∑
x

P (x)
1

P (d = 1)

∑
y

y g1|xδy|x︸ ︷︷ ︸
ATTx

(72.150)
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ATU =
∑
x

P (x)
1

P (d = 0)

∑
y

y g0|xδy|x︸ ︷︷ ︸
ATUx

(72.151)

SB =
∑
y

y[P (y(0) = y|d = 1)− P (y(0) = y|d = 0)] (72.152)

=
∑
y

y
∑
x

P (y|d = 0, x)[P (x|d = 1)− P (x|d = 0)] (by Eq.(72.146)) (72.153)

=
∑
x

P (x)
∑
y

y
P (y, d = 0|x)

g0|x

[
g1|x

P (d = 1)
−

g0|x
P (d = 0)

]
︸ ︷︷ ︸

SBx

(72.154)

SDO =
∑
y

y[P (y(1) = y|d = 1)− P (y(0) = y|d = 0)] (72.155)

=
∑
x

P (x)
∑
y

y

[
P (y, d = 1|x)
P (d = 1)

− P (y, d = 0|x)
P (d = 0)

]
︸ ︷︷ ︸

SDOx

(by SUTVA) (72.156)

72.16 Propensity based estimates of treatment ef-
fects

In the strata-matching section 72.14, we gave an estimate of ACEx. In strata-
matching, one fills in the missing counterfactual values via the map m(). This is
justified because, by CIA (weak-d limit), the counterfactual distributions are assumed
to equal the factual distributions (see Fig. 72.6). In this section, we give estimates
of treatment effects that are based on the formulae derived in Section 72.15. The
estimates given in this section do no require the map m(), because the identification
of counterfactual distributions with factual ones was used to derive the formulae of
Section 72.15.

Eq.(72.143) suggests the estimate

ÂCEx =
1

Nx

∑
σ∈Ax

yσ
[

dσ − g(x)
g(x)(1− g(x))

]
(72.157)

=
1

Nx

∑
σ∈Ax

[
dσyσ

g1|x
− (1− dσ)yσ

g0|x

]
(72.158)

This estimate is unbiased (because it doesn’t have a source of noise like the strata-
matching estimates do), but it is still possible to improve it. We next define another

569



ACE estimate called Doubly Robust Estimate (DRE) that is also unbiased and
has smaller variance.

Let Ŷ|d,x be an estimate of Y|d,x = Ey|d,x[y] that is obtained, for example, via
Linear Regression. Define the DRE

ÂCE
DRE

x = ŶDRE1|x − ŶDRE0|x (72.159)

where

ŶDRE1|x =
1

Nx

∑
σ∈Ax

[
dσ(yσ − Ŷ|1,x)

g1|x
+ Ŷ|1,x

]
(72.160)

and

ŶDRE0|x =
1

Nx

∑
σ∈Ax

[
(1− dσ)(yσ − Ŷ|0,x)

g0|x
+ Ŷ|0,x

]
. (72.161)

The DRE ŶDRE1|x requires first estimating 2 preparatory quantities, Ŷ|1,x and
g1|x. It’s called doubly robust because it remains unbiased even if one of the estimates
of those 2 preparatory quantities is wrong, but not if both are wrong. Let’s check
this.

• Suppose the propensity g1|x is slightly wrong. So what because

Eσ|1,x

[
dσ(yσ − Ŷ|1,x)

g1|x

]
= 0 (72.162)

• Suppose Ŷ|1,x is slightly wrong. So what because

Eσ|1,x

[
−dσŶ|1,x + g1|xŶ|1,x

g1|x

]
= 0 (72.163)

A similar argument can be used to show that ŶDRE0|x is doubly robust too.

72.17 Positivity
Positivity or non-zero overlap is defined as the requirement that for all layers x,

0 < P (dσ = 1|xσ = x)︸ ︷︷ ︸
g1|x

< 1 (72.164)
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Figure 72.15: Pictorial representation of positivity. g0|x + g1|x = 1. g0|x = 0 and
g1|x = 0 are forbidden.

or, equivalently,

P (dσ = 1|xσ = x)︸ ︷︷ ︸
g1|x

> 0 and P (dσ = 0|xσ = x)︸ ︷︷ ︸
g0|x

> 0 . (72.165)

In other words, for each layer x, there is a non-zero probability of being both treated
and untreated. See Fig.72.15 for a pictorial representation of positivity.

If positivity is violated for some layer x, then

• the propensity based estimate Eq.(72.158) for ACEx (which equals ATEx) is
undefined.

• all strata-matching estimates of Ex that use the matching function m() are
undefined because that function is undefined if A0,x = ∅ or A1,x = ∅.

If a quantity (estimand) can be estimated, it is said to be do-identifiable (i.e.,
expressible without do() operators). If positivity is violated, then ACE = ATE is
not identifiable.

When P (d|x) becomes 0 or 1 for some x, the arrow x→ d becomes determin-
istic for that x. This situation is the very antithesis of RCTs, wherein the influence
exerted by xσ on dσ is uniformly random and therefore ignorable. Hence, it is perhaps
not too surprising that a violation of positivity makes ACE = ATE not identifiable.

72.18 Multi-time PO bnets (Panel Data)
In this section, we will discuss Multi-time PO bnets (MT-PO).

A time-series is a function f : D → R whose domain D is a discrete set
of times. A time-series usually describes a single unit σ (i.e., an individual) in a
population.

An observational study (or analysis or model) can be cross-sectional
or longitudinal. A cross-sectional study collects and analyzes a cross-sectional
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dataset; i.e., a dataset for a population at a single time. A longitudinal study
or panel study collects and analyzes a longitudinal dataset; i.e., a dataset for
a population at multiple times. Thus, a longitudinal study consists of one or more
time-series.

Let T = {t0, t1, . . . , tnt−1}. For any time-series at : T → R, define

Etat =
1

nt

∑
t∈T

at (72.166)

∆tat = at − Etat (72.167)

⟨at, bt⟩t = Et∆tat∆tbt (72.168)

Consider a quantity aσt that is a function of the time t and of the particular
unit σ in a population. aσt is said to be a t-constant effect if it is t-independent.
aσt is said to be a homogeneous effect (antonym: heterogeneous effect) if it is
σ-independent. Henceforth, we will avoid using the word “effect" for these because
that word has already been used for “treatment effect" in PO theory. Instead, we will
use the word “quantity".
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Figure 72.16: Example of multi-time PO bnet with t-constant quantities xσ, uσ. The
3 nodes xσ should be identified as a single node. Likewise, the 3 nodes uσ should be
identified as a single node.

Fig.72.16 gives an example of a multi-time PO bnet (MT-PO). Note that in
this example, xσ and uσ are t-constant quantities. uσ is an unobserved confounder
and xσ is an observed confounder. For convenience and simplicity, we will assume
linear deterministic TPMs. The TPMs, printed in blue, for the bnet Fig.72.16, are
as follows:

P (xσ) = Px(x
σ) (72.169)
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P (uσ) = Pu(u
σ) (72.170)

P (yσt |dσt , xσ, uσ) = 1( yσt = δdσt + βxσ + uσ ) (72.171)

P (dσt+1|dσt , xσ, uσ) = 1( dσt+1 = αdσt + γxσ + uσ ) (72.172)

Taking time averages of the treatment decision and treatment outcome, we
get

Ety
σ

t
= δEtd

σ
t + βxσ + uσ , (72.173)

Etd
σ
t+1 = αEtd

σ
t + γxσ + uσ . (72.174)

Subtracting the time averages from the quantities being averaged, we get

∆ty
σ

t
= δ∆td

σ
t , (72.175)

∆td
σ
t+1 = α∆td

σ
t . (72.176)

This allows us to find estimates for δ and α:

Eσ

〈
yσ
t
, yσ

t

〉
t
= δEσ

〈
yσ
t
, dσt

〉
t

(72.177)

δ =
Eσ

〈
yσ
t
, yσ

t

〉
t

Eσ

〈
yσ
t
, dσt

〉
t

(72.178)

Eσ
〈
dσt+1, d

σ
t+1

〉
t
= αEσ

〈
dσt+1, d

σ
t

〉
t

(72.179)

α =
Eσ
〈
dσt+1, d

σ
t+1

〉
t

Eσ
〈
dσt+1, d

σ
t

〉
t

(72.180)

As shown in Fig.72.17, subtraction of time averages from each node removes
the confounder nodes from the bnet of Fig.72.16 (However, this assumes that the
confounders are t-constant and that the TPMs are linear deterministic, two very
strong assumptions).
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Figure 72.17: time-average-subtracted (TAS) bnet for the bnet of Fig.72.16.
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Chapter 73

Program evaluation and review
technique (PERT)

This chapter is based on Refs.[76] and [159].
PERT diagrams are used for scheduling a project consisting of a series of

interdependent activities and estimating how long it will take to finish the project.
PERT diagrams were invented by the NAVY in 1958 to manage a submarine project.
Nowadays they are taught in many business and management courses.

A PERT diagram is a Directed Acyclic Graph (DAG) with the following
properties. (See Fig.73.2 for an example of a PERT diagram). The nodes Ei for
i = 1, 2, . . . , ne of a PERT diagram are called events. The edges i → j of a PERT
diagram are called activities. An event represents the starting (kickoff) date of one
or more activities. A PERT diagram has a single root node (i = 1, start event) and
a single leaf node (i = ne, end event).

The PERT diagram user must initially provide a Duration Times (DT)
table which gives (DOi→j, DPi→j, DMi→j) for each activity i→ j, where

DOi→j= optimistic duration time of activity i→ j
DPi→j= pessimistic duration time of activity i→ j
DMi→j= median duration time of activity i→ j
From the DT table, one calculates:
Duration time of activity i→ j

Di→j =
1

6
(DOi→j +DPi→j + 4DMi→j) (73.1)

Duration Variance of activity i→ j

Vi→j =

(
DOi→j −DPi→j

DMi→j

)2

(73.2)

Often, it is convenient to define “dummy" edges with Di→j = 0. That is
perfectly fine.

Define:
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TESi = Earliest start time for event i
TLSi = Latest start time for event i
slacki = TLSi − TESi = slack for event i
TEFi→j = TESi +Di→j = Earliest finish time for activity i→ j.
TLFi→j = TLSj −Di→j = Latest finish time for activity i→ j. See footnote

below. 1

A critical path is a directed path (i.e., a chain of connected arrows, all
pointing in the same direction) going from the start to the end node, such that slack
equals zero at every node visited. In a DAG, the neighbors of a node is the union
of its parent and children nodes. A critical path must also have all other nodes as
neighbors; i.e, the union of the neighbors of every node in the path plus the nodes in
the path itself, equals all nodes in the graph.

GOAL of PERT analysis: The main goal of PERT analysis is to find, based
on the data of the DT table, the interval [TESi, TLSi] giving a lower and an upper
bound to the starting time of each node i. Another goal is to find a critical path
for the PERT diagram (which represents an entire project). By adding the Di→j of
each edge of the critical path, one can get the mean value of the total duration of the
entire project, and by adding the variances of each edge along the critical path, one
can get an estimate of the total variance of the total duration. Knowing the mean and
variance of the total duration and assuming a Normal distribution, one can predict
the probability that the actual duration will deviate by a certain amount from its
mean.

To calculate the interval [TESi, TLSi], one follows the following two steps.

1. Assume TES1 = 0 and solve

TESi = max
a∈pa(i)

(TESa +Da→i︸ ︷︷ ︸
TEFa→i

) (73.3)

for i ∈ [2, ne]. This recursive equation is solved by what is called “forward
propagation", wherein one moves up the list of nodes i in order of increasing i
starting at i = 1 with TES1 = 0.

2. Assume TLSne = TESne and solve

TLSi = min
b∈ch(i)

(TLSb −Di→b︸ ︷︷ ︸
TLFi→b

) (73.4)

1In the popular educational literature, the edge variables TEFi→j and TLFi→j are sometimes
associated with the nodes, but they are clearly edge variables. This makes things confusing. The
reason this is done is that some software draws PERT diagrams as trees whereas other software
draws them as DAGs. For trees, storing TEFi→j and TLFi→j in a node makes some sense but
not for DAGs. You will notice that giving specific names to the variables TEFi→j and TLFi→j is
unnecessary. It is possible to delete all mention of their names from this chapter without losing any
details. I only declare their names in this chapter so as tell the reader what they are in case he/she
hears them mentioned and wonders what they are equal to in our notation.
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for i ∈ [1, ne− 1]. This recursive equation is solved by what is called “backward
propagation", wherein one moves down the list of nodes i in order of decreasing
i starting at i = ne with TLSne = TESne. TESne is known from step 1.

Eqs.(73.3) and (73.4) are illustrated in Fig.73.1.

Figure 73.1: TESi defined from info received from parents of i and TLSi defined from
info received from children of i.

73.1 Example
To illustrate PERT analysis, we end with an example. We present the example in the
form of an exercise question and then provide the answer. This example comes from
Ref.[76], except for part (e) about bnets, which is our own.

Question: For the PERT diagram of Fig.73.2, calculate the following:

(a) Interval [TESi, TLSi] for all i.

(b) A critical path for this PERT diagram.

(c) The mean and variance of the total duration of the critical path.

(d) The probability that the total duration will be 225 days or less.

(e) A bnet interpretation of this problem.

Answer to (a) [TESi, TLSi] are given by Fig.73.3.

Answer to (b) The critical path is given in red in Fig.73.3. Note that this path does
indeed have zero slack at each node it visits and the union of its neighborhood
and the path itself encompasses all nodes.

Answer to (c) The mean and variance of the total duration are calculated in Table
73.1.

Answer to (d)

P (x < 225) = P

[
x− µ
σ
≤ 225− 220√

7.73

]
(73.5)

= P [z ≤ 1.80] (73.6)
= 0.9641 (73.7)
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Figure 73.2: Example of a PERT diagram. The numbers attached to the arrows are
the duration times Di→j in days followed by, enclosed in parentheses, the variance
Vi→j of that duration. The info given in this PERT diagram was derived from a DT
table in Ref.[76]. The info in this PERT diagram is sufficient for calculating TESi
and TLSi for each node i. The results of that calculation are given in Fig.73.3.
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Figure 73.3: Results of calculating TESi for all i via a forward pass, followed by
calculating TLSi for all i via a backward pass. Critical path indicated in red.

Answer to (e) Define 2 bnets.

1. The first PERT bnet is for calculating TESi for all i and is given by
Fig.73.4.

578



edge
i→ j

duration
Di→j

variance
Vi→j

A (1→ 2) 50 2.56
D (2→ 5) 60 0.44
G (5→ 7) 30 1.78
J (7→ 8) 40 1.31
K (8→ 9) 10 0.64
L (9→ 10) 30 1.00
Total 220 7.73

Table 73.1: Calculation of mean and variance of total duration along critical path.

TES3
// TES6

**
TES1

// TES2

::

$$

// TES4
// TES7

$$

TES9
// TES10

TES5

::

// TES8

::

Figure 73.4: bnet for TESi calculation.

The TPMs, printed in blue, for the bnet Fig.73.4, are as follows (this
equation is to be evaluated recursively by a forward pass through the bnet):

P (TESi|(TESa)a∈pa(i)) = δ(TESi, max
a∈pa(i)

(TESa +Da→i)) (73.8)

2. The second PERT bnet is for calculating TLSi for all i and is given by
Fig.73.5. Note that the directions of all the arrows in the PERT diagram
Fig.73.2 have been reversed so Fig.73.5 is a time reversed graph.
The TPMs, printed in blue, for the bnet Fig.73.5, are as follows (this
equation is to be evaluate recursively by a backward pass through the
bnet):

P (TLSi|(TLSb)b∈pa(i)) = δ(TLSi, min
b∈pa(i)

(TLSb −DT
b→i)) , (73.9)

where DT
i→j = Dj→i.
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Figure 73.5: bnet for TLSi calculation.
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Chapter 74

Random Forest and Bagging

This chapter is based on Refs.[109] and [160].
Chapter 16 defines decision trees (dtrees) and explains how to construct them.

A Random Forest (RF) is an ensemble of dtrees. The RF algorithm is a method of,
given a dataset, constructing a RF and averaging over the classifier functions of the
RF to produce an ensemble classifier.

The RF algo uses the method of Bootstrap Aggregating (a.k.a. Bagging),
which is discussed in detail below. Bagging is a method of constructing an ensemble
of datasets (called bootstrap datasets or bags) that are fairly uncorrelated. Each
of these bags is used to train a bag-classifier. The bag-classifiers are averaged over
to produce an ensemble classifier, or e-classifier for short. Bagging can be used
to train any type of bag-classifier, but it was invented with dtrees in mind, and is still
most commonly used to train dtrees.

Boosting (see Chapter 1 on AdaBoost and Chapter 104 on XGBoost) is an-
other method, besides Bagging, of constructing a classifier function from an ensemble
of classifier functions. These two methods are most commonly applied to dtrees:
Boosting for an ensemble of small dtrees, and Bagging for a random forest (which is
an ensemble of dtrees that are usually much more complicated than small dtrees).

74.1 Bagging (with fully-featured bags)
In this section we discuss the bagging algorithm. As already mentioned, bagging is
usually used to train dtrees. In this section, we explain bagging in general, not just
for dtrees.

Let L = [0, 1, 2, . . . , nsam−1] be a list of individuals (samples) in a population.
In this chapter, we will use the notation Aσ = A[σ] and A⃗ = [Aσ : σ ∈ L] for a list
(vector, 1-D array) indexed by L. We will refer to DS = (x⃗, y⃗) where xσ ∈ Sx,
yσ ∈ Sy, as a dataset. If Lj is a list (possibly with duplicate items) such that
set(Lj) ⊂ set(L), then define DSj = (x⃗, y⃗)Lj

= ((xσ)σ∈Lj
, (yσ)σ∈Lj

). We will refer to
DSj as the restriction of (x⃗, y⃗) to Lj.
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Figure 74.1: Bnet for Random Forest (RF) with 5 bags.

We will refer to a function Y : Sx → Sc as a classifier. It maps vector of vector
of features x ∈ Sx to a class c ∈ Sc. Below, Yb for all b and Yens are classifiers.

Fig.74.1 is a bnet that encapsulates the RF algo. The TPMs, printed in blue,
for the bnet Fig.74.1, are as follows.

Let b ∈ {0, 1, 2, . . . , nbags− 1} = B and σ ∈ L. Let Lσb ∈ L and

P (Lσb ) = 1/nsam (74.1)

In other words, each item in list Lb is chosen from the items of list L, uniformly at
random with replacements. |Lb| = |L| (same size as original). Lb can have duplicate
items and be missing items from L.

P ((x⃗, y⃗)Lb
|(x⃗, y⃗), Lb) = 1( (x⃗, y⃗)Lb

= restriction of (x⃗, y⃗) to Lb ) (74.2)

We will refer to (x⃗, y⃗) as the original dataset and to the (x⃗, y⃗)Lb
for b ∈ B as the

bootstrap datasets or bags.

P (Yb|(x⃗, y⃗)Lb
) = 1( Yb(·) = classifier trained on dataset (x⃗, y⃗)Lb

. ) (74.3)

P (Yens|(Yb)b∈B) =
∏
σ

1( Yens(x
σ) = majority({Yb(xσ) : b ∈ B}) ) (74.4)

The majority() function can be replaced by an average 1
nbags

∑
b in case the set of

classes Sc equals R rather than a finite set. We will refer to Yens as the ensemble
classifier (e-classifier) and to the Yb as the bag-classifiers.
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Figure 74.2: Σ(b) and Σc(b) are disjoint sets whose union is Σ. B(σ) and Bc(σ) are
disjoint sets whose union is B.

Define (these definitions are illustrated in Fig.74.2)

Σ = set(L) , Σ(b) = set(Lb) , Σc(b) = Σ− Σ(b) (74.5)

and

B(σ) = {b ∈ B : σ ∈ Σ(b)} , Bc(σ) = B −B(σ) (74.6)

Σ(b) is the set of in-the-b-bag individuals and Σc(b) is the set of out-of-the-b-bag
(OOB) individuals. B(σ) is the set of bags that contain individual σ, and Bc(σ)
is the set of bags that don’t.

The OOB error is defined as

err =
∑
σ∈L

1(Bc(σ) ̸= ∅)1( yσ ̸= majority([Yb(x
σ) : b ∈ Bc(σ)]) ) . (74.7)

Empirical results supposedly show that OOB error is comparable in accuracy to the
error calculated by doing cross-validation (CV) (see Chapter 13), although CV error
is considered more dependable.

74.2 Bagging (with randomly-shortened bags)
Suppose the feature vector xσ in the dataset DS = (x⃗, y⃗) has nf components; i.e.,
xσ = (xσ0 , x

σ
1 , . . . , x

σ
nf−1) ∈ Sx0 × Sx1 × . . .× Sxnf−1

= Sx.
For each bag DSb, one chooses at random nf ′ =

√
nf out of the nf features,

and discards the remaining features from DSb, thus producing a new, randomly-
shortened-bag (rs-bag) DS ′

b. Each rs-bag is then used to train a bag-classifier,
usually a dtree, using the methods for dtree SL described in Chapter 16. Using rs-
bags is called the random subspace method. The reason for using rs-bags is that
they further decorrelate the set of bags used to train bag-classifiers.
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Chapter 75

Recurrent Neural Networks

This chapter is mostly based on Ref.[47].
This chapter assumes you are familiar with the material and notation of Chap-

ter 64 on plain Neural Nets.

x(·)

�� ## ))
x(0)

��

x(1)

��

x(2)

��
h(0)

��

// h(1)

��

// h(2)

��
Y (0) Y (1) Y (2)

Figure 75.1: Simple example of RNN with T = 3

Suppose
T is a positive integer.
t = 0, 1, . . . , T − 1,
xi(t) ∈ R for i = 0, 1, . . . , nx− 1,
hi(t) ∈ R for i = 0, 1, . . . , nh− 1,
Y i(t) ∈ R for i = 0, 1, . . . , ny − 1,
W h|x ∈ Rnh×nx,
W h|h ∈ Rnh×nh,
W y|h ∈ Rny×nh,
by ∈ Rny,
bh ∈ Rnh.
Henceforth, x(·) will mean the array of x(t) for all t.
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The simplest kind of recurrent neural network (RNN) has the bnet Fig.75.1
with arbitrary T . The node TPMs, printed in blue, for this bnet, are as follows.

P (x(·)) = given (75.1)

P (x(t)) = δ(x(t), [x(·)]t) (75.2)

P (h(t) | h(t− 1), x(t)) = δ(h(t),A(W h|xx(t) +W h|hh(t− 1) + bh)) , (75.3)

where h(−1) = 0.

P (Y (t) | h(t)) = δ(Y (t),A(W y|hh(t) + by)) (75.4)

Define

W h = [W h|x,W h|h, bh] , (75.5)

and

W y = [W y|h, by] . (75.6)

The bnet of Fig.75.1 can be used for classification once its parameters W h and
W y have been optimized. To optimize those parameters via gradient descent, one can
use the bnet of Fig.75.2.

Let σ = 0, 1, . . . , nsam(x⃗)− 1 be the labels for a batch of samples. Below, we
will write Aσ = A[σ] for the σ component of any vector A⃗. The TPMs, printed in
blue, for bnet Fig.75.2, are as follows.

P (x(·)σ) = given (75.7)

P (x(t)σ) = δ(x(t)σ, [x(·)]σt ) (75.8)

P (h(t)σ | h(t− 1)σ, x(t)σ) = δ(h(t)σ,A(W h|xx(t)σ +W h|hh(t− 1)σ + bh)) (75.9)

P (Y (t)σ | h(t− 1)σ) = δ(Y (t)σ,A(W y|hh(t− 1)σ + by)) (75.10)
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Figure 75.2: RNN bnet used to optimize parameters W h and W y of RNN bnet
Fig.75.1.

P (y(·)σ | x(·)σ) = given (75.11)

P (E(t) | y⃗(t), Y⃗ (t)) =
1

nsam(x⃗)

∑
σ

d(y(t)σ, Y (t)σ) , (75.12)

where

d(y, Y ) = |y − Y |2 . (75.13)
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If y, Y ∈ [0, 1], one can use this instead

d(y, Y ) = XE(y → Y ) = −y lnY − (1− y) ln(1− Y ) . (75.14)

P (E | E(·)) = δ(E ,
∑
t

E(t)) (75.15)

For a = h, y,
P (W a) = given . (75.16)

The first time it is used, W a is arbitrary. Afterwards, it is determined by previous
horizontal stage.

P ((W a)′|E ,W a) = δ((W a)′,W a − ηa∂WaE) . (75.17)

ηa > 0 is the learning rate for W a.

75.1 Language Sequence Modeling
Estimate P (x(·)) empirically. We can use this to:

• predict the probability of a sentence,

example: Get P (x(0), x(1), x(2)).

• predict the most likely next word in a sentence,

example: Get P (x(2)|x(0), x(1)).

• generate fake sentences.

example:

Get x(0) ∼ P (x(0)).

Next get x(1) ∼ P (x(1)|x(0)).
Next get x(2) ∼ P (x(2)|x(0), x(1)).

75.2 Other types of RNN
Let T = {0, 1, . . . , T − 1}, and T x, T y ⊂ T . Above, we assumed that x(t) and Y (t)
were both defined for all t ∈ T . More generally, they might be defined only for subsets
of T : x(t) for t ∈ T x and Y (t) for t ∈ T y. If |T x| = 1 and |T y| > 1, we say the RNN
bnet is of the 1 to many kind. In general, can have 1 to 1, 1 to many, many to 1,
many to many RNN bnets.

Plain RNNs can suffer from the vanishing or exploding gradients prob-
lem. There are various ways to mitigate this (e.g., good choice of initial W h and
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Figure 75.3: RNN bnet of the many to many kind. This one can be used for trans-
lation. x(0) and x(1) might denote two words of an English sentence, and Y (2) and
Y (3) might be their Italian translation.

W y, good choice of activation functions, regularization). Or by using GRU or LSTM
(discussed below). GRU and LSTM were designed to mitigate the vanishing or
exploding gradients problem. They are very popular in NLP (Natural Language
Processing).
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75.2.1 Long Short Term Memory (LSTM) unit (1997)

This section is based on Wikipedia article Ref.[147]. In this section, ⊙ will denote
the Hadamard matrix product (elementwise product).
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||
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c̃(t)

��
c(t− 1) // c(t)

��
h(t− 1)

II

GG

CC ;;

h(t)

��
Y (t)

Figure 75.4: bnet for a Long Short Term Memory (LSTM) unit.

Let
x(t) ∈ Rnx: input state vector to the LSTM unit
f(t) ∈ Rnh: forget activation vector
i(t) ∈ Rnh: input activation vector
o(t) ∈ Rnh: output activation vector
h(t) ∈ Rnh: hidden state vector
c̃(t) ∈ Rnh: cell activation vector
c(t) ∈ Rnh: cell state vector
Y (t) ∈ Rny: classification of x(t).
W ∈ Rnh×nx, U ∈ Rnh×nh and b ∈ Rnh: weight matrices and bias vectors,

parameters learned by training.
Wy|h ∈ Rny×nh: weight matrix
Fig.75.4 is a bnet for a LSTM unit. The TPMs, printed in blue, for this bnet,

are as follows.
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P (f(t)|x(t), h(t− 1)) = 1( f(t) = smoid(W f |xx(t) + U f |hh(t− 1) + bf ) ) ,
(75.18)

where h(−1) = 0.

P (i(t)|x(t), h(t− 1)) = 1( i(t) = smoid(W i|xx(t) + U i|hh(t− 1) + bi) ) (75.19)

P (o(t)|x(t), h(t− 1)) = 1( o(t) = smoid(W o|xx(t) + U o|hh(t− 1) + bo) ) (75.20)

P (c̃(t)|x(t), h(t− 1)) = 1( c̃(t) = tanh(W c|xx(t) + U c|hh(t− 1) + bc) ) (75.21)

P (c(t)|f(t), c(t− 1), i(t), c̃(t)) = 1( c(t) = f(t)⊙ c(t− 1) + i(t)⊙ c̃(t) ) (75.22)

P (h(t)|o(t), c(t)) = 1( h(t) = o(t)⊙ tanh(c(t)) ) (75.23)

P (Y (t)|h(t)) = 1( Y (t) = A(Wy|hh(t) + by) ) (75.24)
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75.2.2 Gated Recurrence Unit (GRU) (2014)

This section is based on Wikipedia article Ref.[128]. In this section, ⊙ will denote
the Hadamard matrix product (elementwise product).

GRU is a more recent (17 years later) attempt at simplifying LSTM.
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DD

h(t)

��
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Figure 75.5: bnet for a Gated Recurrent Unit (GRU).

Let
x(t) ∈ Rnx: input state vector
h(t) ∈ Rnh: hidden state vector
ĥ(t) ∈ Rnh: hidden activation vector
z(t) ∈ Rnh: update activation vector
r(t) ∈ Rnh: reset activation vector
Y (t) ∈ Rny: classification of x(t).
W ∈ Rnh×nx, U ∈ Rnh×nh and b ∈ Rnh: weight matrices and bias vectors,

parameters learned by training.
Wy|h ∈ Rny×nh: weight matrix
Fig.75.5 is a bnet for a GRU. The TPMs, printed in blue, for this bnet, are as

follows.

P (z(t)|x(t), h(t− 1)) = 1( z(t) = smoid(W z|xx(t) + U z|hh(t− 1) + bz) ) , (75.25)

where h(−1) = 0.

P (r(t)|x(t), h(t− 1)) = 1( r(t) = smoid(W r|xx(t) + U r|hh(t− 1) + br) ) (75.26)

P (ĥ(t)|x(t), r(t), h(t− 1)) = 1( ĥ(t) = tanh(W h|xx(t) + Uh|h(r(t)⊙ h(t− 1)) + bh) )
(75.27)
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P (h(t)|z(t), h(t− 1), ĥ(t)) = 1( h(t) = (1− z(t))⊙ h(t− 1) + z(t)⊙ ĥ(t) )
(75.28)

P (Y (t)|h(t)) = 1( Y (t) = A(Wy|hh(t) + by) ) (75.29)
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Chapter 76

Regression Discontinuity Design

This chapter is based on Ref.[12].
This chapter assumes that the reader has read Chapter 72 on Potential Out-

comes (PO).
In Regression Discontinuity Design (RDD), one switches the treatment dose d

from 0 when x < ξ to 1 where x > ξ, where x is an observed confounder (call it the
switch confounder) and ξ is a threshold value for x. One measures the jump δ in the
treatment outcome y as x passes through x = ξ. Then one makes the very reasonable
assumption that δ equals1 Y1|x=ξ −Y0|x=ξ = ATE|x=ξ for an imaginary experiment in
which the confounder x acts as a normal confounder that doesn’t switch the treatment
dose d.

For example, dσ might be whether an individual is admitted to Harvard Univ.,
yσ might be how much money the individual earns for the first 20 years after graduat-
ing from Harvard, and xσ might be his SAT scores. We assume Harvard only admits
students with an SAT score higher than ξ.

76.1 PO analysis
The TPMs, printed in blue, for the bnet Gdisc shown in Fig.76.1, are as follows. Note
that the TPMs for the bnet Gdisc are defined in terms of the TPMs for the bnet G.

P (xσ) = δ(xσ, x) (76.1)

P (dσ|xσ = x) =

{
δ(dσ, 1) for x > ξ
δ(dσ, 0) for x < ξ

(76.2)

P (yσ|yσ(0), yσ(1), dσ) = 1(yσ = yσ(dσ)) (76.3)
1ATE, which stands for “average treatment effect", is defined in Chapter 72.
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Figure 76.1: 2 bnets used in the PO analysis of RDD. The TPMs for Gdisc are defined
in terms of the TPMs for G. The TPM P (dσ|xσ) for Gdisc is discontinuous in xσ.

P (yσ(c)|x) = P (yσ(c)|dσ, x) = given (76.4)

Define

Eσ|x[y
σ(c)] = Ey(c)|x[y(c)] = Yc|x (76.5)

and

ξ± = ξ ± ϵ (76.6)

for some infinitesimal ϵ > 0.
See Fig.76.2. In RDD, we assume that if we define the following 2 δ’s, one

for bnet G and the other for bnet Gdisc, then the two δ’s are equal, and they equal a
conditional ATE.

δGdisc
= Y1|x=ξ+ − Y0|x=ξ− (76.7)

δG = Y1|x=ξ − Y0|x=ξ (76.8)

δG = δGdisc
= δ (76.9)

δ = ATE|x=ξ (76.10)
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Figure 76.2: The jump δ between Y1|x and Y0|x is the same for G and Gdisc.

76.2 Linear Regression
In this section, we show how to apply linear regression (LR) to the PO analysis of
RDD.

yσ can be fitted as a function of x ∈ R, for cσ ∈ {0, 1}, as follows. Here ϵσ is
the residual for individual σ and b0,m0, b1,m1 ∈ R are the fit parameters.

yσ = [b0 +m0(x− ξ)](1− cσ) + [b1 +m1(x− ξ)]cσ + ϵσ . (76.11)

Note that Eq.(76.11) yields a straight line in the yσ − x plane for cσ = 0, and
another straight line for cσ = 1. These 2 lines are colored magenta in Fig.76.2. We
are using the standard symbols b to denote the y-intercept, and m to denote the slope
of a straight line.

Taking the expected value of Eq.(76.11), we get

Yc|x = [b0 +m0(x− ξ)](1− c) + [b1 +m1(x− ξ)]c . (76.12)

Hence,

Y1|x=ξ+ = b1 , Y0|x=ξ− = b0 (76.13)

δ = b1 − b0 (76.14)
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Chapter 77

Regularization of Loss Functions

The topic of this chapter is Regularization of Loss functions (ROLF).
ROLF is the practice of adding a convex function R : Rn → R (called the

regulator function1) to a convex function L : Rn → R (called the loss function2),
when one wishes to minimize the loss function. In Machine Learning, the variable
being minimized over is often the weights of a Neural Net, so we will denote it by
w ∈ Rn, and use w∗ ∈ Rn to represent the minimum of L+(w) = L(w) +R(w).

In some cases (like in Lp norm ROLF, which we discuss below), the minimum
of L+(w) and that of L(w) are not the same but very close. In such cases, displacing
the minimum of L(w) might be done in order to avoid overfitting, or to spread out
degenerate solutions, or to produce sparse solutions.

In other cases (like in proximal ROLF, which we discuss below), the minimum
of L+(w) and that of L(w) are the same. In such cases, ROLF might be done
to improve the convergence properties of a sequence of points {wk}∞k=0 such that
wk → w∗ as k →∞.

There are many methods of biasing the minimum of a convex function that
don’t involve adding a regulator function. For example, Early Stopping of training and
Cross Validation for Neural Nets, or adding Latent Variables to a Bayesian Network.
Or Constraint Optimization where hard equality and/or inequality constraints are
imposed (as in Linear Programming, Lagrange multipliers, Khun-Tucker conditions,
method of simple substitution of constraints). We won’t discuss those types of ROLFs
in this chapter3, except for a brief section on latent nodes at the end.

Loss functions commonly used in Statistics and Machine Learning (ML) are
of the form

1This function is also commonly called a penalty function. It can also be thought of, from a
Bayesian perspective, as the log of a prior probability, and the loss function can be thought of as a
log likelihood function.

2This function is also commonly called the cost or error function.
3ROLF that adds a regulator function (resp., doesn’t add) is sometimes called Explicit (resp.,

Implicit) regularization.
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L(w) =
nsam∑
σ=1

L̂(ŷσ(xσ, w), yσ) (77.1)

where the sum is over nsam samples. A common, more specific type of L(w) is the
mean square error which is given by

L(w) = 1

nsam

nsam∑
σ=1

∥ ŷσ(xσ, w)− yσ) ∥2 (77.2)

This loss function is convex, so it has a minimum:{
w∗ = argmin

w
L(w)

Loss = minw L(w) = L(w∗)
(77.3)

In ROLF, we add a regulator R(w) to L(w):

L+(w) = L(w) +R(w) (77.4)

77.1 Lp norm ROLF
See C.6 for the definition of Lp norms. Let

L+(w) = L(w) +R(w) (77.5)

Then, for λ, λ1, λ2 > 0,

• L1 norm ROLF (called LASSO or Basis Pursuit)

R(w) = λ ∥ w ∥1 (77.6)

• L2 norm ROLF (called Ridge or Tikhonov Regression) (note that the L2 norm
is squared)

R(w) = λ ∥ w ∥22 (77.7)

• L1 + L2 norm ROLF (called Elastic Net)

R(w) = λ1 ∥ w ∥1 +λ2 ∥ w ∥22 (77.8)

77.1.1 L1 norm ROLF can lead to sparsity

The obvious way to induce sparsity in the minimum w∗ is to use the L0 norm of w
as regulator. However, calculating ∥ w ∥0 is hard (NP-hard, in fact). In this section,
we will show that using the L1 norm of w as regulator can also induce sparsity (not
as well as the L0 norm, but still significant.)
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Figure 77.1: Pictorial explanation of why L1 norm ROLF can lead to sparsity and
L2 norm ROLF can help avert it. Sometimes you want sparsity and sometimes you
don’t. c in this figure is some fixed constant.

Assume L(w) is linear in w.4 For example,

L(w) = Xw − y (77.9)

where w ∈ Rn, X ∈ Rnsam×n, and y ∈ Rnsam. nsam is often the number of samples.
That’s why we name it that way. The set A = {w : Xw− y = c} for some fixed con-
stant c might be empty, or contain a single point or a line or a plane, or a hyperplane.
Let dof = n−nsam be the degrees of freedom in w. Barring some exceptional cases,
if dof ≤ 0, we expect A to be empty. If dof = 1, we expect A to trace out a line, if
dof = 2, we expect A to trace out a plane, and so forth.

In Fig.77.1, we imagine what would happen if w ∈ R2, X ∈ R1×2 and y ∈ R so
A traces a line, represented in green. In Fig.77.1 (a), we imagine that R(w) =∥ w ∥1
and in Fig.77.1 (b), that R(w) =∥ w ∥22. For points w such that R(w) has a well
defined gradient, minimization of

L+(w) = L(w) +R(w) (77.10)

requires that the w-gradients of L and R be equal in magnitude but opposite in
direction.

∇wL = −∇wR (77.11)

But when R(w) is the L1 norm, ∇wR is not defined along the w1 and w2 axes. To
avoid this, we can approximate the diamond contour ∥ w ∥1= c by rounding out its
corners by an infinitesimal amount. If the green line had slope of −1, there would
be a diamond contour ∥ w ∥1= c that would coincide with the green line along the

4What we say here about sparsity also applies in some cases when L(w) is not linear in w. For
example, it applies sometimes when L(w) is quadratic in w as occurs in Least Squares.
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segment connecting points (0, c) and (c, 0). However, this is an exceptional case.
Usually, the slope of the green line is not ±1. In that case, the only way for L and
R to have opposite gradients is if the diamond contour and the green line kiss at one
of the (rounded) corners of the diamond contour. Call that kissing point w∗. Note
from Fig.77.1 (a) that that kissing point w∗ = (0, c) would be sparse. In going from
the Fig.77.1 (a) to Fig.77.1 (b), we have replaced the diamond contour ∥ w ∥1= c by
a circular contour ∥ w ∥2= c, but we have kept the same green line. Note that with
the circular contour, the kissing point w∗ is no longer sparse; both of its components
are non-zero.

The moral of Fig.77.1 is that L1 norm ROLF can lead to sparsity and L2 norm
ROLF can help avert it. Sometimes we want the vector of weights w to be sparse so
as to give a succinct description. At other times, we want solutions in set A to be
spread out over many dimensions instead of being sparse and clumped together in a
small number of dimensions.

77.1.2 L2 norm ROLF for Least Squares

As in Section C.28 on Linear Regression, suppose w ∈ Rn, X ∈ Rnsam×n, and y ∈
Rnsam. Let

L+(w) = L(w) +R(w) (77.12)

where

L(w) = 1

n
(Xw − y)T (Xw − y) (77.13)

and

R(w) = λ ∥ w ∥22 . (77.14)

If we vary the vector w by an infinitesimal amount δwT , we get

0 = δL+(w) = δwT
[
2XT

n
(Xw − y) + 2λw

]
(77.15)

Hence

XT (Xw − y) + λnw = 0 (77.16)

(XTX + λn)w = XTy (77.17)

w = (XTX + λnI)−1XTy (77.18)

=
1

λn
(I +

XTX

λn
)−1XTy (77.19)
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Note that for λ = 0, the minimum w∗ of L+(w) is

w∗ = (XTX)−1XTy (valid for λ = 0) (77.20)

When λ >> 1, we can express w∗ as a Taylor expansion in w. Recall that if |ϵ| < 1,

1

1− ϵ
= 1 + ϵ+ ϵ2 + . . . (77.21)

Define n0 = 1/λ, and assume that n0

n
|XTX| < 1. Then

w∗ =
n0

n

∞∑
i=0

(− n0X
TX

n
)iXTy (77.22)

= −
∞∑
i=0

(
− n0X

TX

n

)i+1

(XTX)−1XTy (valid for λ =
1

n0

>> 1)(77.23)

Truncating this series is itself a kind of regularization.

77.2 Proximal functions
For v ∈ Rn, w ∈W ⊂ Rn and α > 0, we define the proximal function wprox : Rn →
W by

wprox(v;αL,W) = argmin
w∈W

L(w) + 1

2α
∥ w − v ∥2︸ ︷︷ ︸
R(w,v)


︸ ︷︷ ︸

L+(w,v)

(77.24)

wprox(v) can be viewed as a projection of v ∈ Rn onto w in the subspace W ⊂ Rn.
Henceforth we assume W = Rn, so the projected vector v and its projection w are in
the same vector space Rn.

See Fig.77.2 for a numerical example of a proximal function wprox : R→ R.
Next, we will discuss an analytical rather a numerical example of proximal

functions. We begin by defining the shrinking function5 sh0 : R→ R and its inverse
sh−1

0 : R→ R for any α > 0:

sh0(v;α) = (v − α)1(v > α) + (v + α)1(v < −α) (77.25)
5We call it a shrinking function because it shrinks a neighborhood-of-zero to zero. Another

common name for this function is a soft-threshold function, because it makes the transition from
negative to positive y axis values occur over the interval of x ∈ [−α, α] instead of x ∈ [0, 0].
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Figure 77.2: Example of a proximal function. x-axis is w and v = 5. Green curve:
L(w) = |w|. Red curve: R(w, 5) = 1

2
(w−5)2, Blue curve: L+(w, 5) = L(w)+R(w, 5).

Note that we are adding 2 convex functions so the minimum of the sum is somewhere
in between the minima of the two summands. wprox(5) = argmin

w
L+(w, 5) = 4.

sh−1
0 (w;α) = (w + α)1(w > 0) + (w − α)1(w < 0) (77.26)

Fig.77.3 shows a plot of sh0 and sh−1
0 .

Figure 77.3: Plot of the functions sh0(w;α) and sh−1
0 (w;α).

Claim 124 For W = R and w, v ∈ R, if

L(w) = |w| , (77.27)

then
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wprox(v) = sh0(v;α) (77.28)

and

L+(wprox(v), v) = |sh0(v;α)|+
α

2
(77.29)

proof:

0 =
dL+

dw
= α[1(w > 0)− 1(w < 0)] + (w − v) (77.30)

So

v = w + α[1(w > 0)− 1(w < 0)] (77.31)
= (w + α)1(w > 0) + (w − α)1(w < 0) (77.32)
= sh−1

0 (w;α) (77.33)

Hence

wprox(v;α) = sh0(v;α) (77.34)

Note that

|w − v| = |α| (77.35)

so

L+(wprox(v), v) = |wprox(v;α)|+ α

2
(77.36)

= |sh0(v;α)|+
α

2
(77.37)

QED

77.3 Proximal ROLF
Proximal functions can be used to do ROLF as follows. For w, v ∈ Rn and α > 0, let

R(w, v) = 1

2α
∥ w − v ∥22 (77.38)

and6

L+(w) = L(w) +R(w,w∗) , (77.39)
6Note that L here could be the mean square error plus an Lp norm. A loss function plus a

regulator function gives a new loss function to which a new regulator may be added.
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where w∗ is the w-minimum of both L(w) and R(w,w∗):

w∗ = argmin
w
L(w) = argmin

w
R(w,w∗) (77.40)

Hence,

w∗ = argmin
w

[L(w) +R(w,w∗)] . (77.41)

Now assume the sequence of points {wk}∞k=0 satisfies wk → w∗ as k →∞. Then

wk+1 = argmin
w

(
L(w) + 1

2α
∥ w − wk ∥22

)
︸ ︷︷ ︸

wprox(wk)

(77.42)

If we differentiate the argument of argmin() to find its minimum, we find

0 = α∇wL(wk+1)︸ ︷︷ ︸
≈∇wL(wk)

+wk+1 − wk (77.43)

Thus, the following 3 recursion relations7 can be used to calculate wk:

wk+1 = wk − α∇wL(wk)
−α∇wL(wk)

��
wk+1

//

wk

77 (77.44a)

wk+1 = wprox(wk) (77.44b)

wk+1 = wprox(wk − α∇wL(wk)) (77.44c)

Eq.(77.44a) is the familiar recursion relation for gradient descent (See Chap-
ter 35). Eq.(77.44c) combines gradient descent and a proximal projection, so it is
expected to converge faster than simple gradient descent.

77.4 Unobserved Nodes of a bnet
Nodes of a bnet for which the CPT is unknown are called unobseved nodes. In this
book, Unobserved (a.k.a. hidden, latent) nodes are indicated in a bnet by enclosing
their label in a dashed circle. For example, u . Alternatively, they are indicated by
using dashed arrows for all arrows emanating from the unobserved node.

Unobserved nodes (UN) represent what are called latent random vari-
ables in Statistics.

7Some people use a sequence αk ∈ R+ instead of the constant α > 0. This is called an adaptive
step size and can yield faster convergence rates.
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UN make an appearance in many places throughout this book. For example,
they are essential to the methods of Kalman Filtering (see Chapter 44) and Hidden
Markov Model (see Chapter 37).

This being a book about bnets and a chapter about ROLF, we would like to
stress that UN can be viewed as a very natural and powerful way of doing (implicit)
ROLF when using bnets.
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Chapter 78

Reinforcement Learning (RL)

Figure 78.1: Axes for episode time and episode number.

I based this chapter on the following references. Refs.[18][37]
In RL, we consider an “agent" or robot that is learning.
Let T ∈ Z>0 be the duration time of an episode of learning. If T =∞, we say

that the episode has an infinite time horizon. A learning episode will evolve towards
the right, for times t = 0, 1, . . . , T − 1. We will consider multiple learning episodes.
The episode number will evolve from top to bottom. This is illustrated in Fig.78.1.

Let st ∈ Ss for t ∈ Z[0,T−1] be random variables that record the state of the
agent at various times t.

Let at ∈ Sa for t ∈ Z[0,T−1] be random variables that record the action of the
agent at various times t.
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Figure 78.2: State-Action-Reward dynamical bnet

Let θt ∈ Sθ for t ∈ Z[0,T−1] be random variables that record the policy pa-
rameters at various times t.

For X ∈ {s, a, θ}, define X followed by a dot to be the vector

X. = [X0, X1, . . . , XT−1] . (78.1)

Also let
X≥t = [X t, X t+1, . . . , XT−1] . (78.2)

Fig.78.2 shows the basic State-Action-Reward bnet for an agent that is learn-
ing. The TPMs, printed in blue, for the bnet Fig.78.2, are as follows.

P (at|st, θt) = given. (78.3)

P (at|st, θt) is called a policy with parameter θt.

P (st|st−1, at−1) = given. (78.4)

P (st|st−1, at−1) is called the TPM of the model. P (st|st−1, at−1) reduces to P (s0)
when t = 0.

P (rt|st, at) = δ(rt, r(st, at))) . (78.5)

r : Ss × Sa → R is a given one-time reward function.
Note that

P (s., a.|θ.) =
T−1∏
t=0

{P (st|st−1, at−1)P (at|st, θt)} . (78.6)

Define the all times reward Σ by
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Σ(s., a.) =
T−1∑
t=0

γtr(st, at) . (78.7)

Here 0 < γ < 1. γ, called the discount rate, is included to assure convergence of Σ
when T →∞. If r(st, at) < K for all t, then Σ < K 1

1−γ .
Define the objective (i.e., goal) function EΣ(θ.) by

EΣ(θ.) = Es.,a.|θ.Σ(s., a.) =
∑
s.,a.

P (s., a.|θ.)Σ(s., a.) (78.8)

The goal of RL is to maximize the objective function over its parameters θ.. The
parameters θ∗. that maximize the objective function are the optimum strategy:

θ.∗ = argmax
θ.

EΣ(θ.) (78.9)

Define a future reward for times ≥ t as:

Σ≥t((st′ , at′)t′≥t) =
T−1∑
t′=t

γt
′−tr(st′ , at′) (78.10)

Define the following expected conditional future rewards (rewards for
times ≥ t, conditioned on certain quantities having given values):

vt = v(st, at; θ.) = Es.,a.|st,at,θ.[Σ≥t] (78.11)
Vt = V (st; θ.) = Es.,a.|st,θ.[Σ≥t] = Eat|st,θ.[v(st, at; θ.)] (78.12)

v is usually called Q in the literature. We will refer to Q as v in order to follow
a convention wherein an at-average changes a lower case letter to an upper case one.

We will sometimes write v(st, at) instead of v(st, at; θ.).
Since EΣ≥t only depends on θ≥t, v(st, at; θ.) = v(st, at; θ≥t), and V (st; θ.) =

V (st; θ≥t).
Note that the objective function EΣ can be expressed in terms of v0 by aver-

aging over its unaveraged parameters:

EΣ(θ.) = Es0,a0|θ0v(s0, a0; θ.) (78.13)

Define a one-time reward and an expected conditional one-time reward
as:

rt = r(st, at) (78.14)
Rt = R(st; θt) = Eat|st,θt [r(st, at)] . (78.15)

Note that
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Σ≥t = rt + γrt+1 + γ2rt+2 + . . .+ γT−1−trt+(T−1−t) (78.16)
= rt + γΣ≥t+1; . (78.17)

If we take Es.,a.|st,at,θ.[·] of both sides of Eq.(78.17), we get

vt = rt + γEst+1,at+1|θ.[vt+1] . (78.18)

If we take Es.,a.|st,θ.[·] of both sides of Eq.(78.17), we get

Vt = Rt + γEst+1|θ.[Vt+1] . (78.19)

Note that

∆rt = rt −Rt (78.20)
= rt − (Vt − γEst+1|θ.[Vt+1]) (78.21)
= rt + γEst+1|θ.[Vt+1]− Vt . (78.22)

Define
∆vt = vt − Vt . (78.23)

Note that
∆vt = ∆rt . (78.24)

Next, we will discuss 3 RL bnets

• exact RL bnet (exact, assumes policy is known)

• Actor-Critic RL bnet (approximate, assumes policy is known)

• Q function learning RL bnet (approximate, assumes policy is NOT known)

78.1 Exact RL bnet
An exact RL bnet is given by Fig.78.3.

Fig.78.3 is the same as Fig.78.2 but with more nodes added in order to optimize
the policy parameters. The TPMs, printed in blue, for the nodes not already discussed
in connection to bnet Fig.78.2, are as follows.

P (θt|θ.) = δ(θt, (θ.)t) (78.25)

∀(st, at) : P (vt(st, at)|rt, vt+1(·), θ.) = δ(vt(st, at), rt + γEst+1,at+1|θ.[vt+1]) (78.26)
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Figure 78.3: Exact RL bnet. vt(·) means the array [vt(st, at)]∀st,at The following
arrows are implicit: for all t, arrow from θ. → vt(·). We did not draw those arrows
so as not to clutter the diagram.
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P (θ.′|θ., v0(·)) = δ(θ′., θ.+ α∂θ.Es0,a0|θ0v(s0, a0; θ.)︸ ︷︷ ︸
EΣ(θ.)

) (78.27)

α > 0 is called the learning rate. This method of improving θ. is called gradient
ascent.

Concerning the gradient of the objective function, note that

∂θtEΣ(θ.) =
∑
s.,a.

∂θtP (s., a.|θ.)Σ(s., a.) (78.28)

=
∑
s.,a.

P (s., a.|θ.)∂θt lnP (s., a.|θ.)Σ(s., a.) (78.29)

= Es.,a.|θ. {∂θt lnP (at|st, θt)Σ(s., a.)} . (78.30)

If we run the agent nsam(s⃗t) times and obtain samples st[i], at[i] for all t and for
i = 0, 1, . . . , nsam(s⃗t)− 1, we can express this gradient as follows:

∂θtEΣ(θ.) ≈
1

nsam(s⃗t)

∑
i

T−1∑
t=0

∂θt lnP (at[i] | st[i], θt)r(st[i], at[i]) . (78.31)

The exact RL bnet Fig.78.3 is difficult to use to calculate the optimum pa-
rameters θ∗.. The problem is that st propagates towards the future and the vt(·)
propagates towards the past, so we don’t have a Markov Chain with a chain link for
each t (i.e., a dynamical bnet) in the episode time direction. Hence, people have come
up with approximate RL bnets that are doubly dynamical (i.e., dynamical along the
episode time and episode number axes.) We discuss some of those approximate RL
bnets next.

78.2 Actor-Critic RL bnet
For the actor-critic RL bnet, we approximate Eq.(78.31) by

∂θtEΣ(θ.) ≈
1

nsam(s⃗)

∑
i

T−1∑
t=0

∂θt lnP (at[i] | st[i], θt)︸ ︷︷ ︸
Actor

∆rt(st[i], at[i])︸ ︷︷ ︸
Critic

(78.32)

The actor-critic RL bnet is given by Fig.78.4. This bnet is approximate and
assumes that the policy is known. The TPMs, printed in blue, for this bnet, are as
follows.

P (θt) = given (78.33)
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Figure 78.4: Actor-Critic RL bnet.

P (st[i] | st−1[i], at−1[i]) = given (78.34)

P (at[i] | st[i], θt) = given (78.35)

P (rt[i] | st[i], at[i]) = δ(rt[i], r(st[i], at[i])) (78.36)

r : Ss × Sa → R is given.

P (∆vt[i] | st[i], at[i], st+1[i]) = δ(∆vt[i], r(st[i], at[i]) + γV̂ (st+1[i];ϕ
′)− V̂ (st[i]);ϕ) .

(78.37)

P (θ′.) = δ(θ′., θt + α∂θt
∑
i

lnP (at[i] | st[i], θt)∆vt[i]) (78.38)

V̂ (st[i]);ϕ) is obtained by curve fitting (see Chapter 35) using samples (st[i], at[i])
∀t, i with
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Figure 78.5: Q function learning RL bnet.

y[i] =
T∑
t′=t

r(st′ [i], at′ [i]) (78.39)

and

ŷ[i] = V̂ (st[i];ϕ) . (78.40)

Eq.(78.39) is an approximation because (st′ , at′)t′>t are averaged over in the exact
expression for V (st). V̂ (st+1[i]);ϕ

′) is obtained in the same way as V̂ (st[i]);ϕ) but
with t replaced by t+ 1 and ϕ by ϕ′.

78.3 Q function learning RL bnet
The Q-function learning RL bnet is given by Fig.78.5. This bnet is approximate and
assumes that the policy is NOT known. The TPMs, printed in blue, for this bnet,
are as follows. (Remember that Q = v).

P (st|st−1, at−1) = given (78.41)

P (at|st, vt(·)) = δ(at, argmax
a

vt(st, a)) (78.42)

P (rt|st, at) = δ(rt, r(st, at)) (78.43)

r : Ss × Sa → R is given.
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Figure 78.6: Q function learning RL bnet. Same as Fig.78.5 but with new arrow
passing st to Qt−1.

∀(st, at) : P (vt(st, at)|vt−1(·)) =
= δ(vt(st, at), r(st, at) + γmaxaEst+1|st,atvt−1(st+1, a)) (78.44)

This value for vt(st, at) approximates vt = rt + γEst+1,at+1
vt+1.

Some people use the bnet of Fig.78.6) instead of Fig.78.5 and replace Eq.(78.44)
by

∀(st, at) : P (vt(st, at)|st+1, vt−1(·)) =
= δ(vt(st, at), r(st, at) + γmaxavt−1(st+1, a)) . (78.45)
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Chapter 79

Reliability Box Diagrams and Fault
Tree Diagrams

This chapter is based on Refs.[64] and [92].
In this chapter, we assume that reader is familiar with Boolean Algebra. See

Chapter C for a quick review of what we recommend that you know about Boolean
Algebra to fully appreciate this chapter.

Figure 79.1: Example of rbox diagram.

Figure 79.2: An ftree diagram equivalent to Fig.79.1. It represents e = (ϕ1 ∧ ϕ3) ∨
(ϕ2 ∧ ϕ3).

Complicated devices with a large number of components such as airplanes or
rockets can fail in many ways. If their performance depends on some components
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Figure 79.3: How to map an rbox diagram to a bnet.

ϕ
1

��

ϕ
2

��
x1 // x2

��
b

//

//

A // e

x3

OO

ϕ
3

OO

Figure 79.4: bnet corresponding the rbox diagram Fig.79.1.

working in series and one of the components in the series fails, this may lead to
catastrophic failure. To avert such disasters, engineers use equivalent components
connected in parallel instead of in series, thus providing multiple backup systems.
They analyze the device to find its weak points and add backup capabilities there.
They also estimate the average time to failure for the device.

The two most popular diagrams for finding the failure modes and their rates
for large complicated devices are

• rbox diagrams = Reliability Box diagrams. See Fig.79.1 for an example.

• ftree diagrams = Fault Tree Diagrams. See Fig.79.2 for an example.

In an ftree diagram, several nodes might stand for the same component of a physical

615



device. In an rbox diagram, on the other hand, each node represents a distinct
component in a device. Hence, rbox diagrams resemble the device they are addressing
whereas ftree diagrams don’t. Henceforth, we will refer to this desirable property as
physical resemblance.

As we will show below with an example, it is pretty straightforward to translate
an rbox to an ftree diagram. Going the other way, translating an ftree to an rbox
diagram is much more difficult.

Next we will define a new kind of bnet that we will call a failure bnet that
has physical resemblance. Then we will describe a simple method of translating (i.e.,
mapping) any rbox diagram to a failure bnet. Then we will show how a failure bnet
can be used to do all the calculations that are normally done with an rbox or an ftree
diagram. In that sense, failure bnets seem to afford all the benefits of both ftree and
rbox diagrams.

A failure bnet contains nodes of 5 types, labeled b, e, xi, ϕi, and Ai. All
nodes have only two possible states S = Success = 0, F = Failure = 1.

1. The bnet has a beginning node labeled b which is always set to success. The b
node and the ϕ

i
nodes are the only root nodes of the bnet.

2. The bnet has a single leaf node, the end node, labeled e. e is fixed. In rbox
diagrams, e = S whereas in ftree diagrams, e = F .

3. xnx = (x0, x1, . . . , xnx−1). xi ∈ {S, F} for all i.

Suppose xi has parents ϕ
i
and ana = (a0, a1, . . . ana−1). Then the TPM of node

xi is defined to be

P (xi|ϕi, ana) = δ(xi, ϕi ∨ ∨na−1
i=0 ai) (79.1)

4. For each node xi, the bnet has a “performance" root node ϕ
i
∈ {0, 1} with an

arrow pointing from it to xi (i.e, ϕ
i
→ xi). For all i,

P (ϕi) = ϵiδ(ϕi, F ) + ϵiδ(ϕi, S) . (79.2)

ϵi is the failure probability and ϵi = 1− ϵi is the success probability. We name
the failure probability ϵi because it is normally very small. It is usually set to
1 − e−λit ≈ λit when λit << 1, where λi is the failure rate for node xi and t
stands for time. The rblock literature usually calls ϵi = Ri the reliability of
node xi, and ϵi = (1−Ri) = Fi its unreliability.

5. The nodesAi ∈ {0, 1} are simply AND gates. IfAi has inputs yny = (y
0
, y

1
, . . . , y

ny−1
),

then the TPM of Ai is
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P (Ai|yny) = δ(Ai,∧ny−1
i=0 yi) . (79.3)

An instance (instantiation) of a bnet is the bnet with all nodes set to a specific
state. A realizable instance (r-instance) of a bnet is one which has non-zero
probability.

Fig.79.3 shows how to translate any rbox diagram to a failure bnet. To illus-
trate this procedure, we translated the rbox diagram Fig.79.1 into the failure bnet
Fig.79.4.

For the failure bnet Fig.79.4, one has:

P (b) = 1(b = 0)
P (x1|ϕ1, b) = 1(x1 = ϕ1 ∨ b)
P (x2|ϕ2, x1) = 1(x2 = ϕ2 ∨ x1)
P (x3|ϕ3, b) = 1(x3 = ϕ3 ∨ b)
P (A|x2, x3)e = 1(x2 ∧ x3)
P (e|A) = 1(e = A)

. (79.4)

Therefore, all r-instances of this bnet must satisfy

e = (ϕ1 ∨ ϕ2) ∧ ϕ3 (79.5)
= (ϕ1 ∧ ϕ3) ∨ (ϕ2 ∧ ϕ3) . (79.6)

Eq.(79.6) proves that Fig.79.2 is indeed a representation of Fig.79.1.
Next, we consider r-instances of this bnet for two cases: e = S and e = F .

• rblock analysis: e = S = 0.
Table 79.1 shows the probability of all possible r-instances that end in success
for the failure bnet Fig.79.4. (These r-instances are the main focus of rblock
analysis). The first 4 of those probabilities (those with ϕ3 = 0) sum to ϵ3 so the
sum P (e = S) of all 5 is

P (e = S) = ϵ3 + ϵ1ϵ2ϵ3 , (79.7)

or, expressing it in reliability language in which ϵ = R,

P (e = S) = R3 +R1R2R3 . (79.8)

• ftree analysis: e = F = 1.
Table 79.2 shows the probability of all possible r-instances that end in failure
for the failure bnet Fig.79.4. (These r-instances are the main focus of ftree
analysis). If we set ϵi = ϵ and ϵi ≈ 1 for i = 1, 2, 3, then the first two of
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instance probability
0
��

1
��

x1 // x2
��

0

//

//

A // 0

x3

OO

0

OO

ϵ1ϵ2ϵ3

1
��

0
��

x1 // x2
��

0

//

//

A // 0

x3

OO

0

OO

ϵ1ϵ2ϵ3

1
��

1
��

x1 // x2
��

0

//

//

A // 0

x3

OO

0

OO

ϵ1ϵ2ϵ3

0
��

0
��

x1 // x2
��

0

//

//

A // 0

x3

OO

0

OO

ϵ1ϵ2ϵ3

0
��

0
��

x1 // x2
��

0

//

//

A // 0

x3

OO

1

OO

ϵ1ϵ2ϵ3

Table 79.1: Probabilities of all possible r-instances with e = S = 0 for failure bnet
Fig.79.4.
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instance probability
0
��

1
��

x1 // x2
��

0

//

//

A // 1

x3

OO

1

OO

ϵ1ϵ2ϵ3

1
��

0
��

x1 // x2
��

0

//

//

A // 1

x3

OO

1

OO

ϵ1ϵ2ϵ3

1
��

1
��

x1 // x2
��

0

//

//

A // 1

x3

OO

1

OO

ϵ1ϵ2ϵ3

Table 79.2: Probabilities of all possible r-instances with e = F = 1 for the failure
bnet Fig.79.4.

those r-instances have probabilities of order(ϵ2) and the third has probability of
order(ϵ3). The two lowest order (order(ϵ2)) r-instances are called the “minimal
cut sets" of the ftree. We will have more to say about minimal cut sets later
on. For now, just note from Eq.(79.6) that the ftree Fig.79.2 is just the result
of joining together with ORs two expressions, one for each of the two minimal
cut sets.

More general xi.
Failure bnets can actually accommodate xi nodes of a more general kind than what
we first stipulated. Here are some possibilities:

For any an ∈ {0, 1}n, let

len(an) =
∑
i

ai (79.9)

• OR gate
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P (xi|ϕi, ana) = δ(xi, ϕi ∨ ∨jaj) (79.10)
= δ(xi, ϕi ∨ 1(len(ana) > 0)) (79.11)

• AND gate

P (xi|ϕi, ana) = δ(xi, ϕi ∨ ∧jaj) (79.12)
= δ(xi, ϕi ∨ 1(len(ana) = na)) (79.13)

• Fail if least K failures (less than K successes)

P (xi|ϕi, ana) = δ(xi, ϕi ∨ 1(len(ana) ≥ K)) (79.14)

• Fail if less than K failures (at least K successes)

P (xi|ϕi, ana) = δ(xi, ϕi ∨ 1(len(ana) < K)) (79.15)

• Fail if exactly one failure

P (xi|ϕi, ana) = δ(xi, ϕi ∨ 1(len(ana) = 1)) (79.16)

This equals an XOR (exclusive OR) gate when na = 2.

• General gate
f : {0, 1}na → {0, 1}

P (xi|ϕi, ana) = δ(xi, ϕi ∨ f(ana)) (79.17)

79.1 Minimal Cut Sets
Suppose x ∈ {0, 1} and f : {0, 1} → {0, 1}. Then by direct evaluation, we see that

f(x) = [xf(0)] ∨ [xf(1)] . (79.18)

Let
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!x = 1− x,
!0x = x,
!1x =!x

(79.19)

Then Eq.(79.18) can be rewritten as

f(x) = ∨a∈{0,1}[(!ax)f(a)] . (79.20)

Now suppose xn ∈ {0, 1}n and f : {0, 1}n → {0, 1}. Eq.(79.20) generalizes to

f(xn) = ∨an∈{0,1}n [
∏
i

(!aixi)f(a
n)] . (79.21)

Eq.(79.21) is called an ors-of-ands normal form expansion. There is also an ands-of-
ors normal form expansion obtained by swapping multiplication and ∨ in Eq.(79.21),
but we won’t need it here.

A cut set is a set of ϕi’s such that if they are all equal to F , then e = F
for all the r-instances. A minimal cut set is a cut set such that there are no
larger cut sets that contain it. From the failure bnet, we can always find a function
f : {0, 1}nx → {0, 1} such that e = f(ϕnx) for all the r-instances. We did that for
our example failure bnet and obtained Eq.(79.6). We can then express f(ϕnx) as an
ors-of-ands expansion to find all the minimal cut sets. The ands terms in that ors-of-
ands expansion each gives a different minimal cut set, after some simplification. The
ors-of-ands expression is not unique and it may be necessary to simplify (using the
Boolean Algebra identities given in Chapter C) to remove those redundancies.
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Chapter 80

Restricted Boltzmann Machines

In what follows, we will abbreviate "restricted Boltzmann machine’ by rebo.
Let
v ∈ {0, 1}nv
h ∈ {0, 1}nh
b ∈ Rnv (mnemonic, v and b sound the same)
a ∈ Rnh

W v|h ∈ Rnv×nh

Energy:
E(v, h) = −(bTv + aTh+ vTW v|hh) (80.1)

Boltzmann distribution:

P (v, h) =
e−E(v,h)

Z
(80.2)

Partition function:

Z =
∑
v,h

e−E(v,h) = Z(a, b,W v|h) (80.3)

P (v|h) =
eb

T v+aT h+vTW v|hh∑
v e

bT v+aT h+vTW v|hh
(80.4)

=
eb

T v+vTW v|hh∑
v e

bT v+vTW v|hh
(80.5)

=
∏
i

evi(bi+
∑

j W
v|h
i,j hj)∑

vi=0,1 e
vi(bi+

∑
j W

v|h
i,j hj)

(80.6)

=
∏
i

P (vi|h) (80.7)

P (vi|h) =
evi(bi+

∑
j W

v|h
i,j hj)

Zi(h)
(80.8)
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h

��   ''
v0 v1 v2

Figure 80.1: bnet for a Restricted Boltzmann Machine (rebo) with nv = 3

Eq.(80.8) implies that a rebo can be represented by the bnet Fig.80.1.
Let

xi = bi +
∑
j

W
v|h
ij hj . (80.9)

Then

P (vi = 1|h) =
exi

1 + exi
(80.10)

=
1

1 + e−xi
(80.11)

= smoid(xi) . (80.12)

One could also expand the node h in Fig.80.1 into nh nodes. But note that
P (h) ̸=

∏
j P (hj) so there would be arrows among the hj nodes.

Note that the rebo bnet is a special case of Naive Bayes (See Chapter 63) with
vi, hi ∈ {0, 1} and specific P (h) and P (vi|h) node matrices.

623



Chapter 81

ROC curves

This chapter is based on Ref.[161].
ROC stands for Receiver Operating Characteristic. ROC curves are used

in binary classification (BC).
To do BC, we are given the value x ∈ R for an individual. From this, we want

to decide whether that individual has a = 0 or a = 1. The decision will depend on
the value of a threshold parameter τ ∈ R.

x aoo

Figure 81.1: bnet for BC.

Fig.81.1 shows the bnet used for BC.

Figure 81.2: x-distribution for two hypotheses a = 0, 1.

Fig.81.2 is a plot of P (x|a), i.e., the TPM for node x of the bnet in Fig.81.1.
Whereas a is binary, x is continuous. But we can replace x by a binary variable

b = 1(x > τ) . (81.1)

P (b|a) for b, a ∈ {0, 1} is called the confusion matrix or contingency table for BC.
The confusion matrix can be calculated from the TPM P (x|a). Fig.81.3 illustrates
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Figure 81.3: The confusion matrix P (b|a) for BC.

the confusion matrix P (b|a) for BC. In that figure, the rates R are defined as follows.1

• True Negative Rate (TNR)

R0|0(τ) = P (x < τ |a = 0) =

∫
x<τ

dx P (x|a = 0) (81.2)

• False Positive Rate (FPR)

R1|0(τ) = 1−R0|0(τ) (81.3)

= P (x > τ |a = 0) =

∫
x>τ

dx P (x|a = 0) (81.4)

In Hypothesis Testing, R1|0 is called the p-value that x > τ assuming curve
0 is the null hypothesis.

• False Negative Rate (FNR)

R0|1(τ) = P (x < τ |a = 1) =

∫
x<τ

dx P (x|a = 1) (81.5)

In Hypothesis Testing, R0|1 is called the p-value that x < τ assuming curve
1 is the null hypothesis.

• True Positive Rate (TPR)

R1|1(τ) = 1−R0|1(τ) (81.6)

= P (x > τ |a = 1) =

∫
x>τ

dx P (x|a = 1) (81.7)

The Receiver Operating Characteristic (ROC) is a parametric plot with
X = R1|0(τ) and Y = R1|1(τ), where τ ∈ R. The Area Under the Curve (AUC)
is the area under the ROC. Fig.81.4 shows an example of a ROC and its AUC.

1I find the notation x|a where x, a ∈ {0, 1} much clearer than αβ where α = T, F and β = N,P .
Note that α = 1(x = a) and β = x, if we identify 0 = F = N and 1 = T = P .
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Figure 81.4: Example of ROC. Green shaded area is the AUC of the ROC.

Figure 81.5: ROC curves for 3 different separations between the 0 and 1 x-
distributions.

Fig.81.5 shows situations that give AUC=.5 (random classifier), AUC=.85,
and AUC=1 (perfect classifier). It’s also possible to get an AUC ∈ [0, 0.5], but we
will ignore those models because they are useless for BC.

Note that

AUC =

∫ 1

x=0

dτ R1|1(τ)
dR1|0(τ)

dτ
(81.8)

=

∫ −∞

∞
dτ

{∫ ∞

−∞
dx 1(x > τ)P (x|a = 1)

}
(−1)P (x = τ |a = 0)(81.9)

=

∫ ∞

−∞
dx′

∫ ∞

−∞
dx 1(x > x′)P (x|a = 1)P (x′|a = 0) . (81.10)

See Fig.81.6 for an example of False Positive and False Negative predictions.
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Figure 81.6: Example of False Positive and False Negative predictions.

81.1 Terminology Table Adapted from Wikipedia Ref.[161]
Let Nx|a be numbers (counts) so that

P (x|a) =
Nx|a∑
x′ Nx′|a

(81.11)

for all x, a ∈ {0, 1}.
condition positive (P): N|1 =

∑
xNx|1, the number of real positive cases in the

data
condition negative (N): N|0 =

∑
xNx|0, the number of real negative cases in

the data
true positive (TP): N1|1, hit
true negative (TN): N0|0, correct rejection
false positive (FP): N1|0, false alarm, type I error or overestimation
false negative (FN): N0|1, miss, type II error or underestimation
sensitivity, recall, hit rate, or true positive rate (TPR):

TPR = R1|1 =
N1|1

N|1
=

N1|1

N1|1 +N0|1
= 1−R0|1 (81.12)

specificity, selectivity or true negative rate (TNR):

TNR = R0|0 =
N0|0

N|0
=

N0|0

N0|0 +N1|0
= 1−R1|0 (81.13)

precision or positive predictive value (PPV):

PPV =
N1|1

N1|1 +N1|0
= 1− FDR (81.14)
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negative predictive value (NPV):

NPV =
N0|0

N0|0 +N0|1
= 1− FOR (81.15)

miss rate or false negative rate (FNR):

FNR = R0|1 =
N0|1

N|1
=

N0|1

N0|1 +N1|1
= 1−R1|1 (81.16)

fall-out or false positive rate (FPR):

FPR = R1|0 =
N1|0

N|0
=

N1|0

N1|0 +N0|0
= 1−R0|0 (81.17)

false discovery rate (FDR):

FDR =
N1|0

N1|0 +N1|1
= 1− PPV (81.18)

false omission rate (FOR):

FOR =
N0|1

N0|1 +N0|0
= 1−NPV (81.19)

accuracy (ACC):

ACC =
N1|1 +N0|0

N|1 +N|0
=

N1|1 +N0|0

N1|1 +N0|0 +N1|0 +N0|1
(81.20)

balanced accuracy (BA):

BA =
R1|1 +R0|0

2
(81.21)

F1 score is the harmonic mean of precision and sensitivity:

F1 = 2×
PPV ×R1|1

PPV +R1|1
=

2N1|1

2N1|1 +N1|0 +N0|1
(81.22)
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Chapter 82

Scoring the Nodes of a Learned Bnet

Chapter 89 discusses how to learn a bnet from data. Many algorithms for doing this
require scoring how well a particular bnet fits the data. This chapter is an introduction
to such scoring.

Normally, each node of a bnet is scored separately, and then those node scores
are summed to get the bnet score.

In this chapter, scores are defined so that a higher score means a better fit.
By taking the negative of such a score, one can always get a score such that a lower
score means a better fit.

There are 2 main types of bnet scores: Maximum Likelihood (ML) scores,
and Shannon Information Theory (SIT) scores. ML scores consist of the log of a
maximum likelihood function P (x⃗|θ) for i.i.d. samples x⃗ = (xσ)σ=0,1,...,nsam−1, where
xσ ∼ Px|θ(x|θ):

ML-score = ln(P (x⃗|θ)) (82.1)

= ln
∏
σ

P (xσ | θ) (82.2)

=
∑
σ

lnP (xσ | θ) (82.3)

≈ nsam
∑
x

P (x|θ) lnP (x|θ) (82.4)

= −nsamH(Px|θ) , (82.5)

and SIT scores consist of a negative entropy:

Info-score = −H(Px|θ) . (82.6)

Thus, up to a factor of nsam, they are the same thing. Maximizing a log likelihood
function for i.i.d. samples or minimizing the corresponding entropy, are the same
thing, and they both yield a good estimate of the hidden parameters θ.
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82.1 Probability Distributions and Special Functions
While writing this chapter, I briefly consulted the following Wikipedia articles about
the definitions and properties of certain probability distributions and special func-
tions.

• Categorical Distribution, Ref.[111]

• Multinomial Distribution, Ref.[153]

• Dirichlet Distribution, Ref.[120]

• Multivariate Normal Distribution, Ref.[155]

• Beta function, Ref.[106]

• Multinomial Coefficients, Ref.[154]

• Gamma Function Ref.[127]

Here are a few results from those Wikipedia articles that we will use later on
in this chapter.

Below, we will abbreviate q+ =
∑

i qi, and q. = (q0, q1, . . . , qnq−1) for various
quantities q

Gamma function. If n > 0 is an integer,

Γ(n+ 1) = n! (82.7)

The multivariate Beta function is defined by

B(α.) =

∏
k Γ(αk)

Γ(α+)
(82.8)

where αk > 0 for all k.
The multinomial coefficient is defined by

C(N.) =
N+!∏
kNk!

(82.9)

where Nk are non-negative integers.
The inverse of the multinomial coefficient will be denoted by

CI(N.) =
1

C(N.)
=

∏
kNk!

N+!
(82.10)

The Categorical Distribution is defined by

Cat(x; π.) = πx =
∏
k

π
1(k=x)
k (82.11)
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for k, x ∈ Sx, where π. is a probability dist.(i.e., πk ≥ 0 for all k, and π+ = 1).
The Multinomial Distribution is defined by

Mul(N.; π.,N) = C(N.) , (82.12)

where Nk is a non-negative integer for all k, N+ = N , and π. is a probability dist.
Mul() satisfies:

E[Nk] = Nπk . (82.13)

The Dirichlet Distribution is defined by

Dir(π.;α.) =
1

B(α.)

∏
k

παk−1
k (82.14)

where αk > 0 for all k, and π. is a probability dist. The α. are called concentration
parameters or hyperparameters. Dir() satisfies:

E[πk] =
Nk

N+

. (82.15)

Dir() is conjugate prior of Mul()
Note that

Mul(N.; π.,N)Dir(π.;α.) = K(N., α.)Dir(π.;N.+ α.) , (82.16)

where

K(N., α.) = B(N.+ α.)

CI(N.)B(α.)
. (82.17)

Dir() is replaceable by a Mul() for large concentration parameters
Note that if Nk is a positive integer and αk = Nk + 1 for all k, then

Dir(π.;αk = Nk + 1) = C(N.)
∏
k

πNk
k (82.18)

= Mul(N.; π.,N+) . (82.19)

82.2 Single node with no parents
In this section, we consider a learned bnet consisting of a single node with no parents.
We will consider arbitrary learned bnets in the next section. But we start with this
simplified case so as to reduce the number of indices in most quantities from 3 to 1. All
the results that we derive in this section will be used in the next section after adding
the extra indices. This way, we will avoid carrying the extra indices throughout the
intermediate steps of many derivations.
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For state k ∈ {0, 1, . . . , nk − 1} of a single node x, let
Nk= current count number (an integer, data)
π.= a probability dist, the TPM for the node
αk= prior count number

N. π.oo α.oo

Figure 82.1: For a bnet consisting of a single node with no parents, this is a Markov
chain of current counts (N.), TPM (π.), and prior counts (α.) .

Consider the Markov chain bnet of Fig.82.1 with the following TPMs, printed
in blue.

P (N.|π.) =Mul(N.; π.,N+) (82.20)

P (π.|α.) = Dir(π.;α.) (82.21)

It follows that

P (N., π.|α.) = P (N.|π.)P (π.|α.) (82.22)
= Mul(N.; π.,N+)Dir(π.;α.) (82.23)
= K(N., α.)Dir(π.;N.+ α.) . (82.24)

From Eq.(82.15) for the expected value of Dir(), we get

π̂. = E[π.] =
N.+ α.

N+ + α+

. (82.25)

Integrating both sides of Eq.(82.24) over π., we find that

P (N.|α.) = K(N., α.) . (82.26)

If Nk >> 1 for all k, then the Dir() in Eq.(82.24) can be replaced by a Mul()

P (N., π.|α.) ≈ K(N., α.)Mul(N.+ α.; π.,N+ + α+) . (82.27)

Therefore,

P (N.|π., α.) =
P (N., π.|α.)
P (N.|α.)

(82.28)

= Mul(N.+ α.; π.,N+ + α+) . (82.29)
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Claim 125

lnP (N.|π̂., α.) = −(N+ + α+)H

(
N.+ α.

N+ + α+

)
+ lnC(N.+ α.) (82.30)

> −(N+ + α+)H

(
N.+ α.

N+ + α+

)
− 1

2
(nk − 1) lnN+ (82.31)

proof:

lnP (N.|π̂., α.) =
∑
k

(Nk + αk) ln π̂k + lnC(N.+ α.) (82.32)

=
∑
k

(Nk + αk) ln
Nk + αk
N+ + α+

+ lnC(N.+ α.) (82.33)

= −(N+ + α+)H

(
N.+ α.

N+ + α+

)
+ lnC(N.+ α.) (82.34)

Recall Stirling’s approximation of a factorial, valid for large integers n:

lnn! ≈ (n+
1

2
) lnn− n . (82.35)

Assume Nk >> 1 for all k. Applying Stirling’s approximation to all factorials in
C(N), we get

lnC(N.) ≈ (N+ +
1

2
) lnN+ −N+ −

∑
k

[
(Nk +

1

2
) lnNk −Nk

]
(82.36)

= (N+ +
1

2
) lnN+ −

∑
k

(Nk +
1

2
) lnNk . (82.37)

Next assume that

Nk ≈
N+

nk
. (82.38)

Then

lnC(N.) = (N+ +
1

2
) lnN+ − nk(

N+

nk
+

1

2
)[lnN+ − lnnk] (82.39)

= − 1

2
(nk − 1) lnN+ + (N+ +

nk

2
) lnnk (82.40)

> − 1

2
(nk − 1) lnN+ . (82.41)

QED
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82.3 Multiple nodes with any number of parents
In the previous section, we considered a bnet consisting of a single node with no
parents, so we only needed a single index k for the states of the single node. In this
section, we consider an arbitrary bnet with multiple nodes each of which may have
multiple parents. Most of the results in the previous section are valid for the general
case if we make the following replacements: π. → πi·|µ N. → N i

·,µ α. → αi·,µ. Upon
this replacement, Fig.82.1 becomes Fig.82.2. The TPMs, printed in blue, of the new
Markov chain, are as follows:

N i
·,µ πi·|µ
oo αi·,µoo

Figure 82.2: Generalization of Fig.82.1. For a bnet with multiple nodes each of which
may have multiple parents, this is a Markov chain of current counts (N i

·,µ), TPM
(πi·|µ), and prior counts (αi·,µ) .

P (N i
·,µ|πi·|µ) =Mul(N i

·,µ; π
i
·|µ, N

i
+,µ) (82.42)

P (πi·|µ|αi·,µ) = Dir(πi·|µ;α
i
·,µ) (82.43)

In these TPMs,
i ∈ Si = {0, 1, . . . , ni− 1}= node index
x. = (xi)i∈Si

= the nodes of the learned bnet.
k ∈ Ski = {0, 1, . . . , nki − 1}= states of node xi
µ ∈ Sµi = {0, 1, . . . , nµi − 1}= states of parents of node xi.
In the previous section, we assumed a single node (ni = 1) with no parents

(nµ0 = 1) so that we could drop the i, µ indices. In this section, we eliminate that
restriction.

It is convenient to define the magnitude of a bnet B to equal the sum over
nodes of the number of free parameters in each TPM:

|B| =
∑
i

(nki − 1)nµi . (82.44)

Suppose that we are given nsam samples x⃗i = (xσi )σ=0,1,...,nsam−1 of our learned
bnet. The count numbers N i

k,µ are defined in terms of those samples as follows:

N i
k,µ =

∑
σ

1(xσi = k, pa(xσi ) = µ) . (82.45)
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It is also convenient to defined count number ratios

N i
k|µ =

N i
k,µ

N i
+,µ

. (82.46)

Note that N i
k,µ is a positive integer whereas N i

k|µ ∈ [0, 1].
Let’s denote the components of the TPMs by πik|µ:

πik|µ = P (xi = k | pa(xi) = µ) ≈ N i
k|µ . (82.47)

The rest of this section lists equations that we obtained from the previous
section, by adding the new indices i, µ:

K(N i
·,µ, α

i
·,µ) =

B(N i
·,µ + αi·,µ)

CI(N i
·,µ)B(αi·,µ)

(82.48)

π̂ik|µ =
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

(82.49)

P (N i
·,µ|αi·,µ) = K(N i

·,µ, α
i
·,µ) (82.50)

P (N i
·,µ|πi·|µ, αi·,µ) ≈Mul(N i

·,µ + αi·,µ; π
i
·|µ, N

i
+,µ + αi+,µ) (82.51)

Claim 126

lnP (N i
·,µ|π̂i·|µ, αi·,µ) =

∑
k

(N i
k,µ + αik,µ) ln

(
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

)
+ lnC(N i

·,µ + αi·,µ) (82.52)

>
∑
k

(N i
k,µ + αik,µ) ln

(
N i
k,µ + αik,µ

N i
+,µ + αi+,µ

)
− 1

2
(nki − 1) lnN i

+,µ

(82.53)

82.4 Bayesian Scores
• Bayesian Information Criterion (BIC)

BIC-score = −
∑
i

∑
k,µ

N i
k,µ ln

(
N i
k,µ

N i
+,µ

)
+

[
− |B|

2
lnN+

+,+

]
︸ ︷︷ ︸∑

i

∑
µ lnC(N i

·,µ) would be more accurate

(82.54)

≈
∑
i

∑
µ

lnP (N i
·,µ|π̂i·|µ, αi·,µ = 0) (82.55)
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• Bayesian Dirichlet (BD)

BD-score =
∑
i

∑
µ

ln
B(N i

·,µ + αi·,µ)

B(N i
·,µ)

(82.56)

=
∑
i

∑
µ

ln
[
CI(N i

·,µ)P (N
i
·,µ|αi·,µ)

]
(82.57)

• BD equivalent (BDe)

BDe-score = BD-score
(
αik,µ = α′N i

k,µ

)
, (82.58)

where α′ is a free parameter.

• BD equivalent unified (BDeu)

BDeu-score = BD-score
(
αik,µ =

α′

nkinµi

)
, (82.59)

where α′ is a free parameter. The BDeu score satisfies score equivalence; i.e.,
it is the same for all DAGs in an equivalence class of observational equivalent
DAGs. See Chapter 67 for more information about observational equivalence.

82.5 Information Theoretic scores
• Maximum likelihood

ML-score =
∑
i

∑
k,µ

N i
k,µ lnN

i
k|µ (82.60)

= −
∑
i

H(ki|µi) , (82.61)

where Pki|µi(k|µ) = N i
k|µ and Pki,µi(k, µ) = N i

k,µ.

• Bayesian Information Criterion (BIC), a.k.a. Minimum Description Length
(MDL)

BIC-score = ML-score− |B|
2

lnN+
+,+ (82.62)

≈
∑
i

∑
k,µ

N i
k,µ ln

N i
k|µ√
N+

+,+

(82.63)

• Akaike Information Criterion (AIC)

AIC-score = ML-score− |B| (82.64)

≈
∑
i

∑
k,µ

N i
k,µ

[
lnN i

k|µ − 1
]

(82.65)
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Chapter 83

Selection Bias Removal

This chapter is based on Ref.[3].
Selection bias (SB) occurs when one samples from an atypical subset of a popu-

lation, producing a biased dataset. Are such biased datasets useless? Not necessarily.
It is possible to add auxiliary features to the biased dataset, and to sample those
new features in an unbiased way, from the whole population. Then one can merge
the original biased dataset with the auxiliary, unbiased one, to obtain an enhanced
dataset. It is sometimes possible to do this so that the enhanced dataset is provably
unbiased. It’s like making horizontal the surface of a table that was not initially
horizontal. The theory of Bayesian Networks and Causal Inference tells us WHEN
this is possible, and HOW to do it when it is possible.

Consider the bnet Fig.83.1.

s = 1 AOO

��

?oo

x //

?

OO

rr

HH

y

?
bb

Figure 83.1: Bnet considered for selection bias (SB) removal. Arrows with question
marks may or may not be present.

Let
s ∈ {0, 1} be the switch node. s = 1 means there is SB in the parent nodes.
x = class features.1
y = target feature.
A = auxiliary features. This is a set of nodes that may contain arrows

entering or exiting it, as indicated by the double arrows.
E = {y, x} ∪ A = Enhanced feature set.

1A feature is the same as a node in a bnet.
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Σ = unbiased population of individuals σ
Σo = biased sub-population of individuals, Σo ⊂ Σ.
OD = {(σo, xσo , yσo , sσo = 1) : σo ∈ Σo} = Original Dataset, dataset for

(x, y) features with s = 1. Gives empirical distribution P (y|x, s = 1). (Ref.[3] calls
this dataset the biased study.)

AD = {(σ, xσ, Aσ) : σ ∈ Σ} = Auxiliary Dataset, dataset for (x,A) features.
Gives empirical distribution P (A|x). (Ref.[3] calls this dataset the population level
study.)

ED = {(σo, xσo , Aσo , yσo , sσo = 1) : σo ∈ Σo} = Enhanced Dataset, dataset
for (x, y, A) features for s = 1. Obtained by merging OD and AD. Gives empirical
distribution P (y|x,A, s = 1).

83.1 Pre and Post Switch Nodes
This book uses 2 types of switch nodes: pre-switch nodes and post-switch nodes.

Pre-switch nodes are used in Chapter 99 entitled “Transportability of Causal
Knowledge". Pre-switch nodes are root nodes. They are usually binary, and indicate
whether the nodes pointed to belong to a set or not.

Most of the DAG literature, including Ref.[3], on which this chapter is based,
define SB using a post-switch node. A post-switch node is a leaf node of the graph.
Like pre-switch nodes, post-switch nodes are usually binary.

Figure 83.2: Common Cause and Effect for nodes d, y.

Note that in Potential Outcomes (PO) theory (see Chapter 72), pre-switch
nodes such as a in Fig.83.2 are called common cause (confounder, fork) nodes
for nodes d, y. Furthermore, post-switch nodes such as b in Fig.83.2 are called
common effect (selection bias (SB), collider) nodes for nodes d, y. Hence, in
PO theory, SB is indicated by a leaf node, just as we do in this chapter.

Note that Simpson’s paradox (see Chapter 87) arises from an indirect ef-
fect caused by not conditioning on a confounder, whereas Berkson’s paradox (see
Chapter 7) arises from an indirect effect caused by conditioning on a collider.

It’s possible to replace a pre-switch node by a post switch node, or vice versa,
as follows. Suppose that we start with a bnet G0 that is fully connected, and we add
to it a switch node s that is a root node that points to all nodes of G0. Call the
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resulting bnet s→ G0. We can use Bayes rule to reverse the direction of the arrows
emanating from s so that they enter node s rather than exit it. Call the resulting
bnet s ← G0. In general, Bayes rule allows us to translate from s → G0 to s ← G0,
or in the opposite direction, without having to change the directions of any of the
arrows in G0. If G0 is not fully connected, then going from s → G0 to s ← G′

0 will
often require that G′

0 have the same arrows in the same directions as G0 plus some
extra arrows new to G0. Likewise, going from s ← G0 to s → G′′

0 may require that
G′′

0 have the same arrows as G0 plus some new arrows.
So far, we have been intentionally vague in specifying the graphs G′

0 and G′′
0.

In Fig.83.3 we give a trick for determining possible candidates for graphs G′
0 and G′′

0.
In Fig.83.3, we consider 3 panels going from left to right, depicting the cases where s
has either 1,2 or 3 neighbors. The top graph Gpost−sel, which has a post-switch node
s, is converted to a graph which is numerically equal to it, namely the bottom graph
Gpre−sel, which has a pre-switch node s. The magenta arrows represent any number
of arrows exiting (but none entering) a node. If we start with a graph s ← G0, we
find the biggest subset X of the nodes of G0 such that s← X only has nodes exiting
it (i.e., only magenta nodes). Then we add enough arrows to s ← X to make it a
fully connected graph s ← X ′. Now we can reverse the incoming arrows to s and
make them all outgoing and call the resulting graph s→ X ′.

Figure 83.3: Switching from a post-switch node to a pre-switch node.

Recall that in Chapter D, we made a distinction between a good CF bnet a
bad CF bnet, and we pointed out that bad CF bnets are often useful as a numerical
tool. Recall also from Chapter 67 that two bnets can be “observationally equivalent".
That is what is happening here. We are faced with the choice of making switch nodes
either leaf nodes or root nodes. Both choices lead to observationally equivalent bnets.
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One of the two choices leads to a good CF bnet, and the other to a bad CF bnet.
Both choices are numerically correct.

In this chapter, we will consider first a DAG Gpost−sel with a post-switch node,
then we will transform that DAG to a numerically equal DAG Gpre−sel with a pre-
switch node. The latter DAG is more convenient for our needs. Why? Because in
the SB theory that we present in this chapter, the s = 1 appears as a condition in
a conditional probability, as in P (· · · | · · · , s = 1). Such probabilities are represented
in a more straightforward manner if arrows exit rather than enter node s.

83.2 Removing SB from passive query P (y|x)
The passive query Q = P (y|x, s = 1) is SB-recoverable if it is independent of s.

1. Query P (y|x) is SB-recoverable with A = ∅; SB can be removed by condi-
tioning on x.

If y ⊥ s|x, then
P (y|x, s = 1) = P (y|x) . (83.1)

For example,

s

x

OO

// y
=

s

��
x // y

(83.2a)

s a

��

oo

x //

OO

y
=

s

��

// a

��
x // y

(83.2b)

s a

����
x //

OO

y
=

s

��

// a

����
x // y

(83.2c)

The bnets on the left hand sides of Eqs.(83.2) satisfy y ⊥ s|x.

2. Query P (y|x) is SB-recoverable via a; SB can be removed by conditioning
on x and a. Here a is a nonempty subset of A

640



Claim 127 There exists a ⊂ A such that y ⊥ s|(x, a) and a ⊥ s|x iff

P (y|x, s = 1) =
∑
a

P (y|x, a, s = 1)︸ ︷︷ ︸
P (y|x,a)

P (a|x, s = 1)︸ ︷︷ ︸
P (a|x)

= P (y|x) (83.3)

s = 1

""
x // y

=

∑
a

��
x //

>>

y
= x // y

(83.4)

proof:

The ⇒ part of this claim is obvious. For a proof of the ⇐ part, see Ref.[3].
QED

For example,

s a

��
x //

OO @@

y
=

s

��

a

��
x //

@@

y

(83.5a)

The bnets on the left hand sides of Eqs.(83.5) satisfy y ⊥ s|(x, a) and a ⊥ s|x.

3. Query P (y|x) is not SB-recoverable; SB cannot be removed.

For example,
s

x // y

^^

=

s

�� ��
x // y

(83.6)

s

x //

OO

y

^^

=

s

�� ��
x // y

(83.7)

s a

��

oo

x //

OO

y

w

OO @@
=

s

��

// a

��
x // y

w

OO @@

(83.8)
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83.3 Removing SB from active query P (y|Dx)
The active query (i.e., do query) Q = P (y|Dx = x, s = 1) is

(a) SB-recoverable if it equals P (y|Dx = x),

(b) do-identifiable if it equals P (y|x, s = 1).

(c) both SB-recoverable and do-identifiable if it equals P (y|x).

Examples

•
s oo a

����
x // y

=

s // a

����
x // y

SB-recoverable: NO
do-identifiable: YES (83.9)

Q = P (y|Dx = x, s = 1) is do-identifiable because the bnet contains no hidden
variables. It’s s-recoverable because the bnet on the left hand side of Eq.(83.9)
satisfies y ⊥ s|(x, a) but Not a ⊥ s|x.

•
sOO

a

��
x //

@@

y
=

s

��

a

��
x //

@@

y

SB-recoverable: YES
do-identifiable: NO (83.10)

Let
V = set of nodes in graph
V <x = non-descendants of x (excluding x)
V >x = descendants of x (excluding x)
z<x = z ∩ V <x

z>x = z ∩ V >x

Suppose z ∪ {x, y} ⊂ E and z ⊂ A. We say z satisfies the selection bias
(SB) backdoor criterion with respect to (x, y) if

1. all backdoor paths from x to y are blocked by conditioning on z<x

2. z>x ⊥ y|(x, z<x)

3. y ⊥ s|(x, z)
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Claim 128 (SB Backdoor Adjustment Formula)
If z satisfies the SB backdoor criterion relative to (x, y), then

P (y|Dx = x, s = 1) =
∑
z

P (y|x, z)P (z) = P (y|x) (83.11)

s = 1

##Dx = x // y
=

∑
z

��
x // y

= x // y

(83.12)

proof:
If z satisfies the SB backdoor criterion relative to (x, y), then x, y, z might

have the following structure.

sOO
oovv z<x

~~ ��

// z>x

x

66

// y
=

s

��

//
))

z<x

~~ ��

// z>x

x

66

// y

(83.13)

See Claim 58 for a proof of this claim for the special case Eq.(83.13).
QED
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Chapter 84

Sentence Splitting with SentenceAx

The Openie6 (O6) software (at github repo Ref.[2]) splits complex or compound
sentences into simple ones.1 Sentence splitting is a necessary step when doing DAG
extraction from text (DEFT) (See Chapter 14).

The O6 software is described by its creators in the paper Ref.[34], which we
will henceforth refer to as the O6 paper.

My SentenceAx (Sax) software (at github repo Ref.[88]) is a complete re-write
of the O6 software. Sax is 95% identical algorithmically to O6, but I have rewritten
it in what I hope is a friendlier form.

Sax is a fine-tuning of the BERT model. What this means in the language of
Bayesian Networks is that we use BERT as a prior probability. The BERT model is
the encoder part of the vanilla Transformer network which we discuss in Chapter 98.

This chapter describes the technical aspects of Sax. Although this chapter can
be read without reading the O6 paper, we highly recommend to our readers that they
read the O6 paper also. Some parts of this chapter are taken almost verbatim from
the O6 paper. Other parts try to fill-in gaps in the explanations provided by the O6
paper or to improve those explanations. Yet others parts describe small changes that
we made to the O6 software, in an effort to improve its clarity.

In this chapter, we will use the Numpy-like tensor notation discussed in Section
C.49. In particular, note that [n] = [0 : n] = {0, 1, . . . , n − 1} and that T [n],[m] is an
n×m matrix.

84.1 Preliminary Conventions

84.1.1 Tensor Notation

Our tensor notation is discussed in Section C.49. Here is a quick review of some of
the more salient facts in that section on tensors. Below, we will often accompany

1Simple sentences are essentially the same as the triples (subject, relationship, object) which,
when visualized as a directed or undirected graph, is called a “knowledge graph".
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an equation in tensor component notation with the equivalent matrix equation, in
parenthesis.

We use Greek letters for tensor indices.
Let α ∈ [a], β ∈ [b], γ ∈ [c], δ ∈ [d], ν ∈ [n], ∆ ∈ [D].

• reshaping

T ν,δ → T∆
(
T [nh],[d] → T [D]

)
(84.1)

T∆ → T ν,δ
(
T [D] → T [nh],[d]

)
(84.2)

• concatenation
T [n] = (T 0, T 1, . . . , T n−1) = (T ν)ν∈[n] (84.3)

• Hadamard product (element-wise, entry-wise multiplication)

T [n] ∗ S[n] = (T νSν)ν∈[n] (84.4)

• Matrix multiplication

T [n] = T [n],[1] is a column vector.

(T [n])TS[n] = scalar (84.5)

T [a],[b]S[b],[c] =

∑
β∈[b]

Tα,βSβ,γ


α∈[a],γ∈[c]

(84.6)

Most treatments of Transformer Networks (tranets), including the the O6 pa-
per and PyTorch, order the operations chronologically from left to right (L2R). So if
A occurs before B, they write AB. This is contrary to what is done in Linear Al-
gebra, where one orders the operations chronologically from right to left (R2L), and
one writes BA. In Chapter 98 on tranets, we followed the Linear Algebra convention.
In this chapter, we will follow the PyTorch convention, because Sax is written with
PyTorch so it uses the PyTorch convention.

84.1.2 PyTorch conventions

• Linear

Some pseudo-code
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lin = nn.Linear(b, a)

y[n],[b] = lin(x[n],[a])

In the L2R (left to right) convention followed by PyTorch

xν,[a] → yν,[b] = xν,[a]W [a],[b] (84.7)

for all ν ∈ [n]. Alternatively, in the R2L convention followed in Linear Algebra,

x[a],ν → y[b],ν = W [b],[a]x[a],ν (84.8)

Note that in PyTorch, the rightmost index of the input is the one that is summed
over.

The weights matrix W [b],[a] is learned by training.

• Dropout

Some pseudo-code

dropo = nn.Dropout(pdrop)

y[n],[a] = dropo(x[n],[a])

xν,[a] → yν,[a] = xν,[a]Ŵ
[a],[a]
R (in L2R) (84.9)

x[a],ν → y[a],ν = Ŵ
[a],[a]
L x[a],ν (in R2L) (84.10)

for all ν ∈ [n].

Dropout learns a weight matrix W just like Linear. But at the end of the
training, Dropout flips a coin for each row of W [a],[a]

L (resp., column of W [a],[a]
R ),

with
P (Heads) = pdrop, and P (Tails) = 1− pdrop = pkeep.

If the coin lands on T, it keeps that row of W [a],[a]
L (resp., column of W [a],[a]

R ),
whereas if lands on H, it sets that row (resp., column) to zero. Then the matrix
is divided by pkeep. The final matrix after all these operations is denoted by ŴL

(resp., ŴR).

• Embedding

Some pseudo-code
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emb = nn.Embedding(num_embeddings=L, embedding_dim=d)

Y [n1],[n2],[d] = emb(λ[n1],[n2])

In Sax, we use L = 100 and d = 768 (for BERT base). The d is the “hidden
dimension” of BERT. The L could be as large as the vocab size of BERT, but
since we consider only sentences with 100 words at most, we may set L = 100.
L doesn’t appear in the final answer because we sum over λ ∈ [L].
Next, we explain in more detail the meaning of the tensors λ and Y .
Let
L = number of embeddings
d = embedding dimension
λ ∈ [L], α ∈ [ℓ], ν1 ∈ [n1], ν2 ∈ [n2]

ℓ = ν1ν2.
Consider matrices Y,E,X such that

Y δ,α =
∑
λ

Eδ,λXλ,α
(
Y [d],[ℓ] = E[d],[L]X [L],[ℓ]

)
(84.11)

Assume that matrix X has 1-hot columns

Xλ,α = δ(λ, λ(α)) (84.12)
where λ() : [ℓ]→ [L].
Hence,

Y δ,α = Eδ,λ(α) (84.13)

If we define
Λα = λ(α) (84.14)

then emb() maps

Λα → Y δ,α = Eδ,λ(α) (Λ[ℓ] → Y [d],[ℓ]) (84.15)

Now replace α by (ν1, ν2). emb() also maps

Λν1,ν2 → Y δ,ν1,ν2 = Eδ,λ(ν1,ν2) (Λ[n1],[n2] → Y [d],[n1],[n2]) (84.16)
Actually, emb() orders the tensor indices of the output so that the δ index is
on the right side rather than the left side of the input indices. Thus,

Y [n1],[n2],[d] = emb(Λ[n1],[n2]) (84.17)
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• Cross Entropy Loss

Some pseudo-code

loss = nn.CrossEntropyLoss()

output = loss(input=x[nc],[ns], target=t[ns])

Cross Entropy in Information Theory:

H(P σ
tar, P

σ
in) = −

∑
γ∈[nc]

Ptar(γ|σ) lnPin(γ|σ) (84.18)

= −
∑
γ∈[nc]

Ptar(γ|σ) ln
[
Pin(γ|σ)
Ptar(γ|σ)

Ptar(γ|σ)
]

(84.19)

= H(P σ
tar) +DKL(P

σ
tar ∥ P σ

in) (84.20)

Cross Entropy Loss in PyTorch:

Let

ns = total number of samples being considered (usually batch size). σ ∈ [ns]

nc = number of classes in classification. γ ∈ [nc]

x[nc],[ns] = input samples. Roughly speaking, if x, y is the data in supervised
training, then this is the prediction pred = forward(x).

t[ns] = target samples. Roughly speaking, if x, y is the data in supervised
training, then this is y.

Define

Pin(γ|σ) =
exp(xγ,σ)∑

γ′∈[nc]
exp(xγ′,σ)

(84.21)

= softmax(x[nc],σ)(γ|σ) (84.22)

Suppose W γ : values(t)→ [0, 1] for all γ ∈ [nc].

Define

Ptar(γ|σ) =
W γ(tσ)1(tσ ̸= −100)∑

γ∈[nc]
numerator

(84.23)

The -100 on the right side of the last equation can be replaced by any other
integer in values(t) for which we want the loss to be zero (for example, it could
be an integer used for padding)
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Now define the cross entropy loss LCE by

LCE =
1

ns

∑
σ∈[ns]

H(Ptar(·|σ), Pin(·|σ)) (84.24)

For example, if W γ = 1, and nc = 2,

LCE =
−1
ns

∑
σ∈[ns]

[Ptar(0|σ) lnPin(0|σ) + Ptar(1|σ) lnPin(1|σ)] (84.25)

• unsqueeze-repeat-gather

Some pseudo-code

lll_loc = ll_loc0.unsqueeze(2).\
repeat(1, 1, lll_state.shape[2])

lll_out = torch.gather(
input=lll_state, dim=1, index=lll_loc)

Sax uses the trio of operations unsqueeze-repeat-gather in the manner of the
above pseudo-code. We have already discussed in Section C.49 how each of
these 3 operations acts individually. Here we will discuss how they act jointly,
when used as in the above pseudo-code.

Let

lll_state= S[sba],[Λ],[d]

ll_loc0= L[sba],[a]
0

lll_loc= L[sba],[a],[d]

lll_out= O[sba],[a],[d]

σ ∈ sba, λ ∈ [Λ], α ∈ [a], δ ∈ [d]

unsqueeze(2) takes

L
[sba],[a]
0 → L

[sba],[a],0
0 (84.26)

lll_state.shape[2] equals d, and repeat(1, 1, d) takes

L
[sba],[a],0
0 → L[sba],[a],[d] = (L

[sba],[a],0
0 , . . . , L

[sba],[a],0
0︸ ︷︷ ︸

d times

) (84.27)

Now define
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λ(σ, α) = Lσ,α,δ = Lσ,α0 (84.28)

Then the gather() with dim=1 outputs:

Oσ,α,δ = Sσ,λ(σ,α),δ (84.29)

84.2 Bayesian Network for this model
Let

ℓpad = 86, padding length, for this batch
ℓenc = 121, encoded length, for this batch, ℓenc ≥ ℓpad
ndep = 5, number of copies of plain box connected in series, number of depths
natt = 2, number of copies of dashed box connected in series, number of

iterative (attention) layers.
d = 768, hidden dimension per head
nh = 12, number of heads (BERT base)
D = dnh, hidden dimension for all heads
sba = 24, batch size
nil = 6, number of ilabels
dme = 300, merge dimension
Fig.84.1 shows the bnet for Sax.2. The structural equations, printed in blue,

for that bnet, are as follows.
a[86] : ll_greedy_ilabel
B[121],[768] : lll_hidstate
d[121],[768] : lll_hidstate
E[86],[768] : lll_pred_code
G[86],[768] : lll_word_hidstate
I [121],[768] : lll_hidstate
L[86],[6] : lll_word_score
M [86],[300] : lll_word_hidstate
S[86],[768] : lll_word_hidstate
X [86],[6] : lll_word_score

a[86] = argmax(X [86],[6]; dim = −1)
: ll_greedy_ilabel

(84.30a)

B[121],[768] = BERT()
: lll_hidstate

(84.30b)

2The bnet of Fig.84.1 and its structural equations printed in blue, were produced via the texnn
software (Ref.[90])
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M [86],[300]

OO

Wil // L[86],[6]

OO

S[86],[768]

Wme

77

E[86],[768]
1

oo a[86]oo

d[121],[768] // G[86],[768]

Wme

gg

1

gg

I [121],[768]

gg

X [86],[6]

OO

B[121],[768]

OO

Figure 84.1: Sax bnet. 2 copies of dashed box are connected in series. 5 copies (5
depths) of plain box are connected in series. However, in the first of those 5 plain box
copies, the dotted box is omitted and node G feeds directly into node M (indicated
by red arrow). We display the tensor shape superscripts in the PyTorch L2R order.
All tensor shape superscripts have been simplified by omitting a [sba] from their left
side, where sba = 24 is the batch size.

d[121],[768] = dropout(I [121],[768])
: lll_hidstate

(84.30c)

E[86],[768] = embedding(a[86])
: lll_pred_code

(84.30d)

G[86],[768] = gather(d[121],[768]; dim = −2)
: lll_word_hidstate

(84.30e)
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I [121],[768] =
[
B[121],[768]

1(depth = 0) +M [86],[300]
1(depth > 0)

]
: lll_hidstate

(84.30f)

L[86],[6] =M [86],[300]W
[300],[6]
il

: lll_word_score
(84.30g)

M [86],[300] =
[
G[86],[768]

1(depth = 0) + S[86],[768]
1(depth > 0)

]
W [768],[300]
me

: lll_word_hidstate
(84.30h)

S[86],[768] = E[86],[768] +G[86],[768]

: lll_word_hidstate
(84.30i)

X [86],[6] = L[86],[6]
1(depth > 0)

: lll_word_score
(84.30j)

84.3 Loss for this model
The Loss L is the sum of the Cross Entropy Loss LCE and 4 penalty losses Li for
i ∈ PL where PL = {POSC,HV C,HV E,EC}.

L = LCE +
∑
i∈PL

λiLi (84.31)

where the λi are hyper-parameters to be determined heuristically.
In an earlier section, we discussed the Cross Entropy Loss at length. In this

section, we will discuss the 4 penalty losses.
Below, we will use the standard notation for the positive-part function

(a.k.a. the reLU function)

(x)+ =

{
x if x ≥ 0
0 if x < 0

(84.32)

= max(0, x) (84.33)

Since loss is supposed to be bounded below (usually it is defined to be greater or
equal to zero), the positive-part function comes in handy when defining a loss.
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Let
ℓ = number of words, length of sentence. α ∈ [ℓ]
M = number of depths. µ ∈ [M ]
wα = word at position α
Tpos = {N, V, JJ,RB}, POS tags, POS=Part Of Speech, N=Noun, V=Verb,

JJ=Adjective, RB=Adverb
Tex = {S,R,O,N}3. extraction tags (extags), S=Subject, R=Relation, O=Object,

N=None
Tex\N = Tex − {N}
POSα ∈ Tpos, Part Of Speech of wα.
Importance indicator function.

IMPα = 1(POSα ∈ Tpos) (84.34)

Head verb indicator function. A head verb is any verb that isn’t a light
verb (do, be, is, has, etc.).

HV α = 1(wα is a head verb) (84.35)

Let P (tµ,α = t) denote an empirical probability for a table element tµ,α ∈ Tex,
for all µ ∈ [M ] and α ∈ [ℓ].

The O6 paper uses the following sentence to exemplify the 4 types of penalty
losses.

Obama gained popularity after Oprah endorsed him for the presidency.

Henceforth, we will refer to this sentence as the osent (original sentence).
For the osent, the head verbs are gained, endorsed
Two valid extractions from osent are: (Obama; gained; popularity) and (Oprah;

endorsed him for; the presidency).

1. Part of Speech Coverage (POSC)

Penalize if some important words do not belong to at least one extraction.

In osent: all the words Obama, gained, popularity, Oprah, endorsed, presidency
must be covered in the set of extractions.

LPOSC =
∑
α∈[ℓ]

IMPαPPOSC(α) (84.36)

3The Sax software uses a different set for Tex than Tex = {S,R,O,N}. In Sax, we use for Tex the
list BASE_EXTAGS (defined globally in the file sax_globals.) In BASE_EXTAGS, N becomes NONE
(or 0) and R becomes REL (or 3). Also note that 2 tranets are trained by Sax, one for extraction
(task=ex), and one for splitting (task=cc). For task=cc, Tex is replaced by Tcc. In Sax, we use for
Tcc the list BASE_CCTAGS (defined globally in the file sax_globals.) In BASE_CCTAGS, N becomes
NONE (or 0) and R becomes CC (or 3).
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PPOSC(α) = 1−maxµ∈[M ]maxt∈Tex\NP (t
µ,α = t) (84.37)

2. Head Verb Coverage (HVC)

Penalize if a head verb is not present in the relation (R) of any extraction.

In osent: (Obama; gained; popularity), (Obama; gained; presidency) is not a
comprehensive set of extractions.

LHV C =
∑
α∈[ℓ]

HV αPHV C(α) (84.38)

PHV C(α) =

∣∣∣∣∣∣1−
∑
µ∈[M ]

P (tµ,α = R)

∣∣∣∣∣∣ (84.39)

3. Head Verb Exclusivity (HVE)

Penalize extractions that contain more than one head verb in their relation (R).

In osent: gained popularity after Oprah endorsed is not a good relation as it
contains two head verbs

LHV E =
∑
µ∈[M ]

∑
α∈[ℓ]

HV αP (tµ,α = R)− 1


+

(84.40)

4. Extraction Count (EC)

Penalize if the total number of extractions with head verbs in the relation (R)
is too small; i.e., it is smaller than the number of head verbs in the osent.

LEC =

∑
α∈[ℓ]

HV α −
∑
µ∈[M ]

ECµ


+

(84.41)

ECµ = maxα∈[ℓ]HV
αP (tµ,α = R) (84.42)
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Chapter 85

Shannon Information Theory

Throughout this book, we often use the definitions of entropy, mutual information,
conditional mutual information, cross entropy, etc. All these definitions originated
from the seminal work of Claude Shannon. Note that the connection between bnets
and Shannon Information Theory (SIT) goes much deeper than that. Most of SIT
can be expressed graphically using bnets, as I explain in my paper Ref.[89].

Below I present Ref.[89] in its entirety.
Title: Shannon Information Theory Without Shedding Tears Over Delta &

Epsilon Proofs or Typical Sequences
Abstract: This paper begins with a discussion of integration over probabil-

ity types (p-types). After doing that, the paper re-visits 3 mainstay problems of
classical (non-quantum) Shannon Information Theory (SIT): source coding without
distortion, channel coding, and source coding with distortion. The paper proves
well-known, conventional results for each of these 3 problems. However, the proofs
given for these results are not conventional. They are based on complex integration
techniques (approximations obtained by applying the method of steepest descent to
p-type integrals) instead of the usual delta & epsilon and typical sequences arguments.
Another unconventional feature of this paper is that we make ample use of classical
Bayesian networks (CB nets). This paper showcases some of the benefits of using CB
nets to do classical SIT.
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85.1 Introduction
For a good textbook on classical (non-quantum) Shannon Information Theory (SIT),
see, for example, Ref.[77] by Cover and Thomas. Henceforth we will refer to it as
C&T. For a good textbook on classical (non-quantum) Bayesian Networks, see, for
example, Ref.[13] by Koller and Friedman.

This paper begins with a discussion of integration over probability types (p-
types). After doing that, the paper re-visits 3 mainstay problems of classical SIT:

• source coding (lossy compression) without distortion

• channel coding

• source coding with distortion

The paper proves well-known, conventional results for each of these 3 problems. How-
ever, the proofs given for these results are not conventional. They are based on
complex integration techniques (approximations obtained by applying the method of
steepest descent to p-type integrals) instead of the usual delta & epsilon and typical
sequences arguments.

Another unconventional feature of this paper is that we make ample use of
classical Bayesian networks (CB nets). This paper showcases some of the benefits of
using CB nets to do classical SIT.

P-types were introduce into SIT by Csiszár and Körner (see Ref.[30]). P-type
integration is a natural, almost obvious consequence of the theory of p-types, although
it is not spelled out explicitly in the book by Csiszár and Körner. In fact, all workers
whose work I am familiar with, including Csiszár and Körner, use p-types frequently,
but they do not use p-type integration. Instead, they use delta & epsilon and typical
sequences arguments to bound some finite sums which are discrete approximations of
p-type integrals.

The conventional delta & epsilon arguments are more rigorous than the p-
type integration arguments presented here. Although less rigorous than traditional
arguments, p-type integration arguments have the virtue that they are easier to un-
derstand and follow, especially by people who are not well versed in rigorous analysis.
Such is the case with many physicists and engineers. A similar problem occurs when
teaching Calculus. One can teach Calculus with the full panoply of delta & epsilon
arguments from a textbook such as the legendary one by W. Rudin (Ref.[65]). Or one
can teach Calculus at the level and scope of a college freshman course for engineers.
Each approach appeals to a different audience and fulfils different needs.

Most of our results are not exact. They are leading order terms in asymp-
totic expansions for large n, where n is the number of letters in a codeword. These
approximations become increasingly more accurate as n→∞.

This paper is almost self contained, although a few times we assume certain
inequalities and send the reader to C&T for a proof of them.
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85.2 Preliminaries and Notation
In this section, we will describe some basic notation used throughout this paper.

As usual, Z,R,C will denote the integers, real numbers, and complex numbers,
respectively. We will sometimes add superscripts to these symbols to indicate subsets
of these sets. For instance, we’ll use R≥0 to denote the set of non-negative reals. For
a, b ∈ Z such that a ≤ b, let Za,b = {a, a+ 1, a+ 2, . . . , b}.

Let δxy = δ(x, y) denote the Kronecker delta function: it equals 1 if x = y and
0 if x ̸= y. Let θ(S) denote the truth function: it equals 1 if statement S is true
and 0 otherwise. For example, δyx = θ(x = y). Another example is the step function
θ(x > 0): it equals 1 if x > 0 and is zero otherwise.

For any matrix M ∈ Cp×q, M∗ will denote its complex conjugate, MT its
transpose, and M † =M∗T its Hermitian conjugate.

Random variables will be denoted by underlined letters; e.g., a. The (finite)
set of values (states) that a can assume will be denoted by Sa. Let Na = |Sa|. The
probability that a = a will be denoted by P (a = a) or Pa(a), or simply by P (a) if the
latter will not lead to confusion in the context it is being used. We will use pd(Sa)
to denote the set of all probability distributions with domain Sa. For joint random
variables (a, b), let Sa,b = Sa × Sb = {(a, b) : a ∈ Sa, b ∈ Sb}.

Sometimes, when two random variables a ⟨1⟩ and a ⟨2⟩ satisfy Sa⟨1⟩ = Sa⟨2⟩,
we will omit the indices ⟨1⟩ and ⟨2⟩ and refer to both random variables as a. We
shall do this sometimes even if the random variables a ⟨1⟩ and a ⟨2⟩ are not identically
distributed! This notation, if used with caution, does not lead to confusion and does
avoid a lot of index clutter.

Suppose {Px,y(x, y)}∀x,y ∈ pd(Sx,y). We will often use the expectation op-
erators Ex =

∑
x P (x), Ex,y =

∑
x,y P (x, y), and Ey|x =

∑
y P (y|x). Note that

Ex,y = ExEy|x. Let

P (x : y) =
P (x, y)

P (x)P (y)
. (85.1)

Note that ExP (x : y) = EyP (x : y) = 1.
Suppose n is any positive integer. Let xn = (x1, x2, . . . , xn) be the random

variable that takes one values xn = (x1, x2, . . . , xn) ∈ Snx .
The rate of x is defined as Rx =

lnNx

n
.

xn is said to be i.i.d. (independent, identically distributed) if Sxj = Sx for all
j ∈ Z1,n and there is a Px ∈ pd(Sx) such that Pxn(xn) =

∏n
j=1{Px(xj)}. When xn

is i.i.d., we will sometimes use Px(xn) to denote the more correct expression Pxn(xn)
and say that Px(xn) is an i.i.d. source.

Suppose {P (yn|xn)}∀yn ∈ pd(Sny ) for all xn ∈ Snx . P (yn|xn) is said to be a
discrete memoryless channel (DMC) if P (yn|xn) =

∏n
j=1 P (yj|xj).

We will use the following measures of various types of information (entropy):

• The (plain) entropy of the random variable x is defined in the classical case by
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H(x) = Ex ln
1

P (x)
, (85.2)

which we also call HPx(x), H{P (x)}∀x, and H(Px). This quantity measures the
spread of Px.

One can also consider plain entropy for a joint random variable x = (x1, x2).
For Px1,x2 ∈ pd(Sx1,x2) with marginal probability distributions Px1 and Px2 ,
one defines a joint entropy H(x1, x2) = H(x) and partial entropies H(x1) and
H(x2).

• The conditional entropy of y given x is defined in the classical case by

H(y|x) = Ex,y ln
1

P (y|x)
(85.3)

= H(y, x)−H(x) , (85.4)

which we also call HPx,y(y|x). This quantity measures the conditional spread of
y given x.

• The Mutual Information (MI) of x and y is defined in the classical case by

H(y : x) = Ex,y lnP (x : y) = ExEyP (x : y) lnP (x : y) (85.5)
= H(x) +H(y)−H(y, x) , (85.6)

which we also call HPx,y(y : x). This quantity measures the correlation between
x and y.

• The Conditional Mutual Information (CMI, which can be read as “see me") of
x and y given λ is defined in the classical case by:

H(y : x|λ ) = Ex,y,λ ln
P (x, y|λ)

P (x|λ)P (y|λ)
(85.7)

= Ex,y,λ ln
P (x, y, λ)P (λ)

P (x, λ)P (y, λ)
(85.8)

= H(x|λ ) +H(y|λ )−H(y, x|λ ) , (85.9)

which we also call HPx,y, λ
(y : x|λ ). This quantity measures the conditional

correlation of x and y given λ .
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• The relative information of P ∈ pd(Sx) divided by Q ∈ pd(Sx) is defined by

D{P (x)//Q(x)}∀x =
∑
x

P (x) ln
P (x)

Q(x)
, (85.10)

which we also call D(Px//Qx).

Note that we define entropies using natural logs. Our strategy is to use natural
log entropies for all intermediate analytical calculations, and to convert to base-2 logs
at the end of those calculations if a base-2 log numerical answer is desired. Such a
conversion is of course trivial using log2 x = lnx

ln 2
and ln 2 = 0.6931

We will use the following well-known integral representation of the Dirac delta
function:

δ(x) =

∫ +∞

−∞

dk

2π
eikx . (85.11)

We will also use the following integral representation of the step function:

θ(x > 0) =

∫ +∞

−∞

dk

2πi

eikx

(k − iϵ)
, (85.12)

for some ϵ > 0. Eq.(85.12) follows because the integrand has a simple pole at k = iϵ.
Let k = kr + iki. If x > 0, the integrand goes to zero in the upper half of the (kr, ki)
plane and it goes to infinity in the lower half plane, so we are forced to close the
contour of integration in the upper half plane, which means the pole lies inside the
contour. When x < 0, we are forced to close the contour in the lower half plane and
thus the pole lies outside the contour.

Suppose L(v) is a real valued function that depends in a continuous manner
on N real variables v = {vj}Nj=1. The following variational operator can be applied
to L(v):

δ =
∑
j

δvj
∂

∂vj
. (85.13)

The N -dimensional Taylor expansion of L(v) about the point v = 0 can be expressed
as

f(v) = f(0) + [δf(v)]v=0 +
1

2!
[δ2f(v)]v=0 ++

1

3!
[δ3f(v)]v=0 + . . . . (85.14)

We will often use the following Taylor expansions:

xϵ = eϵ lnx = 1 + ϵ lnx+
1

2
(ϵ lnx)2 + . . . , (85.15)
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and

ln(1 + x) = x− x2

2
+ . . . ( converges if |x| < 1) . (85.16)

85.3 Integration Over P-types
In this section, we will define integration over probability types (p-types). The set of
p-types for a given n fills all of pd(Sx) in an increasingly finer way as n→∞. Thus,
once the density of p-types at each point of pd(Sx) is known, we can integrate that
density over a particular region R ⊂ pd(Sx) to get the number of p-types within R.
We will define integration over p-types that depend on a single variable (univariate
p-types), or multiple variables (multivariate p-types). We will also define integration
over conditional p-types. Finally, we will define Dirac delta functions for integration
over p-types.

85.3.1 Integration Over Univariate P-type

For any xn ∈ Snx , denote the number of occurrences of x ∈ Sx within xn by N(x|xn).
Hence

N(x|xn) =
n∑
j=1

θ(xj = x) . (85.17)

One can now say that two elements xn and x′n of Snx are equivalent if, for all x ∈ Sx,
xn and x′n both have the same number of occurrences of x. This equivalence relation
partitions Snx into equivalence classes given by, for any xn ∈ Snx ,

[xn] = {x′n ∈ Snx : N(x|xn) = N(x|x′n)∀x ∈ Sx} . (85.18)

For each class [xn] and x ∈ Sx, we can define

P[xn](x) =
N(x|xn)

n
. (85.19)

Clearly, {P[xn](x)}∀x ∈ pd(Sx). We will refer to this probability distribution as a
p-type.

Note that if Q(xn) is an i.i.d. source,

Q(xn) =
n∏
j=1

Q(xj) , (85.20)

so

Q(xn) =
∏
x∈Sx

{
Q(x)N(x|xn)} = en

∑
x P[xn](x) lnQ(x) . (85.21)
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Define the following integration operator:∫
DP[xn] =

∏
x

{∫ 1

0

dP[xn](x)

}
δ

(∑
x

P[xn](x)− 1

)
. (85.22)

We will denote the number of elements in a class [xn] by

d[xn] = |[xn]| . (85.23)

Claim 129 ∑
xn

=
∑
[xn]

d[xn] . (85.24)

proof: The classes [xn] are non-overlapping and they cover all of Snx .
QED

Claim 130 For any xn ∈ Snx ,

d[xn] = (d[xn])H=0 enH(P[xn]) , (85.25)

where

(d[xn])H=0 =
1

(2πn)
Nx−1

2

√∏
x P[xn](x)

. (85.26)

proof: Let
Sx = {x(j) : j ∈ Z1,Nx} (85.27)

and

rj = N(x(j)|xn) (85.28)

for all j ∈ Z1,Nx . Note that
∑Nx

j=1 rj = n. Recall Stirling’s formula:

n! ≈
√
2πn nne−n (85.29)

for n >> 1. Combinatorics gives a value for |[xn]| in terms of factorials. If we
approximate those factorials using Stirling’s formula, we get

|[xn]| =
n!∏Nx

j=1{rj!}
(85.30)

=
1

(2π)
Nx−1

2

(
n

r1r2 . . . rNx

) 1
2

e−n+n lnn−
∑

j{−rj+rj ln rj} (85.31)

=
exp(−n

∑
j
rj
n
ln

rj
n
)

(2πn)
Nx−1

2

√∏
j

{ rj
n

} . (85.32)
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QED

Claim 131 ∑
[xn]

=

∫
DP[xn]n

Nx−1 . (85.33)

proof: For any i.i.d. source Q(xn), we have that

1 =
∑
xn

Q(xn) (85.34)

=
∑
[xn]

d[xn]e
n
∑

x P[xn](x) lnQ(x) (85.35)

=

∫ DP[xn]

∆V

eL0

(2πn)
Nx−1

2

√∏
x P[xn](x)

, (85.36)

where ∆V is yet to be determined and

L0 = n
∑
x

P[xn](x) ln
Q(x)

P[xn](x)
. (85.37)

We add to L0 a Lagrange multiplier term that constrains the components of the vector
{P[xn](x)}∀x so that they sum to one:

L = Lλ = L0 + nλ

(∑
x

P[xn](x)− 1

)
(85.38)

for any λ ∈ R. Our goal is to approximate the integral Eq.(85.36) using the method
of steepest descent. We just want to get the leading order term in an asymptotic
expansion of the integral for large n. To get this leading order term, it is sufficient to
approximate L to second order in δP[xn](x), about the point (or points) that have a
vanishing first variation δL. Thus, approximate

L ≈ L̃+ δL̃+
1

2
δ2L̃ , (85.39)

where quantities with a tilde over them are evaluated at a tilde (saddle) point that
satisfies

δL̃ = 0 . (85.40)

It’s easy to check that

δL = n
∑
x

δP[xn](x) ln

(
Q(x)e−1+λ

P[xn](x)

)
, (85.41)
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and

δ2L = −n
∑
x

[δP[xn](x)]
2

P[xn](x)
. (85.42)

Next, for each x, we set to zero the coefficient of δP[xn](x) in δL. After doing that,
we enforce the constraint that

∑
x P[xn](x) = 1. This leads us to conclude that

P̃[xn](x) = Q(x) . (85.43)

Using this value of P̃[xn](x), we get

L̃ = 0 (85.44)

and

δ2L̃ = −n
∑
x

[δP[xn](x)]
2

Q(x)
. (85.45)

From Eq.(85.36), we get

1 =
1

∆V (2πn)
Nx−1

2

√∏
xQ(x)

Γ , (85.46)

where

Γ =

∫
DP[xn]e

−n
∑

x

[δP[xn](x)]
2

2Q(x) =

√√√√ πNx−1∏
x

{
n

2Q(x)

}
2
n

. (85.47)

The final integral was performed using Eq.(85.256). This implies 1/∆V = nNx−1.
QED

Note that Eqs.(85.33) and (85.251) imply that∑
[xn]

1 =
nNx−1

(Nx − 1)!
(85.48)

so the number of p-types with a given n in pd(Sx) varies polynomial with n.

85.3.2 Integration Over Multivariate P-types

There exists a very natural 1-1 onto map from Snx ×Sny to (Sx×Sy)n, namely the one

that identifies (xj)∀j(yj)∀j with
[
xj
yj

]
∀j

. Thus, the definitions and claims given in

the previous section for N(x|xn), [xn], P[xn](x) and
∫
DP[xn] generalize very naturally
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to give analogous definitions and claims for N(x, y|xn, yn), [xn, yn], P[xn,yn](x, y) and∫
DP[xn,yn]. For example,

N(x, y|xn, yn) = N(

(
x
y

)
|
(
xn

yn

)
) =

∑
j

θ(

(
x
y

)
=

(
xj
yj

)
) . (85.49)

We will sometimes use [ ] as an abbreviation for a class. For example, we
might abbreviate P[an,bn,cn](a, b, c) by P[ ](a, b, c).

Note that when yn = xn in P[xn,yn],

P[xn,xn](x, y) = δxy P[xn](x) . (85.50)

Note also that we can express δy
n

xn as follows

en
∑

x,y P[xn,yn](x,y) ln δ
x
y =

{
0, if ∃(x, y) such that δyx = 0 and P[xn,yn](x, y) ̸= 0
1, otherwise (85.51)

= θ(∀(x, y) : y ̸= x⇒ P[xn,yn](x, y) = 0) (85.52)

= δy
n

xn . (85.53)

85.3.3 Integration Over Conditional P-types

For any xn ∈ Snx and yn ∈ Sny , define conditional classes by

[yn|xn] ={
(x′n, y′n) ∈ Snx × Sny : N(x,y|xn,yn)∑

y N(x,y|xn,yn) =
N(x,y|x′n,y′n)∑
y N(x,y|x′n,y′n)∀(x, y) ∈ Sx × Sy

} (85.54)

and conditional probability types by

P[yn|xn](y|x) =
N(x, y|xn, yn)∑
yN(x, y|xn, yn)

=
P[xn,yn](x, y)

P[xn,yn](x)
(85.55)

for all x ∈ Sx and y ∈ Sy.
We will sometimes use [ ] as an abbreviation for a conditional class. For

example, we might abbreviate P[an,bn|cn,dn](a, b|c, d) by P[ ](a, b|c, d).
Define the following integration operator:

∫
DP[yn|xn] =

∏
x,y

{∫ 1

0

dP[yn|xn](y|x)
}∏

x

{
δ

(∑
y

P[yn|xn](y|x)− 1

)}
. (85.56)

We will denote the number of elements in conditional class [yn|xn] by

d[yn|xn] = |[yn|xn]| . (85.57)
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Claim 132 ∑
xn,yn

=
∑
[xn]

d[xn]
∑

[yn|xn]

d[yn|xn] . (85.58)

proof: For any DMC Q(yn|xn), we must have

1 =
∑

[yn|xn]

d[yn|xn]Q(y
n|xn) . (85.59)

If Q(xn) is an i.i.d source and Q(xn, yn) = Q(yn|xn)Q(xn), then the last equation
implies

1 =
∑
[xn]

d[xn]Q(x
n)
∑

[yn|xn]

d[yn|xn]Q(y
n|xn) (85.60)

=
∑
[xn]

d[xn]
∑

[yn|xn]

d[yn|xn]Q(x
n, yn) . (85.61)

But also

1 =
∑
xn,yn

Q(xn, yn) . (85.62)

Since Q(xn, yn) is an arbitrary i.i.d. source, the claim follows.
QED

Claim 133
d[yn|xn] =

d[xn,yn]
d[xn]

. (85.63)

proof: Combinatorics?
QED

Claim 134 ∑
[xn]

∑
[yn|xn]

=
∑

[xn,yn]

. (85.64)

proof: This follows from Claims 132 and 133 and the fact that
∑

xn,yn =
∑

[xn,yn] d[xn,yn].

QED
Alternatively, one could prove Claim 134 by combinatorics and then prove

Claim 133 from Claims 132 and 134.

Claim 135∫
DP[xn]

∫
DP[yn|xn]

[∏
x

{
P[xn](x)

}]Ny−1

=

∫
DP[xn,yn] (85.65)
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proof: Let LHS and RHS denote the left hand side and right hand side of Eq.(85.65).
Recall that Dirac delta functions obey δ(ax) = 1

|a|δ(x). This proof hinges on
that simple identity.

Define

Ω1 =
∏
x

{∫ 1

0

dP[xn](x)

}
δ

(∑
x

P[xn](x)− 1

)
(85.66)

and

Ω2 =
∏
x,y

{∫ 1

0

dP[yn|xn](y|x)
}∏

x

{
δ

(∑
y

P[yn|xn](y|x)− 1

)}[∏
x

{
P[xn](x)

}]Ny−1

.

(85.67)
Then

LHS = Ω1Ω2 (85.68)

= Ω1

∏
x,y

{∫ 1

0

dP[xn,yn](x, y)

}∏
x

{
δ

(∑
y

P[xn,yn](x, y)− P[xn](x)

)}
(85.69)

=
∏
x,y

{∫ 1

0

dP[xn,yn](x, y)

}
δ

(∑
x,y

P[xn,yn](x, y)− 1

)
(85.70)

= RHS (85.71)

This works because LHS has ni = Nx+NxNy integrals and nδ = Nx+1 delta
functions, for a total of ni − nδ = NxNy − 1 degrees of freedom. RHS has NxNy

integrals and one delta function for the same total of NxNy − 1 degrees of freedom.
QED

Claim 136

∑
[yn|xn]

=

∫
DP[yn|xn]

nNyNx

nNx

[∏
x

{
P[xn](x)

}]Ny−1

(85.72)

=

∫
DP[yn|xn](nP[xn]

g.m.)NxNy−Nx , (85.73)

where

P[xn]
g.m. =

[∏
x

{
P[xn](x)

}] 1
Nx

(85.74)

is the geometric mean of P[xn].
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proof: Substitute ∫
DP[xn] =

1

nNx−1

∑
[xn]

, (85.75)

and ∫
DP[xn,yn] =

1

nNxNy−1

∑
[xn,yn]

(85.76)

into Eq.(85.65) and then compare the result with Eq.(85.64).
QED

85.3.4 Dirac Delta Functions For P-type Integration

One occasionally finds it useful to use Dirac delta functions for p-type integration.
Suppose xn, yn ∈ Snx and ϵ is a real number satisfying 0 < ϵ << 1. Let X = [xn] and
Y = [yn]. Define

Va =
aNx−1π

Nx−1

2√
Nx

(85.77)

for any positive real number a. We will refer to the following functions as Dirac delta
functions for setting X and Y equal

δ(X ,Y) = θ(X = Y) , (85.78)

δϵ(X ,Y) = exp

(
− 1

ϵ2

∑
x

{PX (x)− PY(x)}2
)
, (85.79)

δϵ(x
n, yn) =

δϵ(X ,Y)√
dXdY Vnϵ

, (85.80)

and

δϵ(PX − PY) =
δϵ(X ,Y)

Vϵ
. (85.81)

Claim 137 ∑
xn

δϵ(x
n, yn) = 1 , (85.82)

and ∫
DPX δϵ(PX − PY) = 1 . (85.83)

proof: This follows from integration formula Eq.(85.256).
QED
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85.4 Source Coding (Lossy Compression)
We consider all source coding protocols that can be described by the following CB
net

x̂n moo xnoo , (85.84)

with Sx = Sx̂ and

P (xn) =
n∏
j=1

Px(xj) , (85.85)

P (m|xn) = δ(m,m(xn)) (85.86)

and

P (x̂n|m) = δ(x̂n, x̂n(m)) . (85.87)

Assume that we are given a source Px ∈ pd(Sx). The encoding function m(·) and the
decoding function x̂n(·) are yet to be specified.1

The probability of error is defined by

Perr = P (x̂n ̸= xn) . (85.88)

We find it more convenient to work with the probability of success, which is defined
by Psuc = 1− Perr. One has

Psuc = 1− Perr (85.89)
= P (x̂n = xn) (85.90)

=
∑

x̂n,m,xn

θ(x̂n = xn)P (x̂n|m)P (m|xn)Px(xn) (85.91)

=
∑
xn

Px(x
n)δ[xn, x̂n ◦m(xn)] . (85.92)

Now it’s time to decide what encoding and decoding functions we want to
consider. Suppose A is a proper subset of Snx . One can give each element of A an
individual number (its index) from 1 to |A|. Assume, without loss of generality, that
0n ̸∈ A. As we shall see, the following encoding and decoding functions are good
enough:

m(xn) =

{
index of xn in A , if xn ∈ A
0 , if xn ̸∈ A , (85.93)

1Many authors (for instance, C&T) denote the encoding function m(·) by f(·) and the decoding
function x̂n(·) by g(·).
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and

x̂n(m) =

{
m−1(m) , if m ∈ Z1,|A|
0n , if m = 0

, (85.94)

where the set A is given by either

APx =

{
xn : R ≥ 1

n
ln

1

Px(xn)

}
=

{
xn : R ≥

∑
x

P[xn](x) ln
1

Px(x)

}
, (85.95)

or

Auniv =
{
xn : R ≥ H(P[xn])

}
=

{
xn : R ≥

∑
x

P[xn](x) ln
1

P[xn](x)

}
(85.96)

for some positive number R yet to be specified. These two interesting options for the
set A can be considered simultaneously by defining

A =

{
xn : R ≥

∑
x

P[xn](x) ln
1

Q(x)

}
, (85.97)

where

Q(x) =

{
Px(x) , source dependent coding
P[xn](x) , universal coding . (85.98)

In the case of source dependent coding, Q (and therefore the functions m(·) and
x̂n(·)) depend on the source distribution Px. In the case of universal coding, Q is
independent of the source.

Note that for this encoding and decoding functions,

δ[xn, x̂n ◦m(xn)] = θ(xn ∈ A) = θ

(
R ≥

∑
x

P[xn](x) ln
1

Q(x)

)
(85.99)

for all xn ∈ Snx − {0n} so

Psuc =
∑
xn

Px(x
n)θ

(
R ≥

∑
x

P[xn](x) ln
1

Q(x)

)
(85.100)

∼
∫
DP[xn]e

n
∑

x P[xn](x) ln
Px(x)

P[xn](x) θ

(
R ≥

∑
x

P[xn](x) ln
1

Q(x)

)
(85.101)

≈ θ(R ≥ H(Px)) . (85.102)
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Eq.(85.102) follows because, as is easily proven, applying the method of steepest
descent to the p-type integral yields a tilde point:

P̃[xn](x) = Px(x) . (85.103)

As mentioned in the notation section, we define Rm by

Rm =
lnNm

n
. (85.104)

So far, it’s not clear what value to use for the constant R that appears in the definition
of set A. In the next Claim, we will show that it must equal Rm for our arguments
to be valid.

Claim 138
R = Rm (85.105)

for consistency of our arguments.

proof: We must have

Nm =
∑
xn

θ(xn ∈ A) (85.106)

∼
∫
DP[xn]e

n
∑

x P[xn](x) ln
1

P[xn](x) θ

(
R >

∑
x

P[xn](x) ln
1

Q(x)

)
(85.107)

∼ enR
∫
DP[xn]e

n
∑

x P[xn](x) ln
Q(x)

P[xn](x) θ

(
R >

∑
x

P[xn](x) ln
1

Q(x)

)
(85.108)

∼ enRθ(R > H(Px)) . (85.109)

As long as R > H(x), our approximations are valid and Nm = enR.
QED

85.5 Channel Coding
We define a codebook C as an Nm×n matrix given by C = {xn(m)}∀m = xn(·) where
xn(m) ∈ Snx for all m ∈ Sm.

We consider all channel coding protocols that can be described by the following
CB net

m̂ ynoo xnoo moo

C

__ ?? , (85.110)

670



with

P (m) =
1

Nm

, (85.111)

P (xn|m, C) = δ(xn, xn(m)) , (85.112)

P (yn|xn) =
∏
j

P (yj|xj) = en
∑

x,y P[xn,yn](x,y) lnP (y|x) , (85.113)

P (C) = to be specified , (85.114)

and

P (m̂|yn, C) = to be specified . (85.115)

Assume that we are given a channel {Py|x(y|x)}∀y ∈ pd(Sy) for all x ∈ Sx. The encod-
ing P (C) and decoding P (m̂|yn, C) probability distributions are yet to be specified.

It’s convenient to define the coding rate Rm by

Rm =
lnNm

n
(85.116)

and the channel capacity C by

C = max
Px

H(y : x) . (85.117)

Claim 139 (Independence upper bound for mutual information of DMC) If P (yn|xn) =∏n
j=1 P (yj|xj) (this is what is called a discrete memoryless channel, DMC), then

H(yn : xn) ≤
n∑
j=0

H(y
j
: xj) . (85.118)

Furthermore, equality holds iff the xj are mutually independent.

proof: Assume n = 3 for illustrative purposes. If the xj are not independent, we
must consider the following CB net

y3 x3oo =



y
1

y
2 x3

__

oo

��
y
3

. (85.119)
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If the xj are independent, then this becomes

y3 x3oo =



y
1

x1oo

y
2

x2oo

y
2

x3oo

(85.120)

In the case of Eq.(85.119),

H(yn : xn) = H(yn)−H(yn|xn) = H(yn)−
∑
j

H(y
j
|xj) (85.121)

≤
∑
j

H(y
j
)−

∑
j

H(y
j
|xj) (85.122)

=
∑
j

H(y
j
: xj) (85.123)

Eq.(85.122) follows from the “subadditivity" or “independence upper bound" of the
joint entropy, which says that H(a, b) ≤ H(a) + H(b) for any random variables a
and b. (See C&T for a proof of subadditivity). If the xj are mutually independent,
then the y

j
must be mutually independent too, in which case Eq.(85.122) becomes

an equality. Conversely, if Eq.(85.122) is an equality, then the y
j

must be mutually
independent so the xj must be too.
QED

Claim 140 Optimality: ∀Rm, if ∃ an encoding and a decoding that satisfy limn→∞ Perr =
0 for the CB net of Eq.(85.110), then Rm ≤ C.

proof:

nRm = lnNm = H(m) = H(yn : m) +H(m|yn) (85.124)
≤ H(yn : m) + nδ (85.125)
≤ H(yn : xn) + nδ (85.126)

≤
n∑
j=1

H(y
j
: xj) + nδ (85.127)

≤ n(C + δ) (85.128)

(85.125): This follows from Fano’s inequality. (See C&T for a proof of Fano’s inequality.)
δ is some positive number that tends to zero as n→∞

672



(85.126): This follows from the data processing inequalities. (See C&T for a proof of the
data processing inequalities.)

(85.127): This follows from Claim 139.

(85.128): This follows from the definition of channel capacity C.

QED

Claim 141 Achievability: ∀Rm, if Rm ≤ C, then ∃ an encoding and a decoding that
satisfy limn→∞ Perr = 0 for the CB net of Eq.(85.110).

proof: So far, the encoding and decoding probability distributions are unspecified.
In this proof, we will use one possible choice for these distributions. This choice,
although not very practical, turns out to yield optimal results. For P (C) we choose
what is called random coding:

P (C) = Px(x
n(·)) =

∏
m

Px(x
n(m)) =

∏
m,j

Px(xj(m)) (85.129)

for some source Px ∈ pd(Sx). For P (m̂|yn, C) we choose a maximum likelihood de-
coder:2

P (m̂|yn, C) =
∏
m̸=m̂

θ

(
R <

1

n
ln
P (yn|xn(m̂))

P (yn|xn(m))

)
(85.130)

=
∏
m̸=m̂

θ

(
R <

1

n
ln
P (yn : xn(m̂))

P (yn : xn(m))

)
(85.131)

for some R > 0. Note that there is no guarantee that this definition of P (m̂|yn, C)
is a well defined probability distribution satisfying

∑
m̂ P (m̂|yn, C) = 1. In the next

Claim, we will prove that if R = Rm, then P (m̂|yn, C) is well defined.
The probability of error is defined by

Perr = P (m̂ ̸= m) . (85.132)

We find it more convenient to work with the probability of success, which is defined
by Psuc = 1− Perr. One has

2By
∏

m̸=m̂ we mean
∏

m∈Sm−{m̂}.
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Psuc = 1− Perr (85.133)
= P (m̂ = m) (85.134)

=
∑
m̂,m

θ(m̂ = m)P (m̂,m) (85.135)

=
∑

m̂,m,yn,xn,C

θ(m̂ = m)P (m̂|yn, C)P (yn|xn)δ(xn, xn(m))P (m)P (C)(85.136)

=
1

Nm

∑
m̂

∑
C

P (C)
∑
yn

P (m̂|yn, C)P (yn|xn(m̂)) . (85.137)

The choice of m̂ ∈ Sm does not matter. Any choice would give the same
answer for Psuc

1

Nm

∑
m̂

∑
C

P (C) =
∑
C

P (C) = EC . (85.138)

Thus

Psuc = EC
∑
yn

P (yn|xn(m̂))
∏
m̸=m̂

θ

(
R <

1

n
ln
P (yn : xn(m̂))

P (yn : xn(m))

)
. (85.139)

Let ∮
k(·)

=
∏
m ̸=m̂

{∫ +∞

−∞

dk(m)

2πi

1

(k(m)− iϵ)

}
, (85.140)

and

K =
∑
m ̸=m̂

k(m) . (85.141)

Expressing the θ functions in Eq.(85.139) as integrals (see Eq.(85.12)), we get

Psuc =

∮
k(·)

e−iKR
∑

yn,xn(·)

exp

n ∑
y∈Sy , x(·)∈S

Nm
x

P[ ](y, x(·)) lnZ(y, x(·))

 , (85.142)

where

Z(y, x(·)) = P (y|x(m̂))
∏
m

{Px(x(m))}
∏
m̸=m̂

{
P i

k(m)
n (y : x(m̂))

P i
k(m)
n (y : x(m))

}
. (85.143)
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Next we express the sum over yn, xn(·) as a p-type integral to get

Psuc =

∮
k(·)

e−iKR
∫
DP[ ]n

Ny+NxNm−1(d[yn,xn(·)])H=0e
L0 , (85.144)

where

L0 = n
∑
y,x(·)

P[ ](y, x(·)) ln
Z(y, x(·))
P[ ](y, x(·))

. (85.145)

We add to L0 a Lagrange multiplier term that constrains the components of the vector
{P[ ](y, x(·))}∀y,x(·) so that they sum to one:

L = Lλ = L0 + nλ

∑
y,x(·)

P[ ](y, x(·))− 1

 (85.146)

for any λ ∈ R. It’s easy to check that L is maximized when

P̃[ ](y, x(·)) =
Z(y, x(·))∑
y,x(·) Z(y, x(·))

. (85.147)

Evaluating the integrand of the p-type integral in Eq.(85.144) at this tilde point yields

Psuc =

∮
k(·)

e−iKRen lnZ , (85.148)

where

Z =
∑
y,x(·)

Z(y, x(·)) . (85.149)

Using the shorthand notations

Ey =
∑
y

P (y), Ex(m) =
∑
x(m)

Px(x(m)) , (85.150)

Z can be expressed as

Z = Ey

Ex(m̂)[P
1+iK

n (y : x(m̂))]
∏
m ̸=m̂

{
Ex(m)[P

−i k(m)
n (y : x(m))]

} . (85.151)

Define
Z0 = [Z]k(m)=0 ∀m = EyEx(m̂)[P

1+iK
n (y : x(m̂))] . (85.152)

Note that 1 equals
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1 =

∫ +∞

−∞
dK δ(

∑
m̸=m̂

{k(m)} −K) (85.153)

=

∫ +∞

−∞
dK

∫ +∞

−∞

dh

2π
eih(

∑
m ̸=m̂{k(m)}−K) . (85.154)

Multiplying Psuc by 1 certainly doesn’t change it. Thus the right hand sides of
Eqs.(85.148) and (85.154) can be multiplied to get

Psuc =

∫ +∞

−∞

dh

2π

∫ +∞

−∞
dK eiK(−h−R)

∮
k(·)

eih
∑

m ̸=m̂ k(m)en lnZ . (85.155)

Next we will assume that, for all m, when doing the contour integration over
k(m) in Eq.(85.155) with Z given by Eq.(85.151), the en lnZ can be evaluated at the
value k(m) = iϵ→ 0 of the pole.3 Symbolically, this means we assume

∮
k(·)

eih
∑

m̸=m̂ k(m)en lnZ = en lnZ0

∮
k(·)

eih
∑

m ̸=m̂ k(m) (85.156)

= en lnZ0θ(h > 0) . (85.157)

Applying Eq.(85.157) to Eq.(85.155) gives

Psuc =

∫ +∞

−∞

dh

2π
θ(h > 0)

∫ +∞

−∞
dK eiK(−h−R)en lnZ0 . (85.158)

Next we use Eqs.(85.15) and (85.16) to expand lnZ0 to second order in K.
This yields

lnZ0 ≈ i
K

n
a− K2

2n2
b , (85.159)

where

a = H(y : x) , (85.160)

and

b = EyExP (y : x) ln2 P (y : x)−H2(y : x) (85.161)

= Ey,x ln
2 P (y : x)− [Ey,x lnP (y : x)]2 (85.162)

≥ 0 (85.163)
3I don’t know how to prove this assumption rigorously. The assumption is plausible, and it does

lead to the correct result for the channel capacity. It may just be an approximation that becomes
increasingly good as n→∞
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(The inequality follows from the identity ⟨x2⟩− ⟨x⟩2 = ⟨(x− ⟨x⟩)2⟩ where ⟨·⟩ denotes
an average and x is any random variable.)

With the lnZ0 expanded to second order in K, Eq.(85.158) becomes

Psuc =

∫ +∞

−∞

dh

2π
θ(h > 0)

∫ +∞

−∞
dK eiK(a−h−R)−K2

2n
b . (85.164)

If we keep only the term linear in K in the argument of the exponential, we immedi-
ately get

Psuc = θ(R < H(y : x)) . (85.165)

If we also keep the term quadratic in K, we get

Psuc =
1

2
erfc

(√
n

2b
[R−H(y : x)]

)
. (85.166)

Maximizing both sides of Eq.(85.165) with respect to the source Px, and using
the definition of channel capacity C, we get that there is an encoding and a decoding
for which

Psuc = θ(R < C) . (85.167)

QED

Claim 142
R = Rm (85.168)

for consistency of our arguments.

proof: Rather than checking that
∑

m̂ P (m̂|yn, C) = 1, we will check that the total
probability distribution for the whole CB net Eq.(85.110) sums to one. We want

1 =
∑

m̂,m,yn,xn,C

P (m̂|yn, C)P (yn|xn)δ(xn, xn(m))P (m)P (C) . (85.169)

Using ∑
m̂,m

=
∑
m̂,m

θ(m̂ = m) +
∑
m̂,m

θ(m̂ ̸= m) , (85.170)

and

∑
m̂,m

θ(m̂ ̸= m)P (m)
∑
C

P (C) =
(N2

m −Nm)

Nm

∑
C

P (C) ≈ NmEC , (85.171)
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we get for any pair m0, m̂ ∈ Sm such that m0 ̸= m̂,

1 = Psuc +NmEC
∑
yn

P (m̂|yn, C)P (yn|xn(m0)) . (85.172)

Substituting into Eq.(85.172) the specific values of the probability distributions P (m̂|yn, C)
and P (yn|xn(m0)), we get

Perr = Nm

∫ +∞

−∞

dh

2π

∫ +∞

−∞
dK eiK(−h−R)

∮
k(·)

eih
∑

m ̸=m̂ k(m)en lnW , (85.173)

where
∮
k(·) is defined as before (see Eq.(85.140)) and where

W = Ey

 Ex(m̂)[P
iK
n (y : x(m̂))]

Ex(m0)[P
1−i k(m0)

n (y : x(m0))]∏
m̸=m̂,m0

{
Ex(m)[P

−i k(m)
n (y : x(m))]

}
 . (85.174)

Let
W0 = [W ]k(m)=0 ∀m = EyEx(m̂)[P

iK
n (y : x(m̂))] . (85.175)

Next assume that∮
k(·)

eih
∑

m ̸=m̂ k(m)en lnW = en lnW0

∮
k(·)

eih
∑

m̸=m̂ k(m) (85.176)

= en lnW0θ(h > 0) . (85.177)

Applying Eq.(85.177) to Eq.(85.173) yields

Perr = Nm

∫ +∞

−∞

dh

2π
θ(h > 0)

∫ +∞

−∞
dK eiK(−h−R)en lnW0 . (85.178)

Now we can make the following change of variables

K → K − in . (85.179)
Note that this change of variables changes W0 defined by Eq.(85.175) to Z0 defined
by Eq.(85.152). Under this change of variables, Eq.(85.178) becomes

Perr = Nm

∫ +∞

−∞

dh

2π
θ(h > 0)en(−h−R)

∫ +∞

−∞
dK eiK(−h−R)en lnZ0 (85.180)

≈ Nme
−nRPsuc , (85.181)

or, equivalently,

θ(R > H(y : x)) ≈ Nme
−nRθ(R < H(y : x)) . (85.182)

Thus, when R equals (or is very close to) H(y : x), we must have Nm = enR.
QED
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85.6 Source Coding With Distortion
Assume that we are given a function d(x, y) that measures the distance between two
letters of x, y ∈ Sx. Assume d(x, x) = 0 and d(x, y) ≥ 0 for all x, y ∈ Sx.

Assume that random variables x and x̂ both have the same set of possible
values Sx. We define codebook C as anNm×nmatrix given by C = {xn(m)}∀m = xn(·)
where xn(m) ∈ Snx for all m ∈ Sm. We define another codebook Ĉ as an Nm×n matrix
given by Ĉ = {x̂n(m)}∀m = x̂n(·) where x̂n(m) ∈ Snx for all m ∈ Sm.

We consider all source coding protocols that can be described by the following
CB net:

x̂n moo xnoo

Ĉ

__ @@

Coo

(85.183)

with Sx = Sx̂ and

P (xn) =
n∏
j=1

Px(xj) , (85.184)

P (m|xn, Ĉ) = to be specified , (85.185)

P (C) = to be specified , (85.186)

P (Ĉ|C) =
∏
m

Px̂|x(x̂
n(m)|xn(m)) =

∏
m,j

Px̂|x(x̂j(m)|xj(m)) , (85.187)

and

P (x̂n|m, Ĉ) = δ(x̂n, x̂n(m)) . (85.188)

Assume that we are given a source {Px(x)}∀x ∈ pd(Sx) and a channel {Px̂|x(x̂|x)}∀x̂∈Sx ∈
pd(Sx) for all x ∈ Sx. The encoding P (m|xn, Ĉ) and decoding P (C) probability dis-
tributions are yet to be specified.

Henceforth, we will use the following shorthand notations

Ej =
1

n

n∑
j=1

, Ex̂,x =
∑
x̂,x

Px̂|x(x̂|x)Px(x) . (85.189)

As usual, we define the rate of m by Rm = ln(Nm)/n. We define the proba-
bility of success by

Psuc = P [Ejd(x̂j, xj) ≤ D] (85.190)
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where D ∈ R>0 is called the distortion. Note that when D = 0, Psuc = P (x̂n =
xn), which is what we used previously when we considered source coding without
distortion.

For any source Px and distortion D, it is useful to define a rate distortion
function Hx(D) by

Hx(D) = min
Px̂|x:Ex̂,xd(x̂,x)<D

HPx̂|xPx(x̂ : x) . (85.191)

Claim 143 (Properties of Hx(D))

(a) Hx(D) is a monotonically non-increasing, convex function of D.

(b) Hx(0) = H(x)

(c) Hx(E
Q
x̂,xd(x̂, x)) ≤ HQ(x̂ : x), where EQ

x̂,x =
∑

x̂,xQ(x̂, x), where {Q(x̂, x)}∀x̂,x ∈
pd(Sx̂,x) such that

∑
x̂Q(x̂, x) = Px(x) for all x.

proof:
proof of (a): Monotonicity is obvious. To prove convexity, recall (see C&T

for a proof) that the mutual information is a convex function of its joint probability.
This means that for any λ ∈ [0, 1] and P1, P0 ∈ pd(Sx̂,x), if

Pλ(x̂, x) = λP1(x̂, x) + (1− λ)P0(x̂, x) (85.192)

for all x̂, x, then

HPλ
(x̂ : x) ≤ λHP1(x̂ : x) + (1− λ)HP0(x̂ : x) . (85.193)

For any λ ∈ [0, 1], let D0, D1 ∈ R≥0 and

Dλ = λD1 + (1− λ)D0 . (85.194)

Suppose P0, P1 ∈ pd(Sx̂,x) such that
∑

x̂ Pj(x̂, x) = Px(x) for all x and

Hx(Dj) = HPj
(x̂ : x) (85.195)

for j = 0, 1. Define Pλ by Eq.(85.192). Then

Hx(Dλ) ≤ HPλ
(x̂ : x) (85.196)

≤ λHP1(x̂ : x) + (1− λ)HP0(x̂ : x) (85.197)
= λHx(D1) + (1− λ)Hx(D0) . (85.198)

proof of (b): If D = 0, then P (x̂|x) = δx̂x so H(x̂ : x) = H(x).
proof of (c): This follows from definition of Hx(D).

QED
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Claim 144 Optimality: ∀(D,Rm), if ∃ an encoding and a decoding that satisfy
limn→∞ Perr = 0 for the CB net of Eq.(85.183), then Rm ≥ Hx(D).

proof:

nRm = lnNm = H(m) = H(x̂n : m) +H(m|x̂n) (85.199)
≥ H(x̂n : m) (85.200)
≥ H(x̂n : xn) (85.201)

=
∑
j

H(x̂j : xj) (85.202)

≥
∑
j

Hx

(
Ex̂j ,xjd(x̂j, xj)

)
(85.203)

≥ nHx

(
1

n

∑
j

Ex̂j ,xjd(x̂j, xj)

)
(85.204)

= nHx (Ex̂,xd(x̂, x)) (85.205)
≥ nHx(D) (85.206)

(85.201): This follows from the data processing inequalities. (See C&T for a proof of the
data processing inequalities.)

(85.202): This follows from Claim 139 in the case of equality. We are assuming that
P (Ĉ|C) is a DMC, and that P (C) is an i.i.d. source. This forces (x̂j(m), xj(m))
and (x̂j′(m), xj′(m)) with j ̸= j′ to be independent.

(85.203): This follows from Claim 143, part (c).

(85.204): This follows because Hx(D) is a convex function of D.

(85.205): This follows from using P[ ](x̂, x)→ P (x̂, x).

(85.206): Eq.(85.190) is the definition of D. Expressing Eq.(85.190) in terms of p-types
and using P[ ](x̂, x) → P (x̂, x), we find that Ex̂,xd(x̂, x) < D is necessary for
success. Then use the fact that Hx(D) is non-increasing.

QED

Claim 145 Achievability: ∀(D,Rm), if Rm ≥ Hx(D), then ∃ an encoding and a
decoding that satisfy limn→∞ Perr = 0 for the CB net of Eq.(85.183).
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proof: So far, the encoding and decoding probability distributions are unspecified.
In this proof, we will use one possible choice for these distributions. For decoder P (C)
we choose:

P (C) = Px(x
n(·)) =

∏
m

{Px(xn(m))} =
∏
m,j

{Px(xj(m))} , (85.207)

and for encoder P (m|xn, Ĉ) we choose:

P (m|xn, Ĉ) =
∏
m′ ̸=m

θ

(
R >

1

n
ln
P (xn|x̂n(m))

P (xn|x̂n(m′))

)
(85.208)

=
∏
m′ ̸=m

θ

(
R >

1

n
ln
P (xn : x̂n(m))

P (xn : x̂n(m′))

)
(85.209)

for some R > 0. Note that there is no guarantee that this definition of P (m|xn, Ĉ)
is a well defined probability distribution satisfying

∑
m P (m|xn, Ĉ) = 1. In the next

Claim, we will prove that if R = Rm, then P (m|xn, Ĉ) is well defined.
Let

P (Ĉ) =
∑
C

P (Ĉ|C)P (C) . (85.210)

One has

Psuc = P [Ejd(x̂j, xj) < D] (85.211)

=
∑
x̂n,xn

P (x̂n, xn)θ(Ejd(x̂j, xj) < D) (85.212)

=
∑

x̂n,xn,m,Ĉ

P (x̂n|m, Ĉ)P (m|xn, Ĉ)P (xn)P (Ĉ)θ(Ejd(x̂j, xj) < D)(85.213)

=
∑
m

EĈExnP (m|x
n, Ĉ)θ(Ejd(x̂j(m), xj) < D) . (85.214)

Consider what happens to P (m|xn, Ĉ) in Eq.(85.214) as D → 0. When D → 0,
x̂n(m) → xn by virtue of Eq.(85.214). Hence P (xn|x̂n(m)) → 1. Furthermore,
P (xn|x̂n(m′))→ P (xn(m)|x̂n(m′)) = P (xn(m))δm

′
m = P (xn)δm

′
m . Thus

P (m|xn, Ĉ)→ θ

(
R >

1

n
ln

1

P (xn)

)
= θ(xn ∈ APx) . (85.215)

Hence, when D = 0, the encoder P (m|xn, Ĉ) in Eq.(85.214) is the same as the one we
used when we considered source coding without distortion.
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For any Q ∈ pd(Sx̂,x) such that
∑

x̂Q(x̂, x) = Px(x) for all x, define

θQ(x̂,x) = θQx̂,x
= θ(

∑
x̂,x

Q(x̂, x)d(x̂, x) < D) . (85.216)

Note that

θ(Ejd(x̂j(1), xj) < D) = θP[ ](x̂(1),x) . (85.217)

Note that ∑
m

EĈ = NmEĈ . (85.218)

Hence, the choice of m ∈ Sm in Eq.(85.214) does not matter. Any choice would
give the same answer for Psuc. Thus, Eq.(85.214) can be replaced by the following.
Assume 1 ∈ Sm and replace m by 1 and m′ by m. Also use Eq.(85.217). Then

Psuc = NmEĈExn
∏
m ̸=1

{
θ

(
R >

1

n
ln
P (xn : x̂n(1))

P (xn : x̂n(m))

)}
θP[ ](x̂(1),x) . (85.219)

If we assume that our formalism will eventually justify the physically plausible
assumption that P[ ](x̂(1), x)→ Px̂,x(x̂(1), x), then we may replace θP[ ](x̂(1),x) by θPx̂,x

at this point. This would simplify the analysis below. Instead, we will continue with
θP[ ](x̂(1),x) and show that our formalism does indeed lead to the same result as if we
had replaced θP[ ](x̂(1),x) by θPx̂,x

at this point.
Let ∮

k(·)
=
∏
m ̸=1

{∫ +∞

−∞

dk(m)

2πi

1

(k(m)− iϵ)

}
, (85.220)

and

K =
∑
m ̸=1

k(m) . (85.221)

Expressing the θ functions in Eq.(85.219) as integrals (see Eq.(85.12)), we get

Psuc = Nm

∮
k(·)

eiKR
∑

x̂n(·),xn
exp

n ∑
x̂(·)∈SNm

x , x∈Sx

P[ ](x̂(·), x) lnZ(x̂(·), x)

 θP[ ](x̂(1),x) ,

(85.222)
where

Z(x̂(·), x) = P (x)
∏
m

{P (x̂(m))}
∏
m ̸=1

{
P−i k(m)

n (x : x̂(1))

P−i k(m)
n (x : x̂(m))

}
. (85.223)

683



Next we express the sum over x̂n(·), xn as a p-type integral to get

Psuc = Nm

∮
k(·)

eiKR
∫
DP[ ]n

Nx(Nm+1)−1(d[x̂n(·),xn])H=0e
L0θP[ ](x̂(1),x) , (85.224)

where

L0 = n
∑
x̂(·),x

P[ ](x̂(·), x) ln
Z(x̂(·), x)
P[ ](x̂(·), x)

. (85.225)

We add to L0 a Lagrange multiplier term that constrains the components of the vector
{P[ ](x̂(·), x)}∀x̂(·),x so that they sum to one:

L = Lλ = L0 + nλ

∑
x̂(·),x

P[ ](x̂(·), x)− 1

 (85.226)

for any λ ∈ R. It’s easy to check that L is maximized when

P̃[ ](x̂(·), x) =
Z(x̂(·), x)∑
x̂(·),x Z(x̂(·), x)

. (85.227)

Evaluating the integrand of the p-type integral in Eq.(85.224) at this tilde point yields

Psuc = Nm

∮
k(·)

eiKRen lnZθP̃[ ](x̂(1),x)
(85.228)

where

Z =
∑
x̂(·),x

Z(x̂(·), x) . (85.229)

Z can be expressed as

Z = Ex

[
Ex̂(1)[P

−iK
n (x̂(1) : x)]

∏
m̸=1

{
Ex̂(m)[P

i
k(m)
n (x̂(m) : x)]

}]
. (85.230)

Define

Z0 = [Z]k(m)=0 ∀m = ExEx̂(1)[P
−iK

n (x̂(1) : x)] . (85.231)
Note that 1 equals

1 =

∫ +∞

−∞
dK δ(

∑
m ̸=1

{k(m)} −K) (85.232)

=

∫ +∞

−∞
dK

∫ +∞

−∞

dh

2π
eih(

∑
m ̸=1{k(m)}−K) . (85.233)
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Multiplying Psuc by 1 certainly doesn’t change it. Thus the right hand sides of
Eqs.(85.228) and (85.233) can be multiplied to get

Psuc = Nm

∫ +∞

−∞

dh

2π

∫ +∞

−∞
dK eiK(−h+R)

∮
k(·)

eih
∑

m ̸=1 k(m)en lnZθP̃[ ](x̂(1),x)
. (85.234)

Next we will assume that, for all m, when doing the contour integration over k(m)
in Eq.(85.234) with Z given by Eq.(85.230), the en lnZθP̃[ ](x̂(1),x)

can be evaluated at
the value k(m) = iϵ→ 0 of the pole.4 Symbolically, this means we assume

∮
k(·)

eih
∑

m ̸=1 k(m)en lnZθP̃[ ](x̂(1),x)
= en lnZ0θ

P−iKn (x̂(1),x)

∮
k(·)

eih
∑

m ̸=1 k(m)(85.235)

= en lnZ0θ
P−iKn (x̂(1),x)

θ(h > 0) . (85.236)

Applying Eq.(85.236) to Eq.(85.234) gives

Psuc = Nm

∫ +∞

−∞

dh

2π
θ(h > 0)

∫ +∞

−∞
dK eiK(−h+R)en lnZ0θ

P−iKn (x̂(1),x)
. (85.237)

Next we make the following change of variables:

K → K + in . (85.238)

Let

W0 = [Z0]K→K+in = ExEx̂(1)[P
1−iK

n (x̂(1) : x)] . (85.239)

Under this change of variables, Eq.(85.237) becomes

Psuc = Nm

∫ +∞

−∞

dh

2π
θ(h > 0)e−n(−h+R)

∫ +∞

−∞
dK eiK(−h+R)en lnW0θ

P 1−iKn (x̂(1),x)
.

(85.240)
Next we use Eqs.(85.15) and (85.16) to expand lnW0 to second order in K.

This yields

lnW0 ≈ −i
K

n
a− K2

2n2
b , (85.241)

where
4I don’t know how to prove this assumption rigorously. The assumption is plausible, and it does

lead to the correct result for the channel capacity. It may just be an approximation that becomes
increasingly good as n→∞
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a = H(x̂ : x) , (85.242)

and

b = Ex̂ExP (x̂ : x) ln2 P (x̂ : x)−H2(x̂ : x) (85.243)
= Ex̂,x ln

2 P (x̂ : x)− [Ex̂,x lnP (x̂ : x)]2 (85.244)
≥ 0 . (85.245)

With the lnW0 expanded to second order in K, and θ
P 1−iKn (x̂(1),x)

to zeroth
order in K, Eq.(85.240) becomes

Psuc = θPx̂,x
Nm

∫ +∞

−∞

dh

2π
θ(h > 0)en(h−R)

∫ +∞

−∞
dK eiK(−a−h+R)−K2

2n
b . (85.246)

If we keep only the term linear in K in the argument of the exponential, we immedi-
ately get

Psuc ≈ θPx̂,x
Nme

−naθ(R > a) ≈ Nme
−nRθ(R > H(x̂ : x)) . (85.247)

Minimizing both sides of Eq.(85.247) with respect to the channel Px̂|x and
using the definition of the rate distortion function Hx(D), we get that there is an
encoding and a decoding for which

Psuc = Nme
−nRθ(R > Hx(D)) . (85.248)

QED

Claim 146
R = Rm (85.249)

for consistency of our arguments.

proof: For consistency, must have Nme
−nR = 1 in Eq.(85.248).

QED

85.7 Appendix: Some Integrals Over Polytopes
This appendix is a collection of integration formulas for doing integrals over polytope
shaped regions. These formulas are useful for doing p-type integrations.

The standard polytope is defined as the set ∆n = {(t0, t1, . . . , tn) : t0 + t1 +
. . .+ tn = 1, tj ≥ 0 for all j}.
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For {Px}∀x ∈ pd(Sx), we define the following integration operator:∫
DPx =

∏
x

{∫ 1

0

dPx

}
δ

(∑
x

Px − 1

)
. (85.250)

This is the same definition as Eq.(85.22), except for an arbitrary vector {Px}∀x instead
of just for a p-type {P[xn](x)}∀x.

It is well known and easy to show by induction that∫
DPx 1 =

1

(Nx − 1)!
. (85.251)

More generally, the so called Dirichlet integral, defined by

In =
n∏
j=1

{∫ 1

0

dxj x
aj−1
j

}∫ 1

0

dx0δ

(
n∑
j=0

xj − 1

)
(85.252)

=
n∏
j=1

{∫ 1

0

dxj x
aj−1
j

}
θ(

n∑
j=1

xj ≤ 1) (85.253)

can be shown5 to be equal to

In =

∏n
j=1 Γ(aj)

Γ(
∑n

j=1 aj)
, (85.254)

where Γ(·) stands for the Gamma function. Γ(n) = (n − 1)! for any positive integer
n.

In SIT, when doing p-type integrals for large n, one often encounters integrals
of sharply peaked Gaussian functions integrated over polytope regions. Since the
Gaussians are sharply peaked, as long as their peak is not near the boundary of the
polytope region, the integrals can be easily evaluated approximately in a Gaussian
approximation which becomes increasingly accurate as n increases.

Recall that ∫ +∞

−∞
dx e−λx

2

=

√
π

λ
(85.255)

for λ > 0.

Claim 147 Suppose {Qx}∀x ∈ pd(Sx), ∆Px = Px −Qx, and λx >> 1 for all x ∈ Sx.
Then ∫

DPx exp

(
−
∑
x

λx(∆Px)
2

)
≈

√√√√ πNx−1∏
x {λx}

(
1
λ∥

) , (85.256)

5See, for example, Ref.[22] for a proof.
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where λ∥ =
(∑

x
1
λx

)−1

. (If the λx are thought of as electrical resistances connected
in parallel, then λ∥ is the equivalent resistance.)

proof: Let LHS and RHS denote the left hand side and right hand side of Eq.(85.256).
One has

LHS ≈
∏
x

{∫ +∞

−∞
d∆Px

}
δ(
∑
x

∆Px) exp

(
−
∑
x

λx(∆Px)
2

)
(85.257)

=

∫ +∞

−∞

dk

2π
Γ (85.258)

where

Γ =
∏
x

{∫ +∞

−∞
d∆Px exp

(
−λx(∆Px)2 + ik∆Px

)}
(85.259)

=
∏
x

{
e−

k2

4λx

∫ +∞

−∞
d∆Px exp

(
−λx(∆Px −

ik

2λx
)2
)}

(85.260)

= e
− k2

4λ∥
∏
x

{√
π

λx

}
. (85.261)

Thus

LHS =
∏
x

{√
π

λx

}∫ +∞

−∞

dk

2π
e
− k2

4λ∥ (85.262)

=
∏
x

{√
π

λx

}
1

2π

√
π
1

4λ∥

(85.263)

= RHS . (85.264)

QED

Claim 148 Suppose matrix (Ax,x′)∀x,x′ has eigenvalues {λx}∀x. Suppose {Qx}∀x ∈
pd(Sx), ∆Px = Px −Qx, and λx >> 1 for all x ∈ Sx. Then

∫
DPx exp

(
−
∑
x,x′

∆PxAx,x′∆Px′

)
≈

√
πNx−1

det(A)tr(A−1)
, (85.265)
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proof: Just diagonalize the matrix Ax,x′ and use the previous claim, where now the
λx are the eigenvalues of A.
QED

For {Py|x}∀y ∈ pd(Sy) for all x ∈ Sx, we define the following integration
operator: ∫

DPy|x =
∏
x,y

{∫ 1

0

dPy|x

}∏
x

{
δ

(∑
y

Py|x − 1

)}
. (85.266)

This is the same definition as Eq.(85.56), except for an arbitrary vector {Py|x(y|x)}∀y
instead of just for a p-type {P[yn|xn](y|x)}∀y.

Note that Eq.(85.251) implies that

∫
DPy|x 1 =

[
1

(Ny − 1)!

]Nx

. (85.267)

Claim 149 Suppose matrix Ay|x , y′|x′ has eigenvalues {λy|x}∀x,y. Suppose {Qy|x}∀y ∈
pd(Sy), ∆Py|x = Py|x − Qy|x, and λy|x >> 1 for all x ∈ Sx and y ∈ Sy. Then (using
Einstein’s repeated index summation convention)

∫
DPy|x exp

(
−∆Py|xAy|x , y′|x′∆Py′|x′

)
≈

√√√√√ πNyNx−Nx

det(A) det

[(∑
y1,y2

A−1
y1|x1 , y2|x2

)
∀x1,x2

] ,
(85.268)

proof: Let LHS and RHS denote the left hand side and right hand side of Eq.(85.268).
Let (ωy)y∈Sy be a vector with all components equal to one. Then

LHS ≈
∏
x,y

{∫ +∞

−∞
d∆Py|x

}∏
x

{
δ(ωy∆Py|x)

}
e−∆Py|xAy|x , y′|x′∆Py′|x′(85.269)

=
∏
x

{∫ +∞

−∞

dkx
2π

}
Γ , (85.270)

where

Γ =
∏
x,y

{∫ +∞

−∞
d∆Py|x

}
e−∆Py|xAy|x , y′|x′∆Py′|x′+iωy∆Py|xkx (85.271)

= e
− 1

4
kx1ωy1A

−1
y1|x1 , y2|x2

ωy2kx2
∏
x,y

{∫ +∞

−∞
d∆Py|x

}
e−∆̃Py|xAy|x , y′|x′∆̃Py′|x′ ,(85.272)
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where

∆̃Py|x = ∆Py|x −
i

2
kx1ωy1A

−1
y1|x1 , y|x . (85.273)

Thus

Γ = e
− 1

4
kx1ωy1A

−1
y1|x1 , y2|x2

ωy2kx2

√
πNxNy

detA
. (85.274)

Thus

LHS =

√
πNxNy

detA

∏
x

{∫ +∞

−∞

dkx
2π

}
e
− 1

4
kx1ωy1A

−1
y1|x1 , y2|x2

ωy2kx2 (85.275)

=

√
πNxNy

detA

π
Nx
2

(2π)Nx

1√√√√det

[(
ωy1A

−1
y1|x1 , y2|x2

ωy2

4

)
∀x1,x2

] (85.276)

= RHS . (85.277)

QED
When using many of the integration formulas presented in this appendix, it

is necessary to calculate the inverse and determinant of a large matrix. I found the
following formulas can often be helpful in doing this.

Claim 150 Suppose E is an n×n matrix. Suppose p and q are n component column
vectors. Suppose

A = E + pqT . (85.278)

Then

A−1 = E−1 − E−1pqTE−1

1 + qTE−1p
, (85.279a)

det(A) = det(E)(1 + qTE−1p) . (85.279b)

proof: To prove Eq.(85.279a), just show that the right hand sides of Eqs.(85.278)
and (85.279a) multiply to one.

To prove Eq.(85.279b), one may proceed as follows. We will assume A ∈ C3×3

for concreteness. The proof we will give generalizes easily to A’s of dimension different
from 3. Let ϵj1j2,j3 be the totally antisymmetric tensor with 3 indices. We will use
Einstein summation convention. Let
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Qj = qk(E
−1)k,j . (85.280)

Then

det(A) = det(E) det(δi,j + piQj) (85.281)
= det(E)ϵj1,j2,j3(δ1,j1 + p1Qj1)(δ2,j2 + p2Qj2)(δ3,j3 + p3Qj3) (85.282)
= det(E)(1 + pjQj) . (85.283)

QED

Claim 151 Suppose A is an n× n matrix, and 0 < ϵ << 1. Then

det(1 + ϵA) = 1 + ϵtr(A) +O(ϵ2) . (85.284)

proof: Just diagonalize A.
QED
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Chapter 86

Shapley Explainability

This chapter is based on Refs.[41] and [42], which I highly recommended.
“AI" is an ill-defined term. So is the term “explainability". So the term “Ex-

plainable AI (XAI)" is doubly ill-defined. In 2018, the European Union codified the
need for XAI — because of an individual’s “right to explanation" — into a law called
the General Data Protection Right (GDPR). This EU law was a strong motivation
for Neural Net and boosted decision tree practitioners to come up with a way to en-
hance their machine learning algorithms so that these comply with that law. Shapley
explainability (SX) is one of the most popular methods for doing XAI.

So what does SX do? It ranks, for each individual of a population, the features
(for example, race) of a dataset, in the order of how influential those features were in
arriving at the decision the classifier made for that individual.

In my opinion, the goal of XAI is accomplished better with bnets than with SX
enhanced NNs. SX “explains", a posteriori, the outcome of a model, whereas bnets
reveal the a priori process whereby that outcome was reached. Thus, SX can tell you
that a model is racist, but it can’t suggest how to fix it. On the other hand, if a bnet
is acting racist, you don’t have to throw it away. It can be fixed. Another weakness
of SX is that it is quite expensive computationally. Bnets have explainability built
into them. For bnets, explainability is not an additional, posterior and quite onerous,
calculation. That is why I like to call bnets the gold standard of XAI.

Let
F be the feature set. For example, F = {age, gender, job}.
P(A) = {S : S ⊂ A} be the power set of the set A (i.e., the set of all subsets

of A, including the empty set ∅).
|P(A)| =

∑|A|
k=0

(|A|
k

)
=
∑|A|

k=0

(|A|
k

)
1k1|A|−k = (1 + 1)|A| = 2|A|

Pf (F ) = {S ∈ P(F ) : f ∈ S} for f ∈ F , be all sets in P(F ) containing feature
f . Note that Pf (F ) = P(F )− P(F − {f})

P!f (F ) = {S ∈ P(F ) : f ̸∈ S} for f ∈ F , be all sets in P(F ) not containing
feature f . Note that P!f (F ) = P(F − {f})

Fig.86.1 shows a graph of P(F ) for F = {age, gender, job}. Henceforth, we
will refer to the generalization of Fig.86.1 to an arbitrary finite set F , as the power
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{age}
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{gender}
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{job}
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{age, gender}
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{age, job}
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{gender, job}
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{age, gender, job}

Figure 86.1: Graph of P(F ) for F = {age, gender, job}. An arrow H ← T , where
H ∈ P(F ) is the head of the arrow and T ∈ P(F ) is the tail of the arrow, means
H ⊃ T and |H| = |T |+ 1.

set graph of F .1
For any finite set F , consider its power set graph. Let S ∈ P(F ) be a node of

that graph. Let
Narr/nd(S) = |S| = number of arrows entering node S.
Nnds(|S|) =

(|F |
|S|

)
= number of nodes in level |S| (i.e., row |S|).

Narr(S) = Narr/nd(S)Nnds(|S|) = |S|
(|F |
|S|

)
= number of arrows going from row

|S| − 1 to row |S|.

P (S) =
1

Narr(S)
=

1

|S|
(|F |
|S|

) =
1

|F |
(|F |−1
|S|−1

) . (86.1)

Claim 152 ∑
S∈Pf (F )

P (S) = 1 (86.2)

proof:
1Note that a power set graph is a DAG. We won’t define TPMs for its nodes in this chapter, so

it’s a DAG but not a bnet, in this chapter at least.
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∑
S∈Pf (F )

P (S) =
∑

S∈Pf (F )

1

|F |
(|F |−1
|S|−1

) (86.3)

=

|F |∑
k=1

∑
S∈Pf (F )

1(|S| = k)
1

|F |
(|F |−1
k−1

) (86.4)

=

|F |∑
k=1

1

|F |
(|F |−1
k−1

) ∑
S∈Pf (F )

1(|S| = k)

︸ ︷︷ ︸
(|F |−1

k−1 )

(86.5)

= 1 (86.6)

QED
Consider any S ∈ P(F ). Henceforth, we will represent a Machine Learning

(ML) model MLS as follows. MLS can be a Linear Regression (LRS) model, a Neural
Net model (NNS), or any other type of ML model. We will list a dataset; i.e., a set
of tuples indexed by the individuals σ of a population Σ such that |Σ| = nsam. The
independent variables of MLS (i.e., xσS = [xσf : f ∈ S]) will be shown unboxed and
the dependent variable (a.k.a. target feature) (i.e., yσ) will be shown inside a box.
Then we will show an arrow with the superscript “ML-fit", followed by the fit function
obtained by performing MLS.

MLS : {(σ, xσS, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(xS) (86.7)

For any feature f ∈ F and individual σ ∈ Σ, define the Shapley Value
(SHAP) by

SHAP σ
f =

∑
S∈Pf (F )

P (S)
[
ŷ(xσS)− ŷ(xσS−{f})

]
(86.8)

= ES[ŷ(x
σ
S)− ŷ(xσS−{f})] (86.9)

Hence,

• SHAP σ
f is an average over the ensemble {MLS : S ∈ Pf (F )} for each individual

σ ∈ Σ.

• SHAP σ
f averages the change in output ŷ when we change the model from one

without feature f to one with feature f .

• SHAP σ
f can be negative or positive. Zero SHAP σ

f for individual σ means
feature f does not influence how the decision ŷ was arrived at for individual σ.
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• An exact calculation of SHAP σ
f , for all f and for a single σ, requires training

a different ML model for each node of the power set graph of F , so it requires
training 2|F | models. Yikes! As |F | grows, this quickly becomes unfeasible.
For large |F |, one must resort to using sampling and approximations to get an
approximation of the SHAP.

86.0.1 Numerical examples of SHAP

Next we present 2 numerical examples of SHAP. The figures and numerical values in
this section were taken directly from Refs. [41] and [42].

1. Predicting Income from F = {age, gender, job}.

S = ∅
P (S) = 0

ŷ(xσS) = $50K

ww �� ''

|S| = 0

S = {age}
P (S) = 1/3
ŷ(xσS) = $40K

�� ''

S = {gender}
P (S) = 1/3
ŷ(xσS) = $48K

ww ''

S = {job}
P (S) = 1/3

ŷ(xσS) = $100K

��ww

|S| = 1

S = {age, gender}
P (S) = 1/6
ŷ(xσS) = $39K

''

S = {age, job}
P (S) = 1/6
ŷ(xσS) = $85K

��

S = {gender, job}
P (S) = 1/6
ŷ(xσS) = $95K

ww

|S| = 2

S = {age, gender, job}
P (S) = 1/3
ŷ(xσS) = $83K

|S| = 3

Figure 86.2: Same as Fig.86.1, but with added information for a specific individual
σ. This figure contains enough information to evaluate SHAP σ

age.

Consider the problem of predicting the income of a person based on the feature
set F = {age, gender, job}. Suppose we are given a dataset for this problem.
We can train models MLS for each S ∈ Page(F ) where ŷ is the income. Then we
can calculate the matrix SHAP σ

age. Fig.86.2 gives all the information necessary
to calculate SHAP σ

age for a single individual σ.
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P (S) =
1

3
(

2
|S|−1

) =


1

3(20)
= 1

3
if |S| = 1

1

3(21)
= 1

6
if |S| = 2

1

3(22)
= 1

3
if |S| = 3

(86.10)

SHAP σ
age = P (age)︸ ︷︷ ︸

1/3

[ŷ(xσage)− ŷ(xσ∅ )]︸ ︷︷ ︸
40K−50K

(86.11)

+ P (age, job)︸ ︷︷ ︸
1/6

[ŷ(xσage,job)− ŷ(xσjob)]︸ ︷︷ ︸
85K−100K

(86.12)

+ P (age, gender)︸ ︷︷ ︸
1/6

[ŷ(xσage,gender)− ŷ(xσgender)]︸ ︷︷ ︸
39K−48K

(86.13)

+ P (age, gender, job)︸ ︷︷ ︸
1/3

[ŷ(xσage,gender,job)− ŷ(xσgender,job)]︸ ︷︷ ︸
83K−95K

(86.14)

= −$11.33K (86.15)

2. Predicting passenger survival in the Titanic disaster.

Figure 86.3: First five rows (passengers) of an abridged version of the Titanic Dataset
available at kaggle.com. This figure shows (σ, xσF ) for σ = 1, 2, . . . , 5. It doesn’t show
the column yσ ∈ {died, survived}.

Consider the problem of predicting whether an individual will survive or not
based on a Titanic Dataset. We can train models MLS for each S ∈ P(F ) where
ŷ ∈ {died, survived}. Then we can calculate the matrix SHAP σ

f for all individuals
σ and features f . Fig.86.0.1 shows the first 5 rows of an abridged2 version of the
Titanic Dataset available at kaggle.com. Fig.86.4 displays SHAP σ

f in tabular form
and Fig.86.5 displays SHAP σ

f in graphical form (in what is called a beeswarm plot).

2The Titanic Dataset available at kaggle.com has 891 rows and 15 columns, including columns
for passenger ID and for yσ = survived? ∈ {0, 1}. This abridged version has 8 columns.
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Figure 86.4: For the Titanic dataset, this is a table of SHAP σ
f , where σ ∈ {1, 2, . . . 5}

and f ∈ F . Cells with positive SHAP are colored green, and those with negative
SHAP are colored red. The colors are not an indication of whether the passenger
died or survived. Note that the table of a dataset and the matrix SHAP σ

f have the
same shape (|Σ|, |F |).

Figure 86.5: For the Titanic Dataset, this is a so called “beeswarm" plot of SHAP σ
f ,

where σ ∈ {1, 2, . . . , 891} and f ∈ F . In a beeswarm plot, the thickness of each
row is proportional to how many individuals of the population have that value of
the x coordinate. This plot comes from Ref.[41], where it was generated using the
Titanic Dataset from kaggle.com and the wonderful Python library “SHAP". The
SHAP library can plot Shapley Values in many other styles besides this one.
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Chapter 87

Simpson’s Paradox

This chapter is based on Chapter 6 of “The Book of Why", Ref.[61]. See also Ref.[166]
and references therein.

Simpson’s paradox is a recurring nightmare for all statisticians overseeing a
clinical trial for a medicine. It is possible that if they leave out a certain "confounding"
variable from a study, the study’s conclusion on whether a medicine is effective or
not, might be, without measuring that confounding variable, the opposite of what it
would have been had that variable been measured.

Simpson’s Paradox is greatly clarified by Judea Pearl’s theory of causality. At
the end of this chapter, we explain how.

Here is a simple example of Simpson’s Paradox.
An equal number of patients of male and female genders are given a heart

medicine or a placebo in a double blind study. Some subsequently have a heart
attack. Let

a = heart attack? No=0, Yes=1
t = took medicine? No=0, Yes=1
g = gender? Female=F, Male=M

g

��
a t

]]

oo

Figure 87.1: bnet for a simple example of Simpson’s paradox. Here node g is a chain
junction and a mediator.

This situation can be modeled by either bnet Fig.87.1. or bnet Fig.87.2. The
two bnets are probabilistically equivalent (i.e., they both represent the same proba-
bility distribution P (a, t, g)) because
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g

�� ��
a too

Figure 87.2: bnet that is probabilistically but not physically equivalent to bnet
Fig.87.1. Here node g is a fork junction and a confounder.

P (g|t)P (t) = P (g, t) = P (t|g)P (g) . (87.1)

For the bnet Fig.87.1, one has

P (a, g, t) = P (a|g, t)P (g|t)P (t) . (87.2)

Therefore,

P (a = 1|t) =
∑
g

P (a = 1|t, g)P (g|t) = Eg|tP (a = 1|t, g) , (87.3)

where Eg|t is a conditional expected value (a kind of weighted average).
Suppose q0, q1 are non-negative real numbers. For the vector q⃗ = (q0, q1):
Define a negative outcome (or failure or qt increasing with t) if q0 ≤ q1.
Define a positive outcome (or success or qt decreasing with t) if q0 ≥ q1.
Let

q⃗ g = [P (a = 1|t, g)]t=0,1 (87.4)

for g =M,F , and

q⃗ ∗ = [P (a = 1|t)]t=0,1 . (87.5)

It is possible (see Fig.87.3 for a graphical explanation of how) to find perverse
cases in which P (a = 1|t, g =M) and P (a = 1|t, g = F ) increase with t but P (a = 1|t)
decreases with t. So it is possible to conclude that the medicine is a failure for each of
the two g populations considered separately, yet the medicine is a success when both
populations are “amalgamated". The lesson is that a “trend reversal" is possible upon
amalgamation. Trends are not necessarily preserved when we do a weighted average
of type Eg|t. Eg|t is an expected value on the random variable g conditioned on the
root random variable t.

So far we have assumed a ∈ {0, 1}. Suppose that instead we assume a is a
continuous variable taking values in the interval [0, 1]. This could reflect a continuum
of possible attacks from none to a deadly one. Likewise, suppose the treatment
variable t takes on values in the interval [0, 1]. This might reflect a continuum of
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Figure 87.3: q⃗ M , q⃗ F vectors and bounding box for vector q⃗ ∗.

Figure 87.4: Illustrative example of Simpson’s paradox, assuming t and a are con-
tinuous. The pink (for g = F ) and blue (for g = M) elliptical regions are clouds
of sample points. The lines are the result of doing linear regression. For g = M,F
separately, increasing treatment increases the probability of attack, but the opposite
trend occurs if we amalgamate genders.

possible doses of a medicine. Fig. 87.4 gives an illustrative example of Simpson’s
paradox for this case of continuous a and t.

So far, we have proven that probabilistically, the drug can be a failure for
the populations of both sexes considered separately, but a success for the aggregate
population.

87.1 Pearl Causality
Pearl Causality would add the following two important insights to this problem:

1. bnets Fig.87.1 and Fig.87.2, although they are probabilistically equivalent, do
not represent the same physical situation. In fact, only Fig.87.2 occurs in this
case.
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2. To decide whether the medicine is effective, we must apply a do() operator to
the t variable in Fig.87.2. The effect of that do() operator is to erase the arrow
going from g to t. This in turn means that the average Eg|t in our equation for
P (a = 1|t) becomes a simpler average Eg which is independent of t. But for
such an average, the bounding box in Fig.87.3 degenerates to its diagonal line
that connects the tips of the two vectors q⃗ M and q⃗ F . The vector q⃗ ∗ must now
fall on that diagonal line and must therefore also fall in the success region.

In conclusion, as Judea Pearl would say, if we ask the right question to Nature, i.e.,
what is P [a = 1|do(t = t)] for t = 0, 1, we get as an answer that the aggregate
population preserves rather than reverses the unanimous trend of the two gendered
populations.
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87.2 Numerical Example

(a, t, g)
number of patients
segregated by gender

number of patients
of either gender

0,0,M 19 47
0,0,F 28
0,1,M 37 49
0,1,F 12
1,0,M 1 13
1,0,F 12
1,1,M 3 11
1,1,F 8

Table 87.1: Data for numerical example of Simpson’s Paradox. This fictitious data
was taken directly from Table 6.4, page 210 of “The Book of Why", Ref.[61].

P (a|t, g) =
0,M 0,F 1,M 1,F

0 19/20 28/40 37/40 12/20
1 1/20 12/40 3/40 8/20

(87.6)

P (a|t) =
0 1

0 47/60 49/60
1 13/60 11/60

(87.7)

P (a=1,t=1,g=M)∑
a P (a,t=1,g=M)

= P (a = 1|t = 1, g =M) = 3
40

P (a=1,t=0,g=M)∑
a P (a,t=0,g=M)

= P (a = 1|t = 0, g =M) = 1
20

= 2
40

(87.8)

P (a=1,t=1,g=F )∑
a P (a,t=1,g=F )

= P (a = 1|t = 1, g = F ) = 8
20

= 16
40

P (a=1,t=0,g=F )∑
a P (a,t=0,g=F )

= P (a = 1|t = 0, g = F ) = 12
40

(87.9)

∑
g P (a=1,t=1,g)∑
g

∑
a P (a,t=1,g)

= P (a = 1|t = 1) = 11
60∑

g P (a=1,t=0,g)∑
g

∑
a P (a,t=0,g)

= P (a = 1|t = 0) = 13
60

(87.10)

Note that the right hand side of Eq.(87.8) is higher for t = 1 than for t = 0.
Same trend occurs in Eqs.87.9 but is reversed in Eqs.87.10.
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Chapter 88

Stochastic Differential Equations

This chapter is based mostly on Ref.[67].
Stochastic Differential Equations (SDE) are deterministic first order dif-

ferential equations with additive external white noise. When discretized, they can be
modelled as dynamic bnets of type DEN (Deterministic bnet with External Noise)
(see Chapter 48).

This chapter deals with Classical Stochastic Calculus. In that calculus,
the SDE have real valued solutions. A theory of Quantum Stochastic Calcu-
lus has also been developed (see, for example, Ref.[50]) that is very similar to the
classical theory. In the quantum theory, the SDEs have complex valued solutions.
The quantum theory describes quantum mechanical systems (such as lasers) whereas
the classical theory describes classical macroscopic systems such as a pollen particle
undergoing Brownian motion while submerged in a liquid.

88.1 Notation
Random variables, mean, covariance

⟨a⟩ = E[a] (88.1)

∆a = a− ⟨a⟩ (88.2)

Cov(a, b) = ⟨a, b⟩ = ⟨∆a∆b⟩ (88.3)

∆t1
t0a = a(t1)− a(t0) (88.4)

Intervals of real numbers and of integers
[a, b] = {x ∈ R : a ≤ x ≤ b}
Suppose i, j ∈ {0, 1, 2, . . .}
[i : j] = {i, i+ 1, . . . , j − 1} (like Python)
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[i− j] = {i, i+ 1, . . . , j} (To distinguish from Python, we use dash instead of
colon to indicate that last int is included. )

[n] = [0 : n] = {0, 1, 2, . . . , n− 1}
Consider times t0 = 0 < t1 < t2 < . . . < tN−1

t[i−j] = [ti, ti+1, . . . , tj]

lim
N→∞

t[i−j] = [ti, tj] (88.5)

Stochastic Process
An outcome space Ω is a set of events ω.
A stochastic process x(t, ω) ∈ Rn with t ≥ 0 and ω ∈ Ω is a map x :

(R+,Ω) → Rn. Normally, we don’t write the ω dependence: we use x(t) instead of
x(t, ω).

For compactness, we will sometimes denote x(t) by xt and an event (x, t) by
(xt).

Will often use xi = x(ti).
We will use lower case Latin indices like i, j, k ∈ [N ] for time indices and lower

case Greek letters like α, β, µ, ν ∈ [n] for x ∈ Rn components. Hence xµ,i = xµ(ti)
We will use the Einstein implicit summation convention for lower case

Greek indices. Hence

AµBµ =
∑
µ∈[n]

AµBµ (88.6)

dxn = dx0dx1 . . . dxn−1
Path

A path is defined as one of the following sets, depending on whether we are
considering continuous or discretized time:

x([t, s]) = {x(τ) : τ ∈ [t, s]}
x(t[j−k]) = {x(τ) : τ ∈ {tj, tj+1, . . . , tk}}
x[j−k] = {xj, xj+1, . . . , xk}
Measure theorists speak of a set of sigma algebras parametrized by t with the

t algebra containing all algebras with smaller t. They call this a filtration. A path
x([t, s]) is equivalent to a filtration, so we won’t speak of filtrations here.

For any matrix A, we will use A† to denote the Hermitian conjugate of A, AT
to denote its transpose, and A∗ to denote its complex conjugate. A† = A∗T .

88.2 White Noise and Brownian Motion
White noise W (t) ∈ Rn for t ≥ 0 is a random process with the following properties:

• ==========================

W (t) = N (W (t);µ = 0, Cov = Q) (88.7)
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Figure 88.1: One dimensional white noise W (t)

Figure 88.2: One dimensional Brownian motion B(t)

• ==========================

W (t) and W (s) are independent for t ̸= s

• ==========================

E[W (t)] = 0 (88.8)

• ==========================

CW (t, s) =
〈
W (t),W T (s)

〉
= Qδ(t− s) (88.9)

Brownian motion (a.k.a. Wiener process) B(t) ∈ Rn for t ≥ 0 is a random
process with the following properties:

• ==========================

B(0) = 01 (88.10)
1If you wish to consider B(0) = β0 ̸= 0, replace B by B − β0
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• ==========================

∆
tk+1

tk
B

∆
tk+1

tk
t
∼ N (µ = 0, Cov = Q) (88.11)

W (tk) ∼ N (µ = 0, Cov = Q) (88.12)

dB

dt
= W (88.13)

• ==========================

If B(t) ∈ Rn and [r, s] ∩ [r′, s′] = ∅, then

E[(∆s
rB)(∆s′

r′B)] = 0 (88.14)

and

E[|∆t
sB|2] = n|t− s| (88.15)

For example,

E[∆4
1B∆6

3B] = E[(∆3
1B +∆4

3B)(∆4
3B +∆6

4B)] (88.16)
= E[(∆4

3B)2] (88.17)
= n|4− 3| (88.18)

Eqs.(88.14) and (88.15) can be combined as follows

E[(∆s
rB)(∆s′

r′B)] = n len([r, s] ∩ [r′, s′]) (88.19)

88.3 SDE bnet
In this section, we propose a bnet for a time discretized SDE. This bnet will be
constructed by combining some nodes of various special types that occur frequently
in bnet-tology. One such special type of node that we have discussed already, in
Chapter 49), is a marginalizer node . Here are a few others. The TPM or structural
equation associated with the node are printed in blue.

• diff and diff0 nodes

The diff node is defined by
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a

��

b

��
x

P (x|a, b) = 1(x = a− b) (88.20)

x = a− b (88.21)

The diff0 node is the diff node with x = 0.

• accumulator nodes

x3

��

x2

��

x1

��

x0

��
s3 s2oo s1oo s0oo

s3 = x3 + s2
s2 = x2 + s1
s1 = x1 + s0
s0 = x0

(88.22)

• increment nodes

B3

!!

B2

}} !!

B1

}} !!

B0

}}
∆3

2B ∆2
1B ∆1

0B

∆3
2B = B3 −B2

∆2
1B = B2 −B1

∆1
0B = B1 −B0

(88.23)

• un-increment nodes

∆3
2x2

||

∆2
1x

ss }}

∆x10

rr tt }}
x3 x2 x1 x0hhkkll
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B3

!!

B2

}} !!

B1

}} !!

B0

}}
∆3

2B

��

∆2
1B

��

∆1
0B

��
∆3

2x

||

∆2
1x

ss ||

∆1
0x

rr ss ||
x3 x2

bb

x1

bb

x0

bb

iikkmm

Figure 88.3: Bnet for general SDE with N = 4 number of times. Note that this bnet
contains within it first an increment bnet (in red) for the Bi, and then a un-increment
bnet (in green) for the xi.

x3 = ∆3
2x+∆2

1x+∆1
0x+ x0

x2 = ∆2
1x+∆1

0x+ x0
x1 = ∆1

0x+ x0
x0 = x0

(88.24)

SDE bnet
Fig.88.3 gives a bnet for a general one-dimensional (n = 1) SDE defined by

dx = f(x, t)dt+ L(x, t)dB(t) (88.25)

with x,B ∈ R. Some of the structural equations, printed in blue, for the bnet of
Fig.88.3, are as follows.

∆3
2B = B3 −B2 (88.26)

∆3
2x = f(x2, t)∆

3
2t+ L(x2, t)∆

3
2B (88.27)

x3 = ∆3
2x+∆2

1x+∆1
0x+ x0 (88.28)

88.4 Simple Properties of SDE
In this section, we discuss several simple properties of SDEs.
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88.4.1 STD with Constant Coefficients (CC)

The most general system discussed in this chapter obeys the following SDE

dxµ = fµ(x, t)dt+ Lµ,ν(x, t)dBν(t) (88.29)

where µ, ν ∈ [n]. A system for which f and L are both constant (i.e., independent of
the event (x, t)) is said to have CC Constant Coefficients2

88.4.2 Transition Probability Matrices

Suppose t, s ≥ 0 and x, y ∈ Rn. We define the event transition probability
matrix (TPM) as

P (yt|xs) (88.30)

If you are familiar with the Dirac bra-ket notation used in Quantum Mechanics,
note that a TPM can be expressed in such notation as

⟨y|Pt,s|x⟩ (88.31)

where {|x⟩ : x ∈ Rn} is a complete orthonormal basis:∫
dx |x⟩⟨x| = 1, ⟨y|x⟩ = δ(y − x) (88.32)

88.4.3 Markov chain

Let x(tk) = xk for k ∈ [N ]. The bnet

x0 → x1 → x2 → · · · → xN−1

is called a Markov chain. It satisfies

P (xi+1|xi, xi−1, . . . , x0) = P (xi+1|xi) (88.33)

For continuous instead of discrete time, the Markov chain definition is generalized as
follows. For s < t,

P (x(t)|x([0, s])) = P (x(t)|x(s)) (88.34)
2Ref.[67], on which most of this this chapter is based, calls systems with CC, LTI (linear, time-

invariant) systems.
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88.4.4 Chapman-Kolgomorov Equation

Claim 153 (Chapman-Kolgomorov equation)
Let x(tk) = xk

P (x3|x1) =
∫
dxn2 P (x3|x2)P (x2|x1) (88.35)

proof:

P (x3, x2|x1) = P (x3|x2, x1)P (x2|x1) (88.36)
= P (x3|x2)P (x2|x1) (88.37)

Now integrate both sides over x2.
QED

88.4.5 Martingale

Let 0 ≤ t, ti ≤ T and x(ti) = xi for i ∈ [N ]. A martingale for discrete (resp.,
continuous) time is a process y

i
(resp., y(t)) which satisfies

E[ |y(ti)| ] <∞ ∀i (resp., E[ |y(t)| ] <∞ ∀t ≥ 0) (88.38)

E
[
y(t)|x(t[i−j])

]
= y(tj) (resp., E

[
y(t)|x([0, s])

]
= y(s)) (88.39)

Brownian motion is a martingale.

E[B(t)|B(t[i−j]] = B(tj) (88.40)

Itô integrals
∫
LxtdBt (discussed later) are martingales too, but Stratonovich

integrals
∫
Lxt ◦ dBt (discussed later) aren’t.

88.5 Itô Integral
Consider the 1 dimensional case x,W ∈ R.

dx

dt
= f(x, t) + L(x, t)W (t) (88.41)

x(t)− x(0) =
∫ t

0

dt f(x, t) + J (88.42)

where

710



J =

∫ t

0

dt L(x, t)W (t) (88.43)

For t0 = 0 < t1 < . . . < tN−1, t∗k ∈ [tk, tk+1), define

JN =
∑
k

L(x, t∗k)∆
tk+1

tk
B (88.44)

and

J = lim
N→∞

JN (88.45)

Consider the integrand L(x, t)W (t). In non-rigorous calculus, we normally
consider integrands that are smooth, so that as N →∞ and the separation between
successive ti goes to zero, the value of J is independent of where t∗k is located inside
the interval [tk, tk+1). In the SDE case, the integrand LW is continuous but very
jagged, so the value of J does depend on the choice of t∗k.

Consider the special case that L = x = B, so

JN =
∑
k

B(t∗k)∆
tk+1

tk
B (88.46)

Let us see how in this simple case, the value of J depends on the choice of t∗k.

1. t∗k = tk+1

E[JN ] =
∑
k

E[B(tk+1)∆
tk+1

tk
B] (88.47)

=
∑
k

E[(∆
tk+1

0 B)∆
tk+1

tk
B] (88.48)

=
∑
k

E[(∆
tk+1

tk
B)2] (88.49)

= t (88.50)

2. t∗k =
tk+tk+1

2
Stratonovich integral

3. t∗k = tk, Itô (Ito) integral

E[JN ] =
∑
k

E[B(tk)∆
tk+1

tk
B] (88.51)

=
∑
k

E[(∆tk
0 B)∆

tk+1

tk
B] (88.52)

= 0 (88.53)
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JN =
∑
k

B(tk)∆
tk+1

tk
B (88.54)

=
∑
k

Bk(Bk+1 −Bk) (88.55)

(88.56)

=
1

2

∑
k

[
−[Bk+1 −Bk]

2 + (B2
k+1 −B2

k)
]

(88.57)

=
1

2

∑
k

[
−[∆tk+1

tk
B]2 +∆

tk+1

tk
(B2)

]
(88.58)

J = lim
N→∞

JN (88.59)

=
1

2
(−t+B2(t)) (88.60)

E[J ] = 1
2
(−t+ t) = 0

d[B2(t)] = 2B(t)dB(t) + t (88.61)

[dB(t)]2 = dt (88.62)

For B ∈ Rn,

d[Bα(t)Bβ(t)] = δ(α, β) [2Bα(t)dBα(t) + nt] (88.63)

d[Bα(t)]d[Bβ(t)] = Qα,βdt (88.64)

88.6 Fokker-Planck Equation
Consider the n dimensional case x,W ∈ Rn. Let µ, ν, α, β ∈ [n]. Suppose

dxµ = fµ(x, t)dt+ Lµ,ν(x, t)dBν(t) (88.65)

where

Rµ,ν =
1

2
Lµ,αQα,βL

T
β,ν (88.66)

Claim 154

dϕ =

[
∂ϕ

∂t
+ fµ

∂ϕ

∂xµ
+Rµ,ν

∂2ϕ

∂xµ∂xν

]
dt+

∂ϕ

∂xµ
Lµ,νdBν (88.67)
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proof:
The Taylor expansion of ϕ(x, t), up to second order derivatives, is

dϕ =
∂ϕ

∂t
dt+

∑
µ

∂ϕ

∂xµ
dxµ +

1

2

∑
µ

∑
ν

∂2ϕ

∂xµ∂xν
dxµdxν (88.68)

∂ϕ

∂xµ
dxµ =

∂ϕ

∂xµ
[fµdt+ Lµ,νdBν ] (88.69)

∂2ϕ

∂xµ∂xν
dxµdxν =

∂2ϕ

∂xµ∂xν
[fµdt+ Lµ,αdBα]

[
fνdt+ Lν,βdBβ

]
(88.70)

=
∂2ϕ

∂xµ∂xν
Lµ,αLν,βdBαdBβ (88.71)

=
∂2ϕ

∂xµ∂xν
Lµ,αLν,αQα,αdt (88.72)

dϕ =
∂ϕ

∂t
dt+

∂ϕ

∂xµ
[fµdt+ Lµ,νdBν ] +Rµ,ν

∂2ϕ

∂xµ∂xν
dt (88.73)

=

[
∂ϕ

∂t
+ fµ

∂ϕ

∂xµ
+Rµ,ν

∂2ϕ

∂xµ∂xν

]
dt+

∂ϕ

∂xµ
Lµ,νdBν (88.74)

QED
For example, if n = 1, x = B, ϕ = BK and L = Q = 1, f = 0, we get

d(Bm) =
[
mBm−1 +m(m− 1)Bm−2

]
dt+mBm−1dB (88.75)

The next claim defines the Fokker-Planck equation (FP equation) (a.k.a.
Fokker-Planck-Kolgomorov equation ) for the probability P (x, t) of single event
(x, t)

Claim 155 (Forward FP equation)
If

dx = f(x, t)dt+ L(x, t)dB (88.76)

Then

∂P (x, t)

∂t
= FxP (x, t) (88.77)

with

Fx• = −
∂

∂xµ
(•fµ) +

∂2

∂xµ∂xν
(•Rµ,ν) (88.78)
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proof: ∫
dxn P x

t

[
∂ϕ

∂xµ
Lµ,νdBν

]
= 0 (88.79)

Integration by parts

udv = d(uv)− (du)v (88.80)∫ +∞

−∞
udv = uv|+∞

−∞︸ ︷︷ ︸
0

−
∫ +∞

−∞
(du)v (88.81)

∫
dtdxn P x

t

dϕ

dt
=

∫
dtdxn P x

t

[
∂ϕ

∂t
+ fµ

∂ϕ

∂xµ
+Rµ,ν

∂2ϕ

∂xµ∂xν

]
(88.82)

−
∫
dtdxn ϕ

dP

dt
=

∫
dtdxn ϕ

[
− ∂P

∂t
− ∂(Pfµ)

∂xµ
+

∂2

∂xµ∂xν
(PRµ,ν)

]
(88.83)

QED

Claim 156
∂P

∂t
= FxP (88.84)

is solved formally by

P (x, t) = e(t−t0)FxP (x, t0) (88.85)

proof: Just use the Taylor expansion of an exponential function and analogize with
the case when Fx is a constant.
QED

Note that
∂P

∂t
= −∂Jµ

∂xµ
(88.86)

where

Jµ = Pfµ −
∂(PRµ,ν)

∂xν
(88.87)

Eq.(88.86) is the equation for conservation of probability3. Jµ is called
the probability flux, fµ is called the drift, and Rµ,ν is called the diffusion matrix
(or diffusion coefficient if it’s a scalar)

3It implies conservation of probability because

0 =
∂

∂t

∫
V

dV P =

∫
V

dV ∇ · J⃗ =

∫
J⃗ · dS⃗

714



The forward FP equation when n = 1, f = 0, L = 1, R = D > 0, is called the
Diffusion Equation.

dx = dB (88.88)

∂P

∂t
= D

∂2P

∂2x
(88.89)

As another example of the forward FP, consider the Overdamped Langevin
Equation4

dxµ = − 1

2

∂U

∂xµ
dt+ dB (88.90)

Claim 157 For the overdamped Langevin equation, if Q = 1
λ
> 0, then the steady

state solution is

P (x) =
e−λU(x)

Z
(88.91)

where
Z =

∫
dxn e−λU(x) (88.92)

proof:
The forward FP equation with L = 1, ∂P

∂t
= 0 is

0 = −∂(Pfµ)
∂xµ

+
1

2λ

∂2P

∂x2µ
(88.93)

If we substitute fµ = − 1
2
∂U
∂xµ

into this, we get

0 =
1

2

∂

∂xµ

(
P
∂U

∂xµ
+

1

λ

∂P

∂xµ

)
(88.94)

If we now substitute the proposed value of P , we get 0 = 0

0 =
∂

∂xµ

(
λe−λU

∂U

∂xµ
+
∂e−λU

∂xµ

)
(88.95)

QED
Recall that

4This equation, also known as Brownian dynamics (see Ref.[110]), arises from Newton’s equation
mẍ = −λẋ−U ′(x) when the acceleration ẍ is negligible, so the drag force and potential force cancel
each other.
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Fx• = −
∂

∂xµ
(•fµ) +

∂2

∂xν∂xµ
(•Rµ,ν) (88.96)

Define Bx to be the same as Fx but with every derivative A ∂B
∂xµ

replaced by
−B ∂A

∂xµ
. Hence5

Bx• = fµ
∂•
∂xµ

+Rµ,ν
∂2•

∂xµ∂xν
(88.97)

Claim 158 (Forward FP equation for transition matrix P (xt|ws))
P (xt|ws) satisfies

∂P (xt|ws)
∂t

= FxP (xt|ws) (88.98)

with
P (xs|ws) = δ(x− w) (88.99)

In case you know Dirac bra-ket notation, note that the differential equation
Eq.(88.98) can be expressed in Dirac notation as

∂ ⟨x|Pt,s|w⟩
∂t

=

∫
⟨x|Ft|x′⟩ dx′ ⟨x′|Pt,s|w⟩ (88.100)

with

⟨x|Ps,s|w⟩ = δ(x− w) (Hence, Ps,s = 1) (88.101)

Claim 159 (Backward FP equation for transition matrix P (yu|xt))
P (yu|xt) satisfies

− ∂P (yu|xt)
∂t

= BxP (yu|xt) (88.102)

with

P (yt|xt) = δ(y − x) (88.103)

In case you know Dirac bra-ket notation, note that the differential equation
Eq.(88.102) can be expressed in Dirac notation as

− ∂ ⟨y|Pu,t|x⟩
∂t

=

∫
⟨y|Bt|y′⟩ dy′ ⟨y′|Pu,t|x⟩ (88.104)

with
⟨y|Pt,t|x⟩ = δ(y − x) (Hence, Pt,t = 1) (88.105)

5For those who know Quantum Mechanics, our F equals a Hamiltonian H times i, F = Hi.
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The forward FP equation is the time reversed version of the backward FP
equation. Thus, they describe the same stochastic process, in opposite time directions.

Note that if we view a transition matrix P (yu|xt) as a matrix whose rows and
columns are labeled by all possible events (xt), then the forward FP equation (resp.,
backward FP equation) is a differential equation constraining all the rows (yu) for a
fixed column (xt) (resp., all the columns for a fixed row). They both constrain the
same matrix P (yu|xt), but in 2 different ways.

Figure 88.4 shows the TPM arrows for the forward FP in red and for the
backward FP in blue.

Figure 88.4: Red arrows refer to P ((x, t)|(w, s)) and P ((x, t + dt)|(w, s)) for the
forward FP equation. Blue arrows refer to P ((y, u)|(x, t)) and P ((y, u)|(x, t+dt)) for
the backwards FP equation.

88.7 First and second order statistics
In this section, we derive differential equations for the first and second order statistics
of an SDE without and with CC.

88.7.1 For general SDE

Suppose the SDE coefficients f and L can depend on the event (x, t).
Let

mµ(t) = E[xµ(t)] =
〈
xµ(t)

〉
(88.106)

Cµ,ν(t, s) =
〈
xµ(t), xν(s)

〉
(88.107)

Vµ,ν(t) = Cµ,ν(t, t) (88.108)

dxµ = [aµ(t) + Fµ,ν(t)xν ] dt+ Lµ,ν(t)dBν (88.109)
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Rµ,ν =
1

2
Lµ,αQα,βL

T
β,ν =

1

2
(LQLT )µ,ν (88.110)

Claim 160
dm

dt
= a+ Fm (88.111)

dV

dt
= V F T + FV T + 2R (88.112)

proof:

dm

dt
= ⟨a+ Fx⟩ (88.113)

= a+ Fm (88.114)

Let ∂α = ∂
∂xα

d
〈
xµ, xν

〉
= dxα∂α

〈
xµ, xν

〉
+ dxαdxβ

1

2
∂α∂β

〈
xµ, xν

〉
(88.115)

=
〈
xµ, dxν

〉
+
〈
dxµ, xν

〉
+
〈
dxµ, dxν

〉
(88.116)

=
〈
xµ, Fν,αxαdt

〉
+ ⟨Fµ,αxαdt, xν⟩+ 2Rµ,νdt (88.117)

= (V F T + FV T + 2R)dt (88.118)

QED
We call a propagator, a function Ψ : R+ × R+ → R that satisfies

∂Ψ(t, s)

∂t
= F (t)Ψ(t, s) (88.119)

Ψ(a, c) = Ψ(a, b)Ψ(b, c)
Ψ−1(a, b) = Ψ(b, a)
Ψ(a, a) = 1

(88.120)

Claim 161

m(t) = Ψ(t, t0)m(t0) +

∫ t

t0

dτ Ψ(t, τ)a(t) (88.121)

V (t) =
〈
x(t), xT (t)

〉
= Ψ(t, t0)V (t0)Ψ

T (t, t0) +

∫ t

t0

dτ Ψ(t, τ)R(τ)ΨT (t, τ) (88.122)

〈
x(t), xT (s)

〉
=

{
V (t)ΨT (s, t) if t < s
Ψ(t, s)V (s) if t ≥ s

(88.123)
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proof: Eqs.(88.121 and (88.122)) can be proven simply by taking the time derivative
of both sides. This yields the differential equations for m(t) and V (t) that were
established in Claim 160. We won’t prove Eq.(88.123) here. For a proof, see Ref.[68].
QED

If P (x, t = 0) is a Gaussian, P (x, t) must be Gaussian too, because the trans-
formation is linear. Therefore,

P (x, t) = P (x(t)) = N (x(t);µ = m(t),Σ2 = V (t)) (88.124)

P (x(t)|x(s)) = N (x(t);µ = m(t|s),Σ2 = V (t|s)) (88.125)

where

m(t|s) = Ψ(t, s)x(s) +

∫ t

t0

dτΨ(t, τ)a(τ) (88.126)

V (t|s) =
∫ t

s

dτ Ψ(t, τ)R(τ)ΨT (t, τ) (88.127)

This transition matrix P (x(t)|x(s)), when we discretize time and set x(tk) =
xk, defines the dynamic bnet of Fig.88.5. Define

Ψk = Ψ(tk+1, tk) (88.128)

ak =

∫ tk+1

tk

dτ Ψ(tk+1, τ)a(τ) (88.129)

Σk =

∫ tk+1

tk

dτ Ψ(tk+1, τ)R(τ)Ψ
T (tk+1, τ) (88.130)

The TPMs, printed in blue, for the bnet of Fig.88.5, are as follows:

P (xk+1|xk) = 1(xk+1 = Ψkxk + ak + ϵk) (88.131)

P (ϵk) = N (ϵk;µ = 0,Σ = Σk) (88.132)
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Figure 88.5: Bnet that satisfies the general SDE, assuming P (x, t = 0) is a Gaussian.

88.7.2 In case SDE has CC

When the SDE has CC,
Ψ(t, s) = e(t−s)F (88.133)

At time t = ∞, a system with CC reaches a steady state (i.e., zero time
derivatives of expected values) with mean value m∞ and variance V∞ given by

0 = a+ Fm∞ (88.134)

0 = V∞F
T + FvT∞ + 2R (88.135)

88.8 Fourier Analysis for CC case
In this section, we will apply Fourier analysis to the SDE with CC.

We begin by recalling a few definitions from Fourier analysis.
The Dirac delta function satisfies:

δ(t) =
1

2π

∫ ∞

−∞
dω eiωt (88.136)

The Fourier transform of x(t) is

x̃(ω) = F [x(t)](ω) =
∫ ∞

−∞
dt x(t)e−iωt (88.137)

The inverse Fourier transform of x̃(ω) is

x(t) = F−1[x̃(ω)](t) =
1

2π

∫ ∞

−∞
dω x̃(ω)eiωt (88.138)

Define the bounded-time Fourier transform x̃T (ω) by

x̃T (ω) =

∫ T
2

− T
2

dt x(t)e−iωt (88.139)
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Define the power spectral density of process x(t) by

Sx(ω) = lim
T→0

1

T
E[x̃T (ω)x̃

†
T (ω)] (88.140)

In case x = W= white noise,

SW (ω) = Q (88.141)

Define the autocorrelation function for stationary process x(t) by

ACx(τ) = E[x(t)xT (t+ τ)] (88.142)

τ is called the time lag.

Claim 162 ∫ T
2

− T
2

dt

∫ T
2

− T
2

ds g(t− s) =
∫ T

−T
dτ g(τ)(T − |τ |) (88.143)

proof:
Let

τ =
t− s√

2
, σ =

t+ s√
2

(88.144)

The absolute value of the Jacobian | ∂(s,t)
∂(τ,σ)

| equals 1. Hence,

∫ T
2

− T
2

dt

∫ T
2

− T
2

ds g(t− s) =
∫ T√

2

− T√
2

dτ

∫ T√
2
+|τ |

− T√
2
−|τ |

dσ g(
√
2τ) (See Fig. 88.6) (88.145)

=

∫ T√
2

− T√
2

dτ g(
√
2τ)(
√
2T − 2|τ |) (88.146)

=

∫ T

−T
dτ ′ g(τ ′)(T − |τ ′|) (τ ′ =

√
2τ) (88.147)

QED

Claim 163 (Wiener Khinchin theorem (WK))

Sx(ω) =

∫ ∞

−∞
dτ ACx(τ)e

iωτ (88.148)

If AC(τ) = AC(−τ),

Sx(ω) = 2

∫ ∞

0

dτ ACx(τ) cos(ωτ) (88.149)
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Figure 88.6: Integration region for integral given by Eq.(88.143)

proof:

∫ ∞

−∞
dτ ACx(τ)e

iωτ =

∫ ∞

−∞
dτ
〈
x(t)x†(t+ τ)

〉
eiωτ (88.150)

=

∫ ∞

−∞
dτ

∫ ∞

−∞

dω1

2π

∫ ∞

−∞

dω2

2π

〈
x̃(ω1)x̃

†(ω2)
〉
eiωτ+iω1t−iω2(t+τ)

(88.151)

To get rid of the t dependence on the right hand side of the last equation,
apply 1

T

∫ T/2
−T/2 dt to both sides to get

∫ ∞

−∞
dτ ACx(τ)e

iωτ =

∫ ∞

−∞

dτ

T

∫ ∞

−∞

dω1

2π

∫ ∞

−∞
dω2

〈
x̃(ω1)x̃

†(ω1)
〉
ei(ω−ω2)τδ(ω1 − ω2)

(88.152)

=

∫ ∞

−∞

dτ

T

∫ ∞

−∞

dω1

2π

〈
x̃(ω1)x̃

†(ω1)
〉
ei(ω−ω1)τ (88.153)

=
1

T

∫ ∞

−∞
dω1

〈
x̃(ω1)x̃

†(ω1)
〉
δ(ω − ω1) (88.154)

=
1

T

〈
x̃(ω)x̃†(ω)

〉
=

1

T

〈
x̃(ω)x̃T (ω)

〉
(88.155)

Alternative proof:

1

T
E[|x̃T (ω)|2] =

1

T

∫ T
2

− T
2

ds

∫ T
2

− T
2

dt E[x(t)xT (s)]e−iw(t−s) (88.156)

=
1

T

∫ T

−T
dτ AC(τ)eiωτ (T − |τ |) (88.157)

→
∫ ∞

−∞
dτ AC(τ)eiωτ (Use Eq.(88.143)) (88.158)

QED
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As a trivial example of the WK theorem, note that

ACW (τ) = Qδ(τ) (88.159)

Hence, by the WK theorem,

Sx(ω) = Q (88.160)

Next, let us solve the SDE with CC using Fourier transforms. Substituting
Fourier transforms for x(t) into this equation

dx

dt
= Fx+ LW (88.161)

we get

−iωx̃ = Fx̃+ LW̃ (88.162)

Hence,

x̃ = −(F + iω)−1LW̃ (88.163)

SW (ω) = x̃x̃† (88.164)
= (F + iω)−1 LQL†︸ ︷︷ ︸

2R

(F T − iω)−1 (88.165)

ACx(τ) =

∫ ∞

−∞
dω eiωτ (F + iω)−1(2R)(F T − iω)−1 (88.166)

When steady state is reached, the expected values (averages) of functions of
x(t) cease to vary with time. Thus, we only need to compare x(t) to itself, not to
x(t+ τ) with τ > 0. Hence, we only need to know AC(τ) at τ = 0.

For steady state, by the Wiener Khinchin theorem,

Sx(ω) = ACx(0)2πδ(w) (88.167)

where

ACx(0) =

∫ ∞

−∞
dw (F + iω)−1(2R)(F T − iω)−1 (88.168)
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88.9 Lamperti Transformation
The Lamperti Transformation answers the following question: If the next two
SDE are satisfied, express gµ in terms of fµ and Lµ,ν

dxµ = fµ(x, t)dt+ Lµ,ν(x, t)dBν (88.169)

dyµ = gµ(y, t)dt+ dBµ (88.170)

Claim 164 For n = 1, the function g(y, t) in Eq.(88.170) is given by

g(y, t) =

(
∂

∂t

∫ x

ξ

du

Lut
+
fxt
Lxt
− 1

2

∂Lxt
∂x

)∣∣∣∣
x→h−1(y,t)

(88.171)

proof: Suppose

y = h
def
=

∫ x

ξ

du

L(u, t)
(88.172)

Then

dy =
∂h

∂t
dt+

dx

L
− 1

2L2

∂L

∂x
(dx)2 (88.173)

=
∂h

∂t
dt+

fdt+ LdB

L
− 1

2L2

∂L

∂x
(LdB)2︸ ︷︷ ︸
L2dt

(88.174)

=

(
∂h

∂t
+
f

L
− 1

2

∂L

∂x

)
dt+ dB (88.175)

QED

88.10 Feynman-Kac Path Integrals
Kac path integrals (Kac PI) are weighted sums over paths. Kac FPs are solutions
of a classical SDE for specific boundary conditions. They were first proposed by Kac.

Feynman path integrals (Feynman PI) are similar to Kac PI, but the
weights of the sum are complex valued instead of real valued. Feynman FPs are
solutions of a quantum SDE (i.e., a Schroedinger equation) for specific boundary
conditions. They were first proposed by Feynman, who wrote this book about them:
Ref.[17])

Despite its name, this section will deal only with Kac PI. Furthermore, we will
only consider the the one dimensional case x ∈ R. The higher dimensional case is
similar.
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Figure 88.7: Bnet for defining 1-dim Kac PI.

Let x(tk) = xk and consider the bnet of Fig.88.7. The TPMs, printed in blue,
for that bnet, are as follows

P (xk|xk−1) = 1(xk−1 + fk∆t+∆Bk) (88.176)

∆Bk ∼ N (µ = 0, σ2 = q∆t) (88.177)

Then

P (x[1−N ]|x0) =
N∏
k=1

P (xk|xk−1) (88.178)

=
N∏
k=1

[
1√

2πq∆t
exp

(
− (xk − xk−1)

2

2q∆t

)]
(88.179)

=
N∏
k=1

[
1√

2πq∆t
exp

(
− (fk∆t+∆Bk)

2

2q∆t

)]
(88.180)

=
N∏
k=1

[
1√

2πq∆t

]
︸ ︷︷ ︸

γN

exp

(
− 1

2q

∫ tN

0

dt
[
(B̈)2 + 2fḂ + f 2

])
(88.181)

P (B[0−N ]) = γN exp

(
− 1

2q

∫ tN

0

dt(B̈)2
)

(88.182)

P (x[1−N ])

P (B[1−N ])
= exp

(
− 1

2q

∫ tN

0

dt
[
2fḂ + f 2

])
(88.183)

DB = γN
N∏
k=1

dBk (88.184)

Note that (Bk, tk) ∈ Rn × [0, T ] for k ∈ [0−N ]. Let E ⊂ Rn × [0, T ]. Fig.88.8
shows a possible set E when n = 1. The path integration is over all paths (Bk, tk) for
k ∈ [0−N ] that live inside E .
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It follows that

P (xN+1|x0 = 0) =

∫
E
DB exp

(
1

2q

∫ tN

0

dt
[
(B̈)2 + 2fḂ − f 2

])
(88.185)

Figure 88.8: The pink area is a possible set E ⊂ R× [0, T ] such that (Bk, tk) ∈ E

88.11 Karhunen–Loève series
In this section we explain the Karhunen–Loève (KL) series. The most intuitive
way of explaining KL series is using Dirac bra-ket notation.

Let {|t⟩ : t ∈ [0, T ]} be a complete orthonormal basis∫ T

0

dt |t⟩⟨t| = 1, ⟨t|t′⟩ = δ(t− t′) (88.186)

Express x(t) in bra-ket notation

x(t) = ⟨t|x⟩ , x∗(t) = ⟨x|t⟩ , (88.187)

Consider the operator

C = E[|x⟩⟨x|]− E[|x⟩]E[⟨x|] (88.188)

The matrix elements of C are:

C(t, t′) = ⟨t|C|t′⟩ = E[x(t)x∗(t′)]− E[x(t)]E[x∗(t′)] (88.189)

Hence, C(t, t′) is the correlation matrix in the {|t⟩ : t ∈ [0, T ]} basis.
Suppose C has eigenvalue, eigenvector pairs (λn, |ϕn⟩) for n = 1, 2, 3, . . ..

Hence
C|ϕn⟩ = λn|ϕn⟩ (88.190)
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where the states |ϕn⟩ for all n, are a complete orthonormal basis. Then

∞∑
n=1

|ϕn⟩⟨ϕn| = 1, ⟨ϕn|ϕn′⟩ = δ(n, n′) (88.191)

C =
∞∑
n=1

|ϕn⟩λn⟨ϕn| (88.192)

If we define
ϕn(t) = ⟨t|ϕn⟩ , ϕ∗

n(t) = ⟨ϕn|t⟩ (88.193)

x∗n = ⟨x|ϕn⟩ , xn = ⟨ϕn|x⟩ (88.194)

then

|x⟩ =
∑
n

xn|ϕn⟩ (88.195)

Note also that both

⟨ϕn|C|ϕm⟩ = E[xnx
∗
m]− E[xn]E[x∗m] (88.196)

and

⟨ϕn|C|ϕm⟩ = λnδ(n,m) (88.197)

are satisfied. Therefore,

E[xnx
∗
m]− E[xn]E[x∗m] = λnδ(n,m) (88.198)

Claim 165 The Karhunen–Loève expansion for Brownian motion B(t) is

C =
∑
n

|ϕn⟩λn⟨ϕn| (88.199)

for n = 0, 1, 2 . . . where

B(t) =
∑
n

zn ⟨t|ϕn⟩ (88.200)

⟨t|ϕn⟩ =
√

2

T
sinωnt (88.201)

ωn =
π

T
(n+

1

2
) (88.202)

λn =
1

ω2
n

(88.203)
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zn ∼ N (µ = 0, σ2 = λn) (88.204)

proof:
E[BtBs]− E[Bt]E[Bs]︸ ︷︷ ︸

0

= E[BtBs] = min(t, s) (88.205)

∫ T

0

dt min(s, t)ϕn(t) = λnϕn(s), 0 ≤ s ≤ T (88.206)

∫ T

0

dt min(s, t) sinωnt =

∫ s

0

dt t sinωnt+

∫ T

s

dt s sinωnt (88.207)

∫ s

0

dt t sinωnt =
sinωnt

ω2
n

∣∣∣∣s
t=0

− t cosωnt

ωn

∣∣∣∣s
t=0

(88.208)

=
sinωns

ω2
n

− s cosωns

ωn
(88.209)

∫ T

s

dt s sinωnt = −
s cosωnt

ωn

∣∣∣∣T
t=s

=
s cosωns

ωn
(88.210)

Hence ∫ T

0

dt min(s, t) sinωnt =
sinωns

ω2
n

(88.211)

The
√

2
T

factor in the definition of ϕn(t) is necessary to insure that ⟨ϕn|ϕn⟩ = 1.

QED

88.12 Girsamov Theorem
In this section, we explain the Grisamov theorem. We divide the explanation into
3 parts.

Suppose
dx = f(x, t)dt+ dB (88.212)

dy = g(y, t)dt+ dβ (88.213)

and
dx = dy (88.214)
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Claim 166 (Girsanov theorem, part 1)

dβ = (f − g)dt+ dB (88.215)

proof: Just subtract Eq.(88.212) from Eq.(88.213) .
QED

Claim 167 (Girsanov theorem, part 2)

P (x[1−N ])

P (y[1−N ])
= exp

(
− 1

2q

∫ tN

0

dt (f − g)2 − 1

2q

∫
2(f − g)dB

)
(88.216)

proof:
From Eq.(88.183)

P (x[1−N ])

P (y[1−N ])
= exp

− 1

2q

∫ tN

0

dt
[
2fḂ + f 2 − 2gβ̇ − g2

]
︸ ︷︷ ︸

A

 (88.217)

A = 2fḂ − 2g[Ḃ + f − g] + f 2 − g2 (88.218)
= (f − g)2Ḃ + (f − g)(−2g) + (f − g)(f + g) (88.219)
= (f − g)[2Ḃ − 2g + f + g] (88.220)
= (f − g)2 + 2Ḃ(f − g) (88.221)

QED

Claim 168 (Girsanov theorem, part 3)
If

Z =
P (x[1−N ])

P (y[1−N ])
(88.222)

then

E[h(x[1−N ])] = E[Zh(y[1−N ])] (88.223)

proof:

E[h(x[1−N ])] =

∫
dx[1−N ]︸ ︷︷ ︸
dy[1−N ]

P (x[1−N ])h(x[1−N ])︸ ︷︷ ︸
h(y[1−N ])

(88.224)

=

∫
dy[1−N ]ZP (y[1−N ])h(y[1−N ]) (88.225)

= E[Zh(y[1−N ])] (88.226)
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88.13 Doob’s Transform
In this section, we explain Doob’s transform.

We begin by assuming that a function D(.|xt) 6 7 satifies the equation

D(.|xt) =
∫
dy D(.| yt+s)P ( y

t+s|xt) (88.227)

Next we define a function PD( y
t+s|xt) by

PD( y
t+s|xt) =

D(.| yt+s)P ( y
t+s|xt)

D(.|xt)
(88.228)

Note that PD( y
t+s|xt) is a conditional probability as its symbol suggests.∫

dy PD( y
t+s|xt) = 1 (88.229)

Recall that

Fx• = −
∂

∂xµ
(•fµ) +

∂2

∂xµ∂xν
(•Rµ,ν) (88.230)

and

Bx• = fµ
∂•
∂xµ

+Rµ,ν
∂2•

∂xµ∂xν
(88.231)

If [
∂

∂s
+ By

]
ϕys = 0, (88.232)

then that implies we can define a process y(s) such that

dyµ = fµ(
y
s)ds+ Lµ,ν(

y
s)dBν (88.233)

with

P (zt|ys) = ϕys (88.234)

Claim 169 (Doob’s Transform)
Let FDy (resp., BDy ) be the same as Fy (resp., By), but with fµ(yt) replaced by

fDµ (yt) given by

fDµ (yt) = fµ(
y
t) + 2Rµ,ν

∂ lnD(.|yt)
∂yν

(88.235)

6Sometimes, D(.|xt) is denoted by the letter h, and this transform is called Doob’s h-transform.
7Later on, we will see that the conditional probability P (xT |xt) = D(.|xt) satisfies Eq.(88.227).
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Suppose [
∂

∂s
+ By

]
D(.|ys) = 0, (88.236)

and [
∂

∂s
+ BDy

]
P ( y

t+s|xt) = 0 (88.237)

Then [
∂

∂s
+ By

]
PD( y

t+s|xt) = 0 (88.238)

proof: For conciseness, define Ps = P ( y
t+s|xt), Ds = D(.| yt+s), D0 = D(.|yt) , and

∂µ = ∂
∂yµ

, ∂ν = ∂
∂yν

, ∂s = ∂
∂s

(∂s + By)PD
s =

1

D0

[∂s(DsPs) + fµ∂µ(DsPs) +Rµ,ν∂µ∂ν(DsPs)] (88.239)

∂µ∂ν(DsPs) =


∂µ∂ν(Ds)Ps
+∂ν(Ds)∂µ(Ps)
+∂µ(Ds)∂ν(Ps)
+Ds∂µ∂ν(Ps)

(88.240)

(∂s + By)PD
s =



Ps

Ds

XXXXXXX

[
∂s + By

]
Ds

+ 1
D0

[Ds∂s(Ps) + fµDs∂µPs]

+Rµ,ν


∂ν(Ds)∂µ(Ps)
+∂µ(Ds)∂ν(Ps)
+Ds∂µ∂ν(Ps)

(88.241)

(∂s + By)PD
s =

{
Ds

D0
[∂sPs + fµ∂µPs +Rµ,ν∂µ∂νPs]

+Rµ,ν∂ν(Ds)∂µ(Ps)
(88.242)

=
Ds

D0

[∂sPs + [fµ + 2Rµ,ν∂ν(lnDs)]∂µPs +Rµ,ν∂µ∂νPs] (88.243)

=
Ds

D0

[
∂sPs + fDµ ∂µPs +Rµ,ν∂µ∂νPs

]
(88.244)

=
Ds

D0

(∂s + BDy )Ps (88.245)

QED
Let A = ( x

t+s) , B = (xT). Bayes Rule says

P (A|B, xt) =
P (B|A, xt)P (A|xt)

P (B|xt)
(88.246)
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Hence,

P ( x
t+s|xT , xt) =

P (xT | xt+s, xt)P ( x
t+s|xt)

P (xT |xt)
(88.247)

=
P (xT | xt+s)P ( x

t+s|xt)
P (xT |xt)

(88.248)

If we set

D(.| xt+s) = P (xT | xt+s) (88.249)

then Claim 169 applies.

88.14 Appendix: Some explicitly solvable examples
Let µ, ν, α, β ∈ [n]

dxµ = fµ(x, t)dt+ Lµ,ν(x, t)dBν(t) (88.250)

∂P

∂t
= − ∂Pfµ

∂xµ
+

∂2

∂xµ∂xν
(PRµ,ν) (88.251)

• Brownian motion (fµ = 0, Rµ,ν = Dδ(µ, ν))

dxµ = dBµ (88.252)

• Overdamped Langevin Equation (fµ = −1
2
∂U
∂xµ

, Rµ,ν = Dδ(µ, ν))

dxµ = − 1

2

∂U

∂xµ
dt+ dBµ (88.253)

• Ornstein–Uhlenbeck process (a.k.a. Langevin equation) (fµ = −λxµ,
Rµ,ν = Dδ(µ, ν))

This is the same as the Langevin equation, if identify x with the velocity of the
particle and λ with the drag coefficient.

dx = −λxdt+ dB (88.254)

• 1-dim (n = 1) Black-Sholes (f = ax, R = (bx)2q/2)

dx = axdt+ bxdB (88.255)
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• 1-dim (n = 1) SDE with (f = ax+ c, R = (bx+ d)2q/2)

dx = [a(t)x+ c(t)]dt+ [b(t)x+ d(t)]dB (88.256)

x(t) = Ψ(t, t0)

(
x(t0) +

∫ t

t0

ds Ψ−1(s, t0)[c(s)− b(s)] +
∫ t

t0

Ψ−1(s, t0)d(s)dW (s)

)
(88.257)

Ψ(t, t0) = exp

(∫ t

t0

ds

[
a(s)− 1

2
b2(s)

]
+

∫ t

t0

b(s)dW (s)

)
(88.258)

88.15 Appendix: Ornstein-Uhlenbeck recurring ex-
ample

SDE
dx = −λxdt+ dB (88.259)

P (xt), Mean and Variance

P (xt) = N (xt;µ = ⟨xt⟩ , σ2 = ⟨xt, xt⟩) (88.260)

m(t) = ⟨xt⟩ = x0e
−λt (88.261)

V (t) = ⟨xt, xt⟩ =
q

2λ
(1− e−λt) (88.262)

transition matrix, P (xt|xs), conditional mean and variance

P (xt|xs) = N (xt;µ = m(t|s), σ2 = V (t|s)) (88.263)

m(t|s) = xse
−λ(t−s) (88.264)

V (t|s) = q

2λ
(1− e−2λ(t−s)) (88.265)

Power Spectrum, Autocorrelation

S(ω) =
q

ω2 + λ2
(88.266)

AC(τ) =
q

2λ
e−λ|τ | (88.267)
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steady state covariance

V∞ = ⟨x∞, x∞⟩ =
1

2π

∫ ∞

−∞
dω S(ω) =

q

2λ
(88.268)

Doob’s transform

D(xT |xt) = N (xT ;µ = a(t)xt, σ
2 = σ2(t)) (88.269)

a(t) = e−λ(T−t) (88.270)

σ2(t) =
q

2λ
[1− e−2λ(T−t)] (88.271)

a(0) = e−λT , a(T ) = 1. σ2(T ) = 0. D(xT |xT) = N (xT ;µ = xT , σ
2 = 0)

dx =
[
−λx+ qa

σ2
[xT − ax]

]
dt+ dB (88.272)
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Chapter 89

Structure and Parameter Learning for
Bnets

Learning a bnet from data is a computationally intensive NP-complete problem.
Therefore, the best one can hope for is for heuristic algorithms that solve this problem
approximately. A huge number of such algorithms have been tried and continue to
be tried. Luckily, there exists a free open source software library called bnlearn that
covers many of them. The goal of this chapter is to give a brief overview of the subject
of bnet learning, after which we recommend to those readers who want to pursue this
subject further, to learn bnlearn .

This chapter is based on the bnlearn website Ref.[70], and on a 2019 survey
paper [71] by Scutari et al. I highly recommend looking at both. Refs. [6] and [39]
were also helpful to me in understanding this subject.

bnlearn (Ref.[70]) (free, open source) is very comprehensive and well main-
tained. It is written mostly in C with an R front-end. It was developed by Marco
Scutari and collaborators over a time period of more than 10 years, and is still under
active development. How things stand in the field of bnet learning software reminds
me of how things stand in the field of linear algebra (LA) software. Perfecting and
optimizing LA software takes many years so I would not advise you to write your
own LA software library starting from scratch. There is no need to do so. Instead,
you can use LAPACK (free, open source), which has been perfected and expanded
for decades by world experts. I view bnlearn as the LAPACK of bnet learning.

89.1 Overview
To give the reader an overview of the subject and of bnlearn itself, here is a highly
simplified tree, compiled from the bnlearn website and documentation, of some of
the subjects covered by bnlearn .

Parameter Learning
missing data

Structure Learning
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tree-like structures given a priori
Naive Bayes
Chow-Liu tree
Tree Augmented Naive Bayes (TAN)
ARACNE

score based
algorithms

hill climbing (HC)
HC with random restarts
HC with Tabu list (Tabu)
simulated annealing
genetic algorithms

scoring functions
Information Theoretic scores
Bayesian Information Criterion (BIC)
Bayesian Dirichlet (BD) family

constraint based
algorithms

PC family
Grow-Shrink (GS)
Incremental Association Markov Blanket (IAMB) family

conditional independence tests
mutual information (parametric, semiparametric and permutation
tests)
shrinkage-estimate for the mutual information

hybrid
Max-Min Hill Climbing (MMHC)
Hybrid HPC (H2PC)
General 2-Phase Restricted Maximization (RSMAX2)

parallel mode structure learning
node types

all-discrete
all-continuous
mixed

utility functions
model comparison and manipulation
random data generation
arc orientation testing
simple and advanced plots
parameter estimation (maximum likelihood and Bayesian)
inference, conditional probability queries
cross-validation
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bootstrap
model averaging
Let

• PL=parameters learning (i.e, learning the TPMs)

• SL= structure learning (i.e., learning the DAG)

• ML= model (or bnet) learning, SL+PL

PL is easy, once the structure is known. PL assuming no missing data goes as
follows. Using the notation of Chapter 82, define

πik|µ = P (xi = k | pa(xi) = µ) . (89.1)

Then πik|µ can be estimated from the data N i
k,µ using:

πik|µ ≈ N i
k|µ =

N i
k,µ

N i
+,µ

. (89.2)

PL described by Eq.(89.2) is only for discrete nodes with no missing data. bnlearn can
also do PL with missing data and continuous (Gaussian linear only) nodes. See Chap-
ter 59 on missing data and Chapter 31 on Gaussian linear nodes. SL actually does
PL and SL at the same time.

There are 3 main types of SL: score based, constraint based, and hybrid.
bnlearn can perform many algorithms of each of these 3 types of SL. It can perform
most of them with either all-discrete, or all-continuous or mixed nodes. It can perform
many of them in parallel mode. The 2019 survey paper Ref.[71] by Scutari et al
compares the performance of many different bnet learning algorithms.

89.2 Score based SL algorithms
Score based SL algorithms require scoring bnets (with either all-discrete, all-continuous
or mixed nodes). See Chapter 82 for an introduction to scoring bnets. The BIC score
explained in that chapter is very popular and works for all-discrete, all-continuous or
mixed nodes.

Score-based SL algorithms apply standard optimisation techniques. In the
Hill Climbing algorithm, the current best bnet is changed slightly and then given a
score that measures how well it fits the data. The bnet with the highest (=best)
score so far, as well as that highest score, are stored. (Hence, this is called a greedy
search). The process continues until the latest highest score stops changing. The
problem with being greedy all the time is that the answer might converge to a local
maximum. To mitigate this problem and allow some probability of visiting more than
one local maximum, one uses a Tabu Table, random restarts, simulated annealing,
genetic algorithms, etc.
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89.3 Constraint based SL algorithms
To fully understand constraint based SL algorithms, the reader is advised to read
Chapters 23 and 67 first.

Constraint based SL algorithms require estimating from the data the condi-
tional independence x. ⊥P y.|a. for any 3 disjoint multinodes x., y., a.. This can
be done by estimating the conditional mutual information (CMI) H(x. : y.|a.).
bnlearn can calculate CMI and other metrics of x. ⊥P y.|a.. All these metrics are
very similar; they all measure how close P (x.|y., a.) and P (x.|a.) are.

The first constraint-based SL algorithm was the Inductive Causation (IC) al-
gorithm proposed by Pearl and Verma in 1991. Incremental improvements have been
proposed since then, such as the PC family of algorithms, Grow-Shrink and the In-
cremental Association Markov Blanket (IAMB) family of algorithms.
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89.4 Pseudo-code for some bnet learning algorithms

Algorithm 4: Pseudo-code for Hill Climbing algorithm
Input : Data D, Vertices V
Output: a bnet B = (G, T ), where G = (V,E) is a DAG, where V are its

vertices (nodes) and E are its edges (arrows). T are all its
Transition Probability Matrices (TPMs) T = TPMs(G,D).

E ← ∅
T ← ∅
B ← (V,E, T )
maxscore← −∞
// DE= all possible directed edges
DE = {x→ y ∈ V × V : x ̸= y}
again← True
while again do

for all x→ y ∈ DE do
// add arrow
E+ ← E ∪ {x→ y}
// delete arrow
E− ← E − {x→ y}
// reverse arrow
ER ← E− ∪ {y → x}
for E ′ = E+, E−, ER do

if E ′ ̸= E and G′ = (V,E ′) is a legal DAG then
T ′ ← TPMs(G′, D)
B′ ← (G′, T ′)
newscore = BIC-score(B′)
if newscore > maxscore then

B ← B′

maxscore← newscore

else
again← False

return B
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Algorithm 5: Pseudo-code for PC-Stable algorithm
Input : Data D, Vertices (nodes) V , tolerance in CMI ϵ > 0
Output: partially oriented acyclic graph G = (V,E, UE), where V are the

vertices (nodes), E are the oriented edges (arrows) and UE are the
unoriented edges.

E ← ∅
// initialize UE to fully-connected undirected graph
UE ← {x− y ∈ V × V : x− y = y − x, x ̸= y}
// Shrink phase. Deletes edges from E.
for λ = 0, 1, 2, . . . , |V | − 2 do

for all x− y ∈ UE do
for all S = {a ∈ V : x− a ∈ UE, a ̸= x, y} ∋ |S| = λ do

if H(x : y|S) < ϵ then
/* If there were an arrow between x and y, then

conditioning on S would not be enough to interrupt
info transmission H(x : y|S) between x and y */

UE ← UE − {x− y}
S(x− y)← S

// Growth phase. Adds v structures to E.
for all x, y, a such that x− a ∈ UE, a− y ∈ UE, x− y ̸∈ UE, a ̸∈ S(x− y) do

/* If there were no collider at a, then there would be info
transmission between x and y */

UE ← UE − {x− a, a− y}
E ← E ∪ {x→ a, y → a}

// Orienting edges.
again← True
size← |UE|
while again do

for all x− y ∈ UE do
if x→ y ∈ E, y − z ∈ UE, x− z ̸∈ UE, ̸ ∃w ∋ w → y ∈ E then

// to avoid introducing new v structure
UE ← UE − {y − z}
E ← E ∪ {y → z}

if x→ y ∈ E and there is directed path from x to y in E then
// to avoid introducing cycles
UE ← UE − {x− y}
E ← E ∪ {x→ y}

newsize← |UE|
if size == newsize then

again← False
else

size← newsize

return G = (V,E, UE)
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Chapter 90

Support Vector Machines And Kernel
Method

This chapter is based on Refs.[140]. [169] and [141].
The Support Vector Machines (SVM) method was first invented with a linear

kernel, but was later generalized to arbitrary kernels. We will use the terms SVM
method and Kernel Method indistinguishably.

The SVM method is a fairly general method for calculating, via supervised
learning, a binary classifier. The SVM method finds a continuous surface that sepa-
rates a space into two disjoint parts.

Let Σ = [0, 1, 2, . . . , nsam−1] be a list of individuals (samples) in a population.
In this chapter, we will use the notation Aσ = A[σ] and A⃗ = [Aσ : σ ∈ Σ] for a
list (vector, 1-D array) indexed by Σ. We will refer to DS = (x⃗, y⃗) where xσ ∈ Sx,
yσ ∈ {−1, 1}, as a dataset. Let xσ = (xσ0 , x

σ
1 , . . . , x

σ
nf−1) ∈ Sx0×Sx1×. . .×Sxnf−1

= Sx.
When xσj ∈ R for all j, we will take xσ ∈ Rnf to be a column vector. xσ is the feature
vector for individual σ, and its components xσi for i = 0, 1, . . . , nf−1 are the features.
yσ ∈ {−1, 1} is the binary class to which xσ belongs.

Let ŷ(xσ0) ∈ {−1, 1} be an estimate of yσ0 ∈ {−1, 1}. The SVM classifier is
defined as

ŷ(xσ0) = sign(Y (xσ0)) (90.1)

where1

Y (xσ0) =
∑
σ

ασyσK(xσ, xσ0) . (90.2)

The binary weight coefficients ασ ∈ {0, 1} for all σ ∈ Σ are found by training, via
an algorithm to be described below.

The function K : Sx×Sx → R is called the Kernel or Similarity function.
We assume that K(xσ, xσ0) grows bigger when its two arguments xσ and xσ0 become

1Define sign(0) = 1.
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more “similar". We also assume that K(xσ, xσ0) is symmetric in its two arguments.

90.1 Learning Algorithm for SVM Classifier

α⃗

��

// α⃗′

��

xσ0

��

xσ0+1

��
(x⃗, y⃗) // 55ŷ

��

ŷ′

��
E

II

E ′

yσ0

OO

yσ0+1

OO

Figure 90.1: Time-slice σ0 of dynamical bnet for learning binary weights α⃗ of SVM
classifier.

Given a kernel function K and a dataset (x⃗, y⃗), the SVM classifier is fully spec-
ified except for its binary weights α⃗. Those weights can be learned via the algorithm
represented as a causal diagram in Fig.90.1. That figure shows two time-slices of a
dynamical bnet. The TPMs, printed in blue, of bnet Fig.90.1, are as follows:

P (ŷ|α⃗, (x⃗, y⃗), xσ0) = 1( ŷ = given by Eq.(90.1). ) (90.3)

P (E|ŷ, yσ0) = 1( E = 1(ŷ ̸= yσ0) ) (90.4)

The first (but not the second, third , etc.) α⃗ node of Fig.90.1 is a root node.
The TPM for that root node should set all components of α⃗ to zero:

P (α⃗) =
∏
σ

1( ασ = 0 ) . (90.5)

After that initialization,

P (α⃗′|α⃗, E) = 1( (α′)σ0 = ασ0 + E )
∏
σ ̸=σ0

1( (α′)σ = ασ ) (90.6)
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Why this learning algorithm works.

Figure 90.2: Define the neighborhood of xσ0 by N (xσ0) = {xσ : |K(xσ, xσ0)| < ϵ} for
some ϵ > 0.

K(xσ, xσ0) sets to zero any contribution to Y (xσ0) from points xσ outside the
neighborhoodN (xσ0) of xσ0 . (See Fig.90.2). If ŷ(xσ0) = yσ0 , keep ασ0 = 0 because the
neighbors of xσ0 are giving the correct ŷ(xσ0) when they are polled and the majority
wins. If, on the other hand, ŷ(xσ0) ̸= yσ0 , then switch ασ0 from 0 to 1, which means
xσ0 gets to vote by adding yσ0 to Y (xσ0). So we start off with all ασ = 0 and we end
with most of them still zero except for a select few. If we were to set all ασ equal to
one, we would get overfitting and a very jagged separation between the two classes.
The fact that we end with only a select few ασ equal to 1, and the rest equal to 0,
helps make the demarcation between the two classes less jagged.

90.2 Linear (dot-product) Kernel

Figure 90.3: Graph of line Y (xσ) = 0 splits plane into regions with Y < 0, Y = 0
and Y > 0.

So far, we have discussed the SVM method for an arbitrary kernel. This section
is devoted to the Linear (a.k.a. dot-product) Kernel. Said kernel is defined as

K(xσ, xσ0) = (xσ)Txσ0 . (90.7)
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For this kernel, Eq.(90.2) specializes to

Y (xσ0) =
∑
σ

ασyσK(xσ, xσ0) + b (90.8)

= wTxσ0 + b (90.9)

where

w =
∑
σ

ασyσxσ . (90.10)

Figure 90.4: We refer to the gray shaded region with −1 < Y < 1, where Y = wTx+b,
as the DMZ.

We started this chapter by pulling the SVM classifier out of a hat. We did
give reasons why it works, but we did not derive it from a more general minimization
principle. Such a derivation is possible, at least in the linear kernel case, and we give
it next.

Consider the following 3 straight lines:

wTxσ + b = +A (90.11)
wTxσ + b = 0 (90.12)

wTxσ + b = −A (90.13)

where w, xσ ∈ Rnf , and b, A ∈ R. We can re-scale the vector w and scalar b so as to
get rid of the A. (i.e., replace w → wA and b→ bA and divide common factor A out
of equations). This rescaling does not affect the graphs (i.e., x loci) of these 3 lines.
Now we have:
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wTxσ + b = +1 (90.14)
wTxσ + b = 0 (90.15)

wTxσ + b = −1 (90.16)

If Y stands for

Y = wTxσ + b , (90.17)

then we define the DMZ (demilitarized zone) to be the region

DMZ = {xσ : |Y (xσ)| < 1} . (90.18)

The lines Y = ±1 will be called the borders (a.k.a. margins) of the DMZ, and line
Y = 0 will be called the line of demarcation of the DMZ. The DMZ is illustrated
in Fig.90.4.

Let DDMZ be the DMZ width (i.e., the distance from one border of the
DMZ to the other.) Position vectors pointing from the origin to either of the two
DMZ borders are called support vectors. Suppose X+, X− ∈ Rnf are two support
vectors on opposite DMZ borders with |X+ −X−| = DDMZ . Then

wTX+ + b = 1 (90.19)
wTX− + b = −1 (90.20)

so

DDMZ =
2

|w|
. (90.21)

For any a ∈ R, let the positive a+ and negative a− parts of a be given by

a = a+︸︷︷︸
a1(a>0)

+ a−︸︷︷︸
a1(a≤0)

. (90.22)

When Y = ±1, an error in Y (xσ) occurs iff yσY (xσ) = −1. But how should
we define errors when Y is a real number? Define the Cost of erring for sample
σ to be

CEσ(xσ, yσ) = (1− yσY (xσ))+ . (90.23)

CEσ is shown in Fig.90.5. As you can see, there is a penalty for living on the
incorrect side, and even a penalty for living on the correct side but too close to the
DMZ.
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Figure 90.5: Plot of CEσ versus Y .

Note that the line of demarcation should have the lowest CEσ for all possible
w, b. So to find that line, we want to minimize CEσ with respect to w, b. But note
that CEσ ≥ 0, and it can be zero for an appropriately chosen w. So we need to add
another cost in order to get a non-zero total cost. Define the DMZ cost as

CZ =
1

2
|w|2 = 2

D2
DMZ

(90.24)

Note that CZ →∞ as DDMZ → 0, so CZ penalizes DMZ’s that are too narrow.
Now define a Lagrangian L to be the sum of these 2 contributions.

L = CZ +
∑
σ

CEσ (90.25)

=
1

2
|w|2 +

∑
σ

(1− yσY (xσ))+ (90.26)

This particular choice of CZ is not unique, but it isn’t totally arbitrary either. We
want it to be independent of the sample σ, and to depend on a geometrical aspect
of the DMZ, like its width DDMZ = 2/|w|. Note that CEσ behaves, when |w| → ∞,
linearly in |w|. We are going to differentiate L with respect to |w| to find an optimum.
But straight lines have no optima, so we need CZ to behave, when |w| → ∞, as |w|p
for some integer p > 1.

Setting the variation δL to zero, we get

0 = δL = δwi

{
wi −

∑
σ

1(yσY (xσ) < 1)yσxσi

}
(90.27)

so

w =
∑
σ

1(yσY (xσ) < 1)︸ ︷︷ ︸
ασ

yσxσ . (90.28)
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90.3 Alternatives to Linear Kernel
Sometimes it is convenient to replace the dot-product kernel given above by a different
kernel. Other popular kernels are:

• Radial Basis Function (RBF) Kernel. In this case, K is a radial function;
i.e., a function that depends only on the magnitude (radius, Euclidean distance,
L2 norm) of a vector. An example of an RBF kernel is the Gaussian Kernel

K(xσ, xσ0) = e−γ|x
σ−xσ0 |2 (90.29)

for some free parameter γ > 0.

• Inhomogeneous Polynomial Kernel

K(xσ, xσ0) = [(xσ)Txσ0 + 1]d (90.30)

for some positive integer d.

• Homogeneous Polynomial Kernel

K(xσ, xσ0) = [(xσ)Txσ0 ]d (90.31)

for some positive integer d.

• "Kernel trick" Kernel. Consider a map Φ : Rnf → RN . Usually N > nf . Φ
can be a rectangular matrix A ∈ RN×nf so that Φ(xσ) = Axσ ∈ RN . Let

K(xσ, xσ0) = [Φ(xσ)]TΦ(xσ0) (90.32)

Although the constant surfaces of this kernel are hyperplanes in RN , its constant
surfaces in Rnf can be curved and even closed compact surfaces (e.g. spheres).

90.4 Random Forest and Kernel Method
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Chapter 91

Survival Analysis

This chapter is based on Refs.[182] and [170].
Survival Analysis (SA) is used for curve-fitting, to fit a curve S(t) to data

indicating the number of patients surviving after receiving a treatment for time t.
Alternatively, it can be used with data indicating the number of devices that haven’t
failed after running for time t. SA can also be used to compare two such S(t) curves—
for example, one for treated patients, and another for untreated patients. Hence, SA
can be used to analyze the data of an RCT.

Let
σ ∈ Σ, individual (e.g., patient) in population Σ.
N = |Σ|, size of Σ, nsam, number of samples
Note: A subset of Σ, (a.k.a, sub-population or stratum) is often called a

cohort in epidemiology.
τσ ≥ 0, time to final event such as death of an organism, or failure of a

device, duration of stay, follow-up time period, time period, lifetime.
τσ = bσ − aσ for some absolute times aσ, bσ satisfying aσ < bσ

Uσ = censoring upper bound
Lσ = censoring lower bound
Bσ = min(bσ, Uσ), right censoring
Aσ = max(aσ, Lσ), left censoring
T σ = Bσ − Aσ, where Aσ < Bσ

dσ = 1(bσ < Uσ), equals 1 if death (i.e., no censoring), equals 0 if no death
(i.e., censoring)

eσ = 1(aσ > Lσ), equals 1 if death (i.e., no censoring), equals 0 if no death
(i.e., censoring)

Will only use right censoring in this chapter.
For t ≥ 0, define

• Survival function S(t) and Cumulative hazard function Λ(t)

S(t) = P (τ ≥ t) = e−Λ(t) (91.1)

Note that we define in this chapter S(t) = P (τ ≥ t) (those present among
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survivors (PAS)) instead of P (τ > t) (not PAS), like other authors do. For
continuous functions, these 2 definitions of S(t) are the same.

Note that, since S(t) is a probability and t, τ ∈ [0,∞], Λ(t) must be a mono-
tonically increasing function with Λ(0) = 0 and Λ(∞) =∞.

• hazard function (a.k.a. instantaneous failure rate) λ(t)

Λ(t) =

∫ t

0

du λ(u) (91.2)

λ(t) = Λ′(t) (91.3)

Note that λ(t) ≥ 0 and its integral over [0,∞] must be ∞. λ(t) is in fact a
conditional probability as we show next.

λ(t) =
P (τ = t)

S(t)
(shown below) (91.4)

=
P (τ = t)

P (τ ≥ t)
(91.5)

=
P (τ = t, τ ≥ t)

P (τ ≥ t)
(because P (A ∧B) = P (A) if A implies B) (91.6)

= P (τ = t | τ ≥ t) (91.7)

• τ density function Pτ (t)

Pτ (t) = −S ′(t) = λ(t)e−Λ(t) = λ(t)S(t) (91.8)

• τ cumulative distribution function Φτ (t)

Φτ (t) = P (τ < t) = 1− S(t) (91.9)

Pτ (t) = Φ′
τ (t) (91.10)

• mean survival time µ

µ =

∫ ∞

0

dt tPτ (t) (91.11)

• median survival time τmed

S(τmed) = 0.5 (91.12)
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91.1 S(t) estimates

91.1.1 No-censoring estimate of S(t)

Let

rσ(t) = 1(τσ ≥ t) (91.13)

rσ(t) equals 1 iff individual σ at risk (i.e., still alive and not censored, not out) at
time t

Ŝ(t) =
1

N

∑
σ

rσ(t) (91.14)

{rσ(t) : σ ∈ Σ} are i.i.d.
rσ(t) = x is a Bernoulli random variable Bern(p = S(t))(i.e., simple coin flip

with P (x = 1) = p, P (x = 0) = q, mean p and variance pq, where p = S(t))

Ŝ(t)→ N
(
µ = S(t), σ2 =

S(t)[1− S(t)]
N

)
as N →∞ (91.15)

(convergence in probability) A sanity check for Eq.(91.15) is to note that

〈
Ŝ(t)

〉
=

1

N

∑
σ

⟨rσ(t)⟩︸ ︷︷ ︸
S(t)

(91.16)

= S(t) (91.17)

〈
Ŝ(t), Ŝ(t′)

〉
=

1

N2

∑
σ

∑
σ′

〈
rσ(t), rσ

′
(t′)
〉

(91.18)

=
1

N2

∑
σ

⟨rσ(t), rσ(t)⟩ (91.19)

=
S(t)[1− S(t)]

N
(91.20)

91.1.2 Kaplan-Meier estimate of S(t)

Let
[τ j[j=1,2,...,J , times at which there is a final event, all measured from the same

time origin, and ordered so that τ j < τ j+1

njD = number of individuals that die at time τ j
njC = number of individuals that are censored at time τ j
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njO = njD+njC number of individuals that drop-Out at time τ j, either because
they die or are censored

njR =
∑

k≥j n
k
O, number of individuals that are at risk at or after time τ j(i.e.,

still alive and not censored, not out, surviving before time τ j)
dσ ∈ {0, 1}, it equals 1 iff individual σ dies at any time.
dσ(t) ∈ {0, 1}, it equals 1 iff individual σ dies at time t.
dσ(τ j) ∈ {0, 1}, it equals 1 iff individual σ dies at time τ j.
dσ(τ j)→ d(τ j) since i.i.d.
cσ = 1− dσ, it equals 1 iff individual σ is censored at any time.
cσ(t) = 1− dσ(t), it equals 1 iff individual σ is censored at time t.
cσ(τ j) = 1− dσ(τ j), it equals 1 iff individual σ is censored at time τ j.
cσ(τ j)→ c(τ j) since i.i.d.
oσ(t) = 1(τσ = t), it equals 1 iff individual σ drops out at time t.
oσ(τ j) = 1(τσ = τ j), it equals 1 iff individual σ is drops out at time τ j.
oσ(τ j)→ o(τ j) since i.i.d.
Note that1 ∧

k≤j

{oσ(τ k) = 0}︸ ︷︷ ︸
σ did not drop out in past or present τ j

=
⊕
k>j

{oσ(τ k) = 1}︸ ︷︷ ︸
σ drops out in future

(91.21)

or, replacing oσ by o, ∧
k≤j

{o(τ k) = 0} =
⊕
k>j

{o(τ k) = 1} (91.22)

1notation: ∧i=1,2ai = (a1 ∧ a2) = (a1 And a2),
∨i=1,2 ai = (a1 ∨ a2) = (a1 Or a2),
⊕i=1,2 ai = (a1 ⊕ a2) =exclusive or= modulus 2 addition= binary addition with (1⊕ 1) = 0.
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Kaplan-Meier (KM) estimate of S(t) (see2)

Ŝ(τ j) = P

(⊕
k>j

{o(τ k) = 1}

)
(91.23)

= P

(∧
k≤j

{o(τ k) = 0}

)
(91.24)

=
∏
k≤j

P

(
o(τ k) = 0 |

∧
k′<k

{o(τ k′) = 0}

)
(chain rule) (91.25)

=



∏
k≤j P

(
d(τ k) = 0 |

∧
k′<k{o(τ k

′
) = 0}

)
+
∏
k≤j

P

(
c(τ k) = 0 |

∧
k′<k

{o(τ k′) = 0}

)
︸ ︷︷ ︸

=0(see footnote)

(91.26)

=
∏
k≤j

[
1− P

(
d(τ k) = 1 |

∧
k′<k

{o(τ k′) = 0}

)]
(91.27)

=
∏
k≤j

[
1− nkD

nkR

]
(91.28)

o(τ 4)

��

��

o(τ 3)oo

��

��

o(τ 2)oo
tt

��

��

o(τ 1)oo
zzvv

��

��

d(τ 4) d(τ 3) d(τ 2) d(τ 1)

c(τ 4) c(τ 3) c(τ 2) c(τ 1)

Figure 91.1: Bnet for KM estimate of S(t) for N = 4.

Fig.91.1 gives a bnet for the KM estimate of S(t). The TPMs, printed in blue,
for that bnet, must be as follows:

P (o(τ k) = 1 |
∧
k′<k

{o(τ k′) = 0}) = nkO
nkR

(91.29)

2Even though S(t) has been defined as P (τ ≥ t), a more precise definition in the presence of
censoring is P (τ ≥ t | patient dies rather than being censored)
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P (d(τ k) = 1 | o(τ k) = 1) =
nkD
nkO

(91.30)

P (c(τ k) = 1 | o(τ k) = 1) =
nkC
nkO

(91.31)

Intuition: Let

λ̂k =
nkD
nkR

(91.32)

If λ̂k << 1, then, since ex ≈ 1 + x for |x| << 1,

Ŝ(τ j) ≈
∏
k≤j

e−λ̂
k

(91.33)

= exp[−
∑
k≤j

λ̂k] (91.34)

≈ exp[−
∫ τj

0

dt λ̂(t)] (91.35)

Note that:

• Ŝ(t) only changes when there is a death.

• Ŝ(t) = 1 before the first death time

• Ŝ(t) only goes to 0 if the last observation is a death, so njD/n
j
R = 1.

• When there is no censoring, the KM estimate equals the no censoring estimate
given earlier.

Greenwood’s formula for variance of KM estimate of S(t)〈
Ŝ(t), Ŝ(t)

〉
= [S(t)]2

∑
k:τk≤t

nkD
nkCn

k
R

(91.36)

Fig.91.2 and Table 91.1 give a numerical example of the KM estimate.
Fig.91.3 shows relevant parameters for steps τ j−1 and τ j in a plot of a KM

estimate.
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6 6 6 6C 7 9C 10
10C 11C 13 16 17C 19C 20C
22 23 25C 32C 32C 34C 35C

Figure 91.2: Plot of KM estimate for N = 21 patients with τσ given in table below
the plot. τ ′s with C are censored.

j τ j njR njD niC
1 6 21 3 1
2 7 17 1 0
3 9 16 0 1
4 10 15 1 1
5 11 13 0 1

Table 91.1: Parameters j, τ j, njR, n
j
D, n

j
C for first five lifetimes for Fig.91.2.
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Figure 91.3: Steps τ j−1 and τ j in a plot of a KM estimate. An X indicates a dead
individual and ■ a censored one. Note that
njO = njD + njC ,
njR = nj−1

R − nj−1
O and

njR =
∑

k≥j n
k
O.

91.2 λ(t) models

91.2.1 λ(t) independent of covariates Z

Recall t ≥ 0

• λ(t) is independent of time

λ(t) = λ (91.37)

where λ ≥ 0.

Λ(t) = λt (91.38)

Pτ (t) = λe−λt (Exponential distribution) (91.39)

• λ(t) is proportional to power of t

λ(t) = κλtκ−1 (91.40)

755



where λ, κ ≥ 0.

Λ(t) = λtκ (91.41)

Pτ (t) = κλtκ−1e−λt
κ

(Weibull distribution) (91.42)

• λ(t) = a+ bt for a, b ≥ 0

• λ(t) is piecewise constant for t ∈ [0,∞]

• etc.

Maximum Likelihood Estimate (MLE) of λ for λ(t) = λ, allowing censoring:
Likelihood function is

L(λ) =
∏
j

[Pτ (τ
j)]d(τ

j)[S(τ j)]c(τ
j) (91.43)

=
∏
j

[λe−λτ
j

]d(τ
j)[e−λτ

j

]1−d(τ
j) (91.44)

=
∏
j

λd(τ
j)e−λτ

j

(91.45)

Hence

lnL(λ) = (lnλ)
∑
j

d(τ j)︸ ︷︷ ︸
D

−λ
∑
j

τ j︸ ︷︷ ︸
T

(91.46)

Setting ∂λ lnL = 0, we get

λ̂ =
D

T
(91.47)

91.2.2 λ(t) dependent on covariates Z

Suppose β, Z ∈ Rnind are column vectors, where nind is number of independent
variables (covariates) in a regression.

Cox Proportional Hazards (PH) model for λ(t)

λ(t) = λ(t|Z) = λ0(t)e
βTZ (91.48)

where λ0(t) ≥ 0. λ0(t) is called the baseline hazard function. This λ(t) model
is called a PH model because λ(t|Z1)/λ(t|Z2) = exp[βT (Z1 − Z2)] is independent of
time. In a Cox hazards model with time-dependent covariates (TC), one
assumes that the covariates Z(t) depend on time.
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Note that since exponentials are always positive, the components of β and Z
can range over all real values. If we had chosen λ(t) = λ0(t)β

TZ instead, then we
would have to constrain βTZ ≥ 0.

If we define

Λ0(t) =

∫ t

0

du λ0(u) (91.49)

then

Pτ (t) = λ0(t)e
βTZ exp[−Λ0(t)e

βTZ ] (91.50)

Pτ (t) is called the Cox PH distribution. It’s a semi-parametric distribution
because it depends on both, a prior parameter β and a prior function λ0(t) (a function
is like an infinite dimensional parameter). A parametric distribution depends only
on a prior parameter and a non-parametric distribution depends only on a prior
function.

Recall that we defined earlier
njD = number of individuals that die at time τ j
njC = number of individuals that are censored at time τ j
To define the Cox partial likelihood function, we will assume that njD+n

j
C = 1,

i.e., each time τ j has either a single death, or a single censorship, but not both. Since
every individual eventually dies or is censored (but, we will assume, not both), there
is a 1-1 onto map j(σ) mapping Σ to the set of indices j of τ j. So we can label the
population individuals σ by their index j, or vice versa.

Let

Lj(β) =
eβ

TZj∑
k≥j e

βTZk (91.51)

Then define the Cox partial likelihood function by

L(β) =
∏
j

[Lj(β)]d(τ
j) (91.52)

Cox’s approximate method for finding the best fit for β is to set ∂ lnL(β)
∂βa

= 0 for all a.
This does not determine the baseline hazard function, however.

Recall that

λ(τ j|Zk) = λ0(τ
j)eβ

TZk

= P (τ k = τ j | τ k ≥ τ j) (91.53)

Therefore
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Lj(β) =
λ0(τ

j)eβ
TZj∑

k≥j λ0(τ
j)eβTZk (91.54)

=
λ(τ j|Zj)∑
k≥j λ(τ

j|Zk)
(91.55)

Next, we try to justify Cox’s partial likelihood function. We will give two
arguments.

1. Bayesian argument

Assume that Zk is a random variable with a non-informative prior P (Zk) =
N (!k). Then

P (Zk|τ j) = f(τ j)P (τ j|Zk)︸ ︷︷ ︸
λ(τ j |Zk)

(91.56)

for some function f : R→ R. Hence

Lj(β) =
P (Zj | τ j)∑
k≥j P (Z

k | τ j)
(91.57)

=
P (Zj | τ j)

P (
∨
k≥j{Z

k = Zk} | τ j)
(because the Zk are independent) (91.58)

=
P (Zj,

∨
k≥j{Z

k = Zk}, τ j)
P (
∨
k≥j{Z

k = Zk}, τ j)
(because P (A ∧B) = P (A) if A =⇒ B)

(91.59)

= P (Zj |
∨
k≥j

{Zk = Zk}, τ j) (91.60)

Note that Lj(β) depends on {Zk : k ≥ j} because at time j, the past Zk are
fixed already, so the only ones we are allowed to optimize (remember, we are
acting as Bayesians here, so we can optimize parameters) are the present and
future ones.

2. Maximum Likelihood argument
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Lj(β) =

{
P (τ ≥ τ j) = S(τ j) if d(τ j) = 0 (i.e., c(τ j) = 1)
P (τ = τ j) = λ(τ j | Zj)S(τ j) if d(τ j) = 1

(91.61)

= λ(τ j | Zj)d(τ
j)S(τ j) (91.62)

=

[
λ(τ j | Zj)∑
k≥j λ(τ

k | Zj)

]d(τ j)
︸ ︷︷ ︸

L1

[∑
k≥j

λ(τ k | Zj)

]d(τ j)
S(τ j)︸ ︷︷ ︸

L2

(91.63)

Cox argued that L2 varies very slowly with β.

91.3 S0(t) estimates

SZ(t) = e−Λ(t) (91.64)
= e−Λ0(t) exp(βTZ) (91.65)
= SZ=0(t)

exp(βTZ) (91.66)

Claim 170 (Breslow S0(t) estimate)

Ŝ0(t) = e−Λ̂0(t) (91.67)

where

Λ̂0(t) =
∑
j:τ j<t

[
njD∑

k≥j e
βTZk

]
(91.68)

proof:

njD
∆t

≈
∑
k≥j

P (τ k = τ j | τ k ≥ τ j) (91.69)

=
∑
k≥j

λ(τ j | Zk) (91.70)

= λ0(τ
j)
∑
k≥j

eβ
TZk

(91.71)

Hence

λ0(τ
j)∆t =

njD∑
k≥j e

βTZk (91.72)
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If we now apply
∑

j:τ j<t to both sides of the last equation, we get Eq.(91.68).
QED

Note that

Ŝ0(t) =
∏
j:τ j<t

exp

[
−njD∑
k≥j e

βTZk

]
(91.73)

≈
∏
j:τ j<t

1− njD∑
k≥j e

βTZk︸ ︷︷ ︸
λ̂j

 (because ex ≈ 1 + x for |x| << 1) (91.74)
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Chapter 92

Synthetic Controls

This chapter is based on Refs.[15] and [12].
This chapter assumes that the reader has read Chapter 18 on the Difference-

in-Differences (DID) method.
The Synthetic Controls (SC) method is a simple enhancement of the DID

method. SC enhances DID in two simple yet powerful ways:

1. Better time resolution. DID considers just 2 time-snapshots (i.e., a time-
series with only 2 times) whereas SC considers arbitrarily many time-snapshots
(i.e., a time-series with more than 2 times).

2. Weighted average of controls. DID divides the population of individuals
into just 2 kinds: the treated and the untreated (a.k.a. controls). SC divides
the total population into treated and controls just like DID does, but it goes
further and divides the control population into multiple subpopulations, and
calculates a weighted average, called a “synthetic control", of those subpopu-
lations. The weights of the synthetic control are chosen so that it mimics as
closely as possible the behavior of the treated population for all times measured
before the treatment was applied.

Let us describe these two enhancements more precisely.

• timing: Let tk for k = 0, 1, . . . , npre − 1 be the pre-treatment times at which
a measurement occurs. Let tk for k = npre, npre + 1, . . . , nt − 1 be the post-
treatment times at which a measurement occurs. Note that npre+ npost = nt.
Note that t∗ = tnpre+1 is the first measurement time after the treatment is
applied, t0 is the first measurement time, and tfin = tnt−1 is the last one.

• subpopulations: Let S1 = {σ1} be the set of treated units (just one). Let
S0 = {σ : σ ̸= σ1} be the set of untreated units (i.e., controls). Let nsam =
number of all units σ, n1 = |S1| = 1, and n0 = |S0| = nsam− 1.

• weights:
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Figure 92.1: Pictorial representation of the Synthetic Controls (SC) method. The
outcome y of the synthetic control unit is colored red and that of the treated unit is
colored blue. They roughly agree for t < t∗.

We want to define a time-independent weight wσ for each unit σ in such a way
that the output yσt for the synthetic control unit behaves like the output for the
treated unit σ1 for t < t∗.

Let
wσ1 = 0 (92.1)

and

wn0 = {wσ}σ ̸=σ1 . (92.2)

Define a cost function C:

C(wn0) =
∑
t<t∗

(
yσ1t −

∑
σ ̸=σ1

wσyσt

)2

(92.3)

Then calculate wn0 by minimizing the cost function, subject to the constraint
that wn0 be a probability distribution:

wn0 = argmin
Wn0

{
C(W n0) : W σ ≥ 0,

∑
σ ̸=σ1

W σ = 1

}
. (92.4)

Now that we have defined a weight wσ for every unit σ, we can define for
c ∈ {0, 1},

yσ1t (c) =

{
yσ1t if c = 1∑

σ ̸=σ1 w
σyσt if c = 0

(92.5)

Yc(t) = Eσ[y
σ
t (c)] (92.6)
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and

δt = Y1(t)− Y0(t) (92.7)

δt is illustrated in Fig.92.1. It approximates ATE(t).

92.1 PO analysis
In this section, we show how to analyze the SC method using the formalism of PO
theory.

x

�� ��
d // y

t

x

��

}}

[y
t
(0), y

t
(1)]

��
d // y

t

Gt Gt,+

Figure 92.2: t ∈ {t0, t1, . . . , tfin}. Bnet Gt,+ is obtained by adding two new nodes
y
t
(0) and y

t
(1) to bnet Gt.

As usual for PO theory, we will consider expected values of yσt :

Eσ|d,x[y
σ
t (c)] = Ey

t
(c)|d,x[yt(c)] = Yc|d,x(t) (92.8)

To calculate these expected values, we need a “model" with probability dis-
tributions. In this case, the needed model and probability distributions are provided
by the bnets depicted in Fig.92.2. The TPMs, printed in blue, for the bnet Gt,+ in
Fig.92.2, are as follows. Note that the TPMs for the bnet Gt,+ are defined in terms
of the TPMs for the bnet Gt.

P (x) = Px(x) (92.9)

P (d|x) = Pd|x(d|x) (92.10)

P (yt|yt(0), yt(1), d) = 1(yt = yt(d)) (92.11)
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P (yt(c)|x) = P (yt(c)|d, x) = given (92.12)

Figure 92.3: Four different time-dependent expected values Yc|d(t) of yσt for bnet Gt,+

The 2 ∗ nt magenta stars represents the 2 ∗ nt SC measurements.

Fig.92.3 depicts the four functions Yc|d(t) for t in the interval [t0, tfin] and
for c, d ∈ {0, 1}. The Y coordinates of the 2 ∗ nt magenta stars in Fig.92.3 can be
calculated using bnet Gt. Note that in Fig.92.3, we display a large gap between the
curves Y0|d(t) for d ∈ {0, 1}. In reality, P (yt(0)|d) has been constructed so as to make
that gap as small as possible. Thus, to a good(?) approximation,

δt ≈ ATEt (92.13)

Unlike in the DID method, in the SC method, to a good(?) approximation, we don’t
have to worry about parallel trends.
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Chapter 93

Table 2 Fallacy

The Table 2 Fallacy (T2F) is so named because it is common in epidemiology papers
to present a dataset in Table 1, and a Linear Regression (LR) analysis of that dataset
in Table 2. Thus, a T2F is an error in the interpretation of LR results.

In LR, we define 2 types of variables: The dependent variables xi and the
independent one y. So in LR, the set of dependent variables is not divided into finer
classes. However, in Causal Inference, dependent variables can be of various kinds,
such as confounders, mediators, etc.

The covariance matrices in Eqs.(93.1, 93.2, 93.3) were obtained using the soft-
ware SCuMpy (see Ref.[87])

Suppose we do a LR of the form Y ∼ X +Z for the DAG in Fig.93.1 wherein
Z is a confounder. Conditioning on Z (i.e., holding Z fixed) corresponds to setting
σ2
ϵZ

= ⟨Z,Z⟩ = 0 in Eq.(93.1). Likewise, conditioning on X corresponds to setting
σ2
ϵX

= ⟨X,X⟩ = 0. Note that

• The coefficient αY |X of X when we condition on Z, equals the full effect (a.k.a.
total effect) of X on Y .

• The coefficient αY |Z of Z when we condition on X, is NOT equal to the full
effect

(
αX|ZαY |X + αY |Z

)
of Z on Y ; rather its a partial effect (a.k.a. direct

effect) of Z on Y .

T2F is the false assumption that both coefficients in the LR given by Y ∼ X +Z are
full effects.

Suppose we do a LR of the form Y ∼ X +M for the DAG in Fig.93.2 wherein
M is a mediator. Note that in this case αY |X is a partial effect and αY |M is a full
effect.

Finally, suppose we do a LR of the form Y ∼ X +M + Z for the DAG in
Fig.93.3 wherein M is a mediator and Z is a confounder. Note that in this case αY |Z
and αY |X are partial effects whereas αY |M is a full effect (if we condition on both X
and Z).
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Z

�� ��
X // Y

Figure 93.1: X → Y with confounder Z.

⟨Z, Y ⟩ = σ2
ϵZ

(
αX|ZαY |X + αY |Z

)
⟨X, Y ⟩ = αX|Zσ

2
ϵZ

(
αX|ZαY |X + αY |Z

)
+ αY |Xσ

2
ϵX

(93.1)

Eq.(93.1) gives some covariance matrices for Fig.93.1.

X //

��

Y

M

??

Figure 93.2: X → Y with mediator M .

⟨X, Y ⟩ = σ2
ϵX

(
αM |XαY |M + αY |X

)
⟨M,Y ⟩ = αM |Xσ

2
ϵX

(
αM |XαY |M + αY |X

)
+ αY |Mσ

2
ϵM

(93.2)

Eq.(93.2) gives some covariance matrices for Fig.93.2.

Z

�� ��
X //

��

Y

M

??

Figure 93.3: X → Y with confounder Z and mediator M .

766



⟨Z, Y ⟩ = σ2
ϵZ

(
αM |XαX|ZαY |M + αX|ZαY |X + αY |Z

)
⟨X, Y ⟩ = αX|Zσ

2
ϵZ

(
αM |XαX|ZαY |M + αX|ZαY |X + αY |Z

)
+ σ2

ϵX

(
αM |XαY |M + αY |X

)
⟨M,Y ⟩ =

{
αM |XαX|Zσ

2
ϵZ

(
αM |XαX|ZαY |M + αX|ZαY |X + αY |Z

)
+αM |Xσ

2
ϵX

(
αM |XαY |M + αY |X

)
+ αY |Mσ

2
ϵM

(93.3)
Eq.(93.3) gives some covariance matrices for Fig.93.3.
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Chapter 94

Targeted Estimator

This chapter is based on Refs.[5] and [28].
Targeted Estimator (TE) theory addresses the following concerns. Suppose

Ψ[P ] is an estimator that depends on the full probability distribution P of a fixed
bayesian network. Ψ[P ] is a functional (i.e., a function of a function) of P . If P is
perturbed by a small amount δP , we get Ψ[P + δP ]. Ψ[P + δP ] can be expanded in
powers of δP . The term linear in δP defines the “influence function"; it also defines the
“functional derivative" of Ψ with respect to P . Why are influence functions useful?
The influence function measures, to first order in δP , how the estimator Ψ responds to
a perturbation δP in P . In general, Ψ does not have to be a counterfactual estimator,
but it might be one, like an estimator of ATE, or PNS or whatever. So what is this
good for? It is a way of generating linear "targeted" estimators that are less noisy and
converge more quickly. It measures the sensitivity of an estimator to perturbations
in P . It does not, however, measure sensitivity to changes in the DAG (the DAG is
fixed throughout). And it does not generate new estimands.

The goal of TE and the strategy one uses to achieve it, is explained more
precisely in the next section.

94.1 Goal, Strategy, and Rationale of TE theory
Let b = (b1, b2, . . . , bn) denote the n nodes of a Bayesian Network, and let Pb(b) for
b ∈ Sb denote the full probability distribution of the bnet.

Consider a population Σ of individuals σ ∈ Σ with N = |Σ|. The empirical
probability distribution PN : Sb → [0, 1] for this bnet is defined by

PN(b) =
1

N

∑
σ

δ(b, bσ) (94.1)

∑
b

PN(b)f(b) =
1

N

∑
σ

f(bσ) (94.2)

As N →∞, PN(b) tends to the probability distribution Pb(b) of the bnet.
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Figure 94.1: Example of bnet considered in TE theory.

Let b = (X, ξ) and X = (d, x, y), where node d ∈ {0, 1} denotes a decision to
treat a patient, node y ∈ {0, 1} denotes the treatment outcome, multi-node x denotes
the covariates that are good controls, and multi-node ξ denotes the covariates that we
don’t want to control. See Fig.94.1 for an example of a bnet that fits this description.

The curve-fit ŷ of y is a function ŷ : Sd × Sx → R that minimizes the loss
(a.k.a. loss functional) L given by

L[P, ŷ] =
∑
X

P (X)L̂[y, ŷ(d, x)]2 , (94.3)

where L̂(a, b), the loss curve-fit, is a non-negative function that vanishes when a = b.
The function L̂ is designed to minimize a particular kind of error. In this chapter,
the L̂ is designed to reduce ATE error.

The estimate Ψ[P, ŷ] for the curve-fit ŷ is defined by

Ψ[P, ŷ] =
∑
X

P (X)ŷ(d, x) (94.4)

Unfortunately, the words “estimator" and “estimate" are often used inter-
changeably. See Section C.23. In this chapter, we use (ŷ,Ψ) for our (estimator,
estimate) pair, and refer to estimators as curve-fits.

Let
δP (X) = P (X)− Pin(X) (94.5)

where P, Pin : SX → [0, 1] are probability distributions.
Define δŷ(X) by

δŷ(X) =
ŷ(d, x)δP (X)

P (X)
(94.6)

Hence

P (X)δŷ(X) = ŷ(d, x)δP (X) (94.7)
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Since Ψ[P, ŷ] is linear in P and ŷ, it follows that

Ψ[P, ŷ + δŷ] = Ψ[P + δP, ŷ] (94.8)

Suppose Pin++ satisfies

Pin++ = argmin
Pin

L[Pin, ŷ] (94.9)

and

lim
N→∞

Ψ[PN , ŷ + δŷ] = lim
N→∞

Ψ[PN + δP︸ ︷︷ ︸
Pin++

, ŷ] = lim
N→∞

Ψ[PN , ŷ] . (94.10)

Eq.(94.10) is illustrated in Fig.94.2.
The goal of TE theory is to find, given a curve-fit ŷ, a new curve-fit ŷ + δŷ so

that the estimate Ψ[PN , ŷ + δŷ] has better behavior as N → ∞ than Ψ[PN , ŷ] (i.e.,
converges faster, has smaller bias and variance).

Figure 94.2: Plot of Ψ[P, ŷ] ∈ R versus P at fixed ŷ. In reality, the P are not real
numbers but functions.

94.2 Functional Calculus
Define the Hilbert space of square integrable functions over X ∈ SX by

HX = {h : (h : SX → R) and
∑
X∈SX

[h(X)]2 <∞} (94.11)

For any f, g ∈ HX , define the dot product (a.k.a. inner product) of f and g by

f · g =
∑
X

f(X)g(X) (94.12)
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and the norm

∥ f ∥P=
√∑

X

[f(X)]2 . (94.13)

Suppose P : SX → [0, 1] is a probability distribution. Note that P ∈ HX . For
any f, g ∈ HX , define the P expected value by

⟨f⟩P = P · f (94.14)

and the P covariance by

⟨f, g⟩P = ⟨fg⟩P − ⟨f⟩P ⟨g⟩P (94.15)

Suppose Ψ[η] ∈ R is a real valued function that depends on a function η ∈ HX .
Ψ[η] is said to be a functional of η. Define the functional derivative or gradient
1 of Ψ[η] with respect to η, as follows

δΨ[η]

δη(a)
= lim

ϵ→0

Ψ[η(x) + ϵ δ(x,a)
∆x

]−Ψ[η(x)]

ϵ
(94.16)

where δ(x, a) is the Kronecker delta function. For example,

δ

δη(a)

∑
x

∆x η(x)h(x) =
∑
x

∆x
δ(x, a)

∆x
h(x) = h(a) (94.17)

Let δ(x − a) denote the Dirac delta function. If we replace δ(x,a)
∆x
→ δ(x − a) and∑

x∆x →
∫
dx, we go from the discrete to the continuous version of the functional

derivative. ∑
x

∆x
δ(x, a)

∆x
→
∫
dx δ(x− a) (94.18)

In this chapter, we will use only the discrete version. The ∆x in the numerator
and the one in the denominator, always cancel each other when we go from discrete
to continuous, so we can set ∆x = 1 with impunity.

We will also use the notation

∇Ψ[η](a) =
δΨ[η]

δη(a)
. (94.19)

Suppose η, η0 ∈ HX . Define the functional Taylor expansion of Ψ[η] at η0,
as follows:

1Functional derivatives are commonly used in Physics especially in Quantum Field Theory. See
Ref.[125] for more information about them.
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Ψ[η] = Ψ[η0] +
∑
x

[
δΨ[η]

δη(x)

]
η=η0

δη(x) +
1

2!

∑
x,x′

[
δ2Ψ[η]

δη(x)δη(x′)

]
η=η0

δη(x)δη(x′) + · · ·

(94.20)
where we abbreviate η = η(x), η0 = η0(x) and δη(x) = η(x)− η0(x).

Define the functional directional derivative of Ψ[η] in the h ∈ HX di-
rection by h · δΨ[η]

δη
. If one compares functional calculus with vector calculus, we see

that δΨ[η]
δη

corresponds to a gradient ∇f(x⃗) and h · δΨ[η]
δη

corresponds to a directional
derivative d⃗ · ∇f(x⃗). For |d⃗| << 1, d⃗ · ∇f(x⃗) approximates the change in f(x⃗) when
x⃗ moves from x⃗ to x⃗+ d⃗

94.3 Linear Approximation of Ψ[PN ]
Consider probability distributions P, Pin : SX → [0, 1]. The linear approximation
(a.k.a. one-step-approximation) to the Taylor expansion of Ψ[P ] at Pin is given
by

Ψ[P ]−Ψ[Pin]︸ ︷︷ ︸
δΨ[P,Pin]

] =
∑
X

[
δΨ[P ]

δP (X)

]
P=Pin︸ ︷︷ ︸

∇Ψ[Pin](X)

δP (X)︸ ︷︷ ︸
P (X)−Pin(X)

+R[P, Pin] (94.21)

If we set

∇Ψin = ⟨∇Ψ[Pin]⟩Pin
, (94.22)

then Eq.(94.21) becomes

δΨ[P, Pin] =
∑
X

P (X) {∇Ψ[Pin](X)−∇Ψin}︸ ︷︷ ︸
λ(X)

+R[P, Pin] (94.23)

λ(X) is called the efficient influence curve (EIF).
Recall the Cauchy-Schwartz (CS) inequality for a⃗, b⃗ ∈ Rn:

a⃗ · b⃗ = |⃗a||⃗b| cos θ ≤ |⃗a||⃗b| (94.24)

Note that
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⟨λ⟩P =
∑
X

λ(X)
√
P (X)

√
P (X) (94.25)

= (
√
Pλ) ·

√
P (94.26)

≤
√√

Pλ ·
√
Pλ

√√
P ·
√
P︸ ︷︷ ︸

=1

(by CS inequality) (94.27)

≤
√
⟨λ2⟩P (94.28)

When P = PN ,

Ψ[PN ] ≈ Ψ[Pin] +
1

N

∑
σ

λ(Xσ) (94.29)

If the random variables {Xσ}σ∈Σ are i.i.d. with probability distribution PX(X), then,
as N →∞, Ψ[PN ] tends to a normally distributed random variable with mean

⟨Ψ[PN ]⟩PX
= Ψ[Pin] +

1

N

∑
σ

⟨λ(Xσ)⟩PX
(94.30)

= Ψ[Pin] + ⟨λ⟩PX
(94.31)

and variance

⟨Ψ[PN ],Ψ[PN ]⟩PX
=

1

N2

∑
σ

∑
σ′

〈
λ(Xσ), λ(X

σ′
)
〉
PX

(94.32)

=
1

N
⟨λ, λ⟩PX︸ ︷︷ ︸

⟨λ2⟩PX
−⟨λ⟩2PX

(94.33)

Later on, we will discuss the so called TMLE estimate, for which Pin takes a
special value Pin++ that makes ⟨λ⟩PX

= 0, so Ψ[PN ] tends to a normally distributed
random variable with mean Ψ[Pin++] and variance 1

N
⟨λ2⟩PX

.

94.4 ATE estimand
If we set

Y|d,x[P ] =
∑
y

yP (y|d, x) = P (y = 1|d, x) (94.34)

and
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Y|d[P ] =
∑
x

Y|d,x[P ]P (x) , (94.35)

then the Average Treatment Effect (ATE) is defined as follows

ATE = Y|1[PN ]− Y|0[PN ] (94.36)

The rest of this chapter is devoted to discussing ATE estimates.
In discussing ATE, it is convenient to define the propensity g[P ]:

g[P ](y) = P (d = 1|y) (94.37)

and the Kronecker difference function ∆(d) for d ∈ {0, 1}:

∆(d) = δ(d, 1)− δ(d, 0) (94.38)
= (2d− 1)1(d ∈ {0, 1}) . (94.39)

Claim 171 〈
y
δ(d′, d)

P (d|x)

〉
P

= Y|d′ [P ] (94.40)

proof: 〈
y
δ(d′, d)

P (d|x)

〉
P

=
∑
d

∑
y

∑
x

P (y|d, x)����P (d|x)P (x)y δ(d
′, d)

����P (d|x)
(94.41)

=
∑
y

∑
x

P (y|d = d′, x)P (x)y (94.42)

= Y|d=d′ [P ] (94.43)

QED

94.5 ATE estimates

94.5.1 ΨE

Empirical (E) estimate ΨE.

PN(y, d, x) =
1

N

∑
σ

δ(y, yσ)δ(d, dσ)δ(x, xσ) (94.44)

PN(d, x) =
1

N

∑
σ

δ(d, dσ)δ(x, xσ) (94.45)

774



PN(x) =
1

N

∑
σ

δ(x, xσ) (94.46)

PN(y|d, x) =
PN(y, d, x)

PN(d, x)
(94.47)

ΨE =
∑
x

PN(x)
∑
y

y
∑
d

PN(y|d, x)∆(d) (94.48)

94.5.2 ΨG

G estimate ΨG (a.k.a. g-computing or g-formula estimate).
Use Generalized Linear Modeling (GLM)2 to approximate yσ:

yσ ≈ Ey|dσ ,xσ ;β̂[y] , (94.49)

where β̂ are the best curve fit parameters.

ΨG =
∑
x

PN(x){Ey|d=1,x;β̂[y]− Ey|d=0,x;β̂[y]} (94.50)

94.5.3 ΨIPW

Inverse Propensity Weighted (IPW) estimate ΨIPW (a.k.a. Inverse Probability
of Treatment Weighted (IPTW) estimate).

Assume propensity P (d = 1|x) is known.
Define

ΨIPW [P ] =

〈
y

∆(d)

P (d|x)

〉
P

(94.51)

ΨIPW = ΨIPW [PN ] =

〈
y

∆(d)

P (d|x)

〉
PN

=
1

N

∑
σ

yσ
∆(dσ)

P (dσ|xσ)
(94.52)

94.5.4 ΨLIPW

Linearized IPW (LIPW) estimate ΨLIPW .
ΨLIPW is the linear approximation of ΨIPW [PN ] at point Pin:

ΨLIPW = ΨIPW [Pin] +
〈
∇ΨIPW [Pin]

〉
PN
−∇ΨIPW

in (94.53)
2GLM is discussed in Chapter 32.
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Claim 172

∇ΨIPW [P ](X) = Y|1,x[P ]− Y|0,x[P ] +
∆(d)

P (d|x)
(y − Y|d,x[P ]) (94.54)

proof:

δΨIPW [P ]

δP (X)
=

∑
X′

y′∆(d′)
δ

δP (X)

P (X ′)

P (d′|x′)
(94.55)

δ

δP (X)

P (X ′)

P (d′|x′)
=

δ(X,X ′)

P (d′|x′)
− P (X ′)

[P (d′|x′)]2
δP (d′|x′)
δP (X)

(94.56)

=
δ(X,X ′)

P (d′|x′)
− P (X ′)

P (d′|x′)
δ lnP (d′|x′)
δP (X)

(94.57)

=
δ(X,X ′)

P (d′|x′)︸ ︷︷ ︸
δ3/P (d′|x′)

−P (y′|d′, x′)P (x′)δ lnP (d
′|x′)

δP (X)
(94.58)

δ lnP (d′, x′)

δP (X)
=

1

P (d′, x′)

∑
y′

δP (X ′)

δP (X)
(94.59)

=
δ(d, d′)δ(x, x′)

P (d′, x′)︸ ︷︷ ︸
δ2/P (d′,x′)

(94.60)

δ lnP (x′)

δP (X)
=

δ(x, x′)

P (x′)︸ ︷︷ ︸
δ1/P (x′)

(94.61)

δ lnP (d′|x′)
δP (X)

=
δ2

P (d′, x′)
− δ1

P (x′)
(94.62)

δ

δP (X)

P (X ′)

P (d′|x′)
=

δ3

P (d′|x′)
− P (y′|d′, x′)P (x′)

[
δ2

P (d′, x′)
− δ1

P (x′)

]
(94.63)

∑
X′

y′∆(d′)

[
δ3

P (d′|x′)

]
=

∆(d)

P (d|x)
y (94.64)
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∑
X′

y′∆(d′)

[
−P (y′|d′, x′)δ2

P (d′|x′)

]
= −

∑
y′

y′∆(d)
P (y′|d, x)
P (d|x)

(94.65)

=
∆(d)

P (d|x)
(−Y|d,x[P ]) (94.66)

∑
X′

y′∆(d′)
[
P (y′|d′, x′)δ1

]
=

∑
y′

∑
d′

y′∆(d′)P (y′|d′, x) (94.67)

= Y|1,x[P ]− Y|0,x[P ] (94.68)

QED

Claim 173 〈
∇ΨIPW [P ]

〉
P
= ΨIPW [P ] (94.69)

Hence,

∇ΨIPW
in =

〈
∇ΨIPW [Pin]

〉
Pin

= ΨIPW [Pin] (94.70)

proof:

∇ΨIPW [P ](X) = Y|1,x[P ]− Y|0,x[P ] +
∆(d)

P (d|x)
(y − Y|d,x[P ]) (94.71)

〈
Y|1,x[P ]− Y|0,x[P ]

〉
P

=
∑
x

P (x)(Y|1,x[P ]− Y|0,x[P ]) (94.72)

= ΨIPW [P ] (94.73)

〈
∆(d)

P (d|x)
y

〉
P

= ΨIPW [P ] (94.74)

〈
∆(d)

P (d|x)
Y|d,x[P ]

〉
P

=
∑
y

∑
x

∑
d

P (y|d, x)P (x)∆(d)Y|d,x[P ] (94.75)

=
∑
x

∑
d

P (x)∆(d)Y|d,x[P ] (94.76)

= ΨIPW [P ] (94.77)
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QED
Note the following cancellation:

ΨIPW [P ] = ΨIPW [Pin] +
〈
∇ΨIPW [Pin]

〉
P
−∇ΨIPW

in +RIPW [P, Pin] (94.78)

= ������
ΨIPW [Pin] +

〈
∇ΨIPW [Pin]

〉
P
−������

ΨIPW [Pin] +RIPW [P, Pin] (94.79)

=
〈
∇ΨIPW [Pin]

〉
P
+RIPW [P, Pin] (94.80)

Claim 174

RIPW [P, Pin] = −
∑
x

P (x)
∑
d

∆(d) (P (d|x)− Pin(d|x))
(
Y|d,x[P ]− Y|d,x[Pin]

Pin(d|x)

)
(94.81)

proof:

RIPW [P, Pin] = ΨIPW [P ]−
〈
∇ΨIPW [Pin]

〉
P

(94.82)

=

〈
y

∆(d)

P (d|x)
−
(
Y|1,x[Pin]− Y|0,x[Pin] +

∆(d)

Pin(d|x)
(y − Y|d,x[Pin])

)〉
P

(94.83)

=


∑

x P (x)
(
−Y|1,x[Pin] + Y|0,x[Pin]

)
+
∑

d,x P (d, x)
(

∆(d)
Pin(d|x)Y|d,x[Pin]

)
+
∑

y,d,x P (y, d, x)
(

1
P (d|x) −

1
Pin(d|x)

)
y∆(d)

(94.84)

=
∑
x

P (x)
∑
d

∆(d)


(

P (d|x)
Pin(d|x) − 1

)
Y|d,x[Pin]

+
∑

y P (y|d, x)
(
Pin(d|x)−P (d|x)

Pin(d|x)

)
y

(94.85)

=
∑
x

P (x)
∑
d

∆(d)

(
P (d|x)− Pin(d|x)

Pin(d|x)

)
(Y|d,x[Pin]− Y|d,x[P ])

(94.86)

QED
Claim 174 allows us to put a bound on the absolute value of the remainder

RIPW :
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|RIPW [P, Pin]| ≤
∑
d

∑
x

√
P (x) |P (d|x)− Pin(d|x)|︸ ︷︷ ︸

A(d,x)

√
P (x)

∣∣∣∣Y|d,x[P ]− Y|d,x[Pin]

Pin(d|x)

∣∣∣∣︸ ︷︷ ︸
B(d,x)

(because |∆(d)| = 1, and

∣∣∣∣∣∑
i

ai

∣∣∣∣∣ ≤∑
i

|ai| ) (94.87)

≤
∑
d

√∑
x

A2(d, x)

︸ ︷︷ ︸
AP (d)

√∑
x

B2(d, x)

︸ ︷︷ ︸
BP (d)

(by CS inequality) . (94.88)

Define

AP (d
′) =

√∑
x

P (x) (P (d′|x)− Pin(d′|x))2 (94.89)

=
√〈

(P (d′|x)− Pin(d′|x))2
〉
P

(94.90)

and

BP (d
′) =

√√√√∑
x

P (x)

(
Y|d′,x[P ]− Y|d′,x[Pin]

Pin(d′|x)

)2

(94.91)

=

√√√√〈(Y|d′,x[P ]− Y|d′,x[Pin]

Pin(d′|x)

)2
〉
P

. (94.92)

Then

|RLIPW [PN , Pin]| ≤
1∑

d′=0

APN
(d′)BPN

(d′) (94.93)

If either APN
(1) = APN

(0) = 0 (i.e., zero error in the propensities) or BPN
(0) =

BPN
(1) = 0 (i.e., zero bias), then RLIPW [PN , Pin] = 0. This property of ΨLIPW is

referred to as double robustness.

94.5.5 ΨLIPW++ (a.k.a. ΨTMLE)

LIPW++ estimate ΨLIPW++ (a.k.a, targeted minimum loss estimate (TMLE)) .
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ΨLIPW++ is the linear approximation of ΨIPW [PN ] at the point Pin++, where
the linear term of its Taylor expansion vanishes:

ΨLIPW++ = ΨTMLE = ΨIPW [Pin++] +
〈
∇ΨIPW [Pin++]

〉
PN
−∇ΨIPW

in++︸ ︷︷ ︸
=0

(94.94)

This property of of ΨTMLE that the linear term in its Taylor expansion at
Pin++ vanishes is referred to as substitution invariance, and ΨTMLE is said to
be a substitution estimate. A substitution estimate is very desirable because its
absolute value is bounded, unlike the value of ΨLIPW .

ΨTMLE is both a doubly robust estimate and a substitution estimate.
Claim 172 allows us express more explicitly the constraint that defines Pin++:

0 = PN · ∇ΨIPW [Pin++]−∇ΨIPW
in++ (94.95)

= −∇ΨIPW
in++ +


≈∇ΨIPW [Pin++]︷ ︸︸ ︷

1

N

∑
σ

(
Y|1,xσ [Pin++]− Y|0,xσ [Pin++]

)
+ 1
N

∑
σ

∆(dσ)
Pin++(dσ |xσ)(yσ − Y|dσ ,xσ [Pin++])

(94.96)

=
1

N

∑
σ

∆(dσ)

Pin++(dσ|xσ)
(yσ − Y|dσ ,xσ [Pin++])︸ ︷︷ ︸
λ(Xσ)

(94.97)

Figure 94.3: This figure portrays the space of functions HX as if it were the real
plane R2, and the functional L[P, ŷ = fixed] : HX → R as if it were a real valued
function on R2. It shows the constant contours of the loss functional L[P, ŷ] at fixed
ŷ in green. PN for N = 10, 100, 1000 represent empirical distributions. The loss is
non-negative and it equals zero when ϵ = 0 and P = Pin++.
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Note that function λ(Xσ) defined in Eq.(94.97) can be positive or negative.
Hence, it can’t be defined as the loss curve-fit, because a loss curve-fit must be non-
negative. However, it can be defined as the derivative of a loss curve-fit. Suppose we
define an ϵ ∈ R parameterized family of probability distributions Pϵ : SX → [0, 1],
and we expand the loss L[Pϵ, ŷ] in powers of ϵ:

L[Pϵ, ŷ] = L[P0, ŷ] + ϵ{∂ϵL[Pϵ, ŷ]}ϵ=0 +O(ϵ2) (94.98)

The parameter ϵ is called the fluctuation parameter. The function L[Pϵ, ŷ] is
obviously not unique because all we know about it is the value of its ϵ derivative in
the vicinity of ϵ = 0. Next we will pick a convenient L[Pϵ, ŷ] that satisfies

L[Pϵ, ŷ] ≥ 0, L[P0, ŷ] = 0, ∂ϵ{L[Pϵ, ŷ]}ϵ=0 = 0 (94.99)

Use as loss curve-fit L̂ the Cross Entropy CE(p ∥ q) for p, q ∈ [0, 1]

L̂ = CE(p ∥ q) = −[p ln q + (1− p) ln(1− q)] (94.100)

L̂ ≥ 0 and attains its minimum when p = q. When p = q, it equals the entropy of p,
i.e., when p = q, L̂ = −

∑
x∈{0,1} P (x) lnP (x) = H(P ), where P (0) = p, P (1) = 1−p.

For some y ∈ {0, 1} and ϵ ∈ R, make the following substitutions in the loss
curve-fit L̂ and call it L̂ = L̂(β, y, ŷ, ϵ).3

p = y, q = expit[logit(ŷ) + ϵβ] (94.101)

Note that since p = y is binary, the minimum of this loss curve-fit is zero.
Recall that in Section C.22, we proved that the derivative of expit(x) satisfies

expit′(x) = expit(x)[1− expit(x)] . (94.102)

Hence,

lim
ϵ→0

∂ϵL̂(β, y, ŷ, ϵ) = lim
ϵ→0

[
− p

q
+

1− p
1− q

]
∂ϵq (94.103)

=

[
− y

ŷ
+

1− y
1− ŷ

]
lim
ϵ→0

{
expit[logit(ŷ) + ϵβ]
∗ {1− expit[logit(ŷ) + ϵβ]} β (94.104)

=

[
− y

ŷ
+

1− y
1− ŷ

]
ŷ(1− ŷ)β (94.105)

= β[ŷ − y] (94.106)

If we define L̂(X) by
3To agree with the TE literature, we are using expit(x) (resp., logit(p)) to denote the sigmoid func-

tion (resp., log-odds function) which we normally denote in this book by smoid(x) (resp., lodds(p)).
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L̂(X) = L̂


β = ∆(d)

Pin++(d|x) ,

y = y,
ŷ = Y|d,x[Pin++],
ϵ = ϵ

 , (94.107)

and L by

L =
1

N

∑
σ

L̂(Xσ) = PN · L̂ , (94.108)

then 
L = PN · L̂ ≥ 0

Lϵ=0 = PN · L̂ϵ=0 = 0

{∂ϵL}ϵ=0 = PN · {∂ϵL̂}ϵ=0 = 0

(94.109)

94.6 ΨTMLE in practice
This section is based on Ref.[28].

In practice, one can calculate ΨTMLE by performing the following steps.
Below, “ML-fit" denotes a curve fitting obtained using any valid machine learn-

ing method, such as linear regression, a Neural Net, a decision tree, etc. The TE
software often uses a “Super-Learner", a program that merges the results of multiple
fits obtained via various ML methods and also does cross validation.

Below , {(σ, dσ, xσ, yσ ) : σ ∈ Σ} represents a dataset. The dependent variable
yσ is boxed, the independent ones dσ, xσ (a.k.a. covariates) aren’t.

1. Find curve-fit ŷ(d, x) = Y|d,x of outcome y

{(σ, dσ, xσ, yσ ) : σ ∈ Σ} ML−fit−−−−→ ŷ(d, x) (94.110)

2. Estimate propensity g(x)

g(x) = P (d = 1|x) ≈
∑

σ δ(dσ, 1)δ(xσ, x)∑
σ δ(xσ, x)

(94.111)

P (d|x) = dg(x) + (1− d)[1− g(x)] (94.112)

β(d, x) =
∆(d)

P (d|x)
(94.113)
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3. Estimate fluctuation parameter ϵ

η(d, x) = logit[ŷ(d, x)]︸ ︷︷ ︸
λ(d,x)

+ϵβ(d, x) (94.114)

{(σ, λ(dσ, xσ), β(dσ, xσ), η(dσ, xσ) : σ ∈ Σ} ML−fit−−−−→ η̂(d, x) (94.115)

4. Estimate ATE

ATE =
1

N

∑
σ

{expit[η̂(d = 1, xσ)]− expit[η̂(d = 0, xσ)]} (94.116)
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Chapter 95

Thermodynamics, a Causal
Perspective

For a summary of Thermodynamics, see see [171].
Modern day books on Thermodynamics derive its 3 laws from either classical or

quantum statistical mechanics, or using classical or quantum stochastic equations (see
Chapter 88). However, the 3 laws were originally derived from causal type arguments
and experimentation, in much the same way that one derives a bnet as a hypothesis
which is then tested. Fig.95.1 is a bnet for thermo that captures some of those causal
arguments. The structural equations for the bnet are printed in blue.

V
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��

{Ni}

��

ww
U

''�� �� ��

S

��		 ��

oo

T

((�� ��

p

}} ��

{µi}

��
F G H Φ

Figure 95.1: Thermodynamics, a causal perspective. Extrinsic variables in green,
Intrinsic ones in pink, and Legendre transforms of U in blue.

Φ = U − TS −
∑
i

µiNi (Grand Potential) (95.1a)
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{µi} =
∂U

∂{Ni}
(chemical potential for species i) (95.1b)

{Ni} = prior (number of particles of species i) (95.1c)

F = U − TS (Helmholtz free energy) (95.1d)

G = U + pV − TS (Gibbs free energy) (95.1e)

H = U + pV (enthalpy) (95.1f)

p = − ∂U

∂V
(pressure) (95.1g)

S = prior (entropy) (95.1h)

T =
∂U

∂S
(temperature) (95.1i)

U = U(S, V, {Ni}) (internal energy) (95.1j)

V = prior (volume) (95.1k)
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Chapter 96

Time Series Analysis: ARMA and
VAR

This chapter is based mostly on the book Ref.[23] on time series analysis by Hamilton,
and on the lectures Ref. [35] by Chung-Ming Kuan. In writing this chapter, we also
profited greatly from numerous Wikipedia entries on time series analysis, such as
the entries on time series (Ref.[172]), ARMA time series (Ref.[99]), AR time series
(Ref.[98]), MA time series (Ref.[152]), and VAR time series (Ref.[177]).

We cover only a small fraction of the treasures covered in those sources, and
only cover stationary time-series. Non-stationary time series we don’t even touch. But
we hope to have covered enough to pique our readers’s interest in time series analysis,
and make him/her appreciate how bnets make time series much more intuitive and
fun. The time-series considered in this chapter can be represented by one of the
simplest types of bnets, namely, the LDEN bnets introduced in Chapter 48.

As usual, for t, ta, tb ∈ Z, let Z<t = {t − 1, t − 2, t− 3, . . .}, Z[ta,tb] = {ta, ta +
1, . . . , tb}, etc.

Let xt ∈ R. A time series (t-series), denoted variously by {x1, x2, . . . , xnt} =
{xt}ntt=1 = {xt}∀t, is a set of real numbers index by a discrete set of times Z[0,nt].

For ta < tb, let x[ta,tb] = (xta , xta+1, . . . , xtb). Let x<t = (. . . , xt−2, xt−1).

96.1 White noise
By white noise {nt}∀t ∼ WN(0, σ2) we mean a t-series {nt}∀t that satisfies

E[nt] = 0 (96.1)

and

⟨nt, nt′⟩ = σ2δ(t, t′) . (96.2)

Gaussian white noise {nt}∀t ∼ WN(0, σ2)N is white noise such that also nt ∼
N (0, σ2).
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96.2 Backshift operator
B is the backshift (a.k.a. lag) operator. For any t-series {xt}∀t, {yt}∀t and scalars
a, b ∈ R,

Bxt = xt−1 (96.3)

B(axt + by
t
) = aB(xt) + bB(y

t
) (96.4)

A B Polynomial with coefficients α[0,p]:

α(B) = α0 + α1B + α2B2 + . . . αpBp (96.5)

B−1 is the inverse of the backshift operator (a.k.a. frontshift operator)

B−1xt = xt+1 (96.6)

The following two Taylor expansions prove useful in finding the inverse of
backshift operator polynomials:

•
1

1− z
= 1 + z + z2 + . . . (96.7)

converges for z ∈ C with |z| < 1. We will use this expansion with z replaced by
αB, where α ∈ R.

•
1

1− z
= (−z−1)

[
1

1− z−1

]
= (−z−1)

[
1 + z−1 ++z−2 + . . .

]
(96.8)

converges for z ∈ C with |z| > 1. We will use this expansion with z−1 replaced
by (αB)−1, where α ∈ R.

96.3 Metrics
Consider a t-series {xt}∀t.

In general, if we have a metric like Auto-covariance (ACov) that is defined for
τ = 1, 2, 3, . . ., it is conventional in time series analysis to refer to the plot of that
metric for all values of τ as the Auto-covariance Function (ACovF).

• Expected value and Variance

E[xt] (96.9)

V ar[xt] = ⟨xt, xt⟩ (96.10)
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• Auto-covariance (ACov)

γt,t+τ =
〈
xt, xt+τ

〉
(96.11)

• Auto-correlation (ACorr) (assumes w-stationarity)

ρ(τ) =
γ(τ)

γ(0)
(96.12)

• Generating function of auto-covariance (assumes w-stationarity)

γ̃(z) =
∞∑

τ=−∞

γ(τ)zτ (96.13)

Note that this transform is double sided. Fourier Transform if z = e−iωτ .

• Expected value and variance conditioned on all past information

For τ = 1, 2, 3, . . . ,

E|x≤t
[xt+τ ] (96.14)

V ar|x≤t
[xt+τ ] =

〈
xt+τ , xt+τ

〉
|x≤t

(96.15)

• Partial auto-covariance (PACov)

Assume w-stationarity. For τ = 1, 2, 3, . . .

γpart(τ) =
〈
xt, xt+τ

〉
|x≤t,xt+τ

(96.16)

The idea is that we set to zero the nodes x(t,t+τ) = {xt+1, xt+2, . . . , xt+τ−1} that
lie between (but not including) xt and xt+τ .

• Partial auto-correlation (PACorr)

ρpart(τ) =
γpart(τ)

γpart(0)
(96.17)

weak stationarity (w-stationarity) means that E[xt] = µ and γt,t+τ = γ(τ)
are both independent of t. If we have w-stationarity, then

γ(−τ) =
〈
xt, xt−τ

〉
(96.18)

=
〈
xt−τ , xt

〉
(96.19)

= γ(τ) (96.20)
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We will often abbreviate γ(τ) by γτ .
Example of various metrics. If {nt}∀t ∼ WN(0, σ2) then

E[nt] = 0 (96.21a)

γ(τ) = σ2δ(τ, 0) (96.21b)

γ(0) = σ2 (96.21c)

γ̃(z) = γ(0) (96.21d)

For τ > 0,
E|n≤t

[nt+τ ] = E[nt+τ ] = 0 (96.21e)

〈
nt+τ , nt+τ

〉
|n≤t

= E[n2
t+τ ] = σ2 (96.21f)

96.4 Definition of ARMA(p, q), AR(p) and MA(q).
Suppose {y

t
}∀t is a zero mean t-series. Hence y

t
= Y t − µ, E[Y t] = µ, E[y

t
] = 0. y

t
is said to be the demeaned version of Yt.

Suppose also that {nt}∀t ∼ WN(0, σ2).
Then we define the Auto-Regressive Moving-Average t-seriesARMA(p, q)

by

y
t
=

p∑
j=1

αjyt−j︸ ︷︷ ︸
YAR(p)
t

+nt +

q∑
j=1

νjnt−j︸ ︷︷ ︸
YMA(q)
t

(96.22)

(α stands for the first letter of “auto-regressive". ν stands for first letter of “noise".)
Special cases

1. Auto-Regressive t-series AR(p)

y
t
= YAR(p)

t + nt (96.23)

2. Moving-Average t-series MA(q)

y
t
= nt + Y

MA(q)
t (96.24)
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Figure 96.1: ARMA(2, 3), AR(2) and MA(3) bnets. For clarity, we show only the
arrows entering node y

t
. The full bnet has the same structural pattern of incoming

arrows (including the weights αj, νj) for each node y
t′

for all t′.

Fig.96.1 shows the bnets for ARMA(2, 3), AR(2) and MA(3). The TPM,
printed in blue, for node y

t
in those bnets, is as follows:

For ARMA(p, q),

P (yt|y[t−p,t−1], n[t−q,t]) = 1(yt = see Eq.96.22)) (96.25)

For AR(p),

P (yt|y[t−p,t−1], nt) = 1(yt = see Eq.96.23)) (96.26)

For MA(q),
P (yt|n[t−q,t]) = 1(yt = see Eq.96.24)) (96.27)

The nt variable is variously referred to as the external noise, impulse,
shock, innovation at time t.
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96.5 Solving AR(p)

Suppose {y
t
}∀t is an AR(p) t-series. Hence

y
t
=

p∑
j=1

αjyt−j + nt (96.28)

AR(0) satisfies:

y
t
= nt (96.29)

See Fig.96.2. This is just white noise.
AR(1) satisfies:

y
t
= α1yt−1

+ nt (96.30)

See Fig96.2. This is a Markov chain with external i.i.d. noise injected to each node.
AR(1) is the discrete form of the so called Ornstein-Uhlenbeck t-series (a.k.a. as
the Langevin Equation). When α1 = 1, it is called a random walk.

AR(0) · · ·nt−2

1

��

nt−1

1

��

nt

1

��

nt+1 · · ·
1

��
· · · y

t−2
y
t−1

y
t

y
t+1
· · ·

AR(1) · · ·nt−2

1

��

nt−1

1

��

nt

1

��

nt+1 · · ·
1

��
· · · y

t−2 α1

// y
t−1 α1

// y
t α1

// y
t+1
· · ·

Figure 96.2: Bnets for AR(0) and AR(1).

Note that

α−(B)y
t
= nt (96.31)

where

α−(B) = 1−
p∑
j=1

αjBj (96.32)

Note that we can get AR(p) from AR(∞) by setting α>p = 0.
If α−(β) is invertible, then, using the Taylor expansion Eq.(96.7), we get
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y
t
= α′(B)nt (96.33)

where

α′(B) = 1

α−(B)
= 1 +

∞∑
k=1

[
p∑
j=1

αjBj
]k

=
∞∑
j=0

α′
jBj (96.34)

where α′
0 = 1.

96.6 Solving MA(q)

Suppose {y
t
}∀t is an MA(q) t-series. Hence,

y
t
= nt +

q∑
j=1

νjnt−j =

q∑
j=0

νjnt−j (96.35)

where ν0 = 1. Thus,

y
t
= ν(B)nt (96.36)

where

ν(B) = 1 +

q∑
j=1

νjBj =
q∑
j=0

νjBj . (96.37)

Note that we can get MA(q) from MA(∞) by setting ν>q = 0.

Claim 175 If {y
t
}∀t is an MA(q) t-series, then

E[y
t
] = 0 (96.38a)

For τ ≥ 0,

γ(τ) = 1(τ ≤ q)σ2

q−τ∑
j=0

νjντ+j (96.38b)

γ(0) = σ2

q∑
j=0

ν2j (96.38c)

proof:
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γ(τ) =
〈
y
t
, y

t+τ

〉
(96.39)

=

〈
q∑
j=0

νjnt−j,

q∑
k=0

νknt+τ−k

〉
(96.40)

= σ2

q∑
j=0

q∑
k=0

νjνkδ(t− j, t+ τ − k) (96.41)

= σ2

q∑
j=0

q∑
k=0

νjνkδ(k, τ + j) (96.42)

= 1(τ ≤ q)σ2

q−τ∑
j=0

νjντ+j (96.43)

QED

96.7 Solving ARMA(p, q)

Suppose {y
t
}∀t is an ARMA(p, q) t-series. Hence, using Eqs.(96.31) and (96.36), y

t
satisfies

α−(B)y
t
= ν(B)nt (96.44)

If α−(β) is invertible, then, using the Taylor expansion Eq.(96.7), we get

y
t
=

ν(B)
α−(B)

nt = ν(B)α′(B)nt (96.45)

We see that, if the α−(B) operator is invertible, an AR(p) or an ARMA(p, q)
t-series can be represented as an MA(∞) t-series. MA(∞) is often called Wold’s
Decomposition. Furthermore, if the ν(B) operator is invertible, an MA(q) or an
ARMA(p, q) t-series can be represented as an AR(∞) t-series.

The polynomials α−(z) and ν(z) can be expressed in factored form α−(z) =∏p
j=1(z−zαj ) and ν(z) =

∏q
j=1(z−zνj ). If these two polynomials have a root z0 in com-

mon, both polynomials should be divided by (z − z0). This reduces an ARMA(p, q)
t-series to an ARMA(p− 1, q− 1) t-series. The bnet for ARMA(p− 1, q− 1) has one
less αj arrow and one less νj arrow than the bnet for AR(p, q).

96.8 Auto-correlation and partial auto-correlation
Note from Eq.(96.38b) that if {y

t
}∀t is a MA(q) t-series, then γ(τ) = 0 for all τ > q.

Fig.96.3 gives a graphical proof, using bnets and the d-separation theorem, that for
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a MA(2) t-series, γ(τ) = 0 for τ > 2. As a consequence of this, a plot of γ(τ) versus
τ for a typical MA(2) t-series looks like Fig.96.4.
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Figure 96.3: MA(2) bnet. For clarity, we show only arrows entering nodes y
t

and
y
t+τ

for τ = 1, 2, 3. For τ = 1, 2, there is a path through which information can flow
from node y

t
to node y

t+τ
. For τ = 2, there is no such path.

Figure 96.4: Plot of auto-correlation function (ACorrF) ρ(τ) and partial auto-
correlation function (PACorrF) ρpart(τ) for an instance of MA(2). Note that ρ(τ)
vanishes for τ > 2.

Claim 176 If {y
t
}∀t is an AR(p) t-series, then γpart(τ) = 0 for all τ > p.

proof:
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Let

ξ = y≤t, yt+τ (96.46)

Recall that

γpart(τ) =
〈
y
t
, y

t+τ

〉
|ξ

(96.47)

=
〈
y
t
y
t+τ

〉
|ξ
−
〈
y
t

〉
|ξ

〈
y
t+τ

〉
|ξ

(96.48)

=
〈
y
t
y
t+τ

〉
|ξ

(96.49)

Define

Z(t,t+τ) = 1(y
(t,t+τ)

= 0) (96.50)

Hence, the operator Z(t,t+τ) sets all y
t′

with t < t′ < t + τ equal to zero. Note that
we can express the PACov as

γpart(τ) =
〈
Z(t,t+τ) (yt yt+τ )

〉
. (96.51)

Since

y
t+τ

=

p∑
j=1

αjyt+τ−j + nt+τ (96.52)

= αpyt+τ−p + . . .+ α2yt+τ−2
+ α1yt+τ−1

+ nt+τ , (96.53)

we get

Z(t,t+τ)yt+τ = nt+τ if τ > p . (96.54)

Hence, for τ > p,

γpart(τ) =
〈
y
t
nt+τ

〉
= 0 (96.55)

QED
Fig.96.5 gives a graphical proof, using bnets and the d-separation theorem,

that for an AR(2) t-series, γpart(τ) = 0 for τ > 2. As a consequence of this, a plot of
γpart(τ) versus τ for a typical AR(2) t-series looks like Fig.96.6.
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t−1 α1

// y
t

y
t+1

α2

33
y
t+2 α1

// y
t+3
· · ·

Figure 96.5: AR(2) bnet. For clarity, we show only arrows entering nodes y
t

and
y
t+τ

for τ = 1, 2, 3. Yellow nodes are in set y
(t,t+τ)

. They are conditioned on, so
information can’t flow through them to node y

t+τ
by the d-separation theorem.

Figure 96.6: Plot of auto-correlation function (ACorrF) ρ(τ) and partial auto-
correlation function (PACorrF) ρpart(τ) for an instance of AR(2). Note that ρpart(τ)
vanishes for τ > 2.
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ACorr PACorr
AR(p) tapers off jumps to zero for τ > p
MA(q) jumps to zero for τ > q tapers off

Table 96.1: Detecting AR(p) and MA(q) using auto-correlation and partial auto-
correlation.

96.9 Generating function of auto-correlation
Claim 177 If

α(z) =
∞∑

τ=−∞

ατz
τ (96.56)

then

α(z)α(z−1) =
∞∑

τ=−∞

zτ
∞∑

j=−∞

αjαj+τ (96.57)

proof:

α(z)α(z−1) =
∞∑

j′=−∞

zj
′
αj′

∞∑
j=−∞

z−jαj (96.58)

=
∞∑

τ=−∞

∞∑
j′=−∞

∞∑
j=−∞

zταj′αjδ(j
′ − j, τ) (96.59)

=
∞∑

τ=−∞

zτ
∞∑

j=−∞

αjαj+τ (96.60)

QED
As an example of this claim, note that

(α0 + α1z)(α0 + α1z
−1) = α0α1z

−1 + (α2
0 + α2

1) + α0α1z (96.61)

Claim 178 If {y
t
}∀t is an AR(p) t-series, then

γ̃(z) = α′(z)σ2α′(z−1) (96.62)

proof: Left to reader. See Claim 177.
QED

Claim 179 If {y
t
}∀t is an MA(q) t-series, then

γ̃(z) = ν(z)σ2ν(z−1) (96.63)
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proof:

y
t
=

∞∑
j=−∞

νjnt−j (96.64)

γ̃(z) =
∞∑

τ=−∞

〈
y
0
, y

τ

〉
zτ (96.65)

=
∞∑

τ=−∞

zτ
∞∑

j=−∞

∞∑
j′=−∞

νjνj′
〈
n−j, nτ−j′

〉︸ ︷︷ ︸
σ2δ(j′,τ+j)

(96.66)

= σ2

∞∑
τ=−∞

zτ
∞∑

j=−∞

νjνj+τ (96.67)

Now use Claim 177.
QED

Claim 180 If {y
t
}∀t is an ARMA(p, q) t-series, then

γ̃(z) = α′(z)ν(z)σ2ν(z−1)α′(z−1) (96.68)

proof: Left to reader. See Claim 177.
QED

96.10 Impulse Response
The derivatives

IRτ =
∂yt+τ
∂nt

(96.69)

are called impulse responses or dynamical multipliers. Note that this derivative
depends on τ but not t by w-stationarity. A plot of IRτ versus τ is called the Impulse
Response Function (IRF). Examples:

• Claim 181 For MA(q),

∂yt+τ
∂nt

= ντ1(0 ≤ τ ≤ q) (96.70)

where ν0 = 1. (See Fig.96.7)

proof:

y
t+τ

=

q∑
j=0

νjnt+τ−j (96.71)
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so Eq.(96.70) follows.
QED

• Claim 182 For AR(1),

∂yt+τ
∂nt

= (α1)
τ
1(τ ≥ 0). (96.72)

(See Fig.96.8)

proof:
(1− α1B)yt+τ = nt+τ (96.73)

Therefore, using the Taylor expansion Eq.(96.7),

y
t+τ

= 1 +
∞∑
j=1

αj1Bjnt+τ (96.74)

= 1 +
∞∑
j=1

αj1nt+τ−j (96.75)

so Eq.(96.72) follows.
QED

In general, IRτ equals a sum over paths from nt to y
t+τ

. Each path contributes the
product of the weights of all the arrows in the path.

· · ·nt

ν2
))

nt+1 nt+2 · · ·

· · · y
t

y
t+1

y
t+2
· · ·

Figure 96.7: Pictorial representation of impulse response IR2 = ν2 for a MA(q) t-
series with q ≥ 2.

96.11 AR(p) and Yule-Walker equations
Claim 183 (Yule-Walker equations) If {y

t
}∀t is an AR(p) t-series,

γτ =

p∑
j=1

γτ−jαj + σ2δ(τ, 0) (96.76)

for all τ ∈ Z, where we are abbreviating γ(j) = γj for all j.
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· · ·nt
1

��

nt+1 nt+2 · · ·

· · · y
t α1

// y
t+1 α1

// y
t+2
· · ·

Figure 96.8: Pictorial representation of impulse response IR2 = α2
1 for an AR(1)

t-series.

proof:
Recall that

y
τ
=

p∑
j=1

y
τ−jαj + nτ (96.77)

Therefore 〈
y
0
, y

τ

〉
︸ ︷︷ ︸

γτ

=

p∑
j=1

〈
y
0
, y

τ−j

〉
︸ ︷︷ ︸

γτ−j

αj +
〈
y
0
, nτ

〉
︸ ︷︷ ︸
σ2δ(τ,0)

(96.78)

QED

· · · cτ−4 cτ−3 cτ−2 cτ−1 cτ

σ2δ(τ,0)

��

cτ+1 cτ+2 · · ·

· · · γ
τ−4

γ
τ−3

α3

66γ
τ−2

α2

44γ
τ−1 α1

// γ
τ

γ
τ+1

γ
τ+2
· · ·

Figure 96.9: Bnet representing Yule-Walker (Christmas Walker) Eqs.(96.76) with
p = 3. For clarity, we show only arrows entering node γ

τ
. The full bnet has the same

structural pattern of incoming arrows (including the αj) for each node γτ ′ for all τ ′.

Fig.96.9 shows a bnet for the Yule-Walker Eqs.(96.76. The TPMs, printed in
blue, for the τ time-slice of that bnet, are as follows:

P (γτ ) = 1 (γτ = See Eq.(96.76)) (96.79)

P (cτ ) = 1(cτ = σ2δ(τ, 0)) (96.80)
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The Yule-Walker Eqs.(96.76) imply that
γ1
γ2
...
γp


︸ ︷︷ ︸

γp

=


γ0 γ−1 γ−2 . . . γ1−p
γ1 γ0 γ−1 . . . γ2−p
...

γp−1 γp−2 γp−3 . . . γ0


︸ ︷︷ ︸

Γ


α1

α2
...
αp


︸ ︷︷ ︸

αp

(96.81)

Hence

γp = Γαp . (96.82)

If Γ is invertible,

αp = Γ−1γp . (96.83)

Once we know αp, we can solve for σ2

γ0 =

p∑
j=1

γ−jαj + σ2 , (96.84)

i.e., Eq.(96.76) for τ = 0.

96.12 Forecasting
Before submerging the reader in the messy details of t-series forecasting, and running
the risk of quickly losing him/her, let me explain to the reader that what we are
about to do in this section, is, in the final analysis, quite trivial, and boils down to
solving simple systems of linear equations. That is all there is to it!! How hard can
that be? In reading this section, don’t lose sight of that fact and you’ll be okay.

Suppose {y
t
}∀t is an AR(∞) t-series. For τ > 0, the “orthogonal projection"

y
t+τ
|y≤t is defined as the linear combination of y≤t obtained by doing Linear Regres-

sion with x-variables y≤t and y-variable y
t+τ

. Thus

E
[
y
t+τ
|y≤t

]
= E|y≤t

[y
t+τ

] (96.85)

and

V ar
[
y
t+τ
|y≤t

]
= E

[(
y
t+τ
|y≤t − E[yt+τ |y≤t]

)2]
(96.86)

= V ar|y≤t
[y
t+τ

] . (96.87)

For example, for τ = 1,
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y
t+1

=

p∑
j=1

αjyt+1−j + nt+1 (96.88)

y
t+1
|y≤t =

p∑
j=1

αjyt+1−j (96.89)

y
t+1
− y

t+1|y≤t = nt+1 (96.90)

E
[
y
t+1
|y≤t

]
= E|y≤t

[y
t+1

] (96.91)

= 0 (96.92)

V ar
[
y
t+1
|y≤t

]
= V ar|y≤t

[y
t+1

] (96.93)

= σ2 (96.94)

If {y
t
}∀t is an AR(∞) t-series and τ > 0, by forecasting y

t+τ
|y≤t , we will

mean finding y
t+τ
|y≤t, given y≤t as input data or some other input data from which

y≤t can be derived. Fig.96.10 illustrates 3 types of input data that we will consider
next.

Note that if {y
t
}∀t is an AR(∞) t-series, then α−(B)y

t
= nt. Thus, n≤t can

be expressed in terms of y≤t, yielding a function n≤t(y≤t). If the operator α−(B) is
invertible, the opposite is also true: y≤t can be expressed in terms of n≤t, yielding a
function y≤t(n≤t). Thus,

y
t+τ
|y≤t = y

t+τ
|y≤t(n≤t) = y

t+τ
|n≤t (96.95)

We’ve seen that if we assume invertibility of α−(B), then, in order to fore-
cast y

t+τ
|y≤t, we have the option of considering {y

t
}∀t to be either an AR(∞) or

an MA(∞) t-series. We will assume the latter, because this simplifies the algebra
necessary to calculate both y

t+τ
|y≤t and its variance.

(a) find y
t+τ
|y≤t given y≤t

Suppose {y
t
}∀t is an MA(∞) t-series. Then

y
t+τ

=
∞∑
j=0

νjnt+τ−j (96.96)

=
τ−1∑
j=0

νjnt+τ−j︸ ︷︷ ︸
y
t+τ

−y
t+τ

|y≤t

+
∞∑
j=τ

νjnt+τ−j︸ ︷︷ ︸
y
t+τ

|y≤t

(96.97)

802



(a) given y≤t
· · ·nt−2

))

nt−1

!!

nt

��

nt+1 · · · nt+τ · · ·

· · · y
t−2

y
t−1

y
t

y
t+1

· · · y
t+τ
· · ·

(b) given y≤t, but, for some m > 0, y≤t−m ≈ 0 (approximation)

· · ·nt−m−1

,,

nt−m

**

nt−m+1

%%

· · · nt

��

nt+1 · · · nt+τ · · ·

· · · y
t−m−1

= 0 y
t−m = 0 y

t−m+1
· · · y

t
y
t+1

· · · y
t+τ
· · ·

(c) given γ[0,m−1] and γpart[τ,τ+m−1]

· · · y
t−m−1

y
t−m y

t−m+1
y
t−m+2

· · · y
t

γ

γ γ

��
y
t+1

· · · y
t+τ
· · ·

γpart

γpart

γpart

Figure 96.10: Bnet for MA(∞) for forecasting y
t+τ
|y≤t. Input data in red. For clarity,

we show only the arrows entering node y
t
.

y
t+τ
|y≤t =

∞∑
j=τ

νjnt+τ−j (96.98)

E|y≤t
[y
t+τ

] = E[y
t+τ
|y≤t] = 01 (96.99)

1Remember that y
t
has zero mean by definition. Yt = yt+µ for some time independent constant

µ.
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〈
y
t+τ
y
t+τ

〉
|y≤t

=
〈
y
t+τ
− y

t+τ
|y≤t, y

t+τ
− y

t+τ
|y≤t

〉
(96.100)

=
τ−1∑
j=0

ν2j (96.101)

τ = 1 · · ·nt−2 nt−1

ν2

))

nt
ν1

$$

nt+1

1��

nt+2 nt+3 · · ·

· · · y
t−2

y
t−1

y
t

y
t+1

y
t+2

y
t+3
· · ·

τ = 2 · · ·nt−2 nt−1 nt
ν2

**

nt+1

ν1

%%

nt+2

1��

nt+3 · · ·

· · · y
t−2

y
t−1

y
t

y
t+1

y
t+2

y
t+3
· · ·

τ = 3 · · ·nt−2 nt−1 nt nt+1

ν2

**

nt+2

ν1

&&

nt+3 · · ·

1��· · · y
t−2

y
t−1

y
t

y
t+1

y
t+2

y
t+3
· · ·

Figure 96.11: MA(2) bnet. For clarity, we show only arrows entering node y
t+τ

for
τ = 1, 2, 3. Green arrows originate at a time after time t.

For MA(q), because νj = 0 for j > q, this reduces to

y
t+τ
|y≤t = 1(τ ≤ q)

q∑
j=τ

νjnt+τ−j (96.102)

E|y≤t
[y
t+τ

] = E[y
t+τ
|y≤t] = 0 (96.103)

〈
y
t+τ
, y

t+τ

〉
|y≤t

=

min(τ−1,q)∑
j=0

ν2j (96.104)

Eq.(96.104) is motivated by Fig.96.11). Only the green arrows entering y
t+τ

and originating in a node nt′ with t′ > t contribute to the right hand side of
Eq.(96.104).
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Thus, the mean of y
t+τ

can be predicted to remain zero for all τ > 0 (forever).
The error in that prediction increases with τ until τ reaches q. After that, the
error remains constant.

Note that

y
t+τ
|y≤t =

∞∑
j=τ

νjnt+τ−j (96.105)

=
∞∑
j=τ

νjBj−τnt (96.106)

=

[
∞∑
j=0

νjBj−τ
]
B≥0

nt (96.107)

=
[
B−τν(B)

]
B≥0 nt (96.108)

B≥0 means only the non-negative powers of B are kept. Eq.(96.108) is just
Eq.(96.98) in fancy notation.

In MA(∞), if ν(B) is invertible, then

nt = ν(B)−1y
t

(96.109)

so

y
t+τ
|y≤t = LWKyt (96.110)

where
LWK =

[
B−τν(B)

]
B≥0 ν(B)−1 (96.111)

Eq.(96.110) is called the Wiener-Kolgomorov prediction formula (WKPF).
Next, we apply WKPF to AR(1) and MA(1) as examples of its usage.

• AR(1)

(1− α1B)︸ ︷︷ ︸
ν(B)−1

y
t
= nt (96.112)

y
t
=

[
∞∑
j=0

(α1B)j
]

︸ ︷︷ ︸
ν(B)

nt (96.113)
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νj = (α1)
j (96.114)

[
B−τν(B)

]
B≥0 = (α1)

τν(B) (96.115)

y
t+τ
|y≤t = (α1)

τy
t

(96.116)

Hence, y
t+τ
|y≤t decreases geometrically as τ grows.

• MA(1)

y
t
= (1 + ν1B)︸ ︷︷ ︸

ν(B)

nt (96.117)

[
B−τν(B)

]
B≥0 = δ(τ, 1)ν1 (96.118)

y
t+τ
|y≤t = δ(τ, 1)ν1

[
∞∑
j=0

(−ν1B)j
]

︸ ︷︷ ︸
ν(B)−1

y
t

(96.119)

= δ(τ, 1)ν1nt (96.120)

(b) find y
t+τ
|y≤t given y≤t, but, for some m > 0, y≤t−m ≈ 0 (approximation)

y
t+τ
|y≤τ ≈ [LWK ]B<m y

t
(96.121)

(c) find y
t+τ
|y≤t given γ[0,m−1] and γpart[τ,τ+m−1]

y
t+τ
|y≤t =

m−1∑
j=0

y
t−jβj (96.122)

Suppose that k ∈ Z[0,m−1].

Note that

y
t−k|y≤t = y

t−k . (96.123)

〈
y
t−k|y≤t , y

t+τ
|y≤t

〉
︸ ︷︷ ︸

γpartτ+k

=
m−1∑
j=0

〈
y
t−k , y

t−j

〉
︸ ︷︷ ︸

γk−j

βj (96.124)
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γpartτ

γpartτ+1

...

γpartτ+m−1

 =


γ0 γ−1 γ−2 . . . γ1−m

γ1 γ0 γ−1 . . . γ2−m
...

γm−1 γm−2 γm−3 . . . γ0


︸ ︷︷ ︸

Γ


β0

β1
...

βm−1


︸ ︷︷ ︸

βm

(96.125)

Solve Eq.(96.125) for βm and plug βm into Eq.(96.122).

96.13 Model Learning
Box-Jenkins Method

1. Filtering Data (FD)

Removing trends and periodicity (seasonality) via differencing, so as to achieve
a w-stationary t-series. We deal with FD in Section 96.14.

2. Model Selection

Finding best possible p, q for ARMA(p, q) using various statistical tests and
metrics.

3. Parameter Learning (PL)

Finding best possible coefficients αj and νj. We deal with PL in Section 96.15.

4. Testing

Measuring the goodness of fit.

96.14 Differencing and ARIMA(p, d, q)

Let α ∈ (0, 1). We say that {st}∀t is a Simple Exponential Smoothing (SES)
t-series if it satisfies

st = (1− α)st−1 + αxt (96.126)

A SES t-series can be represented by the bnet of Fig.96.12. The TPM, printed
in blue, for node st, is as follows

P (st) = 1(st = see Eq.(96.126)) (96.127)

One has
(1− (1− α)B)st = αxt (96.128)

807



· · · xt−2

α

��

xt−1

α

��

xt

α

��

xt+1 · · ·
α

��
· · · st−2

1−α // st−1
1−α // st

1−α// st+1 · · ·

Figure 96.12: Bnet for Simple Exponential Smoothing t-series. α ∈ (0, 1)

so

st =
α

1− (1− α)B
xt (96.129)

= α
∞∑
j=0

(1− α)jBjxt (by Eq.(96.7)) (96.130)

Note from Fig.96.12 and Eq.(96.130) that each shock xt−j with j > 0 con-
tributes to st proportionally to the product α(1 − α)j of arrow weights in the path
from xt−j to st. For example, xt−2 contributes to st in the proportion α(1−α)2. The
contributions of xt−j to st decrease geometrically as the lag j increases.

Henceforth, we will abbreviate “differencing" by “ diff".

• First order diff operator

∆xt = xt − xt−1 = (1− B)xt (96.131)

Seasonal first order diff:
∆seaxt = xt − xt−ts (96.132)

where ts is length of season.

• Second order diff operator

∆2xt = ∆xt −∆xt−1 (96.133)
= xt − 2xt−1 + xt−2 (96.134)
= (1− 2B + B2)xt (96.135)
= (1− B)2xt (96.136)

• d-th order diff operator

∆dxt = (1− B)dxt (96.137)
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Recall that if {y
t
}∀t is an ARMA(p+ d, q) t-series,(
1−

p+d∑
j=1

αjBj
)
y
t
=

(
1 +

q∑
k=1

νkBk
)
nt (96.138)

We will say that {y
t
}∀t is an Autoregressive Integrated Moving Average ARIMA(p, d, q)

t-series if (
1−

p∑
j=1

αjBj
)

∆dy
t︸︷︷︸

(1−B)dy
t

=

(
1 +

q∑
k=1

νkBk
)
nt (96.139)

So an ARIMA(p, d, q) t-series is a special case of an ARMA(p+ d, q) t-series.
Define OBEF and OAFT by

OBEF = 1− α1B − α2B2 − α3B3 (96.140)

OAFT = OBEF (1− B) (96.141)

=

{
1 −α1B −α2B2 −α3B3

−B +α1B2 +α2B3 +α3B4 (96.142)

= 1− (α1 + 1)︸ ︷︷ ︸
α′
1

B − (α2 − α1)︸ ︷︷ ︸
α′
2

B2 − (α3 − α2)︸ ︷︷ ︸
α′
3

B3 − (0− α3)︸ ︷︷ ︸
α′
4

B4 (96.143)

BEF :
· · · y

t−4
y
t−3

α3

77
y
t−2

α2

44y
t−1 α1

// y
t
· · ·

AFT :
· · · y

t−4

0−α3

>>
y
t−3

α3−α2

;;
y
t−2

α2−α1

77
y
t−1 α1+1

// y
t
· · ·

Figure 96.13: Effect on y
t
of going from before (BEF) with a t-series ARIMA(3, 0, 0)

to after (AFT) with a t-series ARIMA(3, 1, 0).

OBEFyt and OAFTyt are illustrated in Fig.96.13. Note that in going from BEF
to AFT, a new arrow is introduced with weight α′

4 = −α3. The intermediate length
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arrows y
t−3
→ y

t
and y

t−2
→ y

t
have weights α′

3 = α3 − α2 and α′
2 = α2 − α1 so if

αj ≈ αj−1, then those 2 arrows have negligible weights. Only the the longest arrow
y
t−4
→ y

t
and the shortest arrow y

t−1
→ y

t
have non-negligible weights.

Suppose
y
t
≈ a+ bt+ ct2 + dt3 (96.144)

This smooth, low-order polynomial-fit to the t-series is called its trend.

∆y
t
≈ ∆t

d

dt
y
t
= b+ 2ct+ 3dt2 (96.145)

∆2y
t
≈ (∆t)2

d2

dt2
y
t
= 2c+ 6dt (96.146)

∆3y
t
≈ (∆t)3

d2

dt3
y
t
= 6d (96.147)

Note that the mean 6d in ∆3y
t

can be adjusted to zero (demeaning). From this
example, we see that every time we apply a diff operator to a time series, we reduce
the order of its polynomial trend by one.

Note that if {y
t
}∀t is an ARIMA(0, 1, 1) t-series,

∆y
t
= (1 + ν1B)nt (96.148)

y
t
= y

t−1
+ nt + ν1nt−1 (96.149)

Claim 184 ARIMA(0, 1, 1) is equivalent to a simple exponential smoothing t-series.

proof: Setting

nt = y
t
− ŷ

t
(96.150)

in Eq.(96.148), we get

(1− B)y
t
= (1− ν1B)(yt − ŷt) (96.151)

(1− ν1B)ŷt = (1− ν1)Byt (96.152)

ŷ
t
= ν1ŷt−1

+ (1− ν1)yt−1
(96.153)

Now replace ŷ
t
→ st, yt−1

→ nt and ν1 → 1− α.
Note that this proof has established the equivalence of two different bnets.

Those two bnets are pictured in Fig.96.14.
QED
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t−2
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y
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Figure 96.14: Bnets for two t-series that were proven equivalent in Claim 184. Note
that the 2 bnets have NO arrows in common!

96.15 Parameter Learning

In this section, we will show how to find an estimate θ̂ for the parameters θ =
({αj}∀j, {νj}∀j, σ2) used in ARMA(p, q). We do this parameter learning (PL) by
postulating a “quasi" log likelihood function LL(θ), and maximizing that over θ. The
estimate θ̂ that we obtain is called the Quasi-Maximum Likelihood Estimate
(QMLE). The reason for using the prefix “quasi" is that the likelihood probability
involved doesn’t really satisfy the i.i.d assumption.

96.15.1 PL of AR(p)

θ

��

��

n≤3 n4 · · · nt−4 nt−3 nt−2 nt−1 nt · · ·

��
y≤3

y
4

· · · y
t−4

y
t−3 ;;

y
t−2 99

y
t−1

// y
t
· · ·

Figure 96.15: Bnet for PL of AR(3). For clarity, we show only the arrows entering
nodes y

t
and nt.

Recall that if {y
t
}∀t is an AR(p) t-series,
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yt =

p∑
j=1

αjyt−j + nt (96.154)

Let θ = (σ2, α[1,p]). We want to learn the parameters θ of the AR(p) bnet
Fig.96.15, assuming the TPMs, printed in blue, are as follows.

For t ≥ p+ 1

P (yt|y<t, nt, θ) = 1 (yt = see Eq.(96.154)) (96.155)

P (nt|θ) =
1

σ
√
2π

exp

[
−(nt)2

2σ2

]
(96.156)

Note that

P (y≤t|θ) =
∑
n[p+1,t]

 ∏
τ∈[p+1,t]

P (yτ |y[τ−p,τ−1], nτ )P (nτ |θ)

P (y≤p|θ) (96.157)

=
∏

τ∈[p+1,t]

 1√
2πσ2

exp

−
(
yτ −

∑p
j=1 αjyτ−j

)2
2σ2


P (y≤p|θ) (96.158)

The log likelihood function LLt(θ) for this bnet is defined by

LLt(θ) =
1

t
lnP (y≤t|θ) . (96.159)

Hence,

LLt(θ) =
1

t
lnP (y≤p|θ)︸ ︷︷ ︸
LLprior

t (θ)

+LL′
t(θ) (96.160a)

where

LL′
t(θ) =

−(t− p)
t

ln
√
2πσ2 − 1

2tσ2

t∑
τ=p+1

(
yτ −

p∑
j=1

αjyτ−j

)2

. (96.160b)

Henceforth, we wll assume that y[1,t] is known.
We start by assuming that the prior log likelihood LLpriort (θ) is zero. This

means that we have uniform (uninformative) priors. Later on, we will consider instead
a Gaussian prior that uses the info that y≤p is known a priori.
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If we assume that y[1,t] is known, then we can plug this info into LL′
t(θ) and

use a non-linear optimization method to maximize LL′
t(θ) and find the optimum θ.

Alternatively, one can use LR. Define the strange looking dataset

D = {(t, y[t−p,t−1], yt ) : t} (96.161)

This dataset is strange because it replaces sampling from a population with sampling
in time. (i.e., a “stochastic" average by an “ergodic" average.) The datasets that
we use to do LR usually satisfy the i.i.d. assumption, but that assumption does not
necessarily hold for this one. Luckily, that assumption is not necessary for doing
LR with x-variables y[t−p,t−1], y-variable yt, and regression coefficients α[1,p]. The LR
software gives estimates α̂[1,p] that we can use to calculate residuals

ϵτ = yτ −
p∑
j=1

α̂jyτ−j (96.162)

One can estimate σ2 from those residuals using

σ̂2 =
1

t− p

t∑
τ=p+1

ϵ2τ . (96.163)

So far, we have assumed an uninformative prior. Alternatively, one can assume
the Gaussian prior

P (y≤p|θ) =
1

(2πσ2)
p
2

exp

[
−yT≤p

Γ−1

2
y≤p

]
(96.164)

where

Γi,j =
〈
y
i
, y

j

〉
= γj−i (96.165)

for i, j ∈ Z[1,p]. We are assuming that all y
τ

have been demeaned; i.e., the mean

µ̂ =
1

t

t∑
τ=1

yτ (96.166)

has been subtracted from each yτ for τ ∈ Z[1,t].

96.15.2 PL of MA(q)

Recall that if {y
t
}∀t is an MA(q) t-series,

yt =

q∑
j=1

νjnt−j + nt (96.167)
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Figure 96.16: Bnet for PL of MA(3). For clarity, we show only the arrows entering
nodes y

t
and nt.

Let θ = (σ2, ν[1,q]). We want to learn the parameters θ of the MA(q) bnet
Fig.96.16, assuming the TPMs, printed in blue, are as follows.

For t ≥ q + 1, let

P (yt|n≤t, θ) = 1 (yt = see Eq.(96.167)) (96.168)

P (nt|θ) =
1

σ
√
2π

exp

[
−(nt)2

2σ2

]
(96.169)

Note that

P (y≤t|θ) =
∑
n[q+1,t]

 ∏
τ∈[q+1,t]

P (yτ |n[τ−q,τ−1], nτ )P (nτ |θ)

P (n≤q|θ) (96.170)

=
∏

τ∈[q+1,t]

 1√
2πσ2

exp

−
(
yτ −

∑q
j=1 νjnτ−j

)2
2σ2


P (n≤q|θ) (96.171)

The log likelihood function LLt(θ) for this bnet is defined by

LLt(θ) =
1

t
lnP (y≤t|θ) (96.172)

LLt(θ) =
1

t
lnP (y≤q|θ)︸ ︷︷ ︸
LLprior

t (θ)

+LL′
t(θ) (96.173a)
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where

LL′
t(θ) =

−(t− q)
t

ln
√
2πσ2 − 1

2tσ2

t∑
τ=q+1

(
yτ −

q∑
j=1

νjnτ−j

)2

(96.173b)

Henceforth, we will assume that n≤q = 0. By Eq.(96.167), this implies that
y≤q = 0, so the prior log likelihood LLpriort (θ) is independent of θ.
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y
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y
4

y
5

y
6
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Figure 96.17: Bnet for PL of MA(2). We assume n1 = n2 = 0. For clarity, we show
only the arrows entering node y

2+τ
for τ = 1, 2, 3.

Eq.(96.173) expresses LL′
t(θ) in terms of yτ ’s and nτ ’s, but the input data

consist of only yτ ’s. Luckily, Eq.(96.167) can be used to express all the n≤t in terms
of the y≤t, assuming the input n≤q = 0. Next, we will explain how to do this. For
definiteness and simplicity, we will assume q = 2 and ν1 = ν2 = 1, and we will use
Fig.96.17 as a pedagogical aid.

For q = 2, Eq.(96.167) gives y
τ

as a linear combination of 3 n nodes, nτ , nτ−1

and nτ−2 But since it’s a linear equation, it can be used to express the latest n node,
i.e., nτ , in terms of y

τ
and the 2 previous n nodes.

Hence, we see from Fig.96.17 that:
From n1 = n2 = 0, we get y

1
= y

2
= 0.

From the τ = 1 bnet, we get

n3 = y
3

(96.174)

From the τ = 2 bnet, we get
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n4 = y
4
− n3 (96.175)

From the τ = 3 bnet, we get

n5 = y
5
− n3 − n4 (96.176)

96.15.3 PL of ARMA(p, q)
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Figure 96.18: Bnet for PL of AR(3, 2). For clarity, we show only the arrows entering
nodes y

t
and nt.

Recall that if {y
t
}∀t is an AR(p, q) t-series, then

yt =

p∑
j=1

αjyt−j + nt +

q∑
j=1

νjyt−j (96.177)

Let θ = (σ2, α[1,p], ν[1,q]). We want to learn the parameters θ of the ARMA(p, q)
bnet Fig.96.18, in which the TPMs, printed in blue, are as follows.

For t ≥ max(p+ 1, q + 1), let

P (yt|y<t, n≤t, θ) = 1 (yt = see Eq.(96.177)) (96.178)

P (nt|θ) =
1

σ
√
2π

exp

[
−(nt)2

2σ2

]
(96.179)

As we did for AR(p) andMA(q), we can now calculate a log likelihood function
and maximize it to obtain the parameters θ. But first we will have to assume that
n≤q = 0 and y[1,t] is known, and we will have to express the unknown n[q+1,t] in terms
of the known y[1,t] using the t-series definition Eq.(96.177).
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96.16 V AR(p)

Let x⃗t = (x1t , x
2
t , . . . , x

nr
t )T ∈ Rnr×1. Thus, x⃗t for each t is a column vector with nr

rows. A vector time series, denoted variously by {x⃗1, x⃗2, . . . , x⃗nt} = {x⃗t}ntt=1 =
{x⃗t}∀t, is a set of Rnr×1 vectors index by a discrete set of times Z[0,nt].

Henceforth, we will use the Einstein summation convention for uppercase in-
dices like A,B,C ∈ Z[1,nr]; i.e., they should be summed over from 1 to nr if they are
repeated in a product. For example, xAyA =

∑nr
A=1 x

AyA.
By vector white noise {n⃗t}∀t ∼ WN(0,Σ), where Σ ∈ Rnr×nr, we mean a

vector t-series {n⃗t}∀t that satisfies, for A,B ∈ Z[1,nr] and t, t′ ∈ Z[1,nt],

E[nAt ] = 0 (96.180)

〈
nAt , n

B
t′

〉
= ΣA,Bδ(t, t′) (96.181)

Suppose {y⃗
t
}∀t is a zero mean vector t-series. Hence yA

t
= Y A

t − µA, E[Y A
t ] =

µA, E[yA
t
] = 0. Suppose also that {n⃗t}∀t ∼ WN(0,Σ). Then we define a Vector

Auto-Regressive t-series V AR(p) by

yA
t
=

p∑
j=1

αA,Bj yB
t−j + nAt (96.182)

The bnet for V AR(p) is the same as the bnet for AR(p) except that now, for all t, the
nodes y

t
and nt are replaced by y⃗

t
and n⃗t and now the node weights αt are nr × nr

matrices with entries αA,Bt . For example, for nr = 2, we have y1
t

y2
t

 =

p∑
j=1

 α1,1
j α1,2

j

α2,1
j α2,2

j

 y1
t−j

y2
t−j

+

 n1
t

n2
t

 (96.183)
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Chapter 97

Transfer Learning

Historically, the term Transfer Learning (TL) has been used in AI mostly by Artificial
Neural Net (ANN) proponents (see the Wikipedia article on TL, Ref.[173]). Recently,
however, a theory of causal TL has begun to emerge (see Chapter 99).

TL in AI is a fairly wide topic that is somewhat ambiguously defined. Some
subjects that can be lumped under the heading of TL in AI are:

• data fusion/combining models

• model generalization

• transportability of causal knowledge, external validity (see Chapter 99)

Most AI researchers will agree that it is highly desirable to have TL in AI,
because the human brain obviously does plenty of TL to great advantage. Although
reams of papers have been written about the subject of TL in AI, a systematic theory
of TL in AI that is universally accepted and popular remains elusive. The current
theory of TL for ANN looks to me like a grab bag of heuristic approaches that are
fragile, meaning they can be easily spoofed. The theory of TL for bnets (see Chapter
99) seems to me to be in much better shape: it’s more elaborate, systematic, and it
yields more robust results.

In this brief chapter, I will limit myself to describing a possible way of clas-
sifying, from a bnet perspective, the various approaches to TL in AI. Note that this
method of classification even works for TL for ANNs, because ANNs can be viewed
as bnets with deterministic nodes and a layered structure. One can describe TL in AI
as a systematic way of defining a bnet B∗ using a bnet B and other information. Bnet
B is associated with a dataset D, and bnet B∗ is associated with a dataset D∗. A
bnet B = (S, θ) comprises a DAG structure S and a TPM for each node of the DAG.
We’ll denote the TPMs (a.k.a. parameters) of B by θ. So let’s classify the various
approaches to TL in AI by specifying what parts of the structure S and parameters
θ of B are transferred to the structure S∗ and parameters θ∗ of B∗, and what parts
of B∗ = (S∗, θ∗) are new.
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1. Fine tune parameters. S∗ = S, θ∗ ≈ θ.

In this approach, we use the dataset D∗ associated with bnet B∗ to adjust
slightly the parameters from θ to θ∗.

2. Replace final layers of S and of θ by new ones. S∗ = S and θ∗ = θ except
for final layers,

For example, in an ANN, replace the final layers by new ones, and use D∗ to
find the parameters of those new final layers.

3. Transfer only the TPM of a single node y of B. S∗ and θ∗ are new except
P ∗(y|pa(y)) = P (y|pa(y)).
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Chapter 98

Transformer Networks

The primary reference for this chapter is Ref.[91]. Ref.[91] is the highly influential 2017
paper entitled “Attention is all you need" that introduced Transformer Networks
(tranets) and Attention into the AI vernacular. Besides Ref.[91], I also read blog posts
such as Ref.[33] and the Wikipedia article on tranet (Ref. [174]). For a complete list
of the large number of excellent blog post that I read to learn about this subject, see
my open source software texnn (Ref.[90]).1

Transformer Networks (tranets) have been taking the fields of Natural Lan-
guage Processing (NLP) and Large Language Models (LLM) by storm in recent years.
They were introduced in 2017 and already are the basis of numerous LLMs. Two fa-
mous examples are, BERT (Bidirectional Encoder Representations from Transform-
ers) and ChatGPT (Generative Pre-trained Transformer). Both of these have been
trained with huge databases, of which all of the English Wikipedia (∼ 109 words) is
but a small part.

How well ChatGPT works was a huge surprise to most people, including ex-
perts in AI/ML. My conjecture is that this surprising LLM performance is due to
causality. Let me explain. I believe tranets and the LLM that use them, are just
curve-fitters (so are Least Squares, vanilla NNs, Convolutional NNs, etc.). But, we
lucked out, because tranets are very good at fitting causal data, and the space of
all human generated text, including math equations and computer code, is causally
connected (i.e., has a causally connected topology.).

Normally, tranets are drawn as box diagrams that are somewhat cryptic and
ambiguous, at least to me. In this chapter, instead of drawing them as box diagrams, I
represent them as causal DAGs (bnets). This makes their causal nature more explicit
than the box diagrams, and, in my opinion, also makes them less ambiguous and
more understandable than the box diagrams.

Recurrent Neural Nets (RNNs) are discussed in Chapter 75. tranets are quickly
displacing RNNs, an older method, in NLP. tranets are better than RNNs for doing

1texnn is Python software that I wrote specifically for drawing the bnets of this chapter, but later
I generalized it to a stand-alone app that can draw any bnet (including SCMs, NNs and tranets),
not just a tranet bnet.
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NLP in several important ways. Whereas RNNs analyze the tokens (words) of a
sentence sequentially (like a Kalman Filter), tranets analyze them in parallel, and
thus are more amenable to parallel computing. Also, because RNNs analyze the
words of a sentence sequentially, they tend to give more importance to the end of a
sentence than to its beginning. That’s because RNNs start forgetting the beginning
of a sentence by the time they reach its end, like a patient with Alzheimer’s. tranets
do not suffer from this malady.

Dynamical bnets are discussed in Chapter 25. In Chapter 75, we showed that
RNNs are dynamical bnets. In this chapter we will show that tranets are dynamical
bnets too.

In this chapter, we will use the Numpy-like tensor notation discussed in Section
C.49. In particular, note that [n] = [0 : n] = {0, 1, . . . , n − 1} and that T [n],[m] is an
n×m matrix.

98.1 Tensor Notation
Our tensor notation is discussed in Section C.49. Here is a quick review of some of
the more salient facts in that section on tensors. Below, we will often accompany
an equation in tensor component notation with the equivalent matrix equation, in
parenthesis.

We use Greek letters for tensor indices.
Let α ∈ [a], β ∈ [b], γ ∈ [c], δ ∈ [d], ν ∈ [n], ∆ ∈ [D].

• reshaping

T ν,δ → T∆
(
T [nh],[d] → T [D]

)
(98.1)

T∆ → T ν,δ
(
T [D] → T [nh],[d]

)
(98.2)

• concatenation
T [n] = (T 0, T 1, . . . , T n−1) = (T ν)ν∈[n] (98.3)

• Hadamard product (element-wise, entry-wise multiplication)

T [n] ∗ S[n] = (T νSν)ν∈[n] (98.4)

• Matrix multiplication

T [n] = T [n],[1] is a column vector.

(T [n])TS[n] = scalar (98.5)
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T [a],[b]S[b],[c] =

∑
β∈[b]

Tα,βSβ,γ


α∈[a],γ∈[c]

(98.6)

Most treatments of tranets, including the “Attention is all you need" paper,
order the operations chronologically from left to right (L2R). So if A occurs before B,
they write AB. This is contrary to what is done in Linear Algebra, where one orders
the operations chronologically from right to left (R2L), and one writes BA. In this
chapter, will adhere to the Linear Algebra convention, since it is so prevalent and is
the overwhelming precedent.

98.2 Recurrent Neural Net with Attention

98.2.1 Single Head Attention

Let
ℓ be the maximum number of words allowed in a sentence. Some words might

be blanks (padding).
d be the so called hidden or embedding dimension.
etα ∈ Rd be a d-dimensional column vector for word α ∈ [ℓ] at time t.
W t
q ,W

t
k,W

t
v ∈ Rd×d be the weight matrices for time slice t. The letters Q,K, V

stand for Query, Key and Value, respectively. These matrices are learned by training
the net. They transform etα as follows

vtα = W t
ve
t
α (98.7)

qtα = W t
qe
t
α (98.8)

ktα = W t
ke
t
α (98.9)

Fig.98.1 represents a tranet of a 3-word sentence as a dynamical bnet. The
TPMs (Transition Probability Matrices), printed in blue, for bnet Fig.98.1, are as
follows:

P (vtα|etα) = 1( vtα = W t
ve
t
α ) (98.10)

P (qtα|etα) = 1( qtα = W t
qe
t
α ) (98.11)

P (ktα|etα) = 1( ktα = W t
ke
t
α ) (98.12)
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Figure 98.1: Dynamical bnet with single-head Attention for 3 words. Time-slice t.
Note that ktα for all α points to atα′ for all α′. Likewise, vtα for all α points to atα′ for
all α′. However, qt

α
points only to atα.

P (et+1
α |atα) = 1( et+1

α = atα ) (98.13)

P (at+1
α |vt. , qtα, kt. ) = 1( at+1

α =
∑
α′∈[ℓ]

vtα′P (α′|α) ) (98.14)

where the conditional probability P (α′|α) is defined as2

2The reason sums over δ ∈ [d] are divided by
√
d is to prevent the argument of the exponential
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P (α′|α) = softmax

 1√
d

∑
δ∈[d]

(kt)δ,[ℓ](qt)δ,α

 (α′|α) (98.15)

=
exp

(
1√
d
(ktα′)T qtα

)
∑

α′′∈[ℓ] exp
(

1√
d
(ktα′′)T qtα

) (98.16)

The right hand side of Eq.(98.14) constitutes an average over all the word
vectors {vtα : α ∈ [ℓ]} in a sentence. This average is called the Attention (for a
single head).3

Attentionδ,α
(
(vt)[d],[ℓ], (kt)[d],[ℓ], (qt)[d],[ℓ]

)
=
∑
α′∈[ℓ]

(vt)δ,α
′
P (α′|α) (98.17)

On first encounter, the structure of an Attention bnet seems a bit mysterious.
Then one realizes that this is an old friend. If the dashed boxes in Fig.98.1 are each
“shrunk" to single nodes, then it becomes a TAN Bayes Net. Each of the 3 subgraphs
et, (vt, qt, kt), at also constitutes a TAN Bayes net. 4.5 In broad terms, Fig.98.1 can be
described by saying that each word undergoes a special kind of 3-class (q,k,v) Naive
Bayes classification, and the results of that classification are sent to the new version
of every word (except the q class which only sends info to one word, not all of them).

It’s also useful to think of Attention as a filter with input signal (et)[d],[ℓ] and
output signal (et+1)[d],[ℓ].

Fig.98.1 can be “folded" (i.e., the 3 words can be represented by as single
node). When folded, Fig.98.1 becomes Fig.98.2. Note that in Fig.98.2, we have
started indicating the shapes of tensors by a superscript, using the tensor notation
explained in Section C.49. We will continue doing this henceforth in this chapter.

The structural equations for Fig.98.2, printed in blue, are as follows.

(at)[d],[ℓ] = Attention((vt)[d],[ℓ], (kt)[d],[ℓ], (qt)[d],[ℓ]) (98.18a)

from getting too large.
3Variations of this definition of Attention have been proposed. This particular one is the orig-

inal one from the “Attention is all you need paper". Some people call it the “scaled dot product
Attention".

4Tree Augmented Naive (TAN) Bayes nets were introduced in Chapter 9.
5A reverse or upside down tree is obtained by reversing the directions of all the arrows of

a tree directed graph. A TAN Bayes net is normally defined as in Chapter9, as a Naive Bayes net
augmented with a tree. In an Attention bnet, the Naive Bayes Net is augmented with a reverse tree
(RT) instead of a tree (T), so technically Attention bnets contain RTAN Bayes nets, not TAN Bayes
nets.
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(kt)
[d],[ℓ]

##

(et)
[d],[ℓ]

W
[d],[d]
k

;;

W
[d],[d]
q

//

W
[d],[d]
v

##

(qt)
[d],[ℓ] // (at)

[d],[ℓ] 1 // (et+1)
[d],[ℓ]

(vt)
[d],[ℓ]

;;

Figure 98.2: Folded version of Fig.98.1 when ℓ = 3. Note that all orange nodes have
the same tensor shape.

(et)[d],[ℓ] = prior (98.18b)

(et+1)[d],[ℓ] = (at)[d],[ℓ] (98.18c)

(kt)[d],[ℓ] = W
[d],[d]
k (et)[d],[ℓ] (98.18d)

(qt)[d],[ℓ] = W [d],[d]
q (et)[d],[ℓ] (98.18e)

(vt)[d],[ℓ] = W [d],[d]
v (et)[d],[ℓ] (98.18f)

98.2.2 Multi-Head Attention

In this section, we will generalize the single head Attention, as defined in the previous
section, to multi-head Attention.

Let
nh = number of heads. ν ∈ [nh].
d = same as before, the hidden, embedding dimension. δ ∈ [d]
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D = nhd. ∆ ∈ [D]. We will do some tensor reshaping: T [nh],[d] → T [D], or, in
component form, T ν,δ → T∆.

Consider weight matrices W [D],[d]
k ,W

[D],[d]
q , and W [D],[d]

v such that

(kt)ν,δ,α =
∑
δ′∈[d]

W ν,δ,δ′

k (et)δ
′,α (98.19)

(qt)ν,δ,α =
∑
δ′∈[d]

W ν,δ,δ′

q (et)δ
′,α (98.20)

(vt)ν,δ,α =
∑
δ′∈[d]

W ν,δ,δ′

v (et)δ
′,α (98.21)

We define the Multi-head Attention by

Attentionν,δ,α
(
(vt)[D],[ℓ], (kt)[D],[ℓ], (qt)[D],[ℓ]

)
=
∑
α′∈[ℓ]

(vt)ν,δ,α
′
P (α′|α, ν) (98.22)

where

P (α′|α, ν) = softmax

 1√
d

∑
δ∈[d]

(kt)ν,δ,[ℓ](qt)ν,δ,α

 (α′|α, ν) (98.23)

=
exp

[
1√
d

∑
δ∈[d](k

t)ν,δ,α
′
(qt)ν,δ,α

]
∑

α′′∈[ℓ] exp
[

1√
d

∑
δ∈[d](k

t)ν,δ,α′′(qt)ν,δ,α
] (98.24)

The structural equations, printed in blue, for the bnet Fig.98.3, are as follows.
Note that Attention() always has the same tensor shape as its 3 arguments. Note also
that the 3 weight matrices W [D],[d]

k , W [D],[d]
q , and W

[D],[d]
v raise the hidden dimension,

whereas the weight matrix W [d],[D]
a lowers it. W [d],[D]

a = 1 in the single head case.

(at)[D],[ℓ] = Attention((vt)[D],[ℓ], (kt)[D],[ℓ], (qt)[D],[ℓ]) (98.25a)

(et)[d],[ℓ] = prior (98.25b)

(et+1)[d],[ℓ] = W [d],[D]
a (at)[D],[ℓ] (98.25c)

(kt)[D],[ℓ] = W
[D],[d]
k (et)[d],[ℓ] (98.25d)
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(kt)
[D],[ℓ]

##

(et)
[d],[ℓ]

W
[D],[d]
k

;;

W
[D],[d]
q

//

W
[D],[d]
v

##

(qt)
[D],[ℓ] // (at)

[D],[ℓ] W
[d],[D]
a // (et+1)

[d],[ℓ]

(vt)
[D],[ℓ]

;;

Figure 98.3: Dynamical bnet with single-head Attention for ℓ words. Time-slice t.
This is a generalization of the single head Attention of Fig.98.2. Note that all orange
nodes have the same tensor shape.

(qt)[D],[ℓ] = W [D],[d]
q (et)[d],[ℓ] (98.25e)

(vt)[D],[ℓ] = W [D],[d]
v (et)[d],[ℓ] (98.25f)

98.3 Vanilla tranet
In this section, we will discuss the tranet of the “Attention is all you need" paper,
Ref.[91]. As is common in the literature, we will refer to that tranet as the “Vanilla"
tranet. Ref.[91] describes its tranet graphically with Fig.98.4. Our goal is to find a
causal DAG (bnet) version of that figure.

Let
ℓ =, context window, maximum number of words in a sentence segment. α ∈

[ℓ], ℓ ∼ 100
L = number of words in vocabulary, β ∈ [L], L >> ℓ
d = dq = dk = dv = 64, hidden dimension per head, δ ∈ [d].
nh = 8, number of heads, ν ∈ [nh]
D = nhd = 8(64) = 512, hidden dimension for all heads, ∆ ∈ [D]
Λ = 6, number copies, connected in series, of boxed bnet, λ ∈ [Λ]
Before we present the bnet version of Fig.98.4, we discuss some of the defini-

tions needed to understand and motivate Fig.98.4.
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Figure 98.4: Vanilla tranet

• Encoder Input xβ,α

xβ,α = δ(β, β(α))
(
x[L],[ℓ] has one hot columns.

)
(98.26)

• Embedding (a.k.a. encoding) Matrix Eδ,β

eδ,α =
∑
β

Eδ,βxβ,α
(
e[d],[ℓ] = E [d],[L]x[L],[ℓ]

)
(98.27)

• Weight matrices Wq,Wk,Wv

Qν,δ,α =
∑
δ′

W ν,δ,δ′

q eδ
′,α

(
Q[D],[ℓ] = W [D],[d]

q e[d],[ℓ]
)

(98.28)

Kν,δ,α =
∑
δ′

W ν,δ,δ′

k eδ
′,α

(
K [D],[ℓ] = W

[D],[d]
k e[d],[ℓ]

)
(98.29)

V ν,δ,α =
∑
δ′

W ν,δ,δ′

v eδ
′,α

(
V [D],[ℓ] = W [D],[d]

v e[d],[ℓ]
)

(98.30)

• Multi-head Attention
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Bν,α′,α =
1√
d

∑
δ

Kν,δ,α′
Qν,δ,α

(
Bν,α′,α =

1√
d
(Kν,[d],α′

)TQν,[d],α

)
(98.31)

Aν,δ,α =
∑
α′

V ν,δ,α′
softmax(Bν,[ℓ],α)(α′|α, ν)︸ ︷︷ ︸

P (α′|α,ν)

(98.32)

∑
α′∈[ℓ]

P (α′|α, ν) = 1 (98.33)

Aν,δ,α → A∆,α
(
A[nh],[d],[ℓ] → A[D],[ℓ]

)
(98.34)

Important: Note that the softmax() makes the α′ component a probability, not
the α one!

For example, suppose ν = 1 (one head), ℓ = 2 (a 2 word segment), and d = 3
(hidden dimension is 3). The Q[3],[2], K [3],[2], V [3],[2] are 3× 2 matrices (i.e., two
3-dim column vectors). One uses the Q[3],[2] and K [3],[2] to arrive at a 2 × 2
matrix P (α′|α) of probabilities. Then one uses that matrix of probabilities to
replace

[
V [3],0, V [3],1

]
→
[
V [3],0P (0|0) + V [3],1P (1|0), V [3],0P (0|1) + V [3],1P (1|1)

]
(98.35)

• Positional Embedding Matrix Eδ,βpos

Eδ,βpos =

 sin
(
2π β

(2π)104δ/d

)
= sin(2π β

λ(δ)
) if δ is even

cos
(
2π β

(2π)104(δ−1)/d

)
= cos(2π β

λ(δ)
) if δ is odd

(98.36)

Eδ,βpos changes in phase by π/2 every time δ changes by 1. Its wavelength λ is
independent of β, but increases rapidly with δ, from λ(δ = 0) = 2π ∗ 1 to
λ(δ = d) = 2π ∗ 104.
Total Embedding equals initial embedding plus positional embedding:

Eδ,β = Eδ,β0 + Eδ,βpos (98.37)

The purpose of positional embedding is to take eβ,α to eδ,α =
∑

β Eδ,βposeβ,α where
eδ,α changes quickly as δ (i.e., position) changes.
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• ReLU

For a tensor T of arbitrary shape,

ReLU(T ) = (T )+ = max(0, T ) (98.38)

max element-wise.

• Feed Forward Neural Net

F (eδ,α) =
∑

∆∈[nff ]

W δ,∆
2 ReLU

∑
δ′∈[d]

W∆,δ′

1 eδ
′,α + b∆,α1

+ bδ,α2 (98.39)

nff is called the intermediate_size in BERT.

• Softmax

softmax() takes a vector and returns a vector of probabilities of the same length

e[n] → P [n] (98.40)

where

Pα =
exp(eα)∑
α∈[n] exp(e

α)

(
P [n] =

exp(e[n])

∥ exp(e[n]) ∥0

)
(98.41)

For example,
(1, 0, 0)→ (e, 1, 1)/norm (98.42)

(10, 0, 0)→ (e10, 1, 1)/norm ≈ (1, 0, 0) (98.43)

For any a ∈ R,

(a, a, a)→ 1

3
(1, 1, 1) (98.44)

• Skip Connection (Add & Normalize)

A skip connection is when you split the input to a filter into two streams, one
stream goes through the filter, the other doesn’t. The one that doesn’t is then
merged with the output of the filter via a add & normalize node. The reason
for making skip connections is that the signal exiting a filter is usually full of
jumps and kinks. By merging that filter output with some of the filter input,
one smooths out the filter output to some degree. This makes back-propagation
differentiation better behaved.

The filter might be a Multi-Head Attention or a Feed Forward NN.
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Add & Normalize just means (A+B)/norm where A and B are the two input
signals and “norm" is some norm of A+B (for instance, ∥ A+B ∥2).
Normalization keeps the signal from growing too big and saturating the signal
that will enter components upstream. Normalization can also involve subtract-
ing the mean ⟨X⟩ of the signal X so as to get a signal X − ⟨X⟩ that has zero
mean.

• Redundancy

For better results, the Encoder and Decoder both contain Λ copies, connected
in series, of the boxed bnet.

Redundancy (see Chapter 79) has been used to avoid catastrophic failure at
least as early as the dawn of the age of rocketry, when it was used to avoid
the all too common occurrence of exploding rockets. There are 2 basic types
of redundancy: in series connection (as in the repeated identical layers in a
feedforward NN or a recurrent NN), and in parallel connection (as in tranet
heads, and the plates in a bnet (see Chapter 71)).

• Right Shifted Outputs

“Outputs (Shifted Right)" in Fig.98.4 refers to what is called forced teaching
in the RNN (recurrent neural net) literature. We explain forced teaching in
Fig.98.5.

Figure 98.5: Training and Inference for vanilla transformer. “enc" and “dec" denote
the encoder and decoder, respectively. A hash character represents the SOS (start of
sentence) token, and a period represents the EOS (end of sentence) token. Capital
letters represent ground truth tokens, and lower case ones represent predictions.

• Masked Attention

P (α′|α, ν) = 0 if α′ < α (98.45)
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α, and α′ are word positions in a sentence, and α′ is in the future (downstream)
compared to α. So as to not violate causality, this condition enforces the con-
straint that no attention is paid to word positions in the future of α.

98.3.1 Single Head Attention

Fig.98.6 gives a bnet representation of the “Single Head Attention" portion of Fig.98.4.
The structural equations for that bnet, printed in blue, are as follows.

A[d],[ℓ]

P [ℓ],[ℓ]

ii

M [ℓ],[ℓ]

OO

S[ℓ],[ℓ]

OO

B[ℓ],[ℓ]

OO

V [d],[ℓ]

OO

K [d],[ℓ]

;;

Q[d],[ℓ]

cc

Figure 98.6: Single Head Attention. (Scaled Dot Product)

A[d],[ℓ] = V [d],[ℓ]P [ℓ],[ℓ]

Note that
∑
α∈[ℓ]

Pα,[ℓ] = 1

 (98.46a)

B[ℓ],[ℓ] = (K [d],[ℓ])TQ[d],[ℓ] (98.46b)

K [d],[ℓ] = prior (98.46c)

M [ℓ],[ℓ] = mask(S[ℓ],[ℓ]) (98.46d)
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P [ℓ],[ℓ] = softmax(M [ℓ],[ℓ])

Note that
∑
α∈[ℓ]

Pα,[ℓ] = 1

 (98.46e)

Q[d],[ℓ] = prior (98.46f)

S[ℓ],[ℓ] =
B[ℓ],[ℓ]

√
d

(98.46g)

V [d],[ℓ] = prior (98.46h)

98.3.2 Multi-Head Attention

Fig.98.7 gives a bnet representation of the “Multi-Head Attention" portion of Fig.98.4.
The structural equations for that bnet, printed in blue, are as follows.

A[D],[ℓ] = [A
[d],[ℓ]
0 |A[d],[ℓ]

1 ] (98.47a)

A
[d],[ℓ]
0 = Attention(V [d],[ℓ]

0 , K
[d],[ℓ]
0 , Q

[d],[ℓ]
0 ) (98.47b)

A
[d],[ℓ]
1 = Attention(V [d],[ℓ]

1 , K
[d],[ℓ]
1 , Q

[d],[ℓ]
1 ) (98.47c)

K [D],[ℓ] = W
[D],[d]
k e[d],[ℓ] (98.47d)

K
[d],[ℓ]
0 = linear(K [D],[ℓ]) (split, then project a component) (98.47e)

K
[d],[ℓ]
1 = linear(K [D],[ℓ]) (split, then project a component) (98.47f)
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��

Q[D],[ℓ]

<<

""

Q1
[d],[ℓ]

��

K0
[d],[ℓ] // A0

[d],[ℓ]

""

e[d],[ℓ]
Wk //

Wq

II

Wv

��

K [D],[ℓ]

<<

""

A[D],[ℓ]
Wa // O[d],[ℓ]

K1
[d],[ℓ] // A1

[d],[ℓ]

<<

V0
[d],[ℓ]

HH

V [D],[ℓ]

<<

""

V1
[d],[ℓ]

HH

Figure 98.7: Multi-head Attention with 2 heads. Note that the orange nodes all have
the same tensor shape.

O[d],[ℓ] = W [d],[D]
a A[D],[ℓ] (98.47g)

Q[D],[ℓ] = W [D],[d]
q e[d],[ℓ] (98.47h)

Q
[d],[ℓ]
0 = linear(Q[D],[ℓ]) (split, then project a component) (98.47i)
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Q
[d],[ℓ]
1 = linear(Q[D],[ℓ]) (split, then project a component) (98.47j)

V [D],[ℓ] = W [D],[d]
v e[d],[ℓ] (98.47k)

V
[d],[ℓ]
0 = linear(V [D],[ℓ]) (split, then project a component) (98.47l)

V
[d],[ℓ]
1 = linear(V [D],[ℓ]) (split, then project a component) (98.47m)

e[d],[ℓ] = prior (98.47n)

98.3.3 Encoder

Fig.98.8 gives a bnet representation of the “Encoder" portion of Fig.98.4. The struc-
tural equations for that bnet, printed in blue, are as follows.

A[D],[ℓ] = Attention(Q[D],[ℓ], K [D],[ℓ], V [D],[ℓ]) (98.48a)

e[d],[ℓ] = E [d],[L]x[L],[ℓ] (98.48b)

F [d],[ℓ] = feed_forward_nn(N [d],[ℓ]) (98.48c)

K [D],[ℓ] = W
[D],[d]
k e[d],[ℓ] (98.48d)

n[d],[ℓ] = normalize(N [d],[ℓ] + F [d],[ℓ]) (98.48e)
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n[d],[ℓ]

F [d],[ℓ]

1
]]

N [d],[ℓ]

AA
1

OO

A[D],[ℓ]

Wa

ff

Q[D],[ℓ]

AA

K [D],[ℓ]

OO

V [D],[ℓ]

]]

e[d],[ℓ]

Wk

>>

1

OO

Wq

GG

Wv

99

x[L],[ℓ]

E

OO

Figure 98.8: Encoder of Vanilla Transformer Net. Λ copies of the boxed part are
connected in series.

N [d],[ℓ] = normalize(e[d],[ℓ] +W [d],[D]
a A[D],[ℓ]) (98.48f)

Q[D],[ℓ] = W [D],[d]
q e[d],[ℓ] (98.48g)

V [D],[ℓ] = W [D],[d]
v e[d],[ℓ] (98.48h)

x[L],[ℓ] = prior (98.48i)
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98.3.4 Decoder

Fig.98.9 gives a bnet representation of the “Decoder" portion of Fig.98.4. The struc-
tural equations for that bnet, printed in blue, are as follows.

P [L],[ℓ]

I [L],[ℓ]

OO

Y [d],[ℓ]

Wfin

OO

F [d],[ℓ]

1

@@

a[D],[ℓ]
Ua // j[d],[ℓ]

]]
1

OO

v[D],[ℓ]

@@

k[D],[ℓ]

OO

q[D],[ℓ]

^^

n[d],[ℓ]

Uk

@@

Uv

OO

J [d],[ℓ]

1

OO

Uq

]]

A[D],[ℓ]

Wa

88

Q[D],[ℓ]

@@

K [D],[ℓ]

OO

V [D],[ℓ]

^^

e[d],[ℓ]

1

OO

Wk

``

Wq

ee

Wv

XX

x[L],[ℓ]

E

OO

Figure 98.9: Decoder of Vanilla Transformer Net. Λ copies of the boxed part are
connected in series.
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a[D],[ℓ] = Attention(v[D],[ℓ], k[D],[ℓ], q[D],[ℓ]) (98.49a)

A[D],[ℓ] = Attention(Q[D],[ℓ], K [D],[ℓ], V [D],[ℓ]) (98.49b)

e[d],[ℓ] = E [d],[L]x[L],[ℓ] (98.49c)

F [d],[ℓ] = feed_forward_nn(j[d],[ℓ]) (98.49d)

I [L],[ℓ] = W
[L],[d]
fin Y [d],[ℓ] (98.49e)

j[d],[ℓ] = normalize(U [d],[D]
a a[D],[ℓ] + J [d],[ℓ]) (98.49f)

J [d],[ℓ] = normalize(W [d],[D]
a A[D],[ℓ] + e[d],[ℓ]) (98.49g)

K [D],[ℓ] = W
[D],[d]
k e[d],[ℓ] (98.49h)

k[D],[ℓ] = U
[D],[d]
k n[d],[ℓ] (98.49i)

n[d],[ℓ] = Prior coming from Encoder. (98.49j)

P [L],[ℓ] = softmax(I [L],[ℓ]) (
∑
α∈[ℓ]

P [L],α = 1) (98.49k)

q[D],[ℓ] = U [D],[d]
q J [d],[ℓ] (98.49l)

Q[D],[ℓ] = W [D],[d]
q e[d],[ℓ] (98.49m)
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V [D],[ℓ] = W [D],[d]
v e[d],[ℓ] (98.49n)

v[D],[ℓ] = U [D],[d]
v n[d],[ℓ] (98.49o)

x[L],[ℓ] = prior, right shifted output (98.49p)

Y [d],[ℓ] = normalize(F [d],[ℓ] + J [d],[ℓ]) (98.49q)

98.4 BERT
I used the the Wikipedia article on BERT, Ref[104] to write this section.

BERT (Bidirectional Encoder Representations from Transformer) is a realiza-
tion of the Encoder half of the Vanilla tranet. One can either add a smaller NN to the
output of BERT (this is called fine-tuning), or one can add a de-embedding layer
to its output so that the total device takes word lists to word lists.

In the language of Bayesian Networks, fine-tuning is the same as using BERT
as a prior probability. See Chapter 84 on sentence splitting for an example of BERT
fine-tuning.

98.4.1 BERT parameter values

BERT comes in two sizes, base and large. See Table 98.1 for a listing of some BERT
parameter values.

BERT base BERT large
ℓ, context window 512 512
L, vocab_size 30,522 30,522
d, hidden_size 768 1024
nh, num_attention_heads 12 16
Λ, num_hidden_layers 12 24
D′, intermediate_size 3,072 3,072
number of parameters 110M 340M

Table 98.1: Some hyper-parameter values for BERT base and BERT large
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98.4.2 BERT Embedding

So far, we have described the embedding step as a single step from tokenization into
words, to 1 hot vectors, to embedding vectors. There are other additional steps in
the embedding process that we haven’t described so far (namely, tokenization into
subwords, adding special tokens, and padding). We would like to describe those
additional steps now, in the context of the BERT model. Here is an example.

Let’s consider a short sentence: “The cat is on the mat.”

1. Tokenization into words: Tokenize the sentence into individual words:
“The”, “cat”, “is”, “on”, “the”, “mat”, “.”

2. Tokenization into subwords: Further tokenize words into subword units
using WordPiece tokenization or a similar method. For example:

The→ The

cat→ ca, t

is→ is

on→ on

the→ the

mat→ mat

.→ .

Any subword not appearing in BERTs vocabulary is replaced by [UNK] for
"unknown".

3. Adding Special Tokens: Add special tokens, such as [CLS] (classification) at
the beginning and [SEP] (separator) at the end:
“[CLS]", “The”, “ca”, “t”, “is”, “on”, “the”, “mat”, “.”, “[SEP]”

4. Padding: If necessary, pad or truncate the sequence to a fixed length. Add
padding tokens “[PAD]” to reach a specified sequence length.

5. Embedding Matrix: Create a tensor with 1-hot columns

xβ,α = δ(β, β(α)) (98.50)

where α ∈ [ℓ], β ∈ [L] and where β(α) is the location in the BERT vocab
corresponding to token α in the the padded string. Now multiply x times the
previously discussed embedding matrix E to get

e[d],[ℓ] = E [d],[L]x[L],[ℓ] ∈ Rd×ℓ (98.51)

This gives a vector in Rd for each token α in the padded string. The matrix
E is pre-trained and captures contextual information and word similarities. It
can also include positional embedding, as discussed before.
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98.4.3 BERT training

BERT was trained6 simultaneously on two tasks.7

1. language modeling: 15% of tokens were selected for prediction. Those tokens
selected for prediction were replaced by the [MASK] token 80% of the time, by
a random word 10% of the time, and not replaced at all 10% of the time. The
training objective was to predict the selected token given its context.

2. next sentence prediction: Given two spans of text, the model predicts if
these two spans appeared sequentially in the training corpus, outputting either
[IsNext] or [NotNext]. For example,

• Given "[CLS] my dog is cute [SEP] he likes playing", the model should
output token [IsNext].

• Given "[CLS] my dog is cute [SEP] how do magnets work", the model
should output token [NotNext]

6Sometimes this is called “pre-training" to distinguish it from the “training" of the smaller NN
that is attached to the output of BERT when doing fine-tuning.

7This section on BERT training quotes Wikipedia Ref.[104] heavily.
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Chapter 99

Transportability of Causal Knowledge

This chapter is mostly based on Refs.[59] and [45].

x

�� ��
y // z

x

�� ��

s

��

oo

y // z

G Gs

Figure 99.1: Example of selection bnet Gs created from bnet G.

Suppose one wants to transfer causal knowledge from a source population
Σ to a target population Σ∗.

Given a bnet G, define a selection diagram Gs as a bnet formed by adding to
G a new root node s and new arrows pointing from switch node (a.k.a, selection
node s to one or more target nodes of G. We’ll call the set of target nodes of s the
target set Ts. s = 0 corresponds to population Σ and s = 1 to population Σ∗. For
bnet G, the TPM for a node x with parents pa(x), is given by:

PG(x|pa(x)) = P (x|pa(x)) (99.1)

For bnet Gs, nodes x with parents pa(x), where s ̸∈ pa(x), have TPMs:

PGs(x|pa(x)) = P (x|pa(x)) . (99.2)

Nodes x with parents pa(x) ∪ s, have TPMs:

PGs(x|pa(x), s) =
{
P (x|pa(x), s = 0) = P (x|pa(x)) if s = 0
P (x|pa(x), s = 1) = P ∗(x|pa(x)) if s = 1

(99.3)

Fig.99.1 shows an example of a selection diagram Gs. In that figure, the target
set of s is {x, z}.
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All this can be generalized so as to have more than one switch node, with the
target sets of the switch nodes being disjoint, and such that a switch node can have
more than 2 states.

Do-transport formulae

Claim 185 (Trivial Memoryless Transportability, from Ref.[59])
If z

�� ��

s

��
x //

22

ff 88 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x, z) = P ∗(y|x, z) (replace D by 1, keep P ∗) (99.4)

z

!!

s = 1

��Dx = x // y
=

z

""

s = 1

��
x // y

(99.5)

proof: See Claim 49.
QED

Claim 186 (Direct Transportability, a.k.a. External Validity, from Ref.[59])
If s // z

�� ��
x //

22

ff 88 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x, z) = P (y|Dx = x, z) (replace P ∗ by P , keep D) (99.6)

s = 1 // z

��Dx = x // y
=

z

��Dx = x // y

(99.7)

Furthermore,
P ∗(y|Dx = x) =

∑
z

P (y|Dx = x, z)P ∗(z) (99.8)

s = 1

''Dx = x // y
=

s = 1 //
∑
z

  Dx = x // y

(99.9)

proof: See Claim 50.
QED
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Claim 187 (S-Admisssible Transportability, from Ref.[59])
If s // z //

��

a

��
x //

33

gg 77 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) =
∑
a

P (y|Dx = x, a)P ∗(a) (99.10)

s = 1

##Dx = x // y
=

s = 1 //
∑
a

��Dx = x // y

(99.11)

proof: See Claim 51.
QED

Claim 188 (Non-transportability, from Ref.[59])
If h

�� ��

s

��
x // y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) = P ∗(y|Dx = x) (99.12)

s = 1

��Dx = x // y
= same

(99.13)

proof: See Claim 52.
QED

Claim 189 (from Ref.[59])

If s
##

h

�� ��

//44



z

x //gg 77 y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) = P (y|Dx = x) (99.14)
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s = 1

''Dx = x // y
= Dx = x // y

(99.15)

proof: See Claim 53.
QED

Claim 190 (from Ref.[59])
If s

��

h

�� ��

44


x //gg 77z // y

where s ∈ {0, 1} is a switch node, then

P ∗(y|Dx = x) =
∑
z

P (y|Dx = x, z)P ∗(z|x) (99.16)

s = 1

%%

Dx = x

��
y

=

s = 1

##

Dx = x

��
x //

∑
z // y

(99.17)

proof: See Claim 54.
QED
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Chapter 100

Turbo Codes

This chapter is based on Ref.[43].
In this chapter, vectors with n components will be indicated by an n super-

script. For example, an = (a0, a1, . . . , an−1).
Consider an n-letter message un = (u0, u1, . . . , un−1), where for all i, ui ∈ A

is an element of an alphabet A, and where for all i, the ui are i.i.d.. Suppose un
is encoded deterministically in two different ways, e1(un) and e2(u

n). After passing
through the same memoryless channel, the variables un, e1, e2 become ũn, ẽ1, ẽ2, re-
spectively. The letter u stands for unencoded, and e for encoded. Quantities with a
tilde ũn, ẽ1, ẽ2 occur after channel passage and are visible (measurable). Quantities
without a tilde un, e1, e2 are hidden (unmeasurable).

The situation just described can be represented by the bnet Fig.100.1, or by
its abridged version Fig.100.2. But note that the abridged version does not show
explicitly that the ui are i.i.d. or that the channel is memoryless (i.e., that the ui for
all i pass independently through the channel).

Define

x = (un, e1, e2) (100.1)

and

x̃ = (ũn, ẽ1, ẽ2) . (100.2)

Fig.100.1 implies that

P (x, x̃) = P (ũn|un)

[∏
r=1,2

P (ẽr|er)P (er|un)

]
P (un) . (100.3)

Because the un are i.i.d.,

P (un) =
∏
i

P (ui) . (100.4)

Because the channel is memoryless,
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u0 //

��

��

ũ0

u1 //

��

��

ũ1

u2 //

��

��

ũ2

e1 // ẽ1

e2 // ẽ2

Figure 100.1: Turbo coding Bnet representing a message being encoded two different
ways and then the original message and the 2 encodings pass through a memoryless
channel.

un //

��

��

ũn

e1 // ẽ1

e2 // ẽ2

Figure 100.2: Abridged version of Fig.100.1.

P (ũn|un) =
∏
i

P (ũi|ui) . (100.5)

Because the encoding is deterministic, we must have for r = 1, 2

P (er|un) = δ(er, er(u
n)) . (100.6)

Define the belief functions

BELi = BELi(ui = a) = P (ui = a|x̃) . (100.7)

The best estimate of uj given all visible evidence x̃ is
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ûi = argmax
ui

BELi(ui) . (100.8)

Define the probability functions

πi = πi(ui) = P (ui) , (100.9)

and the likelihood functions

λi = λi(ui) = P (ũi|ui) . (100.10)

For r = 1, 2, define the Kernel functions

Kr = Kr(u
n) = P (ẽr|er = er(u

n)) . (100.11)

In this book, N (!a) denotes a normalization constant that does not depend on
a. Define

Ni = N (!ui) . (100.12)

Claim 191
BELi = NiλiπiT K1K2

i [
∏
j ̸=i

λjπj] , (100.13)

where T Ki (·) with K = K1K2 is an operator (transform) that acts on functions of un:

T Ki (·) =
∑
un

δ(ui, a)K(un)(·) . (100.14)

proof:

P (ui = a|x̃) =
=

∑
x

δ(ui, a)P (x|x̃) (100.15)

=
∑
x

δ(ui, a)
P (x̃|x)P (x)

P (x̃)
(100.16)

= N (!a)
∑
x

δ(ui, a)P (x̃|x)P (x) (100.17)

= N (!a)
∑
x

δ(ui, a)P (u
n)

[∏
r=1,2

P (ẽr|er)δ(er, er(un))

]∏
j

P (ũj|uj)(100.18)

= N (!a)λi(a)πi(a)R , (100.19)

where
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R =
∑
un

δ(ui, a)

[∏
r=1,2

P (ẽr|er(un))

]∏
j ̸=i

P (ũj|uj)P (uj) (100.20)

=
∑
un

δ(ui, a)

[∏
r=1,2

Kr(u
n)

]∏
j ̸=i

λj(uj)πj(uj) (100.21)

= T K1K2
i [

∏
j ̸=i

λj(uj)πj(uj)] . (100.22)

Hence

BELi(a) = N (!a)λi(a)πi(a)T K1K2
i [

∏
j ̸=i

λj(uj)πj(uj)] . (100.23)

QED

100.1 Decoding Algorithm
The Turbo algorithm for decoding the encode message is as follows. For m = 0, let

π
(0)
j (uj) =

1

nuj
. (100.24)

Then for m = 1, 2, . . . , let

π
(m)
i = NiT Km%2

i [
∏
j ̸=i

λjπ
(m−1)
j ] , (100.25)

where m%2 = 1 if m is odd and m%2 = 2 if m is even. Furthermore, for m > 0, let

BEL
(m)
i = Niλiπ(m−1)

i π
(m)
i (100.26)

= Niλiπ(m−1)
i T Km%2

i [
∏
j ̸=i

λjπ
(m−1)
j ] . (100.27)

As m → ∞, BEL(m)
i given by Eq.(100.27) is expected to converge to the the exact

BELi given by Eq.(100.13).
Turbo decoding can be represented by the bnets Figs.100.3 and 100.4.
The TPMs, printed in blue, for bnet Fig.100.3, are as follows.

P (d
(m)
i = a | ũn, ẽm%2) = BEL

(m)
i (a) . (100.28)

The TPMs, printed in blue, for bnet Fig.100.4, are as follows.
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ũn // )) ** ++ ,,d
(1)
i d

(2)
i d

3)
i d

(4)
i d

(5)
i

ẽ1

>>
44 22

ẽ2

>> 66

Figure 100.3: Bnet describing Turbo code generation of BEL(m)
i (a) for m = 1, 2, . . ..

BELn(1)(·) BELn(2)(·) BELn(3)(·) BELn(4)(·)

un πn(0)(·) //

88

πn(1)(·) //

OO 77

πn(2)(·) //

OO 77

πn(3)(·) //

OO 77

πn(4)(·)

OO

ẽ1

44 11

ẽ2

EE 55 22

ũn // λn(·)

Figure 100.4: Bnet describing Turbo code generation of BELn(m)(·) and πn(m)(·) for
m = 0, 1, 2 . . .. The following arrows were not drawn for clarity: Arrows pointing
from node λn(·) to nodes πn(m)(·) and BELn(m)(·) for m = 0, 1, 2, . . ..

P ((λn)′(·)|ũn) = δ((λn)′(·), λn(·)) (100.29)

P (πn(m)(·)|λn(·), πn(m−1)(·), ẽm%2) =
∏
i

∏
ui

δ(π
(m)
i (ui),NiT Km%2

i [
∏
j ̸=i

λjπ
(m−1)
j ])

(100.30)
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P (BEln(m)(·)|λn(·), πn(m)(·), πn(m−1)(·)) =
∏
i

∏
ui

δ(BELi(ui),Niλiπ(m−1)
i π

(m)
i )

(100.31)

100.2 Message Passing Interpretation of Decoding
Algorithm

Ref.[43] shows that the Turbo code decoding algo can be interpreted as an application
of Message Passing. We leave all talk of Message Passing to a separate chapter,
Chapter 56.
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Chapter 101

Uplift Modelling

This chapter is based on many references, including Ref.[21, 16, 175, 66].
Uphill Modelling (UP) deals with the application of Rubin’s Theory of Poten-

tial Outcomes (PO) to advertisement and marketing.
PO, which is discussed in Chapter 72, is a subset of Pearl’s Causal Inference.

Besides UP, other applications of PO theory that are discussed in this book are:
Regression Discontinuity (Chapter 76), Difference-in-Differences (Chapter 18) and
Synthetic Controls (Chapter 92).

In UP, each participant person is interrogated at two well anticipated, fairly
closely spaced times t0 and t1 (as opposed to Difference-in-Differences (DID), where
t0 and t1 might be years apart, and long before the DID analysis is attempted.). In
between those two times, a treatment which we will refer to as the UP diagnostic
test is applied. For example, at times t0 and t1, every participant might be asked
how important he/she rates climate change on a scale of 1 to 10. In between times
t0 and t1, every participant might be sent a brochure on climate change. In UP, as
in all other PO applications, each sample σ is in the treated or control groups, but
not both. But in UP, the same participant can be in both the treated and control
groups. If so, that participant is considered two different samples σ; for example,
σ = treatedBob, controlBob. In UP, the samples are aware of which of those groups
they are in, so they are not “treatment blind".

101.1 UP types
Let yBt ∈ R for t = t0, t1 be the treatment response at time t for participant B. (We are
using here the same notation as in Chapter 72). Call δB = yBt1 − y

B
t0

the participant
uplift for participant B. As shown in Fig.101.1, UP classifies participants into 4
UP-types: Persuadables, SureThings, LostCauses, and SleepyDogs. The UP-type
of a participant depends on the changes that are induced on that participant by an
UP-diagnostic-test.

• For a Persuadable participant, δB > 0.
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Figure 101.1: UP diagnostic test can be used to classify all participants of the pop-
ulation into 4 UP-types. This figure assumes y ∈ {0, 1}. More generally, y ∈ R. t
represents time. t = t0 corresponds to d = 0 = untreated, and t = t1 corresponds to
d = 1 = treated.

• For a SleepyDogs participant, δB < 0.

• For a SureThings participant, δB ≈ 0 and yBt0 is high.

• For a LostCauses participant, δB ≈ 0 and yBt0 is low.

Suppose B belongs to stratum Ax. What is commonly called the uplift is
the stratum-uplift δx = ACEx. Strata can also be classified into the 4 UP-types,
depending on the sign and size of their δx. A participant may not be typical for his
stratum and may have different participant and stratum UP-types. For example,
he may have positive participant uplift and therefore have a Persuadable participant
UP-type, but his stratum-uplift might be negative, so he has the SleepyDogs stratum
UP-type.

Advertisers are very interested in finding the Persuadable strata in a popula-
tion so as to focus their resources on them. For example, UP was used very successfully
during the Obama presidential campaigns. Team Obama conducted UP-diagnostic
tests much like the climate change one described earlier. This allowed them to iden-
tify voters who might be sitting on the fence on whether to vote for Obama or not.
Then Team Obama spent the lion share of resources on those fence-sitters.

101.2 Some Relevant Technical Formulas from Chap-
ter 72

Recall the following technical formulae that were proven in Chapter 72:
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• Recall Eq.(72.143):

ACE =
∑
x

P (x)
∑
y

y [P (y|d = 1, x)− P (y|d = 0, x)]︸ ︷︷ ︸
ACEx

(101.1)

If y ∈ {0, 1}, then

ACEx︸ ︷︷ ︸
δx

= Py|d,x(1|1, x)︸ ︷︷ ︸
Y 1
x

−Py|d,x(1|0, x)︸ ︷︷ ︸
Y 0
x

. (101.2)

• Recall Eq.(72.158):

ÂCEx︸ ︷︷ ︸
δx

=
1

Nx

∑
σ∈Ax

dσyσ

g1|xσ︸ ︷︷ ︸
Y 1
x

− 1

Nx

∑
σ∈Ax

(1− dσ)yσ

g0|xσ︸ ︷︷ ︸
Y 0
x

(101.3)

101.3 UP Analysis
The input to UP is a PO dataset DS = {(σ, dσ, xσ, yσ) : σ = 0, 1, 2, . . . , nsam − 1}.
where dσ ∈ {0, 1}, xσ ∈ Sx, yσ ∈ R. A participant B is assigned two different σ if
he/she belongs to both the treated and control groups. We will assume Sx is a finite
set. In general, x = (x0, x1, . . . , xn−1) is an n dimensional vector of features xi. If
any of the xi is a priori continuous, we will assume it has been binned into a finite
number of bins.

Starting with DS, UP performs the following steps. Fig.101.2 is a pictorial
representation of the quantities that are calculated during these steps.

1. Find Ax for each observed x ∈ Sx. Set Ax = ∅ for unobserved x ∈ Sx.

2. Calculate δx for each x ∈ Sx. Set δx = 0 if Ax = ∅.

3. Calculate the set

{∆c}c=0,1,...,nc−1 = {δx : x ∈ Sx} (101.4)

of distinct uplifts δx. The class labels c should be assigned so that the sequence
of ∆c is monotonic and non-increasing; i.e.,

∆0 ≥ ∆1 ≥ · · · ≥ ∆nc−1 . (101.5)

Now calculate
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Figure 101.2: Pictorial representation of the sequence {(Xc,∆c)}c=0,1,...,nc−1.

Xc = {x : δx = ∆c} (101.6)

for each c. By the end of this step, we will have calculated {(Xc,∆c)}c=0,1,...,nc−1.
We will refer to the Xc as strata-bins. Note that

∆c =
1

|Xc|
∑
x∈Xc

δx (101.7)

=
1

|Xc|
∑
x∈Xc

Y 1
x︸ ︷︷ ︸

Y 1
c

− 1

|Xc|
∑
x∈Xc

Y 0
x︸ ︷︷ ︸

Y 0
c

. (101.8)

4. For each c, calculate

Σd,c = ∪x∈XcAd,x (101.9)

for d ∈ {0, 1} and

Σc = Σ0,c ∪ Σ1,j . (101.10)

Fig.101.3 is a way of plotting the results of UP in an intuitive way that even a
business type can understand. UP software often plots something called a Qini curve,
but I find Qini curves opaque, confusingly defined in the literature, unnecessary and
not very well motivated. So I don’t use them.
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Figure 101.3: Plot of UP results. Alternative to Qini curves.

101.4 UP Decision Trees
In this section, we will describe how to build UP decision trees (UP dtrees), and
explain why they are needed for UP.

Generic dtrees are described in Chapter 16. This section complements rather
than replaces that chapter so the reader is advised to read that chapter first.

Ref.[66] is an excellent paper on the use of dtrees in UP.
The analysis described previously in Section 101.3, although theoretically cor-

rect, will work very poorly in practice. The strata-bins of Section 101.3 correspond to
the classification classes of a dtree. But strata-bins are very specific so they severely
overfit the data. Although dtrees can also suffer from overfitting, there are known
methods of preventing or mitigating overfitting in dtrees.

There are also tasks that dtrees can do well and the methods explained so far
cannot do well. For example, suppose we have a classless datasetDS− = {(σ, xσ) : σ ∈
Σ−} and we want to predict the class cσ and uplift ∆cσ for each of these individuals
σ ∈ Σ−. A dtree can easily do that. The alternative is to use the classy dataset
DS = {(σ, xσ, cσ) : σ ∈ Σ} to prepare a dictionary that orders the elements of Sx
and gives a class c and an uplift value ∆c for each feature vector x ∈ Sx. But such
a dictionary overfits and says nothing for feature vectors x that do not show up in
the classy dataset DS; i.e., the dictionary doesn’t guess (interpolate). Dtrees, on the
other hand, do guess.

So, without further ado, let us describe how to modify the results of Chapter
16 on generic dtrees to the case of UP dtrees. The main difference, as we will explain
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in detail next, is that the Information Gain metric used for generic dtrees needs to
be replaced by another metric.

xj xj=xj
//

xj=x
′
j

22

{Nd
j (c, xj)}c∈Sc,xj∈Sxj

∑
c∈Sc

Nd
j (c, xj) = Nd

j (xj)

∑
xj∈Sxj

Nd
j (c, xj) = Nd

j (c)
∑

c∈Sc
Nd
j (c) =

∑
xj∈Sxj

Nd
j (xj) = Nd

j

Figure 101.4: Fig.16.4 with d dependence added. d ∈ {0, 1} is the treatment dose.

Fig.101.4 was obtained from Fig.16.4 by adding d dependence. d ∈ {0, 1} is
the treatment dose. Note that in UP, we build a dtree in which every node carries a
double (d = 0, 1) TPV. This is in contrast to the generic dtrees built in Chapter 16,
in which each node carries a single TPV. Nd

j (c, xj) is the number of individuals σ in
the population that reaches node xj with d ∈ {0, 1}, belonging to class c ∈ Sc and
having xj = xj. From these population numbers, we can define the bnet in Fig.101.5.
The TPMs, printed in blue, for the (non-root) nodes of this bnet, are as follows

P (c|xj, j, d) =
Nd
j (c, xj)

Nd
j (xj)

(101.11)

d

�� &&
j // &&

xj // c

Figure 101.5: Bnet derived from population numbers in Fig.101.4
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P (xj|j, d) =
Nd(xj)

Nd
j

(101.12)

In Chapter 16, we used Information Gain (a mutual information) as the SAM
(Separation Ability Measure) in SL (Structure Learning) of dtrees (Decision Trees).
Information Gain is a bad SAM for SL of UP dtrees, because it knows nothing about
d = 0, 1 and the double TPVs of nodes in UP dtrees. For UP dtrees, we need a SAM
specifically designed to separate d = 0, 1, and generate classes that are uplift bins
(i.e., uplift intervals).

Ref.[66] proposes and studies the following 3 SAMs for doing SL of UP dtrees.

1. SAM_DD (DD=Delta Delta)

For d ∈ {0, 1} and c, c′ ∈ Sc, define the increments

∂df(d) = f(1)− f(0) (101.13)

and

∂c′,cf(c) = f(c′)− f(c) . (101.14)

Let

∆c|j = P (c|j, 1)− P (c|j, 0) (101.15)
= ∂dP (c|j, d) (101.16)

SAM_DDj = max
c,c′
|∂c′,c∂dP (c|j, d)| (101.17)

= max
c,c′
|∂c′,c∆c|j| (101.18)

2. SAM_KL (KL=Kullback Leibler)

SAM_KLj =

 ∑
xj∈Sxj

P (xj|j)DKL(Pc|xj ,j,1 ∥ Pc|xj ,j,0)

−DKL(Pc|j,1 ∥ Pc|j,0)

(101.19)

=

 ∑
xj∈Sxj

P (xj|j)
∑
c∈Sc

P (c|xj, j, 1) ln
P (c|xj, j, 1)
P (c|xj, j, 0)

−∑
c∈Sc

P (c|j, 1) ln P (c|j, 1)
P (c|j, 0)

(101.20)

SAM_KLj can be negative.
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3. SAM_E (E=Euclidean)

SAM_Ej is defined the same way as SAM_KLj except with the KL divergence
DKL(P ∥ Q) in SAM_KL replaced by the Euclidean distance squared.

D(P,Q) =
∑
x

(P (x)−Q(x))2 (101.21)

The intuitive reason for using these quantities as SAMs is that they maximize
the change in uplift between successive tree levels, so that the uplift increases as
quickly as possible as we descend down the UP tree. In the case of generic dtrees for
which we use Information Gain as SAM, we are maximizing the correlation between
classes and nodes as we descend down the tree. These two goals are related. In fact,
in the limit where the number of control individuals becomes zero, SAM_KLj and
IGj become the same, as will be shown later.

Next we show that SAM_KLj satisfies the following 3 axioms1

Claim 192 .

1. SAM_KLj is minimum iff P (c|xj, j, 0) = P (c|xj, j, 1) for all c and xj.

2. If P (c|j, d) = P (c|d) for all c, d, then SAM_KLj = 0.

3. Suppose N0
r = 0 for all nodes r ∈ J0 (i.e., no control population) and we use

the Laplace Correction when warranted. Then

SAM_KLj = H(c : xj|j, 1) (101.22)
= IGj for treated population . (101.23)

proof:
The proof of items 1 and 2 follow by inspection of Eq.(101.20). Item 3 is

proven in Claim 193 below.
QED

Let Nc = |Sc|. Define the uniform probability distribution

Uc(c) =
1

Nc

(101.24)

for all c ∈ Sc.
Eq.(101.11) for the TPM of node c in the bnet Fig.101.5 can be "Laplace

Corrected" as follows so that it is no longer undefined when its denominator vanishes:
1We won’t show it here, but according to Ref.[66], SAM_Ej also satisfies these 3 axioms, but

SAM_DDj satisfies only the first two.
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P (c|j, d) =

{
Nd

j (c)

Nd
j

if Nd
j > 0

Uc(c) if Nd
j = 0 (Laplace Correction)

(101.25)

Claim 193 Suppose N0
r = 0 for all dtree nodes r ∈ J0 and we use the Laplace

Correction when warranted. Then

SAM_KLj = H(c : xj|j, 1) . (101.26)

proof:
For all nodes r ∈ J0, we must have

Pc|r,0 = Uc (101.27)

so

DKL(Pc|r,1 ∥ Pc|r,0) = DKL(Pc|r,1 ∥ Uc) (101.28)
= ln(Nc)−H(c|r, 1) . (101.29)

For all xj ∈ Sxj , we must also have

Nj = N1
j , N(xj) = N1(xj) (101.30)

so

P (xj|j) = P (xj|j, 1) . (101.31)

Now using Eqs.(101.29) and (101.31), we get

SAM_KLj = −

 ∑
xj∈Sxj

P (xj|j)H(c|xj, j, 1)

+H(c|j, 1) (101.32)

= −

 ∑
xj∈Sxj

P (xj|j, 1)H(c|xj, j, 1)

+H(c|j, 1) (101.33)

= −H(c|xj, j, 1) +H(c|j, 1) (101.34)
= H(c : xj|j, 1) (101.35)

QED
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101.4.1 Appendix, connection between ∆c and ∆c|j

Recall Eq.(101.8):

∆c =
1

|Xc|
∑
x∈Xc

Y 1
x︸ ︷︷ ︸

Y 1
c

− 1

|Xc|
∑
x∈Xc

Y 0
x︸ ︷︷ ︸

Y 0
c

(101.36)

= ∂dY
d
c . (101.37)

Compare that to Eq.(101.16):

∆c|j = P (c|j, 1)− P (c|j, 0) (101.38)
= ∂dP (c|j, d) (101.39)

What is the connection between these 2 deltas, ∆c and ∆c|j? Are they equal?
First off, notice that ∆c|j is defined for all nodes j of the dtree. Let j(c) be

the leaf node for which ∆c ≈ ∆c|j(c). Assume yσ ∈ {0, 1}. Then

P (c|j = j(c), d) =
Nd
j(c)(c)

Nd
j(c)

≈ Y d
c (101.40)

So the two deltas are indeed approximately equal when yσ ∈ {0, 1} and j = j(c).
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Chapter 102

Variational Bayesian Approximation
for Medical Diagnosis

This chapter is based on Ref.[31].
A Variational Bayesian Approximation (VBA) is when we approximate a prob-

ability distribution by another probability distribution that depends on a continuous
“variational parameter". This parameter is adjusted within its range of possible val-
ues, to make the approximation as good as possible. There are many VBA methods.
VBA methods are inspired by ancient methods used in Calculus of Variations applied
to Physics and Engineering problems.

In this chapter, we do VBA via Jensen’s inequality and convex/concave dual
functions.

Ref.[31], on which this chapter is based, applies VBA methods to the problem
of diagnostic inference using the Quick Medical Reference (QMR) bipartite Bayesian
Network. According to Ref.[31] the maximal clique size of the QMR bnet is 150
nodes, which rules out exact methods of inference like the Junction Tree Algorithm
(see Chapter 43). For such high complexity cases, one is forced to use either a VBA
or a Monte Carlo method.

ℓ

�� '' ** ++ ,,

d1

�� ''

d2

ww �� ���� ''

d3

ww �� ��
s1 s2 s3 s4 s5

Figure 102.1: Typical bnet (bipartite, 2 level graph) for medical diagnosis to which
we will apply VBA methods. In this case, nd = 3 and ns = 5. According to Ref.[31],
for QMR, nd ≈ 600 and ns ≈ 4000.

Fig.102.1 gives a typical bnet for medical diagnosis to which we will apply
VBA methods. di ∈ {0, 1} for i = 1, 2, . . . , nd are the possible diseases, sσ ∈ {0, 1}
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for σ = 1, 2, . . . , ns are the possible symptoms, and ℓ ∈ {0, 1} is the leakage due
to possible error in the parents of the symptoms. Note that the arrows point from
diseases to symptoms because diseases precede in time the symptoms.

Let
Z[1,n] = {1, 2, . . . , n} (102.1)

paσ = {i ∈ Z[1,nd] : di ∈ pa(sσ)} = parents of sσ (102.2)

Note that paσ does not include ℓ, which is also a parent of sσ.

chi = {σ ∈ Z[1,ns] : sσ ∈ ch(di)} = children of di (102.3)

dA = {dk : k ∈ A} (102.4)

dnd = {dk : k ∈ Z[1,nd]} (102.5)

d!j = {dk : k ∈ Z[1,nd] − {j}} (102.6)

The TPMs, printed in blue, for the bnet Fig.102.1, are as follows:

P (dj) = given (102.7)

P (ℓ) = given (102.8)

P (sσ = 0|dpaσ , ℓ) = P (sσ = 0|ℓ)︸ ︷︷ ︸
e
−θσ|0

∏
j∈paσ

P (sσ = 0|dj)︸ ︷︷ ︸
e
−θσ|jdj

(102.9)

= e−θσ|0−
∑

j∈paσ
θσ|jdj (102.10)

where θσ|0, θσ|j > 0. This P (sσ = 0|dpaσ , ℓ) corresponds to the noisy-or model (See
Chapter 65.).

P (sσ = 1|dpaσ) = 1− e−θσ|0−
∑

j∈paσ
θσ|jdj (102.11)

Define
xσ = θσ|0 +

∑
j∈paσ

θσ|jdj (102.12)

Suppose A ⊂ Z[1,ns], Ac = Z[1,ns] − A. Then

863



P (dj|sA = 0, sAc = 1) =
P (sA = 0, sAc = 1|dj)P (dj)

P (sA = 0, sAc = 1)
(102.13)

= N (!dj)
∑
d!j

P (sA = 0, sAc = 1|dnd)P (dnd) (102.14)

= N (!dj)
∑
d!j

P (sAc = 1|dnd)P (sA = 0|dnd)P (dnd) (102.15)

= N (!dj)
∑
d!j


∏

σ∈Ac

call Pσ︷ ︸︸ ︷
(1− e−xσ)∏

σ∈A e
−θσ|0

∏
j∈paσ [e

−θσ|j ]dj∏
j∈Z[1,nd]

P (dj)

(102.16)

Summing over d!j seems crazy, because nd >> 1, but we will approximate the sum-
mand so that the sum can be done in closed form.

Define
f(xσ) = ln(1− e−xσ) (102.17)

and

Pσ = 1− e−xσ = ef(xσ) (102.18)

f(xσ) is a concave function. See Fig.C.24 for a plot of it.
Next, we shall find a lower and upper bound for Pσ.
To find the upper bound, we will use dual functions, which are discussed in

Section C.48.
Let f̃(pσ) be the dual function of f(xσ) = ln(1 − e−xσ). In Section C.48, we

show that

f̃(pσ) = min
xσ

(xσpσ − f(xσ)) (102.19)

= −pσ ln pσ + (1 + pσ) ln(1 + pσ) (102.20)

and

f(xσ) ≤ xσpσ − f̃(pσ) . (102.21)

Therefore

Pσ = ef(xσ) (102.22)

≤ exσpσ−f̃(pσ) (102.23)

= e−f̃(pσ)e−θσ|0pσ
∏
j∈paσ

[e−θσ|jpσ ]dj︸ ︷︷ ︸
call B(pσ)

(102.24)

864



To find a lower bound for Pσ, we will use Jensen’s inequality, which is discussed
in Section C.43. Let qj|σ ∈ [0, 1] satisfy

∑
j qj|σ = 1. Then

Pσ = ef(xσ) (102.25)

= ef(θσ|0+
∑

j θσ|jdj) (102.26)

= e
f

(
θσ|0+

∑
j qj|σ

θσ|jdj
qj|σ

)
(102.27)

≥ e
∑

j qj|σf

(
θσ|0+

θσ|jdj
qj|σ

)
(102.28)

= e
∑

j qj|σ

[
djf

(
θσ|0+

θσ|jdj
qj|σ

)
+(1−dj)f(θσ|0)

]
(102.29)

= e
f(θσ|0)+

∑
j qj|σdj

[
f

(
θσ|0+

θσ|jdj
qj|σ

)
−f(θσ|0)

]
︸ ︷︷ ︸

call A(q.|σ)

(102.30)

In conclusion,
A(q.|σ) ≤ Pσ ≤ B(pσ) (102.31)

with variational parameters q.|σ and pσ.
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Chapter 103

Variational Bayesian Approximation
via DKL

For more info and references about this topic, see Ref.[176].
A Variational Bayesian Approximation (VBA) is when we approximate a prob-

ability distribution by another probability distribution that depends on a continuous
“variational parameter". This parameter is adjusted within its range of possible val-
ues, to make the approximation as good as possible. There are many VBA methods.
VBA methods are inspired by ancient methods used in Calculus of Variations applied
to Physics and Engineering problems.

In this chapter, we do VBA via the Kullback-Leibler divergence DKL. We
approximate the probability distribution P (h|x⃗), where h are the hidden variables
and x⃗ is the data. More precisely, suppose h ∈ Sh and q ∈ Sh. Suppose x⃗ ∈ Snsamx

is a vector of nsam samples and the samples x[σ] ∈ Sx are i.i.d.. The VBA is simply
an approximation Pq|x⃗ to Ph|x⃗:

Ph|x⃗(h|x⃗) ≈ Pq|x⃗(h|x⃗) (103.1)

obtained by minimizing the Kullback-Leibler divergenceDKL(Pq|x⃗ ∥ Ph|x⃗) over all Pq|x⃗.
The minimization is usually subject to some constraints on the admissible forms of
Pq|x⃗.

DKL(Q ∥ P ) ̸= DKL(P ∥ Q); i.e., DKL is not symmetric. So why do we use
DKL(Pq|x⃗ ∥ Ph|x⃗) instead of DKL(Ph|x⃗ ∥ Pq|x⃗)? Because DKL(Ph|x⃗ ∥ Pq|x⃗) requires
knowledge of Ph|x⃗, but calculating Ph|x⃗ is what we are trying to do in the first place.

See Fig.103.1 for some intuition on what minimizing DKL(Pq|x⃗ ∥ Ph|x⃗) means.
Suppose h = (h0, h1, . . . , hnh−1) and q = (q

0
, q

1
, . . . , q

nh−1
) where hi ∈ Shi and

q
i
∈ Shi for all i. We say q and h have nh mirroring components and those of q are

independent at fixed x⃗ if

Pq|x⃗(h|x⃗) =
∏
i

Pq
i
|x⃗(hi|x⃗) . (103.2)

The bnet Fig.103.2 describes the scenario that we have in mind: The samples x[σ] are
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Figure 103.1: If Pq(h) is Gaussian shaped and Ph(h) has multiple bumps (modes) then
DKL(Pq ∥ Ph) is minimized when Pq fits one of the modes of Ph. That is because

DKL(Pq ∥ Ph) =
∑

h Pq(h) ln
Pq(h)

Ph(h)
is a weighted average with weights Pq, so nothing

going on outside the support of Pq influences much the final average.

h0 // h1

x[0]

>> 77

�� ��

x[1]

FF >>

��   

x[2]

II DD

  ''
q
0

q
1

Figure 103.2: q and h have nh = 2 mirroring components and those of q are indepen-
dent at fixed x⃗.

i.i.d.. Each component hi of h has a mirroring component q
i
in q. The components

of h are correlated whereas those of q are independent at fixed x⃗.

Claim 194 If q and h have nh mirroring components and those of q are independent
at fixed x⃗ and DKL(Pq|x⃗ ∥ Ph|x⃗) is minimum over all Pq|x⃗, then

Pq
i
|x⃗(qi|x⃗) = N (!qi)e

E(q
j
)j ̸=i

[lnPh|x⃗(h=q|x⃗)] (103.3)

= N (!qi)e
E(q

j
)j ̸=i

[lnPh,x⃗(h=q,x⃗)] (103.4)

for all i.

proof:
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Since all quantities in Eq.(103.3) are conditioned on x⃗, let us omit all mention
of x⃗ in this proof.

Let

L = L0 + L1 (103.5)

where

L0 = DKL(Pq ∥ Ph) (103.6)

=
∑
h

Pq(h) ln
Pq(h)

Ph(h)
(103.7)

=
∑
h

Pq(h) lnPq(h)−
∑
h

Pq(h) lnPh(h) (103.8)

=
∑
i

∑
hi

Pq
i
(hi) lnPq

i
(hi)−

∑
h

Pq(h) lnPh(h) (103.9)

and

L1 =
∑
i

λi

[∑
hi

Pq
i
(hi)− 1

]
. (103.10)

Then

δL =
∑
i

∑
hi

δPq
i
(hi)

lnPq
i
(hi) + 1 + λi −

1

nh

∑
(hj)j ̸=i

∏
(hj)j ̸=i

{Pq
j
(hj)} lnPh(h)

 .

(103.11)
Hence,

Pq
i
(hi) = N (!hi)e

∑
(hj)j ̸=i

{∏
(hj)j ̸=i

Pq
j
(hj)

}
lnPh(h) . (103.12)

QED
Note that Eq.(103.3) yields a system of nh nonlinear equations in nh unknowns

(Pq
i
|x⃗)i=0,1,...,nh−1. This system is usually solved recursively.

103.1 Free Energy F(x⃗)
To simplify the notation below, let us introduce the following abbreviations:

P (h|x⃗) = Ph|x⃗(h|x⃗) (103.13)
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P (h, x⃗) = Ph,x⃗(h, x⃗) (103.14)

P (x⃗) = Px⃗(x⃗) (103.15)

Note that

DKL(Pq|x⃗ ∥ Ph|x⃗) =
∑
h

Pq|x⃗(h|x⃗) ln
Pq|x⃗(h|x⃗)
P (h|x⃗)

(103.16)

=
∑
h

Pq|x⃗(h|x⃗) ln
Pq|x⃗(h|x⃗)
P (h, x⃗)

+ lnP (x⃗) (103.17)

= F(x⃗) + lnP (x⃗) (103.18)

Hence, the Free energy F(x⃗) is defined as

F(x⃗) =
∑
h

Pq|x⃗(h|x⃗) ln
Pq|x⃗(h|x⃗)
P (h, x⃗)

(103.19)

= Eq|x⃗

[
ln
Pq|x⃗(q|x⃗)
Ph,x⃗(q, x⃗)

]
. (103.20)

The name free energy is justified because

F(x⃗) = −
∑
h

Pq|x⃗(h|x⃗) lnPh,x⃗(h, x⃗)︸ ︷︷ ︸
U, Internal Energy

+
∑
h

Pq|x⃗(h|x⃗) lnPq|x⃗(h|x⃗)︸ ︷︷ ︸
−S, minus Entropy

. (103.21)

It is also common to define a quantity called “ELBO" to be the negative of
the free energy.

ELBO(x⃗) = −F(x⃗) (103.22)

ELBO stands for “Evidence Lower BOund". That name is justified because

lnPx⃗(x⃗)︸ ︷︷ ︸
evidence≤0

= DKL(Pq|x⃗ ∥ Ph|x⃗)︸ ︷︷ ︸
≥0

−|ELBO(x⃗)| . (103.23)

Some properties of F are:

• F is non-negative.

DKL(Pq|x⃗ ∥ Ph|x⃗)︸ ︷︷ ︸
≥0

+ ln
1

Px⃗(x⃗)]︸ ︷︷ ︸
≥0

= F(x⃗) (103.24)
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Figure 103.3: DKL + ln 1
P (x⃗)

= F .

• KL divergence is min iff F is min at fixed P (x⃗).

During a variation δ that holds P (x⃗) fixed, the KL divergence and F change by
the same amount:

δDKL(Pq|x⃗ ∥ Ph|x⃗) = δF(x⃗) (103.25)
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Chapter 104

XGBoost

This chapter is based on the original XGBoost paper Ref.[8] and the excellent StatQuest
videos (highly recommended) [73].

Extreme Gradient Boosting (XGBoost) (Chen, Guestrin, 2016) improves gra-
dient boosting (Friedman, 1999) in a number of ways, such as by using a quadratic
rather than linear approximation for the variational function.

In XGBoost, one calculates a sequence of functions where each function tries
to correct the errors of the previous function. Then a series (i.e., linear combination)
of those functions yields an estimate ŷσ of the target attribute yσ. As will be shown
in this chapter, XGBoost can be used in two cases: Regression (continuous target
attribute) and Binary Classification (binary target attribute)1. An implementation
of the XGBoost algorithm is available as open source. It’s written in C++, with
Python and R interfaces.

Boosting (see this chapter on XGBoost and Chapter 1 on AdaBoost) and bag-
ging (see Chapter 74 on Random Forest) are two methods of building a classifier
function from an ensemble of classifier functions. These two methods are most com-
monly applied to dtrees: Boosting for an ensemble of small dtrees, and Bagging for a
random forest (which is an ensemble of dtrees that are usually much more complicated
than small dtrees).

104.1 Divergences
To set up a cost function for XGBoost, we begin by defining 2 types of “divergences"
and calculating the first and second derivatives of those divergences:

• Divergence for regression (i.e., continuous classification, continuous target
attribute). For x, y ∈ R

Dreg(x, y) =
1

2
(x− y)2 (104.1)

1XGBoost can also be used for classification into more than two classes, as long as a suitable
Divergence function can be defined.
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• Divergence for binary classification (i.e., binary target attribute). For
p, q ∈ [0, 1].

Dbc(p, q) = −{p ln q + (1− p) ln(1− q)} (104.2)
= CE({p, 1− p} ∥ {q, 1− q}) (104.3)

The cross-entropy CE() is defined in Chapter C.

Claim 195
∂ŷDreg(y, ŷ) = ŷ − y (104.4)

∂2ŷDreg(y, ŷ) = 1 (104.5)

D(y, ŷ + h) ≈ D(y, ŷ) + (ŷ − y)h+
1

2
h2 (104.6)

proof: Obvious.
QED

Recall from Section C.22 in Chapter C that

ŷ = smoid(lodds(ŷ)) (104.7)

Let us abbreviate s() = smoid() and l() = lodds() so

ŷ = s(l(ŷ)) . (104.8)

Claim 196 2

∂lD(y, ŷ(l)) = ŷ − y (104.9)

∂2lD(y, ŷ(l)) = ŷ(1− ŷ) (104.10)

D(y, ŷ(l +∆l)) ≈ D(y, ŷ(l)) + (ŷ − y)∆l + 1

2
ŷ(1− ŷ)(∆l)2 (104.11)

proof:
2Note that Dbc(y, ŷ) ̸= Dbc(ŷ, y); i.e., Dbc is not symmetric in its two arguments. Normally

0 < ŷ < 1 and y ∈ {0, 1}. Since the log is applied only to the second argument, to avoid logs of zero,
it is better to have ŷ as the second argument.
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∂D(y, s)

∂s
= −∂s{y ln s+ (1− y) ln(1− s)} (104.12)

= − y

s
+

1− y
1− s

(104.13)

=
−y(1− s) + (1− y)s

s(1− s)
(104.14)

=
−y + s

s(1− s)
(104.15)

Recall that smoid′(l) = smoid(l)[1− smoid(l)] so

∂s

∂l
= s(1− s) . (104.16)

∂D(y, s)

∂l
=
∂s

∂l

∂D(y, s)

∂s
= −y + s = −y + ŷ (104.17)

∂2D(y, s)

∂l2
=
∂s

∂l
= s(1− s) (104.18)

QED

104.2 Minimizing Cost function for single tree
Let

σ ∈ Σ be an individual in a population Σ
xσ ∈ Sx be a feature vector xσ = (xσi )i=0,1,...,nf−1

t ∈ {0, 1, . . . , nt− 1} be the tree index
Lt be the set of leafs of tree t
ℓ ∈ Lt be a leaf in tree t
wℓt ∈ R
ft : Sx → R
ℓt : Σ→ Lt, ℓt(Σ) = Lt.
ℓt(σ) be the leaf of individual σ in tree t
Σℓ
t = {σ ∈ Σ : ℓt(σ) = ℓ}

Define the function ft by

ft(x
σ) =

∑
ℓ∈Lt

wℓt1(σ ∈ Σℓ
t) = w

ℓt(σ)
t . (104.19)

ft(x
σ) gives the output value for tree t and feature vector xσ.

Define the cost function for tree t as follows
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Ct =
∑
σ

D(ŷσt , y
σ) +

∑
ℓ∈Lt

[
γ +

λ

2
(wℓt)

2

]
︸ ︷︷ ︸

regulator

, (104.20)

where γ > 0, λ > 0 are regulator parameters.
The estimate ŷσt , using trees from 0 to t, of the target attribute yσ, is defined

by

ŷσ0 = f0(x
σ) = arbitrary constant, XGBoost default for this is 0.5(104.21)

ŷσ1 = f0(x
σ) + f1(x

σ) (104.22)
ŷσ2 = f0(x

σ) + f1(x
σ) + f2(x

σ) (104.23)
... (104.24)

ŷσt =
∑
t′≤t

ft′(x
σ) = ŷσt−1 + ft(x

σ) (104.25)

In the cost function Ct, we approximate the divergence D() by a second order
Taylor approximation:

D(yσ, ŷσt ) = D(yσ, ŷσt−1 + ft(x
σ)︸ ︷︷ ︸

δ

) (104.26)

≈ D(yσ, ŷσt−1) + aσt δ +
1

2
bσt δ

2 (104.27)

= D(yσ, ŷσt−1) + aσt w
ℓt(σ)
t +

1

2
bσt (w

ℓt(σ)
t )2 , (104.28)

where

aσt = [∂ŷD(yσ, ŷ)]ŷ=ŷσt−1
, (104.29)

bσt = [∂2ŷD(yσ, ŷ)]ŷ=ŷσt−1
. (104.30)

aσt is called g for gradient and bσt is called h for Hessian in Ref.[8]. Table 104.1gives
the values for aσt and bσt for Regression (reg) and Binary classification (bc).

Define the residual for tree t and individual σ by

rσt = yσ − ŷσt−1 . (104.31)

Note that ∑
σ

=
∑
ℓ∈Lt

∑
σ∈Σℓ

t

. (104.32)

Define
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Regression
(yσ ∈ R, ŷσt ∈ R, D = Dreg)

Binary Classification
(yσ ∈ {0, 1}, ŷσt ∈ [0, 1], D = Dbc)

aσt ŷσt−1 − yσ = neg.residual ŷσt−1 − yσ = neg.residual
bσt 1 ŷσt−1(1− ŷσt−1)

Table 104.1: The first (aσt ) and second (bσt ) derivatives for Regression (reg) and Binary
classification (bc).

Aℓt =
∑
σ∈Σℓ

t

aσt (104.33)

and

Bℓ
t =

∑
σ∈Σℓ

t

bσt . (104.34)

Now we can rewrite the cost function as

Ct =
∑
σ

D(ŷσt−1, y
σ)︸ ︷︷ ︸

K

+
∑
ℓ∈Lt

[
Aℓtw

ℓ
t +

1

2
Bℓ
t (w

ℓ
t)

2

]
+
∑
ℓ∈Lt

[
γ +

λ

2
(wℓt)

2

]
(104.35)

=
∑
ℓ∈Lt

[
γ + Aℓtw

ℓ
t +

1

2
(Bℓ

t + λ)(wℓt)
2

]
(absorbed K into γ) (104.36)

The cost function Ct can be minimized over wℓt :

0 = δCt =
∑
ℓ∈Lt

δwℓt
[
Aℓt + (Bℓ

t + λ)wℓt
]

(104.37)

Therefore, the cost is minimized when

wℓt =
−Aℓt
Bℓ
t + λ

. (104.38)

The optimum cost is

Ct =
∑
ℓ∈Lt

γ − (Aℓt)
2

2(Bℓ
t + λ)︸ ︷︷ ︸
SSℓ

t


︸ ︷︷ ︸

Cℓ
t

(104.39)

SSℓt is called the similarity score for leaf ℓ and tree t. Note that an increase
in similarity decreases the cost.
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104.3 Leaf Splitting
Suppose leaf ℓ0 splits into leafs ℓL and ℓR. Then

Σℓ0
t = ΣℓL

t ∪ ΣℓR
t , ΣℓL

t ∩ ΣℓR
t = ∅ (104.40)

so

Aℓ0t = AℓLt + AℓRt (104.41)

and

Bℓ0
t = BℓL

t +BℓR
t . (104.42)

Hence,

Cℓjt = γ − (A
ℓj
t )

2

2(B
ℓj
t + λ)

for j = L,R (104.43)

Cℓ0t = γ − (AℓLt + AℓRt )2

2(BℓL
t +BℓR

t + λ)
(104.44)

Define the XGBoost branch Gain for a binary tree branch by

GainXGB = Cℓ0t − CℓLt − CℓRt (104.45)

=
{
SSℓLt + SSℓRt − SSℓ0t

}
︸ ︷︷ ︸

∆SSt

−γ (104.46)

By splitting a leaf, we create a new binary branch with 2 new leafs. We
successively add new branches to the tree until some stopping criterion is satisfied.
We continue adding branches to the tree as long as they have a positive gain, and
as long as the number of levels is smaller than an upper bound input parameter
(XGBoost’s default maximum number of tree levels is six). XGBoost also rules out
leafs that have a denominator quantity Bℓ

t (called the cover) smaller than a lower
bound input parameter. This branching process is illustrated in Figs.104.1 and 104.2.

104.4 Pruning
If we raise γ or raise λ, branches that previously had positive gain may acquire a
negative gain. Get rid of branches from highest level that now have negative gain.
This will generate new branches. Get rid of new branches from the highest level that
have negative gain. Continue this process until all highest level branches have positive
gain. This may reduce a tree to a single node or even rule out the entire tree.

λ measures level of insensitivity to observations, and γ measures level of
tree simplicity.
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Figure 104.1: Plot of target attribute yσ versus a feature vector xσ with a single
component. More generally, the feature vector xσ = (xσj )j=0,1,...,nf−1 can have multiple
components called features or attributes. The left plot refers to a population of 4
individuals and regression so yσ, ŷσ ∈ R. The right plot refers to a population of 4
individuals and binary classification so yσ ∈ {0, 1}, ŷσ ∈ [0, 1]. Xj,j+1 for j = 0, 1, 2 is
the average between 2 adjacent values of xσ.

Figure 104.2: This figure refers to the situation of Fig.104.1. Out of all allowed tree
branches, we choose the one with the highest gain.
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104.5 Feature Binning
For really large population sizes |Σ|, it is convenient to bin the set {xσi : σ ∈ Σ} for
each i.

A common bin type is quantiles. Quantiles are bins [Xj−1, Xj] for j = 0, 1, . . . , nbins−
1 that all contain approximately the same number of points. For example, in Fig.104.2,
with 1 point quantile bins, use [Xj−1, Xj] for j = 0, 1, 2, 3. With 2 point quantile bins,
use [Xj−1, Xj] for j = 0, 1.

Use the right edge of each bin as the Xj in the question xσ < Xj?, and choose
the question which yields the highest gain.

104.6 Final estimate of target attribute
In this section, we will give a formula for the final estimate of the target attribute.
Previously, we set the learning rate η to one. Here we restore η to an arbitrary value
between 0 and 1.

Instead of using

f(xσ) =
nt−1∑
t=0

ft(x
σ) , (104.47)

we will use

f(xσ) =
nt−1∑
t=0

(η)tft(x
σ) , (104.48)

where η ∈ [0, 1] is called the learning rate. This has the effect of compensating
for the ft’s with t > nt − 1 that would have been included had we used an infinite
series. Also, think of Eq.(104.47) as an approximation (a truncated Taylor expansion
in powers of ∆x) of a function f(x+∆x), and think of Eq.(104.48) as an analogous
approximation of the function f(x+ η∆x).

For the case of Regression, we get:

f(xσ) =
∑
t

(η)t

(
−Aℓt(σ)t

B
ℓt(σ)
t + λ

)
. (104.49)

For the case of Binary Classification, we get

f(xσ) =
nt−1∑
t=0

(η)t smoid

(
−Aℓt(σ)t

B
ℓt(σ)
t + λ

)
︸ ︷︷ ︸
lodds(probability)︸ ︷︷ ︸

probability

. (104.50)
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104.7 Bnet for XGBoost
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Figure 104.3: Bnet for XGBoost assuming nt = 3. Nodes that appear multiple times
(namely x⃗ and y⃗ ) should be considered the same node, drawn multiple times for
clarity. The parameters λ, γ, η are taken to be global. Recall that ℓt : Σ→ Lt. From
the function ℓt(), we can derive its range Lt = {ℓt(σ) : σ ∈ Σ}), and Σℓ

t = {σ ∈ Σ :
ℓt(σ) = ℓ} for all ℓ ∈ Lt.

Fig.104.3 gives our bnet for the XGBoost algo assuming nt = 3. The TPMs,
printed in blue, for this bnet, are as follows:

For t = 0, ℓ0 describes a single node “tree" such that ℓ0(xσ) = f0(x
σ) = 0.5 for

all σ ∈ Σ. For t ≥ 1,

P (ℓt|y⃗, [ŷσt−1]σ) =
build tree ℓt using yσ and ŷσt−1 for all σ ∈ Σ.
λ and γ are used here. (104.51)

P ([ŷσt ]σ | ft, x⃗) =
∏
σ∈Σ

1( ŷσt = ft(x
σ) ) (104.52)

P ([Aℓt]ℓ∈Lt | y⃗, [ŷσt−1]σ, ℓt) =
∏
ℓ∈Lt

1( Aℓt = −
∑
σ∈Σℓ

t

(yσ − ŷσt−1)︸ ︷︷ ︸
rσt

) (104.53)
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P (Bℓ
t ]ℓ∈Lt | [ŷσt−1]σ, ℓt) =

∏
ℓ∈Lt

1( Bℓ
t =

∑
σ∈Σℓ

t

{
1 if reg.
ŷσt−1(1− ŷσt−1) if b.c.

}
) (104.54)

P (ft | [Aℓt]ℓ∈Lt , [B
ℓ
t ]ℓ∈Lt , ℓt, x⃗) =

∏
σ∈Σ

1

(
ft(x

σ) =

{
1( if reg.
smoid( if b.c.

}
−Aℓt(σ)

2(Bℓt(σ) + λ)
)

)
(104.55)

P (f | [ft]t, x⃗) =
∏
σ∈Σ

1( f(xσ) =
∑
t

(η)tft(x
σ) ) (104.56)

880



Chapter 105

YAML for bnet storage

When dealing with bnets, it is often necessary to store them for future reuse. For
instance, my Mappa Mundi software (Ref.[84]) stores bnets for future reuse. I does
so continuously, as they are learned by the AI. The bnets are stored in a directory
that I call a DAG atlas.

In this chapter, we will discuss a language called YAML, and how to store
bnets using YAML.

There are infinitely many ways of storing a bnet. The reasons why we propose
using the YAML language is that it is a popular, standardized, human readable, and
fairly succinct language.

The configuration information of a software app, and the data exchanged be-
tween apps, is often stored in a YAML data structure.

Figure 105.1: For simple data structures, one can translate between JSON, XML and
YAML.

YAML is a human-readable data serialization language. XML and JSON are
too. As illustrated by Fig.105.1, for simple data structures, one can translate a data
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structure from one of those languages to the other 2. But note that YAML is the
most succinct language of the 3. So in this chapter, we will speak only about YAML.

105.1 Getting acquainted with YAML
In Chapter 16, we demonstrated that a (decision) tree can be converted without loss
of information to a bnet with the same structure as the tree. This is done by using
marginalizer nodes.

The purpose of this section is not to teach YAML to the reader. In this section,
we will assume that the reader has learned YAML already, from one of many excellent
introductions to YAML available on the internet.

The purpose of this section is to demonstrate that a YAML data structure
can be converted to a tree. Then using the results of Chapter 16, that tree can be
converted to a decision tree which can be converted to a bnet.

Like Python, YAML code can contain 2 data structures: dictionaries such as

a : 1
b : 5
c : 1

↔ {a : 1, b : 5, c : 1}

and lists such as

− x

− y

− z

↔ [x, y, z]

In YAML, the dictionaries have all their key-value pairs start with the same level of
indentation. The list items also start with the same level of indentation, but all start
with a hyphen and a space. Lists can always be replaced by dictionaries:

[x, y, z]→ {0 : x, 1 : y, 2 : z}

− x

− y

− z

→
0 : x

1 : y

2 : z

Once you replace in a YAML data structure, all lists by dictionaries, then you
have dictionaries with key-value pairs such that some of the values in the pairs can
lead to new dictionaries. Thus, we get a tree. See Figs.105.2 and 105.3 for examples
of conversions of YAML data structures to trees.
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Figure 105.2: The nodes of a YAML list can contain various cargoes.

Figure 105.3: The nodes of a YAML dictionary can contain various cargoes.

105.2 Storing Bnets
As an example, below is a possible way of fully specifying the LDEN bnet1:

1LDEN bnets are defined in Chapter 48
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using YAML. Of course, there are many other ways of doing this.

graph0:
nodes:

- id: A
label: Node A
values:

- 0
- 1

parents: None
probabilities: [0.3, 0.7]

- id: B
label: Node B
values:

- 0
- 1

parents:
-A

probabilities: [[0.8, 0.2], [0.6, 0.4]]
- id: C

label: Node C
values:

- 0
- 1

parents:
- A

probabilities: [[0.8, 0.2], [0.6, 0.4]]
- id: D

label: Node D
values:

- 0
- 1

parents:
- B
- C
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probabilities: [[0.9, 0.1], [0.3, 0.7], [0.5, 0.5], [0.4, 0.6]]
edge_gains:

(A, B): 3 # arrow from A to B has gain 3
(A, C): 5
(B, D): -6
(C, D): 3

Note that if the probabilities are given (for a bnet with probabilitic nodes),
then the edge_gains (for an LDEN) should excluded, and vice versa.

Another thing to notice is that the probabilities is a tensor representing a
transition probability matrix (TPM) T [n1],[n2],[a] with components

T ν1,ν2,α = P (α|ν1, ν2) (105.1)

where2

ν1 ∈ [n1]= values (a.k.a. states) of parent 1,
ν2 ∈ [n2]= values of parent 2,
α ∈ [a]= values of focus node,
where the focus node is the node being considered, and we are assuming the

focus node has 2 parents.

2As usual in this book, we use the notation [n] = [0 : n] = {0, 1, . . . , n− 1}
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Chapter 106

Zero Information Transmission
(Graphoid Axioms)

This chapter assumes that you have read Chapter 23 on d-separation.
The following quantities play a very prominent role in the d-separation Theo-

rem that we enunciated in Chapter 23.

• the mutual information (MI)
(a.k.a. information transmission) H(a : b)

• the conditional mutual information (CMI)
(a.k.a. conditional information transmission) H(a : b|c)

MI can be viewed as the special case of CMI, when the set of variables being condi-
tioned on is empty. Particularly prominent in d-separation discussions are probability
distributions for which CMI vanishes. The goal of this chapter is to study such prob-
ability distributions.

Recall that CMI is non-negative and symmetric in its first two variables (i.e.,
H(a : b|c) = H(b : a|c)). Another very useful property of CMI is its chain rule

Claim 197 (Chain Rule for CMI)

H(y : xn) =
∑
i

H(y : xi|x<i) , (106.1)

where xn = (x0, x1, . . . , xn−1) and x<i = (x0, x1, . . . , xi−1).

proof:

P (y|x<i+1)

P (y)
=
P (y|xi, x<i)
P (y|x<i)

P (y|x<i)
P (y)

(106.2)

Therefore,
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ln
P (y|x<i+1)

P (y)
= ln

P (y|xi, x<i)
P (y|x<i)

+ ln
P (y|x<i)
P (y)

(106.3)

If we now apply
∑

y,xn P (y, x
n) to both sides, we get

H(y : x<i+1) = H(y : xi|xx<i) +H(y : x<i) (106.4)

QED
A trivial but very useful consequence of the chain rule for CMI is:

H(y : xn) = 0 ⇐⇒ H(y : xi|x<i) = 0 for all i . (106.5)

106.1 Consequences of Eq.(106.5)
Table 106.1 gives a set of statements about CMI referred to as the Graphoid Axioms
in chapter 1 of Ref.[57]. See Ref.[57] to learn the history of these axioms. The purpose
of this section is to prove that the graphoid axioms are all a simple consequence of
Eq.(106.5).

Symmetry a ⊥P b =⇒ b ⊥P a
H(a : b) = 0 =⇒ H(b : a) = 0

Decomposition a ⊥P b, c =⇒ a ⊥P b and a ⊥P c
H(a : b, c) = 0 =⇒ H(a : b) = 0 and H(a : c) = 0

Weak Union a ⊥P b, c =⇒ a ⊥P b|c and a ⊥P c|b
H(a : b, c) = 0 =⇒ H(a : b|c) = 0 and H(a : c|b) = 0

Contraction a ⊥P b|c and a ⊥P c =⇒ a ⊥P b, c
H(a : b|c) = 0 and H(a : c) = 0 =⇒ H(a : b, c) = 0

Intersection a ⊥P b|c, d and a ⊥P d|c, b =⇒ a ⊥P b, d|c
H(a : b|c, d) = 0 and H(a : d|c, b) = 0 =⇒ H(a : b, d|c) = 0

Table 106.1: Graphoid Axioms

Claim 198 Table 106.1 is true.

proof:

• Symmetry

Follows trivially from H(a : b) = H(b : a).

• Decomposition

From the chain rule for CMI, we have

H(a : b, c) = H(a : b|c) +H(a : c) , (106.6)
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and
H(a : b, c) = H(a : c|b) +H(a : b) . (106.7)

Hence,
H(a : b, c) = 0 (106.8)

implies

H(a : b|c) = H(a : c) = 0 , (106.9)

and

H(a : c|b) = H(a : b) = 0 . (106.10)

• Weak Union

Already proven in proof of Decomposition.

• Contraction

From chain rule for CMI, we have

H(a : b, c) = H(a : b|c) +H(a : c) . (106.11)

• Intersection

From the chain rule for CMI, we have

H(a : b, d|c) = H(a : b|d, c) +H(a : d|c) , (106.12)

and

H(a : b, d|c) = H(a : d|b, c) +H(a : b|c) . (106.13)

Thus,

H(a : b, d|c) = 0 (106.14)

implies

H(a : b|d, c) = H(a : d|c) = 0 , (106.15)

and

H(a : d|b, c) = H(a : b|c) = 0 . (106.16)

.
QED
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