
Recursive Neural Network Part-of-Speech Tagger

Hao Liu
NYU CIMS

New York, NY
haoliu@nyu.edu

Jiali Huang
NYU CIMS

New York, NY
jiali.huang@nyu.edu

Robert Dionne
NYU Game Center

New York, NY
robertsdionne@nyu.edu

Abstract

We use a recursive neural network (RNN)
on a part-of-speech tagging task (POS).
We propose and implement two models:
a basic RNN and a Compositional Vector
Tagger (CVT) RNN. The performance of
the basic RNN is close to the HMM model
and will likely beat it if capitalization in-
formation is captured. The intractable tag-
ging time of the CVT model means we
cannot analyze it. We tried some useful
neural network training tricks and care-
fully analyze the performance of the basic
RNN model, by verifying the contribution
of sequential information and error rates of
different parts of sentences.

1 Introduction

For our final project, we implemented a recur-
sive neural network part-of-speech tagger based
on similar prior work by Socher, Manning and
Ng (2010) for building sentence parse trees and
work by Collobert and Weston (2011) for their
distributed word representations. We wanted to
explore natural language processing using neural
networks, so we chose a small problem (part-of-
speech tagging) which we already had experience
with during the third homework assignment and
applied these modern techniques in neural net-
work research to the problem.

1.1 Recursive Neural Networks

Recursive neural networks are neural network
models that allow for cyclic connections between
neurons. Generally, recursive networks can have
very complex structures, but for our application
to part-of-speech tagging, we consider a restricted
structure in which the network observes its own
output on prior sentence context while consum-
ing as input the current word in order to produce a

classification label representing the current word’s
part of speech tag. When training the network or
using the network to classify an example sentence,
we temporarily unroll the recurrent network into
an equivalent, feedforward multilayer perceptron
with the weight matrix shared between all layers.

Our network structure is a simplification of
the more general binary tree structure trained by
Socher et al. (2010) which iteratively constructs
a parse tree by evaluating, at the base case, the
best combinations of pairs of words, and subse-
quently the best combinations of pairs of previous
combinations. Instead, we construct a linear, de-
generate tree by always pairing the current word
(on the right) to the previous combination (on the
left) of prior sentence context and the prior word
to obtain a phrase representation. We hope that
the resulting phrase representation captures both
the possible parts-of-speech for the current word
and distinguishing context that allows an accurate
choice of the correct part-of-speech.

1.2 Distributed Word Representations

Underlying the entire model are distributed
word representations, which we use directly
from the research of Collobert and Weston
(2011), downloadable from their website (ro-
nan.collobert.com/senna). Distributed word rep-
resentations are dense vectors embedded within
an N -dimensional vector space that differ from
sparse, “one-hot” vectors embedded within a |V|-
dimensional vector space, where V is the vocabu-
lary of the language domain.

The distributed word representations are in-
duced by training a neural network in an unsuper-
vised manner to distinguish a word within its con-
crete contexts from randomly chosen replacement
words within those same contexts, and then back-
propagating the errors into anN×|V|-dimensional
lookup table with randomly initialized values. The
lookup table converts between the original “one-

hot” vector representation, which encodes zero
information about the word aside from identity,
and the superior distributed representation, which
encodes a word’s contextual information. Since
we believe a word’s context encodes information
about that word’s part-of-speech, we hypothesize
that distributed word representations will be vital
to our part-of-speech tagging model.

2 Our Models

We implemented a recursive neural network
with the programming language Lua and the
neural network library Torch7 (Collobert,
2011). Our code is available on Github at
github.com/robertsdionne/nlp.

The first model we considered was a ba-
sic recursive neural network that combines a
phrase representation pi−1 encompassing words
w1, w2, . . . , wi−1 and the word representation wi

into an output phrase representation pi passed to a
multilayer perceptron classifier which outputs the
guessed tag.

The second model we considered was a com-
positional vector tagger, based upon the compo-
sitional vector grammar model by Socher, et al.
(2013), in which different weight matrices are as-
sociated with different part-of-speech tags in order
to generate tag-dependent phrase representations,
which are then scored instead of classified. This
model would perform sentence tagging by maxi-
mizing the overall score by choosing the correct
tag-associated weight matrices for each word us-
ing a beam or greedy search.

The inputs to both models consist of:

V =
{
w1, w2, . . . , w|V|

}
the vocabulary

T =
{
t1, t2, . . . , t|T |

}
the part-of-speech tags

N = 50, P = 50 word/phrase dimension
V ∈MN×|V|(R) the word lookup table
|wi〉 ∈ V the “one-hot” vectors
V |wi〉 ∈ RN the word vectors[
•; •
]

vector concatenation

2.1 Basic Recursive Neural Network Model

The basic recursive neural network model also has
the following parameters:

Wcombine ∈MP×(P+N)(R) matrix for combining
bcombine ∈ RP bias for combining
Wclassify ∈M|T |×P (R) matrix for tagging
bclassify ∈ R|T | bias for tagging

We began by training our model
on the Penn Treebank sentences
from assignment three, available at
www.cs.nyu.edu/petrov/restricted/data3.zip.

To train the model, we first initialize Wcombine,
bcombine, Wclassify and bclassify with small, uni-
formly distributed random values. We will discuss
how to choose the range for these values in Section
3.2.1 below. Then we perform a classification step
in which we convert each word into its distributed
word representation, pass each of these represen-
tations through the unrolled recursive neural net-
work’s inputs, and feed the values forward to the
classification layers corresponding to each tag out-
put.

For instance, given the sentence
(wi1 , wi2 , . . . , wiK) of lengthK, we first calculate
the word representations V |wi1〉 , . . . , V |wiK 〉,
then we calculate each phrase representation pj
from the previous phrase representation pj−1
and the current word representation V

∣∣wij

〉
by

concatenating the two representation vectors,
multiplying by Wcombine and adding bcombine

before applying the tanh(·) function:

pj = tanh(Wcombine

[
pj−1;V

∣∣wij

〉]
+ bcombine)

Subsequently, each pj is passed along to the clas-
sifier, which applies the operation:

tij = argmax
t

softmax(Wclassifypj + bclassify)

to obtain the predicted tag tij for wij .
Finally, we perform backpropagation through

time, described in section 3.1 below, to update
the weight matrices and bias vectors. Performing
a backpropagation after classifying each sentence
in the dataset performs stochastic gradient descent
in minibatches (where we consider one sentence
to be a minibatch of tags and words) to update
the weight matrices to more accurately predict the
golden tags.

2.2 Compositional Vector Tagger Model
The second model we considered uses weight ma-
trices that depend upon the golden tags of the
training sentences. The parameters are as follows:

Figure 1: Recursive Neural Network Model

Wcombine,t ∈MP×(P+N)(R) matrix for tag t
bcombine,t ∈ RP bias for tag t
Wscore ∈M1×P (R) matrix for scoring
bscore ∈ R bias for scoring

The training and classification procedures differ
from the basic model. First, in unrolling the recur-
rent neural network, each recurrent layer adopts
the weight matrix associated with the golden tag
of the word in that position. For instance, if wi3

had tag ti3 = NN then the third recurrent layer
would adopt the weight matrixWcombine,NN. Each
recurrent layer adopts the appropriate weight ma-
trix before generating the phrase representations
pj . We then apply backpropagation to maximize
the score for the representations provided by the
golden tag weight matrices by updating those ma-
trices and the score matrix.

Raw classification on unlabeled examples now
requires a search procedure. The brute-force pro-
cedure to tag a sentence of length K would be to
search through all K |T | sequences of tag weight
matrices and return the sequence that attains the
highest overall score based on the score matrix.
As our tag set has size |T | = 48, this search is
intractable for realistic sentences, so a greedy or
beam search would need to be used instead.

As the complexity of the compositional vector
tagger model is significantly higher than the ba-
sic recurrent neural network model, we were un-
able to properly train the model and implement a
satisfactory search procedure within the remaining
time of the assignment, so we have omitted analy-
sis of the results of this model.

2.3 Future Models
Manually Extended Embeddings From the
analysis of Section 3.3.3 and also the results in
Section 3.3.2, we see that because of the erasure
of capitalization information of words, the RNN
model is bad at distinguishing between NN and
NNP. So we think we can manually extend the em-
beddings of words by some human made features
like capitalized or not, or perhaps even suffix in-
formation. This, in our view, will likely improve
the performance of the model a lot.

Bi-directional Recursive Neural Network
From Section 3.3.3 Figure 6, we find it is more
likely to make mistakes on the end of sentences. It
makes sense, because our basic RNN model uses
only forward sequential information. So we think
a bi-directional model will help, at least compared
to the basic RNN. As for CVT model, which is
simulating the HMM model considering the tags
of whole sentence together, a bi-directional model
may also help to kind of simulate CRF. There are
two bi-direction models we are thinking:

• Independently training and combining the
probability: Train two RNN models, and
tag the sentence by combining the predicted
probability from the two models’ classifiers
(after the softmax).

• Jointly training: Train two RNN models
jointly, and concatenate two phrase represen-
tations and pass it to a shared classifier, which
will in turn backward propagate the gradients
to the two models so that the classifier part
will get the forward and backward sequential
information from two phrase representations.
Figure 2 shows the idea of this jointly train-
ing model.

Complex combination and classification model
We are using one layer linear neural network on
both combination and classification parts, because
it is easy to train. In the beginning, we did try
a two layer neural network, but it was too slow
to train (about five times slower) and added an-
other two hyper parameters to choose. However,
because of the higher ability to capture more com-
plex patterns, complex combination and classifica-
tion may have better performance. Especially on
classification part, we can use any machine learn-
ing classification model that can backward propa-
gate gradients.

Figure 2: Idea chart for jointly training bi-
direction RNN model

Update the lookup table In the beginning, we
tried to update the lookup table together with other
parameters. But the result was much worse than
not updating it. But because deep learning re-
searchers do update the feature learning layers (in
our model, just the lookup table), it is reasonable
to try this. And instead of updating at the begin-
ning of training, we can begin the updating after
other parameters are well trained.

Rerank with CVT When we implemented and
tested the CVT model, the forever tagging time
for each sentence stopped us from working with
it. So in the future, we can use the rerank idea
from Socher’s CVG paper. Basically, we get top
N, say 100, tagging candidates from other models,
and use CVT model to get score for each sentence
and rerank the candidates by these scores.

3 Experiments

Our experiments consisted of training the recur-
sive network on training sentences drawn from
the Penn Treebank data of assignment three, as
we described above. We frequently trained on
100, 1000, 10,000 or 39,815 (all) of the training
sentences in exploring the performance of the re-
cursive neural network for part-of-speech tagging.
Training on the entire data set for 25 iterations,
or on 10,000 training sentences for 100 iterations,
each took about 4 hours on a 2012 Macbook Pro
Retina with a 2.6 GHz Intel Core i7 CPU and 8
GB of RAM.

To evaluate the network, we used a basic metric
which counts the ratio of the number of correctly
tagged words out of the total number of words

within the validation or test set (1700 in-domain
validation sentences, 1016 out-of-domain valida-
tion sentences and 1015 out-of-domain test sen-
tences). We also count the ratio of correctly tagged
unknown words, where a word is defined to be un-
known if it was not encountered during the train-
ing set; however, note that it may be present within
V , the vocabulary associated with the distributed
representation lookup table. If the word is un-
known to the distributed representation lookup ta-
ble, the model falls back upon the distributed rep-
resentation for the special token “UNKNOWN.”

3.1 Backpropagation Through Time
Backpropagation through time is a technique to
run backpropagation against recursive neural net-
works, which include cyclic connections. We
perform backpropagation through time automati-
cally by running standard backpropagation against
our unrolled recursive neural network with shared
weight matrices. Each gradient update to the
weight matrix is independently accumulated, re-
sulting in the correct overall update. We perform
the gradient update in minibatches, where a sin-
gle sentence is a minibatch of tagged words and
we simultaneously accumulate the errors for each
of the words as we backpropogate. See Figure 3
(Mikolov, 2012).

3.2 Training Tricks
Training neural networks can be tricky since the
backpropagation algorithm relies upon a learning
rate parameter as well as initial weight and bias
values. The learning rate should not be too large,
otherwise the gradient descent will skip over local
or global minima. However, it should also not be
too small, otherwise training may take too long.
It perhaps should vary over the course of training
and decrease in order to better fine tune the fit to
the minima. However, it is not obvious exactly
which set of choices will be best.

We researched existing techniques to choose
initial weights and biases, and to better update the
weights based on adaptive learning rates, as de-
scribed in the next subsections.

3.2.1 Weight Initialization
Early on, we randomly initialized our weight ma-
trices and biases using Torch7’s uniform tensor
function,

t o r c h . r and (P , P+N)
t o r c h . r and (P)

Figure 3: Back Propagation Through Time
(Mikolov, 2012)

which draws from U [0, 1). However, we dis-
covered guidelines for weight initialization
from deeplearning.net/tutorial/mlp.html#mlp,
borrowed from Glorot and Bengio (2010), and
decided to explore how they impacted our training
convergence.

Glorot and Bengio (2010) analyzed how ini-
tial values for weights influenced the early learn-
ing of neural networks, specifically those that use
tanh(·) or sigmoid(·) and discovered optimal
early learning rates with weights drawn from

• U
[
−
√

6
fanin+fanout

,
√

6
fanin+fanout

)
for

tanh layers

• U
[
−4
√

6
fanin+fanout

, 4
√

6
fanin+fanout

)
for

sigmoid layers

where fanin is the number of inputs to the layer
and fanout is the number of outputs.

After adopting these new ranges, and initializ-
ing our biases to start at zero, our attainable accu-
racies dramatically increased from the values we
presented in class in our slides, from about 60% to
about 80%.

3.2.2 AdaGrad
We used the AdaGrad online learning method to
train our model (Socher et al., 2013). Let θ be a
vector of all parameters needed to train an RNN
model and θt means the parameter vector before
training on the t-th sentence. And let gt,i to be the
gradient value of i-th parameter on the t-th sen-
tence. Then to perform AdaGrad is just to update
the parameter vector by

θt+1,i = θt,i −
α√∑t
s=1 θ

2
s,i

gt,i

, where the α is a constant to set the scale of the
learning rate.

We compared the AdaGrad with fixed learning
rate online training. The Figure 4 is the accuracy
curve on training iteration. From Figure 4, it is
quite clear that the AdaGrad converges faster and
better than fixed learning rate. The discrepancy
between the initial positions is due to plotting af-
ter the first iteration over the training set, at which
point we’ve already performed one AdaGrad up-
date for each sentence.

Additionally, we found that performing an Ada-
Grad update after each word evaluation performed
worse than updating once after each sentence eval-
uation.

3.3 Analysis

3.3.1 Training Progress Diagram
As we all know, there will be overfitting if we
train too ”hard” on training set. And if overfitting
happens, the test accuracy (in our experiments,
the out-of-domain accuracy) will drop. Figure 4
shows this drop on both total accuracy and un-
known word accuracy.

3.3.2 Comparison to Other Models
Below, we tally the results against the in-
domain validation dataset and the out-of-domain
validation dataset on all significantly perform-
ing recursive neural network models compared
to the hidden-markov-model+TNT, plain hidden-
markov-model and maximum likelihood tag
model.

The AdaGrad variants started with a learning
rate parameter at 0.1. The non-AdaGrad vari-
ants started with a learning rate of 0.0005. The
RNN models trained on the entire training set
(39815 sentences) were trained for 25 iterations.

Figure 4: Out-of-domain accuracy comparison of
adaGrad learning rate and fixed learning rate

The RNN models trained on just 10,000 sentences
were trained for 100 iterations.

Because we stripped all capitalization from our
training and test data before converting words to
their distributed vector representations, we noticed
a high error rate due to conflating proper nouns
with regular nouns, so to be fair to our model we
evaluated the best model with no distinction be-
tween the two tags NNP and NN to see how it
would fare had it properly considered capitaliza-
tion as a feature.

Also, because we are using fully-trained mod-
els, we are certainly overfitting, especially com-
pared to the peak results depicted in Figure 4.

Model In (In Unk) Out (Out Unk)
HMM+TNT 95.88 (87.13) 93.67 (84.61)
AdaGrad RNN10,000 NN=NNP 94.40 (78.48) 91.86 (70.37)
RNNall NN=NNP 94.52 (88.39) 91.70 (83.21)
HMM 95.52 (63.95) 91.23 (53.00)
AdaGrad RNNall 93.58 (76.90) 90.41 (69.82)
RNNall 93.47 (77.06) 90.28 (70.43)
AdaGrad RNN10,000 93.02 (79.17) 90.12 (73.43)
RNN10,000 92.72 (77.51) 89.54 (69.60)
Max Likelihood Tag 91.31 (42.74) 87.01 (53.31)

3.3.3 Error Analysis
Confusion matrices We plot the confusion ma-
trix (Figure 5) for the basic RNN model and find
that:

1. The most serious confusion is between
NNP and NN. This makes sense because of
the fact that the embeddings we are using
make no distinction between capitalized and
non-capitalized words;

2. Another strange confusion is from quotes,
which was also met in common HMM mod-
els. This may come from the overwhelm-
ing sequential information, and it makes a big
difference on accuracy (about 1% on out-of-
domain accuracy), to keep everything trained
automatically;

3. Other confusions look normal, and also occur
in HMM models, like JJ and NN.

Position of wrong tags We plot the histogram
(Figure 6) of relative position (absolute position in
sentence divided by sentence length in (0, 1]).

• In-domain (left figure): The relative position
is almost uniformly distributed.

• Out-of-domain (right figure): The number
of wrong tags is generally increasing with rel-
ative position. And from the different scale

Figure 5: Confusion matrices for basic RNN

Figure 6: Histogram of related position of wrong
tags, left is in domain, right is out of domain

of this histogram, we find there is a big drop
around 0.5 (middle of sentence). This may
come from the sequential similarity between
in-domain and out-of-domain. This may also
come from the limitation of sequential infor-
mation passing. So a bi-directional RNN may
help.

Not just a maximum likelihood model In the
beginning, we worried about whether this RNN
model can pass and use the sequential information
correctly. Perhaps it just learns a maximum like-
lihood (most frequent) predictor for each word or
even each group of words. So we did some ex-
periments to verify the contribution of sequential
information to the RNN results.

• Same word test: We chose some words with
more than one common tag and saw whether
our model predicted those tags correctly. We
tested on ‘to’ (possible tags are TO and IN)
and ‘work’ (common possible tags are NN,
VB and VBP). Our RNN predicts ‘to’ with
0.80 in-domain and 0.77 out-of-domain accu-
racy, covering TO and IN. The RNN predicts
‘work’ with 0.88 in-domain and 0.83 out-of-
domain accuracy, covering NN, VB and VBP.

• Disconnected core module test: We discon-
nected the sequential information passing by
ignoring the input embeddings from lower
layers, and backward gradient from upper
layers. So although it is still an RNN, there is
actually no information passed between lay-
ers. We trained this non-sequential RNN and
the original RNN with 100 sentences and 100
iterations, same random seed and training pa-
rameters. The Figure 7 shows the out-of-
domain accuracy of two models by the num-
ber of iterations, which can be also seen from
Figure 8. The difference is not small. So we
think the sequential information was passed
and used at least partially correctly.

Figure 7: Comparison of non-sequential RNN and
original RNN for disconnected core module test

Figure 8: Out-of-domain accuracy comparison of
different state embedding size

Different embedding size of state The size of
state embeddings (left side of each RNN layer) is
another hyper-parameter to set up. And it is im-
portant because it may determine the importance
of previous sequential information compared to
the current word embedding. Figure 8 shows the
the out-of-domain accuracy of two models by the
number of iterations. And it looks like 20 is
around the optimal size for state embeddings given
a training set size of 100. However, we trained
on the full training set and observed better perfor-
mance at the original state embedding size of 50.

4 Conclusion

We learned that because we eliminated capitaliza-
tion information from our training and test data
in order to use the distributed word embeddings
from Collobert and Weston (2011), we severely
handicapped the capability of our model to dis-

tinguish a large portion of part-of-speech tags, for
instance by confusing proper nouns with regular
nouns. However, we propose to solve this prob-
lem, in order to outperform the hidden-markov-
model, by manually extending the word embed-
dings to encode capitalization, and perhaps plural-
ity.

We also discovered that quotes cause large
problems with our model because they frequently
occur directly next to nouns, and are thus often
confused with nouns. We would like to explore
manual constraints to resolve this confusion in our
model.

We propose to fix the error rate correlated with
word index within a sentence by using a bidirec-
tional model to gain context information flowing
from both the front and the back of the sentence.

We are looking forward to all the future models
proposed and the performance improvements they
might bring.

5 Future Works

Because the limited time of final projects, there are
still a lot of things we want to do in the future. We
mentioned some new models to try in Section 2.3,
and here are some most wanted works to do:

• Training and tagging the CVT model: we
have mentioned the hardness of training and
tagging with CVT model. In the future, we
want to train a CVT model no matter how
long it may take, say several days or weeks.
And implement the rerank trick mentioned in
Section 2.3.

• Move to GPU: We are working with torch
(http://www.torch.ch), which is made by
NYU people and supports GPU. So in
the future, we can use GPU to speed up
both training and tagging. And Theano
(http://deeplearning.net/software/theano/)
can be another choice, which has a Python
interface and also GPU support and has very
good neural network support.

6 Academic Honesty Pledge

Honor Pledge
We pledge our honor that all the work described

in this report is solely ours and that we have given
credit to all third party resources that we have
used.

References
[Collobert and Weston2011] Ronan Collobert, Ja-

son Weston, Lon Bottou, Michael Karlen, Ko-
ray Kavukcuoglu and Pavel Kuksa. 2011. Natural
Language Processing (Almost) from Scratch.
Journal of Machine Learning Research 12, (2011)
2461-2505. The MIT Press, Cambridge, MA.

[Collobert, Kavukcuoglu and Farabet2011] Ronan Col-
lobert, Koray Kavukcuoglu and Clment Farabet.
2011. Torch7: A matlab-like environment for ma-
chine learning. BigLearn, NIPS Workshop.

[Glorot and Bengio2010] Xavier Glorot and
Yoshua Bengio. 2010. Understanding the difficulty
of training deep feedforward neural networks.
International Conference on Artificial Intelligence
and Statistics.

[Mikolov2012] Tom Mikolov. 2012. Statistical Lan-
guage Models Based on Neural Networks. Diss. Ph.
D. thesis, Brno University of Technology.

[Socher, Bauer, Manning and Ng2013] Richard Socher,
John Bauer, Christopher D. Manning and An-
drew Ng. 2013. Parsing with Compositional Vector
Grammars. In Proceedings of the ACL conference.

[Socher, Manning and Ng2010] Richard Socher,
Christopher D. Manning and Andrew Ng. 2010.
Learning Continuous Phrase Representations and
Syntactic Parsing with Recursive Neural Networks.
Proceedings of the NIPS-2010 Deep Learning and
Unsupervised Feature Learning Workshop.

	Introduction
	Recursive Neural Networks
	Distributed Word Representations

	Our Models
	Basic Recursive Neural Network Model
	Compositional Vector Tagger Model
	Future Models

	Experiments
	Backpropagation Through Time
	Training Tricks
	Weight Initialization
	AdaGrad

	Analysis
	Training Progress Diagram
	Comparison to Other Models
	Error Analysis

	Conclusion
	Future Works
	Academic Honesty Pledge

