Statistical Rethinking

Parametric assumptions:
(1) Independent samples
(2) Data normally distributed
(3) Equal variances

Stargazing

$$
\begin{gathered}
\star \not \star \star \\
p<0.001
\end{gathered}
$$

Fortune telling frameworks:

$$
\begin{gathered}
* * \\
p<0.01
\end{gathered}
$$

(1) From vague facts, vague advice
(2) Exaggerated importance

Applies to astrologers and statisticians
Valid vague advice exists, not sufficient

Stargazing

Statistical procedures acquire meaning from scientific models

Cannot offload subjective responsibility to an objective procedure

Many subjective responsibilities

A Typical Scientific Laboratory

Planning

Working
Reporting

Planning

Goal setting

Theory building
Justified sampling plan
Justified analysis plan
Documentation
Open software \& data formats

Planning

Goal setting - What for? Estimands

Theory building

Justified sampling plan
Justified analysis plan
Documentation
Open software \& data formats

Planning

Goal setting - What for? Estimands

Theory building - Which assumptions?
Justified sampling plan
Justified analysis plan
Documentation
Open software \& data formats

Theory Building

Levels of theory building

(1) Heuristic causal models (DAGs)
(2) Structural causal models
(3) Dynamic models
(4) Agent-based models

$$
\begin{aligned}
& \frac{d H}{d t}=H_{t} b_{H}-H_{t}\left(L_{t} m_{H}\right) \\
& \frac{d L}{d t}=L_{t}\left(H_{t} b_{L}\right)-L_{t} m_{L}
\end{aligned}
$$

Theory Building

Heuristic causal models (DAGs)
(1) Treatment and outcome
(2) Other causes

(3) Other effects
(4) Unobserved causes

Theory Building

Heuristic causal models (DAGs)
(1) Treatment and outcome
(2) Other causes

$$
G \longrightarrow A
$$

(3) Other effects
(4) Unobserved causes

Theory Building

Heuristic causal models (DAGs)
(1) Treatment and outcome
(2) Other causes
(3) Other effects
(4) Unobserved causes

Theory Building

Heuristic causal models (DAGs)
(1) Treatment and outcome
(2) Other causes

(3) Other effects
(4) Unobserved causes

Theory Building

Heuristic causal models (DAGs)
(1) Treatment and outcome
(2) Other causes

(3) Other effects
(4) Unobserved causes

Planning

Goal setting - What for? Estimands

Theory building - Which assumptions?
Justified sampling plan - Which data?
Justified analysis plan
Documentation
Open software \& data formats

Planning

Goal setting - What for? Estimands

Theory building - Which assumptions?
Justified sampling plan - Which data?
Justified analysis plan - Which golems?
Documentation
Open software \& data formats

Planning

Goal setting - What for? Estimands

Theory building - Which assumptions?
Justified sampling plan - Which data?
Justified analysis plan - Which golems?
Documentation - How did it happen?
Open software \& data formats

Planning

Goal setting - What for? Estimands

Theory building - Which assumptions?
Justified sampling plan - Which data?
Justified analysis plan - Which golems?
Documentation - How did it happen?
Open software \& data formats

Pre-Registration

Pre-registration: Prior public documentation of research design and analysis plan

Goal: Make transparent which decisions are sample-dependent

Does little to improve data analysis
Lots of pre-registered causal salad

Working

Control

Incremental testing
Documentation

Review

1 Express theory as
2 Prove planned analysis could work (conditionally)
$3 \begin{aligned} & \text { Test pipeline on } \\ & \text { synthetic data }\end{aligned}$
$4 \begin{aligned} & \text { Run pipeline on } \\ & \text { empirical data }\end{aligned}$

Professional Norms

Dangerous lack of professional norms in scientific computing

Often impossible to figure out what was done
Often impossible to know if code works as intended

Like pipetting by mouth

Research Engineering

Control: Versioning, back-up, accountability

Incremental testing: Piece by piece

Documentation: Comment everything

Review: 4 eyes on code and materials

Research Engineering

Control: Versioning, back-up, accountability

Incremental testing: Piece by piece

Documentation: Comment everything

Review: 4 eyes on code and materials

Versioning and Testing

Version control: Database of changes to project files, managed history

Testing: Incremental milestones, test each before moving to next

PROTIP: NEVER LOOK IN SOMEONE
armcelreath / stat rethinking_2022 Public

[^0]〈〉
.....
@ $-40,7+40,7$ @ Lecture playlist on Youtube: < [Statistical Rethinking 2022](https://www.youtube.
| Week 07 | 18 February | Chapters 13 and 14 | [13] <[Multi-Multilevel Models](https://www.youtube.com/watch?v=n2aJYtuGu54&list=PLDcUM9uS4XdMROZ57OIRtIK0a0ynbgZN&index=13)> <[(Slides)](https://speakerdeck.com/rmcelreath/statistical-rethinking-2022-lecture-13)>
 [14] <[Correlated varying effects] (https://www. youtube. com/watch?v=XDoAglqd7ss\&list=PLDcuMguS4XdMR0Z57-0IRtIK0a0ynbgZN\&index=14)> <[(Slides)](https://speakerdeck. com/rmcelreath /statistical-rethinking-2022-lecture-14)>
$41 \quad 41$
| Week 08 | 25 February | Chapter 14 | [15] <[Social Networks](https://www.youtube.com/watch?v=L_QumFUv7C8\&list=PLDcUM9US4XdMR0Z57-0IRtIK0a0ynbgZN\& index=15)> <[(Slides)](https://speakerdeck.com/rmcelreath/statistical-rethinking-2022-lecture-15)>
 [16] <[Gaussian Processes] (https://www.youtube.com/watch?v=PIuqx0BJqLU\&list=PLDcUM9US4XdMR0Z57-0IRtIK0a0ynbgZN\&index=16)> <[(Slides)](https://speakerdeck. com/rmcelreath /statistical-rethinking-2022-lecture-16)>
| Week 09 | 04 March | Chapter 15 | [17] <[Measurement Error](https://www.youtube. com/watch?v=lTFAB6QmwHM\&list=PLDcUMguS4XdMR0Z57-0IRtIK0a0ynbgZN\& index=17)> <[(Slides)](https://speakerdeck.com/rmcelreath/statistical-rethinking-2022-lecture-17)>
 [18] <[Missing Data](https://ww.youtube. com /watch?v=0MiSb8GKR0o\&list=PLDcUM9US4XdMR0Z57-0IRtIK0a0ynbgZN\&index=18)> <[(Slides)](https://speakerdeck.com/rmcelreath/statistical-rethinking-2022-lecture-18)>

- | Week 10 | 11 March | Chapters 16 and 17 | [19] Beyond GLMs: State-space Models, ODEs
 [20] Horoscopes
+ | Week 10 | 11 March | Chapters 16 and 17 | [19] <[Beyond GLMs](https://www.youtube.com/watch?v=Doaod09YitA\&list=PLDcUM9US4XdMR0Z57-0IRtIK0a0ynbgZN\& index=19)> <[(Slides)](https://speakerdeck.com/rmcelreath/statistical-rethinking-2022-lecture-19)>
 [20] Horoscopes
$45 \quad 45$
$46 \quad 46$ \# Coding

Versioning and Testing

Most researchers don't need all git's features
But do:
Commit changes after each milestone Maintain test code in project

Do not:
Replace raw data with processed data

```
UTपपाप्0 158.a<cx
    Untitled 241.doc
Untitled 138 copy.docx
Untitled 138 copy 2.docx
Untitled 139.docx
Untitled 40 MOM ADDRESS.jpg
Untitled 242.doc
Untitled 243.doc
Untitled 243 IMPORTANT.doc
```

Untith 141 Fea

PROTRP: NEVER LOOK IN SOMEONE

More on Testing

Complex analyses must be built in steps
Test each step
Social networks lecture (\#15) as example
Milestones:
(1) Synthetic data simulation
(2) Dyadic reciprocity model
(3) Add generalized giving/receiving
(4) Add wealth, association index

math
The Stan Math Library is a C++ template library for automatic differentiation of any order using forward, reverse, and mixed modes. It includes a range of built-in functions for probabilistic modeling, linear algebra, and equation solving.
math automatic-differentiation stan stan-math-library

5.1 MB of library code

8.2 MB of test code

https://github.com/stan-dev/math

What is Data Carpentry?

Data Carpentry develops and teaches workshops on the fundamental data skills needed to conduct research. Our mission is to provide researchers high-quality, domain-specific training covering the full lifecycle of data-driven research.

Data Carpentry is now a lesson program within The Carpentries, having merged with Software Carpentry in January, 2018. Data Carpentry's focus is on the introductory computational skills needed for data management and analysis in all domains of research. Our lessons are domainspecific, and build on the existing knowledge of learners to enable them to quickly apply skills learned to their own research. Our initial target audience is learners who have little to no prior computational experience. We create a friendly environment for learning to empower researchers and enable data driven discovery.

Host a Workshop

Attend a Workshop

Get Involved

Lessons in English

Lesson	Site	Repository	Reference	Instructor Notes
Ecology Workshop Overview	\square	©		
Data Organization in Spreadsheets for Ecologists	\square	6	\odot	\oplus
Data Cleaning with OpenRefine for Ecologists	\square	©	©	\oplus
Data Management with SQL for Ecologists	\square	©	©	\oplus
Data Analysis and Visualization in R for Ecologists	\square	¢	\odot	\oplus
Data Analysis and Visualization in Python for Ecologists	\square	*	©	\oplus

https://datacarpentry.org/

Scientists rename human genes to stop Microsoft Excel from misreading them as dates

Sometimes it's easier to rewrite genetics than update Excel
By James Vincent | Aug 6, 2020, 8:44am EDT

STUDIES FOUND A FIFTH OF genetic data in papers was AfFFCTED By EXCEL ERRORS

Why Io MICROSOFT WIN IN A fight against human GENEICS?

Janna Hutz
@jannahutz
THRILLED by this announcement by the Human Gene Nomenclature Committee.

- Symbols that affect data handling and retrieval. For example, all symbols that autoconverted to dates in Microsoft Excel have been changed (for example, SEPT1 is now SEPTIN1; MARCH1 is now MARCHF1); tRNA synthetase symbols that were also common words have been changed (for example, WARS is now WARS1; CARS is now CARS1).

5:08 PM • Aug 4, 2020
(i)
$\bigcirc 1.5 \mathrm{~K} \quad 611$ people are Tweeting about this

Scientists rename human genes to stop Microsoft Excel from misreading them as dates

Sometimes it's easier to rewrite genetics than update Excel
By James Vincent | Aug 6, 2020, 8:44am EDT

Reporting

Sharing materials
Describing methods
Describing data
Describing results
Making decisions

Sharing Materials

The paper is an advertisement; the data and its analysis are the product

Make code and data available through a link, not "by request"

Some data not shareable; code always shareable

Archived code \& data will be required

Literature with the potential of being computationally

Describing Methods

Minimal information:
(1) Math-stats notation of stat model
(2) Explanation of how (1) provides estimand
(3) Algorithm used to produce estimate
(4) Diagnostics, code tests
(5) Cite software packages

$$
\begin{aligned}
G_{A B} & \sim \operatorname{Poisson}\left(\lambda_{A B}\right) \\
\log \left(\lambda_{A B}\right) & =\alpha+T_{A B}+G_{A}+R_{B} \\
G_{B A} & \sim \operatorname{Poisson}\left(\lambda_{B A}\right) \\
\log \left(\lambda_{B A}\right) & =\alpha+T_{B A}+G_{B}+R_{A} \\
\binom{T_{A B}}{T_{B A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]\right) \\
\rho & \sim \operatorname{LKJCorr}(2) \\
\sigma & \sim \operatorname{Exponential}(1) \\
\alpha & \sim \operatorname{Normal}(0,1) \\
\binom{G_{A}}{R_{A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{G R}, \mathbf{S}_{G R}\right) \\
\mathbf{R}_{G R} & \sim \operatorname{LKJCorr}(2) \\
\mathbf{S}_{G R} & \sim \operatorname{Exponential}(1)
\end{aligned}
$$

To estimate the reciprocity within dyads, we model the correlation within dyads in giving, using a multilevel mixed-membership model (textbook citation). To control for confounding from generalized giving and receiving, as indicated by the DAG in the previous section, we stratify giving and receiving by household. The full model with priors is presented at right. We estimated the posterior distribution using Hamiltonian Monte Carlo as implemented in Stan version 2.29 (citation). We validated the model on simulated data and assessed convergence by inspection of trace plots, R -hat values, and effective sample sizes. Diagnostics are reported in Appendix B and all results can be replicated using the code available at LINK.

$$
G_{A B} \sim \operatorname{Poisson}\left(\lambda_{A B}\right)
$$

$$
\begin{aligned}
\log \left(\lambda_{A B}\right) & =\alpha+T_{A B}+G_{A}+R_{B} \\
G_{B A} & \sim \operatorname{Poisson}\left(\lambda_{B A}\right) \\
\log \left(\lambda_{B A}\right) & =\alpha+T_{B A}+G_{B}+R_{A} \\
\binom{T_{A B}}{T_{B A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]\right) \\
\rho & \sim \operatorname{LKJCorr}(2) \\
\sigma & \sim \operatorname{Exponential}(1) \\
\alpha & \sim \operatorname{Normal}(0,1) \\
\binom{G_{A}}{R_{A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{G R}, \mathbf{S}_{G R}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{R}_{G R} \sim \text { LKJCorr }(2) \\
& \mathbf{S}_{G R} \sim \text { Exponential }(1)
\end{aligned}
$$

To estimate the reciprocity within dyads, we model the correlation within dyads in giving, using a multilevel mixed-membership model (textbook citation). To control for confounding from generalized giving and receiving, as indicated by the DAG in the previous section, we stratify giving and receiving by household. The full model with priors is presented at right. We estimated the posterior distribution using Hamiltonian Monte Carlo as implemented in Stan version 2.29 (citation). We validated the model on simulated data and assessec convergence by inspection of trace plots, R-hat values, and effective sample sizes. Diagnostics are reported in Appendix B and all results can be replicated using the code available at LINK.

$$
G_{A B} \sim \operatorname{Poisson}\left(\lambda_{A B}\right)
$$

$$
\log \left(\lambda_{A B}\right)=\alpha+T_{A B}+G_{A}+R_{B}
$$

$$
G_{B A} \sim \operatorname{Poisson}\left(\lambda_{B A}\right)
$$

$$
\log \left(\lambda_{B A}\right)=\alpha+T_{B A}+G_{B}+R_{A}
$$

$$
\binom{T_{A B}}{T_{B A}} \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]\right)
$$

$$
\rho \sim \operatorname{LKJCorr}(2)
$$

$$
\sigma \sim \text { Exponential(1) }
$$

$$
\alpha \sim \operatorname{Normal}(0,1)
$$

$$
\binom{G_{A}}{R_{A}} \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{G R}, \mathbf{S}_{G R}\right)
$$

$$
\mathbf{R}_{G R} \sim \operatorname{LKJCorr}(2)
$$

$$
\mathbf{S}_{G R} \sim \text { Exponential(1) }
$$

To estimate the reciprocity within dyads, we model the correlation within dyads in giving, using a multilevel mixed-membership model (textbook citation). To control for confounding from generalized giving and receiving, as indicated by the DAG in the previous section, we stratify giving and receiving by household. The full model with priors is presented at right. We estimated the posterior distribution using Hamiltonian Monte Carlo as implemented in Stan version 2.29 (citation). validated the model on simulated data and assessed convergence by inspection of trace plots, R-hat values, and effective sample sizes. Diagnostics are reported in Appendix B and all results can be replicated using the code available at LINK.

$$
G_{A B} \sim \operatorname{Poisson}\left(\lambda_{A B}\right)
$$

$$
\begin{aligned}
\log \left(\lambda_{A B}\right) & =\alpha+T_{A B}+G_{A}+R_{B} \\
G_{B A} & \sim \operatorname{Poisson}\left(\lambda_{B A}\right) \\
\log \left(\lambda_{B A}\right) & =\alpha+T_{B A}+G_{B}+R_{A}
\end{aligned}
$$

$$
\binom{T_{A B}}{T_{B A}} \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]\right)
$$

$$
\rho \sim \operatorname{LKJCorr}(2)
$$

$$
\sigma \sim \text { Exponential(1) }
$$

$$
\alpha \sim \operatorname{Normal}(0,1)
$$

$$
\binom{G_{A}}{R_{A}} \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{G R}, \mathbf{S}_{G R}\right)
$$

$$
\begin{aligned}
& \mathbf{R}_{G R} \sim \operatorname{LKJCorr}(2) \\
& \mathbf{s}_{G R} \sim \text { Exponential(1) }
\end{aligned}
$$

To estimate the reciprocity within dyads, we model the correlation within dyads in giving, using a multilevel mixed-membership model (textbook citation). To control for confounding from generalized giving and receiving, as indicated by the DAG in the previous section, we stratify giving and receiving by household. The full model with priors is presented at right. We estimated the posterior distribution using Hamiltonian Monte Carlo as implemented in Stan version 2.29 (citation). We validated the model on simulated data and assessed convergence by inspection of trace plots, R-hat values, and effective sample sizes. Diagnostics are reported in Appendix B and all results can be replicated using the code available at LINK.

$$
\begin{aligned}
G_{A B} & \sim \operatorname{Poisson}\left(\lambda_{A B}\right) \\
\log \left(\lambda_{A B}\right) & =\alpha+T_{A B}+G_{A}+R_{B} \\
G_{B A} & \sim \operatorname{Poisson}\left(\lambda_{B A}\right) \\
\log \left(\lambda_{B A}\right) & =\alpha+T_{B A}+G_{B}+R_{A} \\
\binom{T_{A B}}{T_{B A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
\sigma^{2} & \rho \sigma^{2} \\
\rho \sigma^{2} & \sigma^{2}
\end{array}\right]\right) \\
\rho & \sim \operatorname{LKJCorr}(2) \\
\sigma & \sim \operatorname{Exponential}(1) \\
\alpha & \sim \operatorname{Normal}(0,1) \\
\binom{G_{A}}{R_{A}} & \sim \operatorname{MVNormal}\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right], \mathbf{R}_{G R}, \mathbf{S}_{G R}\right) \\
\mathbf{R}_{G R} & \sim \operatorname{LKJCorr}(2) \\
\mathbf{S}_{G R} & \sim \operatorname{Exponential}(1)
\end{aligned}
$$

Justify Priors

"Priors were chosen through prior predictive simulation so that predata predictions span only the range of scientifically plausible outcomes.

In the results, we explicitly compare the posterior distribution to the prior, so that the impact of the sample is obvious."

Justifying Methods

Naive reviewers: "Good science doesn't need complex stats"

Causal model often requires complexity
Big data => unit heterogeneity
Ethical responsibility to do our best
Change discussion from statistics to causal models
"Pooh?" said Piglet. "Yes, Piglet?" said Pooh. "27417 parameters," said Piglet. "Oh, bother," said Pooh.

Justifying Methods

Write for the editor, not the reviewer
Find other papers in discipline/journal that have used Bayesian methods or similar models (Bayesian or not)

Explain results in Bayesian terms, show densities, cite disciplinary guides

Bayes is ancient, normative, often the only practical way to estimate complex models
"Pooh?" said Piglet. "Yes, Piglet?" said Pooh. "27417 parameters," said Piglet. "Oh, bother," said Pooh.

Describing Data

1 k observations of 1 person
-VS-
1 observation of each of 1 k people
"Effective" sample size function of estimand and hierarchical structure

Variables measured at which levels?
Missing values!

Describing Results

Estimands, marginal causal effects
Warn against causal interpretation of control variables (Table 2 fallacy)

Densities better than intervals; Sample realizations often better than densities

Figures assist comparisons

Hypothetical Outcome Plots

Outperform Error Bars and Violin Plots for Inferences About Reliability of Variable Ordering

How Charts Lie

Getting Smarter about
Visual Information
Alberto Cairo

Making Decisions

Academic research: Communicate uncertainty, conditional on sample \& models

Industry research: What should we do, given the uncertainty, conditional on sample \& models?

Also: "Does my boss have any idea what 'uncertainty' means, or does he think that's the refuge of cowards?"

Making Decisions

Bayesian decision theory:
(1) State costs \& benefits of outcomes
(2) Compute posterior benefits of hypothetical policy choices

Simple example in Chapter 3
Can be integrated with dynamic optimization

1. Hypothesis Selection

KEY	Exterior $=$ experimental evidence
Interior $=$ true epistemic state	Unknown
True (T)	Positive (+)
False (T)	Negative (-)
General case	General case (+ or -)

2. Investigation

Experimental results are communicated to the scientific community with a probability that depends upon both the experimental result $(+,-)$ and whether the hypothesis was novel (N) or a replication (R). Communicated results join the set of tested hypotheses. Uncommunicated replications revert to their prior status.

- New result communicated
..... New result not communicated

McElreath \& Smaldino. 2015. Replication, communication, and the population dynamics of scientific discovery.

1. Hypothesis Selection

3. Communication

McElreath \& Smaldino. 2015. Replication, communication, and the population dynamics of scientific discovery.

1. Hypothesis Selection

KEY	Exterior $=$ experimental evidence
Interior $=$ true epistemic state	OU Unknown
True (T)	Positive (+)
False (T)	Negative (-)
General case	General case (+ or -)

McElreath \& Smaldino. 2015. Replication, communication, and the population dynamics of scientific discovery.

1. Hypothesis Selection

KEY	Exterior = experimental evidence
Interior = true epistemic state	Unknown
True (T)	Positive (+)
False (T)	Negative (-)
General case	General case (+ or -)

2. Investigation

3. Communication

Experimental results are communicated to the scientific community with a probability that depends upon both the experimental result $(+,-)$ and whether the hypothesis was novel (N) or a replication (R). Communicated results join the set of tested hypotheses. Uncommunicated replications revert to their prior status.

- New result communicated
..... New result not communicated

McElreath \& Smaldino. 2015. Replication, communication, and the population dynamics of scientific discovery.

1. Hypothesis Selection

3. Communication

McElreath \& Smaldino. 2015. Replication, communication, and the population dynamics of scientific discovery.

C Psychology in rep. markets

Horoscopes for Research

No one knows how research works
But many easy fixes at hand
(1) No stats without associated causal model
(2) Prove that your code works (in principle)
(3) Share as much as possible
(4) Beware proxies of research quality

Many things you dislike about academia were once well-intentioned reforms

[^0]: Y ... 2 README.md

