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Stargazing
Fortune telling frameworks: 

(1) From vague facts, vague advice 

(2) Exaggerated importance 

Applies to astrologers and statisticians 

Valid vague advice exists, not su!cient

***
**

*

*

p < 0.05

p < 0.001

p < 0.01



Stargazing
Statistical procedures acquire 
meaning from scienti"c models 

Cannot o#oad subjective 
responsibility to an objective 
procedure 

Many subjective responsibilities



A Typical Scienti"c Laboratory

Quality of theory

Reliable Procedures/Code

Quality of data analysis

Documentation

Reporting

Quality of Data



@StuartJRitchie

DATA ANALYSIS 
IN REALITY

DATA ANALYSIS 
IN THE MOVIES

Planning Working Reporting



Planning
Goal setting 

$eory building 

Justi"ed sampling plan 

Justi"ed analysis plan 

Documentation 

Open so%ware & data formats
@StuartJRitchie



Planning
Goal setting – What for? Estimands 

$eory building 

Justi"ed sampling plan 

Justi"ed analysis plan 

Documentation 

Open so%ware & data formats

ESTIMAND

Ingredients
150g unsalted butter
150g chocolate pieces
150g all-purpose flour
1/2 tsp baking powder
1/2 tsp baking soda
200g brown sugar
2 large eggs 

Directions
1. Heat oven to 160C. 
Grease 1 liter glass 
baking pan. Line a 450g 
loaf tin with baking paper.  
2. Melt butter and 
chocolate in a saucepan 
over low heat. 

ESTIMATOR

ESTIMATE



Planning
Goal setting – What for? Estimands 

$eory building – Which assumptions? 

Justi"ed sampling plan 

Justi"ed analysis plan 

Documentation 

Open so%ware & data formats
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$eory Building
Levels of theory building 

(1) Heuristic causal models (DAGs) 

(2) Structural causal models 

(3) Dynamic models 

(4) Agent-based models

G

D

A

u

dH
dt

= Ht bH − Ht(Lt mH)

dL
dt

= Lt(Ht bL) − Lt mL



$eory Building
Heuristic causal models (DAGs) 

(1) Treatment and outcome 

(2) Other causes 

(3) Other e&ects 

(4) Unobserved causes

G

D

A
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Planning
Goal setting – What for? Estimands 

$eory building – Which assumptions? 

Justi"ed sampling plan – Which data? 

Justi"ed analysis plan 

Documentation 

Open so%ware & data formats
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Planning
Goal setting – What for? Estimands 

$eory building – Which assumptions? 

Justi"ed sampling plan – Which data? 

Justi"ed analysis plan – Which golems? 

Documentation – How did it happen? 

Open so%ware & data formats
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Planning
Goal setting – What for? Estimands 

$eory building – Which assumptions? 

Justi"ed sampling plan – Which data? 

Justi"ed analysis plan – Which golems? 

Documentation – How did it happen? 

Open so%ware & data formats



Pre-Registration
Pre-registration: Prior public documentation 
of research design and analysis plan 

Goal: Make transparent which decisions are 
sample-dependent 

Does little to improve data analysis 

Lots of pre-registered causal salad
@StuartJRitchie



Working

Control 

Incremental testing 

Documentation 

Review
DATA ANALYSIS 

IN REALITY

DATA ANALYSIS 
IN THE MOVIES



Express theory as 
probabilistic program

Prove planned analysis 
could work 
(conditionally)

Test pipeline on 
synthetic data

Run pipeline on 
empirical data

1
2

3

4
entire history open



Professional Norms
Dangerous lack of professional norms in 
scienti"c computing 

O%en impossible to "gure out what was done 

O%en impossible to know if code works as 
intended 

Like pipetting by mouth



Research Engineering
Control: Versioning, back-up, accountability 

Incremental testing: Piece by piece 

Documentation: Comment everything 

Review: 4 eyes on code and materials



Research Engineering
Control: Versioning, back-up, accountability 

Incremental testing: Piece by piece 

Documentation: Comment everything 

Review: 4 eyes on code and materials



Versioning and Testing

Version control: Database of changes to 
project "les, managed history 

Testing: Incremental milestones, test each 
before moving to next







Versioning and Testing
Most researchers don’t need all git’s features 

But do: 

Commit changes a%er each milestone 
Maintain test code in project 

Do not: 

Replace raw data with processed data



More on Testing
Complex analyses must be built in steps 

Test each step 

Social networks lecture (#15) as example 

Milestones: 
(1) Synthetic data simulation 
(2) Dyadic reciprocity model 
(3) Add generalized giving/receiving 
(4) Add wealth, association index



https://github.com/stan-dev/math

5.1 MB of library code       8.2 MB of test code





Documentation & 

Simulation code
Validation code
Analysis code

Sharable data
Template data

Stan model, full
Stan model, milestone 1





https://datacarpentry.org/



https://www.theverge.com/2020/8/6/21355674



https://www.theverge.com/2020/8/6/21355674

Careful primary data entry, okay with rules, tests 

Never process data in Excel; use code



PAUSE



Reporting
Sharing materials 

Describing methods 

Describing data 

Describing results 

Making decisions



Sharing Materials
$e paper is an advertisement; the data 
and its analysis are the product 

Make code and data available through 
a link, not “by request” 

Some data not shareable; code always 
shareable 

Archived code & data will be required

Culina et al 2020 Low availability of code in ecology: A call for urgent action



Describing Methods
Minimal information: 

(1) Math-stats notation of stat model 

(2) Explanation of how (1) provides estimand 

(3) Algorithm used to produce estimate 

(4) Diagnostics, code tests 

(5) Cite so%ware packages

log(λAB) = α + TAB + GA + RB

GAB ∼ Poisson(λAB)

GBA ∼ Poisson(λBA)
log(λBA) = α + TBA + GB + RA

(TAB
TBA) ∼ MVNormal [0

0], [ σ2 ρσ2

ρσ2 σ2 ]
ρ ∼ LKJCorr(2)
σ ∼ Exponential(1)
α ∼ Normal(0,1)

(GA
RA) ∼ MVNormal ([0

0], RGR, SGR)
RGR ∼ LKJCorr(2)
SGR ∼ Exponential(1)



To estimate the reciprocity within dyads, we model 
the correlation within dyads in giving, using a 
multilevel mixed-membership model (textbook 
citation). To control for confounding from 
generalized giving and receiving, as indicated by the 
DAG in the previous section, we stratify giving and 
receiving by household. $e full model with priors is 
presented at right. We estimated the posterior 
distribution using Hamiltonian Monte Carlo as 
implemented in Stan version 2.29 (citation). We 
validated the model on simulated data and assessed 
convergence by inspection of trace plots, R-hat values, 
and e&ective sample sizes. Diagnostics are reported in 
Appendix B and all results can be replicated using the 
code available at LINK.
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Justify Priors
“Priors were chosen through prior 
predictive simulation so that pre-
data predictions span only the 
range of scienti"cally plausible 
outcomes.  

In the results, we explicitly 
compare the posterior distribution 
to the prior, so that the impact of 
the sample is obvious.”
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Justifying Methods
Naive reviewers: “Good science doesn’t 
need complex stats” 

Causal model o%en requires complexity 

Big data => unit heterogeneity 

Ethical responsibility to do our best 

Change discussion from statistics to 
causal models

“Pooh?” said Piglet. 
“Yes, Piglet?” said Pooh. 
“27417 parameters,” said Piglet. 
“Oh, bother,” said Pooh.



Justifying Methods
Write for the editor, not the reviewer 

Find other papers in discipline/journal 
that have used Bayesian methods or 
similar models (Bayesian or not) 

Explain results in Bayesian terms, show 
densities, cite disciplinary guides 

Bayes is ancient, normative, o%en the only 
practical way to estimate complex models

“Pooh?” said Piglet. 
“Yes, Piglet?” said Pooh. 
“27417 parameters,” said Piglet. 
“Oh, bother,” said Pooh.



Describing Data
1k observations of 1 person 
-vs- 
1 observation of each of 1k people 

“E&ective” sample size function of 
estimand and hierarchical structure 

Variables measured at which levels? 

Missing values!



Describing Results
Estimands, marginal causal e&ects 

Warn against causal interpretation of 
control variables (Table 2 fallacy) 

Densities better than intervals; Sample 
realizations o%en better than densities 

Figures assist comparisons

reciprocity
give-receive

-1.0 -0.5 0.0 0.5 1.0

0
5

10
15

correlation within dyads

D
en
si
ty

-1.0 -0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

correlation giving-receiving

D
en
si
ty

receiving

giving

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8

0
1

2
3

4
5

effect of wealth

D
en
si
ty



Hypothetical Outcome Plots
Outperform Error Bars and Violin Plots for Inferences About
Reliability of Variable Ordering

Jessica Hullman1,*, Paul Resnick2, Eytan Adar2,

1 Information School, University of Washington, Seattle, WA, USA
2 School of Information, University of Michigan, Ann Arbor, MI, USA

* jhullman@uw.edu

Abstract
Many visual depictions of probability distributions, such as error bars, are difficult for users to
accurately interpret. We present and study an alternative representation, Hypothetical Outcome
Plots (HOPs), that animates a finite set of individual draws. In contrast to the statistical
background required to interpret many static representations of distributions, HOPs require
relatively little background knowledge to interpret. Instead, HOPs enables viewers to infer
properties of the distribution using mental processes like counting and integration. We
conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people
made much more accurate judgments about plots of two and three quantities. Accuracy was
similar with all three representations for most questions about distributions of a single quantity.

Author Summary
It is important for users of visualizations, tables, and other data presentations to assess the
uncertainty of inferred properties. Showing a probability distribution over possible outcomes is a
common way to represent uncertainty. Many visual depictions of probability distributions, such
as error bars, are difficult for users to accurately interpret. We present and study an alternative
representation, Hypothetical Outcome Plots (HOPs), that animates a finite set of samples
representing hypothetical outcomes. People can interpret and make estimates about uncertainty
from HOPs without special training. In contrast to most static representations, HOPs enables
viewers to infer properties of the distribution using mental processes like counting. We
conducted an experiment comparing HOPs to error bars and violin plots. With HOPs, people
made much more accurate judgments about plots of two and three quantities. Accuracy was
similar with all three representations for most questions about distributions of a single quantity.

1 Introduction 1

Various visual representations, such as error bars, are intended to help the viewer reason about 2

the distribution of values that a random variable could take. For example, examine Fig 1 and try 3

to answer the question posed below the figure (See references for the answer [41]). If you find it 4

difficult to answer the question using the plot, you are not alone. We ran an experiment in which 5

96 viewers were shown this figure and asked to estimate Pr(B > A). Over half of the viewers 6

PLOS 1/23
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Figure 2. An illustration of our different study conditions. Error bars convey the mean of a
distribution of measurements (outcomes) along with a vertical “error bar” capturing a 95%
coverage interval. Violin plots extend this idea by showing the distribution in a mirrored
histogram. Hypothetical Outcome Plots (HOPs) present the same distribution as animated
frames (that can be played in sequence or manually flipped through). Each frame contains a
horizontal bar representing one outcome. Click to play the HOPs animation (in Adobe Acrobat).

we call Hypothetical Outcome Plots (HOPs). In its most simple variant, the HOPs approach is to: 59

(1) Draw a sample of hypothetical outcomes (draws) from the distribution; (2) for each, make a 60

plot that becomes one frame in an animated presentation. For example, 2 (right) depicts several 61

frames for a HOPs visualization for a single random variable. Each frame contains a horizontal 62

bar that depicts a specific outcome, one draw for that random variable. An interactive controller 63

allows the viewer to start/pause and step through frames. 64

There are two clear drawbacks to dynamic presentation of individual draws. First, it 65

introduces sampling error. The reader of the visualization will examine only a finite number of 66

frames, and thus will get an imprecise picture of the complete distribution. We explore this in 67

more detail in Section 6.2. Second, the reader will have to integrate information from multiple 68

frames, either using the visual system or some more mechanical process such as counting. 69

Maintaining visual stability across frames (e.g., by keeping the range of the y-axis fixed) reduces 70

the difficulty of visual integration but does not eliminate it. 71

On the other hand, there are several advantages to HOPs: 72

1. HOPs enable viewers to think in finite terms (i.e., counts) about individual outcomes 73

rather than infinite terms (i.e., probabilities) abstracted over entire distributions, which 74

numerous studies have shown are more difficult for humans to conceive of [23, 27]; 75

2. HOPs do not require an analyst to add new marks (e.g., an error bar) or new encodings 76

(e.g., width, transparency) and do not require viewers to understand those marks and 77

encodings. 78

We present a study in which subjects make inferences about the probability distributions of 79

one, two, and three random variables at a time using HOPs, error bars, and violin plots. Most 80

critically, our results indicate that HOPs support more accurate inferences about bivariate and 81

trivariate distributions (e.g., the probability that quantity B is larger than A or larger than both A 82

and C). As we might expect error bars and violin plots perform well for simple inferences about 83

univariate distributions. However, and perhaps surprisingly, HOPs achieve comparable 84

performance for many such tasks. 85

PLOS 3/23



Making Decisions
Academic research: Communicate 
uncertainty, conditional on sample & models 

Industry research: What should we do, given 
the uncertainty, conditional on sample & 
models? 

Also: “Does my boss have any idea what 
‘uncertainty’ means, or does he think that’s 
the refuge of cowards?”

POSTERIOR DOGE

DECISION DOGE



Making Decisions
Bayesian decision theory: 

(1) State costs & bene"ts of outcomes 
(2) Compute posterior bene"ts of 
hypothetical policy choices 

Simple example in Chapter 3 

Can be integrated with dynamic 
optimization

POSTERIOR DOGE

DECISION DOGE



ME DISCUSSING 
SCIENCE REFORM

SCIENCE



1. Hypothesis Selection

Novel 
hypotheses

Tested 
hypotheses

A previously tested 
hypothesis is selected 
for replication with 
probability r, otherwise 
a novel (untested) 
hypothesis is selected. 
Novel hypotheses are 
true with probability b. 

1 – r r

2. Investigation
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β 1 – α 

+

–

3. Communication
Experimental results are communicated to 
the scientific community with a probability that 
depends upon both the experimental result 
(+, –) and whether the hypothesis was novel 
(N) or a replication (R). Communicated 
results join the set of tested hypotheses. 
Uncommunicated replications revert to their 
prior status.

1 – CN– 

CN– 

positive results

negative results

1 – CR+ CR+ 

New result communicated

New result not communicated

1 – CR– CR– 

File drawer

novel

replic.novel

replic.

True (T)
False (T)

KEY
Interior = true epistemic state 

Exterior = experimental evidence
Unknown
Positive (+)
Negative (–)

General case General case (+ or –)

F

McElreath & Smaldino. 2015. Replication, communication, and the population dynamics of scienti"c discovery.
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Serra-Garcia & Gneezy 2021 Nonreplicable publications are cited more than replicable ones

Replicated

Not 
Replicated

Replicated
Replicated

Not 
Replicated

Not 
Replicated



Page 162
-2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

newsworthiness

tru
st
w
or
th
in
es
s

200 papers/proposals 
No correlation



-2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

newsworthiness

tru
st
w
or
th
in
es
s

Select top 10%

Page 162



-2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

newsworthiness

tru
st
w
or
th
in
es
s

Correlation = –0.77

Page 162



-2 -1 0 1 2 3

-3
-2

-1
0

1
2

3

newsworthiness

tru
st
w
or
th
in
es
s

Page 162

N

P

T

published

newsworthy trustworthy



Horoscopes for Research
No one knows how research works 

But many easy "xes at hand 

(1) No stats without associated causal model 
(2) Prove that your code works (in principle) 
(3) Share as much as possible 
(4) Beware proxies of research quality 

Many things you dislike about academia were 
once well-intentioned reforms
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