Statistical Rethinking

11. Ordered Categories

HOW TO SOLVE IT

A NEW ASPECT OF MATHEMATICAL METHOD by G. POLYA

George Pólya (1887-1985)

You have to understand the problem.

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

What is the unknown? What are the data? What is the condition? Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory?
Draw a figure. Introduce suitable notation.
Separate the various parts of the condition. Can you write them down?
DEVISING A PLAN
Second.
Find the connection between the data and the unknown.

You may be obliged
cannot be found.
You should obtain eventually a plan of the solution.

Have you seen it before? Or have you seen the same problem in a slightly different form?
Do you know a related problem? Do you know a theorem that could be useful?
Look at the unknown! And try to think of a familiar problem having the same or a similar unknown.
Here is a problem related to yours and solved before. Could you use it? Could you use its result? Could you use its method? Should you introduce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differentiy? Go back to definitions.

II you cmanot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problemp A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or the data, or both if necessary, so that the new unknown and the new data are nearer to each other?
Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each step. Can you see

LOOKING BACK

Fourth.
Examine the solution obtained.
Can you check the result? Can you check the argument?
Can you derive the result differently? Can you see it at a glance? Can you use the result, or the method, for some other problem?

I you cmanot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problen? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or the data, or both if necessary, so that the new unknown and the new data are nearer to each other?
Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Third. Carrying out your plan of the solution, check each step. Can you see your plan. clearly that the step is correct? Can you prove that it is correct?

Can't always get what you want

Can't always get what you want

Can't always get what you want

1. The switch Foot, 1967
2. The fat man Thomson, 1976
3. The fat villain

4. The switch Foot, 1967
5. The fat man Thomson, 1976
6. The fat villain

7. The loop Costa, 1987

8. The switch Foot, 1967
9. The fat man Thomson, 1976
10. The fat villain

MWM

4. The loop Costa, 1987

5. The man in the yard Unger, 1992

Action

Action

Action

Intention

Contact

Trolley Problems

 data(Trolley)331 individuals (age, gender, edu)
Voluntary participation (online)
30 different trolley problems
action / intention / contact

9930 responses:

How appropriate (from 1 to 7)?

Cushman et al. 2006. The role of conscious reasoning and intuition in moral judgment

Trolley Problems

data(Trolley)

331 individuals (age, gender, edu)
Voluntary participation (online)
30 different trolley problems
action / intention / contact
9930 responses:
How appropriate (from 1 to 7)?

Ordered categorical

Estimand: How do action, intention, contact influence response to a trolley story?

Estimand: How do action, intention, contact influence response to a trolley story?

How are influences of $\mathrm{A} / \mathrm{I} / \mathrm{C}$ associated with other variables?

Ordered categories

Categories: Discrete types
cat, dog, chicken
Ordered categories: Discrete types with ordered relationships
bad, good, excellent

Ordered categorical

Anchor points common
Not everyone shares the same anchor points

Objective distribution

Objective distribution

According to
 Eastern Europeans

What is this garbage?

Ordered $=$ Cumulative

$$
\operatorname{Pr}\left(R_{i}=3\right)=\operatorname{Pr}\left(R_{i} \leq 3\right)-\operatorname{Pr}\left(R_{i} \leq 2\right)
$$

$$
\operatorname{Pr}\left(R_{i}=3\right)=\operatorname{Pr}\left(R_{i} \leq 3\right)-\operatorname{Pr}\left(R_{i} \leq 2\right)
$$

$\frac{\log \frac{\operatorname{Pr}\left(R_{i} \leq k\right)}{1-\operatorname{Pr}\left(R_{i} \leq k\right)}}{\text { cumulative log-odds }_{\text {cutpoint }}} \overbrace{k}$
(to estimate)

cumulative log-odds

Where's the GLM?

So far just estimating the histogram
How to make it a function of variables?
(1) Stratify cutpoints
(2) Offset each cutpoint by value of linear model ϕ_{i}

Where's the GLM?

So far just estimating the histogram
How to make it a function of variables?

$$
\log \frac{\operatorname{Pr}\left(R_{i} \leq k\right)}{1-\operatorname{Pr}\left(R_{i} \leq k\right)}=\alpha_{k}+\phi_{i}
$$

(1) Stratify cutpoints
(2) Offset each cutpoint by value of $R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$ linear model ϕ_{i}

Start off easy:

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$
$\phi_{i}=\beta_{A} A_{i}+\beta_{C} C_{i}+\beta_{I} I_{i}$
$\beta_{-} \sim \operatorname{Normal}(0,0.5)$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$

```
data(Trolley)
d <- Trolley
dat <- list(
    R = d$response,
    A = d$action,
    I = d$intention,
    C = d$contact
)
mRX <- ulam(
    alist(
```

```
R ~ dordlogit(phi,alpha),
phi <- bA*A + bI*I + bC*C,
c(bA,bI,bC) ~ normal(0,0.5),
alpha ~ normal(0,1)
```

) , data=dat , chains=4 , cores=4)

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$

$\phi_{i}=\beta_{A} A_{i}+\beta_{C} C_{i}+\beta_{I} I_{i}$
$\beta \sim \operatorname{Normal}(0,0.5)$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$

alpha[1]

$$
\text { n_eff = } 929
$$

alpha[4]
n_eff $=1361$

alpha[2]

alpha[5]

$$
\text { n_eff = } 1545
$$

bA
n_eff $=1321$

alpha[3]
n_eff $=1129$

alpha[6]

$$
\text { n_eff = } 1810
$$


```
data(Trolley)
d <- Trolley
dat <- list(
    R = d$response,
    A = d$action,
    I = d$intention,
    C = d$contact
)
mRX <- ulam(
    alist(
```

```
R ~ dordlogit(phi,alpha),
phi <- bA*A + bI*I + bC*C,
c(bA,bI,bC) ~ normal(0,0.5),
alpha ~ normal(0,1)
```

) , data=dat , chains=4 , cores=4)
 | | | | | | | |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| > precis(mRX, 2) | | | | | | |
| | mean | sd | 5.5% | 94.5% | n_eff | Rhat4 |
| bC | -0.94 | 0.05 | -1.02 | -0.87 | 1494 | 1 |
| bI | -0.71 | 0.04 | -0.77 | -0.65 | 1853 | 1 |
| bA | -0.69 | 0.04 | -0.76 | -0.63 | 1321 | 1 |
| alpha[1] | -2.82 | 0.05 | -2.89 | -2.74 | 929 | 1 |
| alpha[2] | -2.14 | 0.04 | -2.20 | -2.07 | 955 | 1 |
| alpha[3] | -1.56 | 0.04 | -1.62 | -1.49 | 1129 | 1 |
| alpha[4] | -0.54 | 0.04 | -0.59 | -0.48 | 1361 | 1 |
| alpha[5] | 0.13 | 0.04 | 0.07 | 0.19 | 1545 | 1 |
| alpha[6] | 1.04 | 0.04 | 0.97 | 1.10 | 1810 | 1 |

```
# plot predictive distributions for each treatment
vals <- c(0,0,0)
Rsim <- mcreplicate( 100 ,
sim(mRX,data=list(A=vals[1],I=vals[2],C=vals[3])) ,
mc.cores=6 )
simplehist(as.vector(Rsim),lwd=8,col=2,xlab="Response")
mtext(concat("A=",vals[1],", I=",vals[2],",
C=",vals[3]))
```


$A=0, I=0, C=0$

What about the competing causes?

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$
$\phi_{i}=\beta_{A} A_{i}+\beta_{C} C_{i}+\beta_{I} I_{i}$
$\beta \sim \operatorname{Normal}(0,0.5)$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$

Total effect of gender:

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$
$\phi_{i}=\beta_{A, G[i]} A_{i}+\beta_{C, G[i]} C_{i}+\beta_{I, G[i]} I_{i}$
$\beta_{-} \sim \operatorname{Normal}(0,0.5)$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$

```
# total effect of gender
dat$G <- iflelse(d$male==1,2,1)
mRXG <- ulam(
    alist(
        R ~ dordlogit(phi,alpha),
        phi <- bA[G]*A + bI[G]*I + bC[G]*C,
        bA[G] ~ normal(0,0.5),
        bI[G] ~ normal(0,0.5),
        bC[G] ~ normal(0,0.5),
        alpha ~ normal(0,1)
```


$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$

$\phi_{i}=\beta_{A, G[i]} A_{i}+\beta_{C, G[i]} C_{i}+\beta_{I, G[i]} I_{i}$
$\beta_{-} \sim \operatorname{Normal}(0,0.5)$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$

```
# total effect of gender
dat$G <- iflelse(d$male==1,2,1)
mRXG <- ulam(
    alist(
```

```
R ~ dordlogit(phi,alpha),
```

R ~ dordlogit(phi,alpha),
phi <- bA[G]*A + bI[G]*I + bC[G]*C,
phi <- bA[G]*A + bI[G]*I + bC[G]*C,
bA[G] ~ normal(0,0.5),
bA[G] ~ normal(0,0.5),
bI[G] ~ normal(0,0.5),
bI[G] ~ normal(0,0.5),
bC[G] ~ normal(0,0.5),
bC[G] ~ normal(0,0.5),
alpha ~ normal(0,1)

```
alpha ~ normal(0,1)
```

) , data=dat , chains=4 , cores=4)
 | > precis(mRXG, 2) | | | | | | |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| | mean | sd | 5.5% | 94.5% | n_eff | Rhat4 |
| bA[1] | -0.88 | 0.05 | -0.96 | -0.80 | 1858 | 1.00 |
| bA[2] | -0.53 | 0.05 | -0.61 | -0.45 | 1724 | 1.00 |
| bI[1] | -0.90 | 0.05 | -0.97 | -0.82 | 2189 | 1.00 |
| bI[2] | -0.55 | 0.05 | -0.63 | -0.48 | 2382 | 1.00 |
| bC[1] | -1.06 | 0.07 | -1.17 | -0.95 | 2298 | 1.00 |
| bC[2] | -0.84 | 0.06 | -0.94 | -0.74 | 2000 | 1.00 |
| alpha[1] | -2.83 | 0.05 | -2.90 | -2.75 | 1054 | 1.01 |
| alpha[2] | -2.15 | 0.04 | -2.21 | -2.08 | 1104 | 1.00 |
| alpha[3] | -1.56 | 0.04 | -1.62 | -1.50 | 1076 | 1.00 |
| alpha[4] | -0.53 | 0.04 | -0.59 | -0.47 | 1080 | 1.00 |
| alpha[5] | 0.14 | 0.04 | 0.09 | 0.20 | 1216 | 1.00 |
| alpha[6] | 1.06 | 0.04 | 1.00 | 1.12 | 1532 | 1.00 |

Hang on! This is a voluntary sample

Hang on! This is a voluntary sample

Hang on! This is a voluntary sample

Conditioning on P makes E,Y,G covary in sample

Endogenous selection

Sample is selected on a collider
Induces misleading associations among variables

Not possible here to estimate total effect of G, BUT can get direct effect

Need to stratify by E and Y and G

Ordered monotonic predictors

Education is an ordered category
Unlikely that each level has same effect
Want a parameter for each level
But how to enforce ordering, so that each level has larger (or smaller) effect than previous?

Ordered monotonic predictors

1 (elementary) $\quad \phi_{i}=0$
2 (middlle school) $\quad \phi_{i}=\delta_{1}$
3 (some high school) $\quad \phi_{i}=\delta_{1}+\delta_{2}$
4 (high school) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}$
5 (some college) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}$
6 (college) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}$

7 (master's) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}+\delta_{6}$
8 (doctorate) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}+\delta_{6}+\delta_{7}$

Ordered monotonic predictors

1 (elementary) $\quad \phi_{i}=0$
2 (middle school) $\quad \phi_{i}=\delta_{1}$
3 (some high school) $\quad \phi_{i}=\delta_{1}+\delta_{2}$
4 (high school) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}$
5 (some college) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}$
6 (college) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}$
7 (master's) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}+\delta_{6}$
maximum effect
8 (doctorate) $\quad \phi_{i}=\delta_{1}+\delta_{2}+\delta_{3}+\delta_{4}+\delta_{5}+\delta_{6}+\delta_{7}=\beta_{E}$

Ordered monotonic predictors

1 (elementary)
2 (middle school)
3 (some high school)
4 (high school)
5 (some college)

$$
\delta_{0}=0
$$

$$
\sum_{j=0}^{7} \delta_{j}=1
$$

> 6 (college)
> 7 (master's)
> 8 (doctorate)

Ordered monotonic predictors

1 (elementary)
2 (middle school)
3 (some high school)
4 (high school)
5 (some college)
6 (college)

7 (master's)
8 (doctorate)

Ordered monotonic priors

How do we set priors for the delta parameters?
delta parameters form a simplex
Simplex: vector that sums to 1

$$
R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)
$$

$$
\phi_{i}=\beta_{E} \sum_{j=0}^{E_{i}-1} \delta_{j}+\ldots
$$

$$
\alpha_{j} \sim \operatorname{Normal}(0,1)
$$

$$
\beta_{-} \sim \operatorname{Normal}(0,0.5)
$$

$$
\delta_{j} \sim ?
$$

$\delta \sim \operatorname{Dirichlet}(a)$

$a=[2,2,2,2,2,2,2]$

$\delta \sim \operatorname{Dirichlet}(a)$ $a=[2,2,2,2,2,2,2]$

$\delta \sim \operatorname{Dirichlet}(a)$

$$
a=[1,2,3,4,5,6,7]
$$


```
edu_levels <- c( 6, 1, 8, 4, 7, 2, 5, 3 )
edu_new <- edu_levels[ d$edu ]
```

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$

```
dat$E <- edu_new
dat$a <- rep(2,7) # dirichlet prior
```

```
mRXE <- ulam(
```

 alist(
 R ~ ordered_logistic(phi , alpha),
 phi <- bE*sum(delta_j[1:E]) +
 \(b A * A+b I * I+b C * C\),
 alpha ~ normal(0,1),
 \(\mathrm{c}(\mathrm{bA}, \mathrm{bI}, \mathrm{bC}, \mathrm{bE}) \sim \operatorname{normal}(0,0.5)\),
 vector[8]: delta_j <<- append_row(0 , delta),
 simplex[7]: delta ~ dirichlet(a)
), data=dat , chains=4 , cores=4)
    ```
edu_levels <- c( 6, 1, 8, 4, 7, 2, 5, 3 )
edu_new <- edu_levels[ d$edu ] > precis(mRXE,2)
    mean sd 5.5% 94.5% n_eff Rhat4
dat$E <- edu_new
dat$a <- rep(2,7) # dirichlet prior
mRXE <- ulam(
        alist(
            R ~ ordered_logistic( phi , alpha ),
            phi <- bE*sum( delta_j[1:E] ) +
                bA*A + bI*I + bC*C,
            alpha ~ normal( 0 , 1 ),
            c(bA,bI,bC,bE) ~ normal( 0 , 0.5 ),
            vector[8]: delta_j <<- append_row( 0
            simplex[7]: delta ~ dirichlet( a )
        ), data=dat , chains=4 , cores=4 )
\begin{tabular}{lrrrrrr} 
> precis(mRXE, 2) \\
& mean & sd & \(5.5 \%\) & \(94.5 \%\) & n_eff & Rhat4 \\
alpha[1] & -3.07 & 0.14 & -3.32 & -2.86 & 793 & 1 \\
alpha[2] & -2.39 & 0.14 & -2.63 & -2.17 & 804 & 1 \\
alpha[3] & -1.81 & 0.14 & -2.05 & -1.60 & 811 & 1 \\
alpha[4] & -0.79 & 0.14 & -1.03 & -0.57 & 799 & 1 \\
alpha[5] & -0.12 & 0.14 & -0.36 & 0.10 & 804 & 1 \\
alpha[6] & 0.79 & 0.14 & 0.54 & 1.00 & 831 & 1 \\
bE & -0.31 & 0.16 & -0.57 & -0.06 & 838 & 1 \\
bC & -0.96 & 0.05 & -1.04 & -0.88 & 1757 & 1 \\
bI & -0.72 & 0.04 & -0.77 & -0.66 & 1982 & 1 \\
bA & -0.70 & 0.04 & -0.77 & -0.64 & 1779 & 1 \\
delta[1] & 0.22 & 0.13 & 0.05 & 0.47 & 1227 & 1 \\
delta[2] & 0.14 & 0.09 & 0.03 & 0.31 & 2258 & 1 \\
delta[3] & 0.20 & 0.11 & 0.05 & 0.38 & 2256 & 1 \\
delta[4] & 0.17 & 0.09 & 0.04 & 0.34 & 1926 & 1 \\
delta[5] & 0.04 & 0.05 & 0.01 & 0.12 & 945 & 1 \\
delta[6] & 0.10 & 0.07 & 0.02 & 0.23 & 1870 & 1 \\
delta[7] & 0.13 & 0.08 & 0.03 & 0.27 & 2335 & 1
\end{tabular}
```


| > precis | (mRXE, 2) mean | | 5.5\% | 94.5\% | n_eff | Rhat4 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| alpha[1] | -3.07 | 0.14 | -3.32 | -2.86 | 793 | 1 |
| alpha[2] | -2.39 | 0.14 | -2.63 | -2.17 | 804 | 1 |
| alpha[3] | -1.81 | 0.14 | -2.05 | -1.60 | 811 | 1 |
| alpha[4] | -0.79 | 0.14 | -1.03 | -0.57 | 799 | 1 |
| alpha[5] | -0.12 | 0.14 | -0.36 | 0.10 | 804 | 1 |
| alpha[6] | 0.79 | 0.14 | 0.54 | 1.00 | 831 | 1 |
| bE | -0.31 | 0.16 | -0.57 | -0.06 | 838 | 1 |
| bc | -0.96 | 0.05 | -1.04 | -0.88 | 1757 | 1 |
| bI | -0.72 | 0.04 | -0.77 | -0.66 | 1982 | 1 |
| bA | -0.70 | 0.04 | -0.77 | -0.64 | 1779 | 1 |
| delta[1] | 0.22 | 0.13 | 0.05 | 0.47 | 1227 | 1 |
| delta[2] | 0.14 | 0.09 | 0.03 | 0.31 | 2258 | 1 |
| delta[3] | 0.20 | 0.11 | 0.05 | 0.38 | 2256 | 1 |
| delta[4] | 0.17 | 0.09 | 0.04 | 0.34 | 1926 | 1 |
| delta[5] | 0.04 | 0.05 | 0.01 | 0.12 | 945 | 1 |
| delta[6] | 0.10 | 0.07 | 0.02 | 0.23 | 1870 | 1 |
| delta[7] | 0.13 | 0.08 | 0.03 | 0.27 | 2335 | 1 |

$$
R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)
$$

$$
\begin{aligned}
& \phi_{i}= \beta_{E, G[i]} \sum_{j=0}^{E_{i}-1} \delta_{j}+ \\
& \beta_{A, G[i]} A_{i}+\beta_{l, G[i]} I_{i}+\beta_{C, G[i]} C_{i}+ \\
& \beta_{Y, G[i]} Y_{i} \\
& \alpha_{j} \sim \operatorname{Normal}(0,1) \\
& \beta_{-} \sim \operatorname{Normal}(0,0.5) \\
& \delta \sim \operatorname{Dirichlet}(a)
\end{aligned}
$$

```
dat$Y <- standardize(d$age)
mRXEYGt <- ulam(
    alist(
        R ~ ordered_logistic( phi , alpha ),
        phi <- bE[G]*sum( delta_j[1:E] ) +
        bA[G]*A + bI[G]*I + bC[G]*C +
        bY[G]*Y,
        alpha ~ normal( 0 , 1 ),
        bA[G] ~ normal( 0 , 0.5 ),
        bI[G] ~ normal( 0 , 0.5 ),
        bC[G] ~ normal( 0 , 0.5 ),
        bE[G] ~ normal( 0 , 0.5 ),
        bY[G] ~ normal( 0 , 0.5 ),
        vector[8]: delta_j <<- append_row( 0 , delta ),
        simplex[7]: delta ~ dirichlet( a )
    ), data=dat , chains=4 , cores=4 , threads=2 )
```

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$
$\phi_{i}=\beta_{E, G[i]} \sum_{j=0}^{E_{i}-1} \delta_{j}+$
$\beta_{A, G[i], i} A_{i}+\beta_{l, G[i]} I_{i}+\beta_{C, G[i]} C_{i}+$
$\beta_{Y, G[i]} Y_{i}$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$
$\beta_{-} \sim \operatorname{Normal}(0,0.5)$
$\delta \sim \operatorname{Dirichlet}(a)$

```
dat$Y <- standardize(d$age)
mRXEYGt <- ulam(
    alist(
        R ~ ordered_logistic( phi , alpha ),
        phi <- bE[G]*sum( delta_j[1:E] ) +
        bA[G]*A + bI[G]*I + bC[G]*C +
        bY[G]*Y,
        alpha ~ normal( 0 , 1 ),
        bA[G] ~ normal( 0 , 0.5 ),
        bI[G] ~ normal( 0 , 0.5 ),
        bC[G] ~ normal( 0 , 0.5 ),
        bE[G] ~ normal( 0 , 0.5 ),
        bY[G] ~ normal( 0 , 0.5 ),
        vector[8]: delta_j <<- append_row( 0 , delta ),
        simplex[7]: delta ~ dirichlet(a j
    ), data=dat , chains=4 , cores=4 : threads=2 )
```

$R_{i} \sim \operatorname{OrderedLogit}\left(\phi_{i}, \alpha\right)$
$\phi_{i}=\beta_{E, G[]} \sum_{j=0}^{E_{i}-1} \delta_{j}+$
$\beta_{A, G[i] i, i} A_{i}+\beta_{I, G[i]} I_{i}+\beta_{C, G[i]} C_{i}+$
$\beta_{Y, G[i]} Y_{i}$
$\alpha_{j} \sim \operatorname{Normal}(0,1)$
$\beta_{-} \sim \operatorname{Normal}(0,0.5)$
$\delta \sim \operatorname{Dirichlet}(a)$

4 chains times 2 threads each $=8$ cores

```
dat$Y <- standardize(d$age)
mRXEYGt <- ulam(
    alist(
        R ~ ordered_logistic( phi , alpha ),
        phi <- bE[G]*sum( delta_j[1:E] ) +
                bA[G]*A + bI[G]*I + bC[G]*C +
            bY[G]*Y,
```


1 thread each

```
Sampling durations (minutes):
    warmup sample total
chain:1 6.53 3.99 10.52
chain:2 7.33 2.66 9.99
chain:3 6.88 3.70 10.58
chain:4 6.40 2.63 9.03
```


2 threads each

4 chains times 2 threads each $=8$ cores

| > precis(mRXEYGt, 2) | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | mean | sd | 5.5\% | 94.5\% | n_eff | Rhat 4 |
| alpha[1] | -2.89 | 0.10 | -3.06 | -2.73 | 729 | 1 |
| alpha[2] | -2.21 | 0.10 | -2.37 | -2.06 | 728 | 1 |
| alpha[3] | -1.62 | 0.10 | -1.78 | -1.47 | 724 | 1 |
| alpha[4] | -0.58 | 0.10 | -0.74 | -0.43 | 729 | 1 |
| alpha[5] | 0.11 | 0.10 | -0.05 | 0.26 | 726 | 1 |
| alpha[6] | 1.03 | 0.10 | 0.87 | 1.18 | 746 | 1 |
| bA [1] | -0.56 | 0.06 | -0.65 | -0.47 | 1932 | 1 |
| bA [2] | -0.81 | 0.05 | -0.90 | -0.73 | 2013 | 1 |
| bI [1] | -0.66 | 0.05 | -0.74 | -0.58 | 2539 | 1 |
| bI[2] | -0.76 | 0.05 | -0.84 | -0.68 | 2283 | 1 |
| bC[1] | -0.77 | 0.07 | -0.88 | -0.65 | 2029 | 1 |
| bC[2] | -1.09 | 0.07 | -1.20 | -0.99 | 2012 | 1 |
| be[1] | -0.63 | 0.14 | -0.85 | -0.42 | 810 | 1 |
| bE[2] | 0.41 | 0.14 | 0.19 | 0.62 | 795 | 1 |
| bY [1] | 0.00 | 0.03 | -0.05 | 0.05 | 2740 | 1 |
| bY「21 | -0.13 | 0.03 | -0.18 | -0.09 | 1426 | 1 |
| delta[1] | 0.15 | 0.08 | 0.04 | 0.31 | 1759 | 1 |
| delta[2] | 0.15 | 0.09 | 0.04 | 0.30 | 2440 | 1 |
| delta[3] | 0.29 | 0.11 | 0.11 | 0.46 | 2001 | 1 |
| delta[4] | 0.08 | 0.05 | 0.02 | 0.17 | 2414 | 1 |
| delta[5] | 0.06 | 0.04 | 0.01 | 0.14 | 1087 | 1 |
| delta[6] | 0.24 | 0.07 | 0.13 | 0.34 | 2301 | 1 |
| delta[7] | 0.04 | 0.02 | 0.01 | 0.08 | 2755 | 1 |

Complex causal effects

Causal effects (predicted consequences of intervention) require marginalization

Example: Causal effect of E requires distribution $X \longrightarrow R \longleftarrow S$
Example: Causal effect of Y requires effect of Y on E, which we cannot estimate (P again!)

Complex causal effects

Causal effects (predicted consequences of
interv No matter how complex, still just a generative
Examp simulation using posterior samples
Proble Need generative model to plan estimation sample Proble Need generative model to compute estimates

Example: Causal effect of Y requires effect of Y
on E, which we cannot estimate (P again!)

Repeat observations

30 stories (S)

```
> table(d$story)
```

aqu boa box bur car che pon rub sha shi spe swi
$\begin{array}{llllllllllll}662 & 662 & 1324 & 1324 & 662 & 662 & 662 & 662 & 662 & 662 & 993 & 993\end{array}$
$X \longrightarrow R \longleftarrow S$

Repeat observations

30 stories (S)

```
> table(d$story)
    aqu boa box bur car che pon rub sha shi spe swi
    662
> table(d\$story)
\begin{tabular}{llllllllllll} 
aqu boa box bur car che pon rub & sha & shi & spe & swi \\
662 & 662 & 1324 & 1324 & 662 & 662 & 662 & 662 & 662 & 662 & 993 & 993
\end{tabular}
```


331 individuals (U)

> table(d\$id)

| $96 ; 434$ | $96 ; 445$ | $96 ; 451$ | $96 ; 456$ | $96 ; 458$ | $96 ; 466$ | $96 ; 467$ | $96 ; 474$ | $96 ; 480$ | $96 ; 481$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
| $96 ; 498$ | $96 ; 502$ | $96 ; 505$ | $96 ; 511$ | $96 ; 512$ | $96 ; 518$ | $96 ; 519$ | $96 ; 531$ | $96 ; 533$ | $96 ; 538$ |
| 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
| $96 ; 550$ | $96 ; 553$ | $96 ; 555$ | $96 ; 558$ | $96 ; 560$ | $96 ; 562$ | $96 ; 566$ | $96 ; 570$ | $96 ; 581$ | $96 ; 586$ |
| 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 | 30 |
| 30 | 301 | | | | | | | | |

Course Schedule

| Week 1 | Bayesian inference | Chapters 1, 2, 3 |
| :--- | :--- | :--- |
| Week 2 | Linear models \& Causal Inference | Chapter 4 |
| Week 3 | Causes, Confounds \& Colliders | Chapters 5 \& 6 |
| Week 4 | Overfitting / MCMC | Chapters 7, 8, 9 |
| Week 5 | Generalized Linear Models | Chapters 10, 11 |
| Week 6 | Ordered categories \& Multilevel models | Chapters 12 \& 13 |
| Week 7 | More Multilevel models | Chapters 13 \& 14 |
| Week 8 | Multilevel models \& Gaussian processes | Chapter 14 |
| Week 9 | Measurement \& Missingness | Chapter 15 |
| Week 10 | Generalized Linear Madness | Chapter 16 |

https://github.com/rmcelreath/stat_rethinking_2023

BONUS

Data Science Task

| | Description | | Pata Science Task | |
| :--- | :--- | :--- | :--- | :---: |
| Prediction | Causal inference | | | |
| Example of
 scientific question | How can women aged
 60-80 years with stroke
 history be parritioned in
 classes defined by their
 characteristics? | What is the probability
 of having a stroke next
 year for women with cer-
 tain characteristics? | Will starting a statin
 reduce, on average, the
 risk of stroke in women
 with certain characteris-
 tics? | |

Hernán et al. A second chance to get causal inference right

Data Science Task

Hernán et al. A second chance to get causal inference right

| | Data Science Task | | |
| :---: | :---: | :---: | :---: |
| | Description | Prediction | Causal inference |
| Example of scientific question | How can women aged 60-80 years with stroke history be partitioned in classes defined by their characteristics? | What is the probability of having a stroke next year for women with certain characteristics? | Will starting a statin reduce, on average, the risk of with in charact |
| Data | - Eligibility criteria - Features (symptoms, clinical parameters ...) | - Eligibility Criteria
 - Output (dir
 Imputs lage, pressure, history stroke, diaberes a baseline | \qquad |
| Examples analytics | | Regression
 Decision trees Random forests Support vector machines Neural networks | Regression
 Matching Inverse probability weighting G-formula Gestimation Instrumental variable estimation ... |

Hernán et al. A second chance to get causal inference right

Δ Delphi-Facebook $(n \approx 250,000)$

Bradley et al. 2021 Unrepresentative big surveys significantly overestimated US vaccine uptake

Wang et al. 2014. Forecasting elections with non-representative polls

Wang et al. 2014. Forecasting elections with non-representative polls

Hitting the Target

Basic problem: Sample is not the target
Post-stratification \& Transport: Transparent, principled methods for extrapolating from sample to population

Post-strat requires casual model of reasons sample differs from population

NO CAUSES IN; NO DESCRIPTION OUT

Cartoon example

Four age groups:

Cartoon example

Four age groups:

Proportions of sample:

Multi-level regression \& post-stratification (MRP)

Selection nodes

$$
{ }_{\text {Age }} X \longrightarrow Y_{\text {Attitude }}
$$

Selection nodes

S : "Sample differs because of differences in what I point to"

Selection ubiquitous

Many sources of data are already filtered by selection effects

Crime \& health statistics
Employment \& job performance Museum collections

Right thing to do depends upon causes of selection

"Young people don't answer their phones"

$$
\begin{gathered}
\stackrel{\text { Selection }}{\substack{\text { S } \\
\text { by Age } \\
\text { Age }}} \xrightarrow{X} Y_{\text {Attitude }}
\end{gathered}
$$

"Young people don't answer their phones"

"Anarchists
don't answer their phones"

"Young people don't answer their phones and misreport their age"

A Causal Framework for Cross-Cultural

Generalizability

Dominik Deffner ${ }^{1,2,3}$ © , Julia M. Rohrer ${ }^{4}$, and Richard McElreath ${ }^{1}$

https://psyarxiv.com/fqukp

Many Qs are really post-strat Qs

Justified descriptions require causal information and post-stratification

Causal effects also, e.g. vaccines
Time trends should account for changes in measurement/population

Comparison is post-stratification
 from one population to another aphy Satellites for Archives Alm Modest Questions ections Ethnography Excavation

Simple 4-step plan for honest digital scholarship

(1) What are we trying to describe?
(2) What is the ideal data for doing so?
(3) What data do we actually have?
(4) What causes the differences between (2) and (3)?
(5) [optional] Is there a way to use (3) + (4) to do (1)?

