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Philippa Foot (1920–2010)

Foot (1967) !e Problem of Abortion and the Doctrine of Double E"ect
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Trolley Problems
data(Trolley) 

331 individuals (age, gender, edu) 

Voluntary participation (online) 

30 di!erent trolley problems 

action / intention / contact 

9930 responses:  
How appropriate (from 1 to 7)?

Cushman et al. 2006. "e role of conscious reasoning and intuition in moral judgment
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Ordered categoricaldata(Trolley) 

331 individuals (age, gender, edu) 

Voluntary participation (online) 

30 di!erent trolley problems 

action / intention / contact 

9930 responses:  
How appropriate (from 1 to 7)?
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Estimand: How do action, intention, contact 
in#uence response to a trolley story?
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Estimand: How do action, intention, contact 
in#uence response to a trolley story?

S
story

How are in#uences of A/I/C associated 
with other variables?

YageEeducation G gender



Ordered categories

Categories: Discrete types 

cat, dog, chicken 

Ordered categories: Discrete types 
with ordered relationships 

bad, good, excellent
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Distance between values 
not constant 

Probably much easier to 
go from 4 to 5 than from 
6 to 7
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Anchor points common 

Not everyone shares the 
same anchor points
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Ordered = Cumulative
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Pr(Ri = k) = Pr(Ri ≤ k) − Pr(Ri ≤ k − 1)
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1 − Pr(Ri ≤ k) = αk

α2 α3

cumulative log-odds cutpoint 
(to estimate)

αk

Pr(Ri = 3) = Pr(Ri ≤ 3) − Pr(Ri ≤ 2)
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Where’s the GLM?
So far just estimating the histogram 

How to make it a function of 
variables? 

(1) Stratify cutpoints 

(2) O!set each cutpoint by value of 
linear model ϕi



Where’s the GLM?
So far just estimating the histogram 

How to make it a function of 
variables? 

(1) Stratify cutpoints 

(2) O!set each cutpoint by value of 
linear model

log Pr(Ri ≤ k)
1 − Pr(Ri ≤ k) = αk + ϕi

ϕi = βxi

Ri ∼ OrderedLogit(ϕi, α)

ϕi

ϕi

ϕi
ϕi



ϕi
log Pr(Ri ≤ k)

1 − Pr(Ri ≤ k) = αk + ϕiαk







Ri ∼ OrderedLogit(ϕi, α)

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)

RX S
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Start o! easy:

ϕi = βAAi + βCCi + βIIi



Ri ∼ OrderedLogit(ϕi, α)
ϕi = βAAi + βCCi + βIIi

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)

data(Trolley) 
d <- Trolley 
dat <- list( 
    R = d$response, 
    A = d$action, 
    I = d$intention, 
    C = d$contact 
) 

mRX <- ulam( 
    alist( 

        R ~ dordlogit(phi,alpha), 
        phi <- bA*A + bI*I + bC*C, 
        c(bA,bI,bC) ~ normal(0,0.5), 
        alpha ~ normal(0,1) 

    ) , data=dat , chains=4 , cores=4 )
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n_eff = 1494bC n_eff = 1853bI n_eff = 1321bA

n_eff = 929alpha[1] n_eff = 955alpha[2] n_eff = 1129alpha[3]

n_eff = 1361alpha[4] n_eff = 1545alpha[5] n_eff = 1810alpha[6]



Ri ∼ OrderedLogit(ϕi, α)
ϕi = βA,iAi + βC,i + βI,i

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)

data(Trolley) 
d <- Trolley 
dat <- list( 
    R = d$response, 
    A = d$action, 
    I = d$intention, 
    C = d$contact 
) 

mRX <- ulam( 
    alist( 

        R ~ dordlogit(phi,alpha), 
        phi <- bA*A + bI*I + bC*C, 
        c(bA,bI,bC) ~ normal(0,0.5), 
        alpha ~ normal(0,1) 

    ) , data=dat , chains=4 , cores=4 )

> precis(mRX,2) 
          mean   sd  5.5% 94.5% n_eff Rhat4 
bC       -0.94 0.05 -1.02 -0.87  1494     1 
bI       -0.71 0.04 -0.77 -0.65  1853     1 
bA       -0.69 0.04 -0.76 -0.63  1321     1 
alpha[1] -2.82 0.05 -2.89 -2.74   929     1 
alpha[2] -2.14 0.04 -2.20 -2.07   955     1 
alpha[3] -1.56 0.04 -1.62 -1.49  1129     1 
alpha[4] -0.54 0.04 -0.59 -0.48  1361     1 
alpha[5]  0.13 0.04  0.07  0.19  1545     1 
alpha[6]  1.04 0.04  0.97  1.10  1810     1
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# plot predictive distributions for each treatment 

vals <- c(0,0,0) 
Rsim <- mcreplicate( 100 , 
sim(mRX,data=list(A=vals[1],I=vals[2],C=vals[3])) , 
mc.cores=6 ) 

simplehist(as.vector(Rsim),lwd=8,col=2,xlab="Response") 
mtext(concat("A=",vals[1],", I=",vals[2],", 
C=",vals[3]))
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Ri ∼ OrderedLogit(ϕi, α)
ϕi = βAAi + βCCi + βIIi

β ∼ Normal(0,0.5)
αj ∼ Normal(0,1)
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What about the competing causes?



Ri ∼ OrderedLogit(ϕi, α)
ϕi = βA,G[i]Ai + βC,G[i]Ci + βI,G[i]Ii

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)
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Total e!ect of gender:



# total effect of gender 
dat$G <- iflelse(d$male==1,2,1) 
mRXG <- ulam( 
    alist( 

        R ~ dordlogit(phi,alpha), 
        phi <- bA[G]*A + bI[G]*I + bC[G]*C, 
        bA[G] ~ normal(0,0.5), 
        bI[G] ~ normal(0,0.5), 
        bC[G] ~ normal(0,0.5), 
        alpha ~ normal(0,1) 

    ) , data=dat , chains=4 , cores=4 )

Ri ∼ OrderedLogit(ϕi, α)

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)

ϕi = βA,G[i]Ai + βC,G[i]Ci + βI,G[i]Ii



# total effect of gender 
dat$G <- iflelse(d$male==1,2,1) 
mRXG <- ulam( 
    alist( 

        R ~ dordlogit(phi,alpha), 
        phi <- bA[G]*A + bI[G]*I + bC[G]*C, 
        bA[G] ~ normal(0,0.5), 
        bI[G] ~ normal(0,0.5), 
        bC[G] ~ normal(0,0.5), 
        alpha ~ normal(0,1) 

    ) , data=dat , chains=4 , cores=4 )

Ri ∼ OrderedLogit(ϕi, α)
ϕi = βA,G[i],iAi + βC,G[i],i + βI,G[i],i

β_ ∼ Normal(0,0.5)
αj ∼ Normal(0,1)

> precis(mRXG,2) 
          mean   sd  5.5% 94.5% n_eff Rhat4 
bA[1]    -0.88 0.05 -0.96 -0.80  1858  1.00 
bA[2]    -0.53 0.05 -0.61 -0.45  1724  1.00 
bI[1]    -0.90 0.05 -0.97 -0.82  2189  1.00 
bI[2]    -0.55 0.05 -0.63 -0.48  2382  1.00 
bC[1]    -1.06 0.07 -1.17 -0.95  2298  1.00 
bC[2]    -0.84 0.06 -0.94 -0.74  2000  1.00 
alpha[1] -2.83 0.05 -2.90 -2.75  1054  1.01 
alpha[2] -2.15 0.04 -2.21 -2.08  1104  1.00 
alpha[3] -1.56 0.04 -1.62 -1.50  1076  1.00 
alpha[4] -0.53 0.04 -0.59 -0.47  1080  1.00 
alpha[5]  0.14 0.04  0.09  0.20  1216  1.00 
alpha[6]  1.06 0.04  1.00  1.12  1532  1.00
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Hang on! "is is a voluntary sample
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Pparticipation

Conditioning on P makes E,Y,G covary in sample



Endogenous selection
Sample is selected on a collider 

Induces misleading associations among 
variables 

Not possible here to estimate total e!ect 
of G, BUT can get direct e!ect 

Need to stratify by E and Y and G
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PAUSE



Ordered monotonic predictors
Education is an ordered category 

Unlikely that each level has same e!ect 

Want a parameter for each level 

But how to enforce ordering, so that 
each level has larger (or smaller) e!ect 
than previous?
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Ordered monotonic predictors
1 (elementary) ϕi = 0

2 (middle school) ϕi = δ1
3 (some high school) ϕi = δ1 + δ2

4 (high school) ϕi = δ1 + δ2 + δ3
5 (some college) ϕi = δ1 + δ2 + δ3 + δ4

6 (college) ϕi = δ1 + δ2 + δ3 + δ4 + δ5
7 (master’s) ϕi = δ1 + δ2 + δ3 + δ4 + δ5 + δ6

8 (doctorate) ϕi = δ1 + δ2 + δ3 + δ4 + δ5 + δ6 + δ7
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Ordered monotonic predictors
1 (elementary) ϕi = 0

2 (middle school) ϕi = δ1
3 (some high school) ϕi = δ1 + δ2

4 (high school) ϕi = δ1 + δ2 + δ3
5 (some college) ϕi = δ1 + δ2 + δ3 + δ4

6 (college) ϕi = δ1 + δ2 + δ3 + δ4 + δ5
7 (master’s) ϕi = δ1 + δ2 + δ3 + δ4 + δ5 + δ6

8 (doctorate) ϕi = δ1 + δ2 + δ3 + δ4 + δ5 + δ6 + δ7 = βE

maximum e!ect 
of education



Ordered monotonic predictors
1 (elementary)

2 (middle school)

3 (some high school)

4 (high school)

5 (some college)

6 (college)

7 (master’s)

8 (doctorate)

7

∑
j=0

δj = 1

δ0 = 0



Ordered monotonic predictors
1 (elementary)

2 (middle school)

ϕi = βE

Ei−1

∑
j=0

δj

3 (some high school)

4 (high school)

5 (some college)

6 (college)

7 (master’s)

8 (doctorate)

proportion of 
maximum e!ectmaximum e!ect

education level



ϕi = βE

Ei−1

∑
j=0

δj + . . .

Ri ∼ OrderedLogit(ϕi, α)

αj ∼ Normal(0,1)
β_ ∼ Normal(0,0.5)

Ordered monotonic priors

How do we set priors for the 
delta parameters? 

delta parameters form a simplex 

Simplex: vector that sums to 1
δj ∼ ?



δ ∼ Dirichlet(a)
a = [2,2,2,2,2,2,2]

δ ∼ Dirichlet(a)
a = [10,10,10,10,10,10,10]



δ ∼ Dirichlet(a)
a = [2,2,2,2,2,2,2]

δ ∼ Dirichlet(a)
a = [1,2,3,4,5,6,7]



δ ∼ Dirichlet(a)

edu_levels <- c( 6 , 1 , 8 , 4 , 7 , 2 , 5 , 3 ) 
edu_new <- edu_levels[ d$edu ] 

dat$E <- edu_new 
dat$a <- rep(2,7) # dirichlet prior 

mRXE <- ulam( 
    alist( 

        R ~ ordered_logistic( phi , alpha ), 
        phi <- bE*sum( delta_j[1:E] ) +  
               bA*A + bI*I + bC*C, 
        alpha ~ normal( 0 , 1 ), 
        c(bA,bI,bC,bE) ~ normal( 0 , 0.5 ), 
        vector[8]: delta_j <<- append_row( 0 , delta ), 
        simplex[7]: delta ~ dirichlet( a ) 

    ), data=dat , chains=4 , cores=4 )

ϕi = βE

Ei−1

∑
j=0

δj + . . .

Ri ∼ OrderedLogit(ϕi, α)

αj ∼ Normal(0,1)
β_ ∼ Normal(0,0.5)



δ ∼ Dirichlet(a)

edu_levels <- c( 6 , 1 , 8 , 4 , 7 , 2 , 5 , 3 ) 
edu_new <- edu_levels[ d$edu ] 

dat$E <- edu_new 
dat$a <- rep(2,7) # dirichlet prior 

mRXE <- ulam( 
    alist( 

        R ~ ordered_logistic( phi , alpha ), 
        phi <- bE*sum( delta_j[1:E] ) +  
               bA*A + bI*I + bC*C, 
        alpha ~ normal( 0 , 1 ), 
        c(bA,bI,bC,bE) ~ normal( 0 , 0.5 ), 
        vector[8]: delta_j <<- append_row( 0 , delta ), 
        simplex[7]: delta ~ dirichlet( a ) 

    ), data=dat , chains=4 , cores=4 )

ϕi = βE

Ei−1

∑
j=0

δj + . . .

Ri ∼ OrderedLogit(ϕi, α)

αj ∼ Normal(0,1)
β_ ∼ Normal(0,0.5)

> precis(mRXE,2) 
          mean   sd  5.5% 94.5% n_eff Rhat4 
alpha[1] -3.07 0.14 -3.32 -2.86   793     1 
alpha[2] -2.39 0.14 -2.63 -2.17   804     1 
alpha[3] -1.81 0.14 -2.05 -1.60   811     1 
alpha[4] -0.79 0.14 -1.03 -0.57   799     1 
alpha[5] -0.12 0.14 -0.36  0.10   804     1 
alpha[6]  0.79 0.14  0.54  1.00   831     1 
bE       -0.31 0.16 -0.57 -0.06   838     1 
bC       -0.96 0.05 -1.04 -0.88  1757     1 
bI       -0.72 0.04 -0.77 -0.66  1982     1 
bA       -0.70 0.04 -0.77 -0.64  1779     1 
delta[1]  0.22 0.13  0.05  0.47  1227     1 
delta[2]  0.14 0.09  0.03  0.31  2258     1 
delta[3]  0.20 0.11  0.05  0.38  2256     1 
delta[4]  0.17 0.09  0.04  0.34  1926     1 
delta[5]  0.04 0.05  0.01  0.12   945     1 
delta[6]  0.10 0.07  0.02  0.23  1870     1 
delta[7]  0.13 0.08  0.03  0.27  2335     1



δ ∼ Dirichlet(a)

ϕi = βE

Ei−1

∑
j=0

δj + . . .

Ri ∼ OrderedLogit(ϕi, α)

αj ∼ Normal(0,1)
β_ ∼ Normal(0,0.5)

> precis(mRXE,2) 
          mean   sd  5.5% 94.5% n_eff Rhat4 
alpha[1] -3.07 0.14 -3.32 -2.86   793     1 
alpha[2] -2.39 0.14 -2.63 -2.17   804     1 
alpha[3] -1.81 0.14 -2.05 -1.60   811     1 
alpha[4] -0.79 0.14 -1.03 -0.57   799     1 
alpha[5] -0.12 0.14 -0.36  0.10   804     1 
alpha[6]  0.79 0.14  0.54  1.00   831     1 
bE       -0.31 0.16 -0.57 -0.06   838     1 
bC       -0.96 0.05 -1.04 -0.88  1757     1 
bI       -0.72 0.04 -0.77 -0.66  1982     1 
bA       -0.70 0.04 -0.77 -0.64  1779     1 
delta[1]  0.22 0.13  0.05  0.47  1227     1 
delta[2]  0.14 0.09  0.03  0.31  2258     1 
delta[3]  0.20 0.11  0.05  0.38  2256     1 
delta[4]  0.17 0.09  0.04  0.34  1926     1 
delta[5]  0.04 0.05  0.01  0.12   945     1 
delta[6]  0.10 0.07  0.02  0.23  1870     1 
delta[7]  0.13 0.08  0.03  0.27  2335     1

RX S

YE G

P
bE not interpretable
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δ ∼ Dirichlet(a)

ϕi = βE,G[i]

Ei−1

∑
j=0

δj + .

Ri ∼ OrderedLogit(ϕi, α)

αj ∼ Normal(0,1)
β_ ∼ Normal(0,0.5)

βA,G[i]Ai + βI,G[i]Ii + βC,G[i]Ci + .

βY,G[i]Yi
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4 chains times 2 threads each = 8 cores

Sampling durations (minutes): 
        warmup sample total 
chain:1   4.41   1.80  6.21 
chain:2   4.69   1.87  6.56 
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chain:4   4.21   1.84  6.05

Sampling durations (minutes): 
        warmup sample total 
chain:1   6.53   3.99 10.52 
chain:2   7.33   2.66  9.99 
chain:3   6.88   3.70 10.58 
chain:4   6.40   2.63  9.03

1 thread each

2 threads each
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> precis(mRXEYGt,2) 
          mean   sd  5.5% 94.5% n_eff Rhat4 
alpha[1] -2.89 0.10 -3.06 -2.73   729     1 
alpha[2] -2.21 0.10 -2.37 -2.06   728     1 
alpha[3] -1.62 0.10 -1.78 -1.47   724     1 
alpha[4] -0.58 0.10 -0.74 -0.43   729     1 
alpha[5]  0.11 0.10 -0.05  0.26   726     1 
alpha[6]  1.03 0.10  0.87  1.18   746     1 
bA[1]    -0.56 0.06 -0.65 -0.47  1932     1 
bA[2]    -0.81 0.05 -0.90 -0.73  2013     1 
bI[1]    -0.66 0.05 -0.74 -0.58  2539     1 
bI[2]    -0.76 0.05 -0.84 -0.68  2283     1 
bC[1]    -0.77 0.07 -0.88 -0.65  2029     1 
bC[2]    -1.09 0.07 -1.20 -0.99  2012     1 
bE[1]    -0.63 0.14 -0.85 -0.42   810     1 
bE[2]     0.41 0.14  0.19  0.62   795     1 
bY[1]     0.00 0.03 -0.05  0.05  2740     1 
bY[2]    -0.13 0.03 -0.18 -0.09  1426     1 
delta[1]  0.15 0.08  0.04  0.31  1759     1 
delta[2]  0.15 0.09  0.04  0.30  2440     1 
delta[3]  0.29 0.11  0.11  0.46  2001     1 
delta[4]  0.08 0.05  0.02  0.17  2414     1 
delta[5]  0.06 0.04  0.01  0.14  1087     1 
delta[6]  0.24 0.07  0.13  0.34  2301     1 
delta[7]  0.04 0.02  0.01  0.08  2755     1
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Complex causal e!ects
Causal e!ects (predicted consequences of 
intervention) require marginalization 

Example: Causal e!ect of E requires distribution 
of Y and G to average over 

Problem 1: Should not marginalize over this 
sample—cursed P! Post-stratify to new target. 

Problem 2: Should not set all Y to same E 

Example: Causal e!ect of Y requires e!ect of Y 
on E, which we cannot estimate (P again!)
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Problem 2: Should not set all Y to same E 

Example: Causal e!ect of Y requires e!ect of Y 
on E, which we cannot estimate (P again!)
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No matter how complex, still just a generative 
simulation using posterior samples 

Need generative model to plan estimation 

Need generative model to compute estimates
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30 stories (S)
> table(d$story) 

 aqu  boa  box  bur  car  che  pon  rub  sha  shi  spe  swi  
 662  662 1324 1324  662  662  662  662  662  662  993  993 



Repeat observations
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U

30 stories (S)

331 individuals (U)

> table(d$story) 

 aqu  boa  box  bur  car  che  pon  rub  sha  shi  spe  swi  
 662  662 1324 1324  662  662  662  662  662  662  993  993 

> table(d$id) 

96;434 96;445 96;451 96;456 96;458 96;466 96;467 96;474 96;480 96;481 96;497  
    30     30     30     30     30     30     30     30     30     30     30  
96;498 96;502 96;505 96;511 96;512 96;518 96;519 96;531 96;533 96;538 96;547  
    30     30     30     30     30     30     30     30     30     30     30  
96;550 96;553 96;555 96;558 96;560 96;562 96;566 96;570 96;581 96;586 96;591  
    30     30     30     30     30     30     30     30     30     30     30



Course Schedule
Week 1 Bayesian inference Chapters 1, 2, 3
Week 2 Linear models & Causal Inference Chapter 4
Week 3 Causes, Confounds & Colliders Chapters 5 & 6
Week 4 Over$tting / MCMC Chapters 7, 8, 9
Week 5 Generalized Linear Models Chapters 10, 11
Week 6 Ordered categories & Multilevel models Chapters 12 & 13
Week 7 More Multilevel models Chapters 13 & 14
Week 8 Multilevel models & Gaussian processes Chapter 14
Week 9 Measurement & Missingness Chapter 15
Week 10 Generalized Linear Madness Chapter 16

https://github.com/rmcelreath/stat_rethinking_2023
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have arguably resulted from trying 
to predict a complex system that 
is still poorly understood and for 
which a sound model to combine 
expert causal knowledge with the 
available data is lacking.29

!e striking contrast between 
the cautious attitude of most 
traditional data scientists (statisti-
cians, epidemiologists, economists, 
political scientists…) and the “can 
do” attitude of many computer 
scientists, informaticians, and  
others seems to be, to a large extent, 
the consequence of the di"erent 
complexity of the causal questions 

historically tackled by each of 
these groups. Epidemiologists and 
other data scientists working with 
extremely complex systems tend to 
focus on the relatively modest goal 
of designing observational analyses 
to answer narrow causal questions 
about the average causal effect  
of a variable (such as epoetin treat-
ment), rather than try to explain 
the causal structure of the entire 
system or identify globally optimal 
decision-making strategies. 

On the other hand, newcomers 
to data science have often focused 
on systems governed by known 

laws (like board games or self-
driving cars), so it is not surprising 
that they have deemphasized the 
distinction between prediction and 
causal inference. Bringing this dis-
tinction to the forefront is, however, 
urgent as an increasing number of 
data scientists address the causal 
questions traditionally asked by 
health and social scientists. Sophis-
ticated prediction algorithms may 
su#ce to develop unbeatable Go 
software and, eventually, safe  
self-driving vehicles, but causal 
inferences in complex systems (say, 
the e"ects of clinical strategies to 

 Data Science Task
Description Prediction Causal inference

Example of 
scientific question

How can women aged 
60–80 years with stroke 
history be partitioned in 
classes defined by their 
characteristics?

What is the probability 
of having a stroke next 
year for women with cer-
tain characteristics? 

Will starting a statin 
reduce, on average, the 
risk of stroke in women 
with certain characteris-
tics?

Data • Eligibility criteria
• Features (symptoms, 
clinical parameters …)

• Eligibility criteria
• Output (diagnosis of 
stroke over the next year)
• Inputs (age, blood 
pressure, history of 
stroke, diabetes at  
baseline)

• Eligibility criteria
• Outcome (diagnosis of 
stroke over the next year)
• Treatment (initiation of 
statins at baseline)
• Confounders
• Effect modifiers 
(optional)

Examples of  
analytics

Cluster analysis
…

Regression
Decision trees
Random forests
Support vector machines
Neural networks
…

Regression
Matching
Inverse probability 
weighting
G-formula
G-estimation
Instrumental variable  
estimation
…

Table 1—Examples of Tasks Conducted by  
Data Scientists Working with Electronic Health Records

29Ross, C., and Swetlitz, I. 2017. IBM pitched its Watson supercomputer as a revolution in cancer care. It’s nowhere close. STAT. https://www.statnews.com/2017/09/05/
watson-ibm-cancer/.
30Pearl, J. 2018. Theoretical Impediments to Machine Learning With Seven Sparks from the Causal Revolution. Technical Report R-475 (http://ftp.cs.ucla.edu/pub/stat_ser/
r475.pdf. Accessed April 26, 2018.

Hernán et al. A second chance to get causal inference right
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r475.pdf. Accessed April 26, 2018.
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The Big Data Paradox in vaccine uptake
We focus on the Delphi–Facebook and Census Household Pulse surveys 
because their large sample sizes (each greater than 10,000 respond-
ents20) present an opportunity to examine the Big Data Paradox1 in sur-
veys. The Census Household Pulse is an experimental product designed 
to rapidly measure pandemic-related behaviour. Delphi–Facebook has 
stated that the intent of their survey is to make comparisons over space, 
time and subgroups, and that point estimates should be interpreted 
with caution3. However, despite these intentions, Delphi–Facebook has 
reported point estimates of vaccine uptake in its own publications11,21.

Delphi–Facebook and Census Household Pulse surveys persistently 
overestimate vaccine uptake relative to the CDC’s benchmark (Fig. 1a) 
even taking into account Benchmark Imprecision (Fig. 1b) as explained 
in ‘Decomposing Error in COVID Surveys’. Despite being the smallest 
survey by an order of magnitude, the estimates of Axios–Ipsos track 
well with the CDC rates (Fig. 1a), and their 95% confidence intervals 
contain the benchmark estimate from the CDC in 10 out of 11 surveys 
(an empirical coverage probability of 91%).

One might hope that estimates of changes in first-dose vaccine 
uptake are correct, even if each snapshot is biased. However, errors have 
increased over time, from just a few percentage points in January 2021 
to Axios-Ipsos’ 4.2 percentage points [1–7 percentage points with 5% 
benchmark imprecision (BI)], Census Household Pulse’s 14 percentage 

points [5% BI: 11–17] and Delphi-Facebook’s 17 percentage points  
[5% BI: 14–20] by mid-May 2021 (Fig. 1b). For context, for a state that  
is near the herd immunity threshold (70–80% based on recent  
estimates22), a discrepancy of 10 percentage points in vaccination rates 
could be the difference between containment and uncontrolled expo-
nential growth in new SARS-CoV-2 infections.

Conventional statistical formulas for uncertainty further mislead 
when applied to biased big surveys because as sample size increases, 
bias (rather than variance) dominates estimator error. Figure 1a shows 
95% confidence intervals for vaccine uptake based on the reported 
sampling standard errors and weighting design effects of each survey23. 
Axios–Ipsos has the widest confidence intervals, but also the smallest 
design effects (1.1–1.2), suggesting that its accuracy is driven more by 
minimizing bias in data collection rather than post-survey adjustment. 
The 95% confidence intervals of Census Household Pulse are widened 
by large design effects (4.4–4.8) but they are still too narrow to include 
the true rate of vaccine uptake in almost all survey waves. The confi-
dence intervals for Delphi–Facebook are extremely small, driven by 
large sample size and moderate design effects (1.4–1.5), and give us a 
negligible chance of being close to the truth.

One benefit of such large surveys might be to compare estimates of 
spatial and demographic subgroups24–26. However, relative to the CDC’s 
contemporaneously reported state-level estimates, which did not include 
retroactive corrections, Delphi–Facebook and Census Household Pulse 

Table 1 | Comparison of survey designs

Axios-Ipsos Census Household Pulse Delphi-Facebook

Recruitment mode Address-based mail sample to Ipsos 
KnowledgePanel

SMS and email Facebook Newsfeed

Interview mode Online Online Online

Average size 1,000/wave 75,000/wave 250,000/week

Sampling frame Ipsos KnowledgePanel; internet/
tablets provided to ∼5% of panelists 
who lack home internet

Census Bureau’s Master Address 
File (individuals for whom email /  
phone contact information is 
available)

Facebook active users

Vaccine uptake question “Do you personally know anyone who 
has already received the COVID-19 
vaccine?”

“Have you received a COVID-19 
vaccine?”

“Have you had a COVID-19 vaccination?”

Vaccine uptake definition “Yes, I have received the vaccine” “Yes” “Yes”

Other vaccine uptake 
response options

“Yes, a member of my immediate 
family”, “Yes, someone else”, “No”

“No” “No”, “I don’t know”

Weighting variables Gender by age, race, education, 
Census region, metropolitan status, 
household income, partisanship.

Education by age by sex by state, 
race/ethnicity by age by sex by 
state, household size

Stage 1: age, gender “other attributes which we have 
found in the past to correlate with survey outcomes” 
to FAUB; Stage 2: state by age by gender

Comparison of key design choices across the Axios–Ipsos, Census Household Pulse and Delphi–Facebook studies. All surveys target the US adult population. See Extended Data Table 1 for 
additional comparisons and Methods for additional implementation details.

CDC (benchmark)

Delphi–Facebook (n ≈ 250,000)

Axios–Ipsos (n ≈ 1,000)

Census Household Pulse
(n ≈ 75,000)

0

20

40

60

80

Ja
n 2

02
1

Fe
b 20

21

M
ar

 20
21

Apr 2
02

1

M
ay

 20
21

Ja
n 2

02
1

Fe
b 20

21

M
ar

 20
21

Apr 2
02

1

M
ay

 20
21

Ja
n 2

02
1

Fe
b 20

21

M
ar

 20
21

Apr 2
02

1

M
ay

 20
21

Ja
n 2

02
1

Fe
b 20

21

M
ar

 20
21

Apr 2
02

1

M
ay

 20
21

Ja
n 2

02
1

Fe
b 20

21

M
ar

 20
21

Apr 2
02

1

M
ay

 20
21

Va
cc

in
at

ed
 (a

t l
ea

st
 o

ne
 d

os
e)

 (%
)

a

0
0.05
0.10
0.15
0.20

Y n
– 

Y N

b

0
0.003
0.006
0.009

U Y
, R

ˆ

c

0
100
200
300
400
500

(N
 –

 n
)/n

d

0
0.1
0.2
0.3
0.4
0.5

V Y

e

Axios–Ipsos Census Household Pulse Delphi–Facebook

CDC
(benchmark)

Fig 1 | Errors in estimates of vaccine uptake.  
a, Estimates of vaccine uptake for US adults in 2021 
compared to CDC benchmark data, plotted by the 
end date of each survey wave. Points indicate each 
study’s weighted estimate of first-dose vaccine 
uptake, and intervals are 95% confidence intervals 
using reported standard errors and design effects. 
Delphi–Facebook has n = 4,525,633 across 19 
waves, Census Household Pulse has n = 606,615 
across 8 waves and Axios–Ipsos has n = 11,421 
across 11 waves. Delphi–Facebook’s confidence 
intervals are too small to be visible. b, Total error 
Y Y−n N. c, Data defect correlation ρ̂Y R, . d, Data 
scarcity N n n( − )/ . e, Inherent problem difficulty 
σY. Shaded bands represent scenarios of ±5% 
(darker) and ±10% (lighter) imprecision in the CDC 
benchmark relative to reported values (points).  
b–e comprise the decomposition in equation (1).

Bradley et al. 2021 Unrepresentative big surveys signi$cantly overestimated US vaccine uptake
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Traditional polls

truth



Hitting the Target
Basic problem: Sample is not the target 

Post-strati!cation & Transport: 
Transparent, principled methods for 
extrapolating from sample to population 

Post-strat requires casual model of reasons 
sample di!ers from population 

NO CAUSES IN; NO DESCRIPTION OUT



Cartoon example

A B C D

Four age groups:



Cartoon example

A B C D

Four age groups:

Proportions of sample:

A B C D



Multi-level regression & post-strati$cation (MRP)



X YAge Attitude

Selection nodes



X YAge Attitude

S
Selection 
by Age

Selection nodes

S : “Sample di"ers because of 
di"erences in what I point to”



Selection ubiquitous
Many sources of data are already 
$ltered by selection e!ects 

Crime & health statistics 

Employment & job performance 

Museum collections 

Right thing to do depends upon 
causes of selection



Age Attitude

Selection 
by Age

X Y
S

“Young people don’t answer their phones”



X Y
S

“Anarchists 
don’t answer 
their phones”

X Y
S

“Young people 
don’t answer 
their phones”



X YAge Attitude

S
Selection 
by Age

“Young people don’t answer their phones 
and misreport their age”

X★Reported 
Age



https://psyarxiv.com/fqukp



Many Qs are really post-strat Qs
Justi$ed descriptions require causal 
information and post-strati$cation 

Causal e!ects also, e.g. vaccines 

Time trends should account for 
changes in measurement/population 

Comparison is post-strati$cation 
from one population to another



Honest Methods 
for 

Modest Questions
Satellites

Surveys
Almanacs CollectionsSurveys

Excavations

Archives
Folktales

Ethnography
ScrapingRecords

AlmanacsEthnography

Archives

Collections



Simple 4-step plan for honest digital scholarship

(1) What are we trying to describe? 

(2) What is the ideal data for doing so? 

(3) What data do we actually have? 

(4) What causes the di!erences between (2) and (3)? 

(5) [optional] Is there a way to use (3) + (4) to do (1)?




