Statistical Rethinking

11. Ordered Categories

HOW TO SOLVE IT A NEW ASPECT OF

MATHEMATICAL METHOD

by G. POLYA

George Pólya (1887–1985)

First.

You have to understand the problem.

HO

A NEV

MATH

by G

What is the unknown? What are the data? What is the condition? Is it possible to satisfy the condition? Is the condition sufficient to determine the unknown? Or is it insufficient? Or redundant? Or contradictory? Draw a figure. Introduce suitable notation. Separate the various parts of the condition. Can you write them down?

Second.

Find the connection between the data and the unknown. You may be obliged to consider auxiliary problems if an immediate connection cannot be found. You should obtain eventually a plan of the solution.

be useful?

HOW TO SOLVE IT

UNDERSTANDING THE PROBLEM

DEVISING A PLAN

Have you seen it before? Or have you seen the same problem in a slightly different form?

Do you know a related problem? Do you know a theorem that could

Look at the unknown! And try to think of a familiar problem having the same or a similar unknown.

Here is a problem related to yours and solved before. Could you use it? Could you use its result? Could you use its method? Should you introduce some auxiliary element in order to make its use possible?

Could you restate the problem? Could you restate it still differently? Go back to definitions.

HO A NEW MATHE by G. If you cannot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or the data, or both if necessary, so that the new unknown and the new data are nearer to each other? Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

Carry out your plan.

Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? Can you prove that it is correct?

Fourth.

Examine the solution obtained.

Can you check the result? Can you check the argument? Can you derive the result differently? Can you see it at a glance? Can you use the result, or the method, for some other problem?

CARRYING OUT THE PLAN

LOOKING BACK

If you cannot solve the proposed problem try to solve first some related problem. Could you imagine a more accessible related problem? A more general problem? A more special problem? An analogous problem? Could you solve a part of the problem? Keep only a part of the condition, drop the other part; how far is the unknown then determined, how can it vary? Could you derive something useful from the data? Could you think of other data appropriate to determine the unknown? Could you change the unknown or the data, or both if necessary, so that the new unknown and the new data are nearer to each other? Did you use all the data? Did you use the whole condition? Have you taken into account all essential notions involved in the problem?

CARRYING OUT THE PLAN

Carrying out your plan of the solution, check each step. Can you see clearly that the step is correct? Can you prove that it is correct?

Third.

your plan.

How 70

Solve

It

Can't always get what you want

department

Can't always get what you want

department

Can't always get what you want

department

Philippa Foot (1920–2010)

Foot (1967) The Problem of Abortion and the Doctrine of Double Effect

2. The fat man Thomson, 1976

3. The fat villain

2. The fat man Thomson, 1976

3. The fat villain

2. The fat man Thomson, 1976

3. The fat villain

4. The loop *Costa, 1987*

5. The man in the yard Unger, 1992

Action

Action

Intention

Action

Intention

Contact

Trolley Problems

data(Trolley)

331 individuals (age, gender, edu) Voluntary participation (online) 30 different trolley problems action / intention / contact 9930 responses: How appropriate (from 1 to 7)?

Cushman et al. 2006. The role of conscious reasoning and intuition in moral judgment

Trolley Problems

data(Trolley)

331 individuals (age, gender, edu) Voluntary participation (online) 30 different trolley problems action / intention / contact 9930 responses: How appropriate (from 1 to 7)?

Estimand: How do action, intention, contact influence **response** to a trolley story?

treatment

➤ R response

influence **response** to a trolley story?

How are influences of A/I/C associated with other variables?

Ordered categories

Categories: Discrete types

cat, dog, chicken

Ordered categories: Discrete types with ordered relationships

bad, good, excellent

Distance between values not constant 2500

frequency 1500

500

 \bigcirc

Probably much easier to go from 4 to 5 than from 6 to 7

How appropriate?

Anchor points common Not everyone shares the same anchor points

Ordered = Cumulative

$\Pr(R_i = k) = \Pr(R_i \le k) - \Pr(R_i \le k - 1)$

$Pr(R_i = 3) = Pr(R_i \le 3) - Pr(R_i \le 2)$

 $Pr(R_i = 3)$

$Pr(R_i = 3) = Pr(R_i \le 3) - Pr(R_i \le 2)$

$\frac{\log \frac{\Pr(R_i \le k)}{1 - \Pr(R_i \le k)}}{\sqrt{\frac{1 - \Pr(R_i \le k)}{2}}} = \alpha_k$ *cumulative log-odds cutpoint (to estimate)*

Where's the GLM?

So far just estimating the histogram

How to make it a function of variables?

(1) Stratify cutpoints

(2) Offset each cutpoint by value of linear model ϕ_i

Where's the GLM?

So far just estimating the histogram

How to make it a function of variables?

(1) Stratify cutpoints

 $R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ (2) Offset each cutpoint by value of linear model ϕ_i

 $\phi_i = \beta x_i$

$\log \frac{\Pr(R_i \le k)}{1 - \Pr(R_i \le k)} = \alpha_k + \phi_i$

$$- \log \frac{\Pr(R_i \le k)}{1 - \Pr(R_i \le k)} = \alpha_k + \phi_i$$

Start off easy:

 $R_{i} \sim \text{OrderedLogit}(\phi_{i}, \alpha)$ $\phi_{i} = \beta_{A}A_{i} + \beta_{C}C_{i} + \beta_{I}I_{i}$ $\beta_{-} \sim \text{Normal}(0, 0.5)$ $\alpha_{j} \sim \text{Normal}(0, 1)$

```
data(Trolley)
d <- Trolley
dat <- list(</pre>
    R = d$response,
    A = d$action,
    I = d$intention,
    C = d$contact
mRX <- ulam(
    alist(
         R ~ dordlogit(phi,alpha),
         phi \langle -bA \star A + bI \star I + bC \star C,
         c(bA, bI, bC) \sim normal(0, 0.5),
         alpha \sim normal(0,1)
    ), data=dat, chains=4, cores=4)
```

 $R_{i} \sim \text{OrderedLogit}(\phi_{i}, \alpha)$ $\phi_{i} = \beta_{A}A_{i} + \beta_{C}C_{i} + \beta_{I}I_{i}$ $\beta_{-} \sim \text{Normal}(0, 0.5)$ $\alpha_{j} \sim \text{Normal}(0, 1)$


```
data(Trolley)
d <- Trolley
dat <- list(</pre>
    R = d$response,
    A = d$action,
    I = d$intention,
    C = d$contact
mRX <- ulam(
    alist(
        R ~ dordlogit(phi,alpha),
        phi <- bA*A + bI*I + bC*C,</pre>
        c(bA,bI,bC) \sim normal(0,0.5),
        alpha ~ normal(0,1)
    ), data=dat , chains=4 , cores=4 )
```

> precis(mRX,2)							
	mean	sd	5.5%	94.5%	n_eff	Rhat4	
bC	-0.94	0.05	-1.02	-0.87	1494	1	
bI	-0.71	0.04	-0.77	-0.65	1853	1	
bA	-0.69	0.04	-0.76	-0.63	1321	1	
alpha[1]	-2.82	0.05	-2.89	-2.74	929	1	
alpha[2]	-2.14	0.04	-2.20	-2.07	955	1	
alpha[3]	-1.56	0.04	-1.62	-1.49	1129	1	
alpha[4]	-0.54	0.04	-0.59	-0.48	1361	1	
alpha[5]	0.13	0.04	0.07	0.19	1545	1	
alpha[6]	1.04	0.04	0.97	1.10	1810	1	

plot predictive distributions for each treatment

vals <- c(0,0,0)
Rsim <- mcreplicate(100 ,
sim(mRX,data=list(A=vals[1],I=vals[2],C=vals[3])) ,
mc.cores=6)</pre>

simplehist(as.vector(Rsim), lwd=8, col=2, xlab="Response")
mtext(concat("A=",vals[1],", I=",vals[2],",
C=",vals[3]))

What about the competing causes?

 $R_{i} \sim \text{OrderedLogit}(\phi_{i}, \alpha)$ $\phi_{i} = \beta_{A}A_{i} + \beta_{C}C_{i} + \beta_{I}I_{i}$ $\beta \sim \text{Normal}(0, 0.5)$ $\alpha_{i} \sim \text{Normal}(0, 1)$

Total effect of gender:

$R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ $\phi_i = \beta_{A,G[i]}A_i + \beta_{C,G[i]}C_i + \beta_{I,G[i]}I_i$ $\beta \sim \text{Normal}(0,0.5)$ $\alpha_i \sim \text{Normal}(0,1)$


```
# total effect of gender
dat$G <- iflelse(d$male==1,2,1)</pre>
mRXG <- ulam(
    alist(
```

R ~ dordlogit(phi,alpha), phi <- bA[G] *A + bI[G] *I + bC[G] *C, $bA[G] \sim normal(0, 0.5),$ $bI[G] \sim normal(0, 0.5),$ $bC[G] \sim normal(0, 0.5),$ alpha ~ normal(0,1)

), data=dat, chains=4, cores=4)

 $R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ $\phi_i = \beta_{A,G[i]}A_i + \beta_{C,G[i]}C_i + \beta_{I,G[i]}I_i$ $\beta \sim \text{Normal}(0,0.5)$ $\alpha_i \sim \text{Normal}(0,1)$


```
# total effect of gender
dat$G <- iflelse(d$male==1,2,1)
mRXG <- ulam(
    alist(</pre>
```

R ~ dordlogit(phi,alpha), phi <- bA[G]*A + bI[G]*I + bC[G]*C, bA[G] ~ normal(0,0.5), bI[G] ~ normal(0,0.5), bC[G] ~ normal(0,0.5), alpha ~ normal(0,1)

), data=dat, chains=4, cores=4)

> precis(mRXG,2)

_						
	mean	sd	5.5%	94.5%	n_eff	Rhat4
bA[1]	-0.88	0.05	-0.96	-0.80	1858	1.00
bA[2]	-0.53	0.05	-0.61	-0.45	1724	1.00
bI[1]	-0.90	0.05	-0.97	-0.82	2189	1.00
bI[2]	-0.55	0.05	-0.63	-0.48	2382	1.00
bC[1]	-1.06	0.07	-1.17	-0.95	2298	1.00
bC[2]	-0.84	0.06	-0.94	-0.74	2000	1.00
alpha[1]	-2.83	0.05	-2.90	-2.75	1054	1.01
alpha[2]	-2.15	0.04	-2.21	-2.08	1104	1.00
alpha[3]	-1.56	0.04	-1.62	-1.50	1076	1.00
alpha[4]	-0.53	0.04	-0.59	-0.47	1080	1.00
alpha[5]	0.14	0.04	0.09	0.20	1216	1.00
alpha[6]	1.06	0.04	1.00	1.12	1532	1.00

Hang on! This is a voluntary sample

Hang on! This is a voluntary sample

Hang on! This is a voluntary sample

Conditioning on P makes E, Y, G covary in sample

Endogenous selection

Sample is selected on a collider

Induces misleading associations among variables

Not possible here to estimate total effect of G, BUT can get direct effect

Need to stratify by *E* and *Y* and *G*

Education is an ordered category

Unlikely that each level has same effect

Want a parameter for each level

But how to enforce ordering, so that each level has larger (or smaller) effect than previous?

education level (ordered)

- $\phi_i = 0$ 1 (elementary)
- 2 (middle school)
- 3 (some high school)
 - 4 (high school)
 - **5 (some college)** $\phi_i = \delta_1 + \delta_2 + \delta_3 + \delta_4$

 $\phi_i = \delta_1 + \delta_2$ $\phi_i = \delta_1 + \delta_2 + \delta_3$

 $\phi_i = \delta_1$

- 1 (elementary) $\phi_i = 0$
- 2 (middle school) $\phi_i = \delta_1$
- 3 (some high school) $\phi_i = \delta_1 + \delta_2$
 - 4 (high school) $\phi_i = \delta_1 + \delta_2 + \delta_3$
 - **5 (some college)** $\phi_i = \delta_1 + \delta_2 + \delta_3 + \delta_4$

1 (elementary) 2 (middle school) 3 (some high school) 4 (high school) **5 (some college)** 6 (college) 7 (master's) 8 (doctorate)

$\delta_0 = 0$ $\sum_{j=0}^{7} \delta_j = 1$

1 (elementary) 2 (middle school) 3 (some high school) 4 (high school) 5 (some college) 6 (college) 7 (master's) 8 (doctorate)

How do we set priors for the delta parameters?

delta parameters form a simplex

Simplex: vector that sums to 1

 $R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ $\phi_i = \beta_E \sum_{j=1}^{E_i - 1} \delta_j + \dots$ j=0 $\alpha_i \sim \text{Normal}(0,1)$ $\beta \sim \text{Normal}(0,0.5)$ $\delta_i \sim ?$


```
edu_levels <- c( 6 , 1 , 8 , 4 , 7 , 2 , 5 , 3 )
edu_new <- edu_levels[ d$edu ]</pre>
```

```
dat$E <- edu_new
dat$a <- rep(2,7) # dirichlet prior</pre>
```

```
mRXE <- ulam(
    alist(</pre>
```

R ~ ordered_logistic(phi , alpha), phi <- bE*sum(delta_j[1:E]) + bA*A + bI*I + bC*C, alpha ~ normal(0 , 1), c(bA,bI,bC,bE) ~ normal(0 , 0.5), vector[8]: delta_j <<- append_row(0 , delta), simplex[7]: delta ~ dirichlet(a)
), data=dat , chains=4 , cores=4)

 $R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ $\phi_i = \beta_E \sum_{j=1}^{E_i - 1} \delta_j + \dots$ i=0 $\alpha_i \sim \text{Normal}(0,1)$ $\beta \sim \text{Normal}(0,0.5)$ $\delta \sim \text{Dirichlet}(a)$

```
edu_levels <- c( 6 , 1 , 8 , 4 , 7 , 2 , 5 , 3 )
edu_new <- edu_levels[ d$edu ]</pre>
```

```
dat$E <- edu_new</pre>
dat$a <- rep(2,7) # dirichlet prior</pre>
```

```
mRXE <- ulam(
    alist(
```

R ~ ordered_logistic(phi , alpha), phi <- bE*sum(delta_j[1:E]) +</pre> bA*A + bI*I + bC*C, $alpha \sim normal(0, 1),$ $c(bA, bI, bC, bE) \sim normal(0, 0.5),$ vector[8]: delta_j <<- append_row(0</pre> simplex[7]: delta ~ dirichlet(a)), data=dat , chains=4 , cores=4)

<pre>> precis(mRXE,2)</pre>							
	mean	sd	5.5%	94.5%	n_eff	Rhat4	
alpha[1]	-3.07	0.14	-3.32	-2.86	793	1	
alpha[2]	-2.39	0.14	-2.63	-2.17	804	1	
alpha[3]	-1.81	0.14	-2.05	-1.60	811	1	
alpha[4]	-0.79	0.14	-1.03	-0.57	799	1	
alpha[5]	-0.12	0.14	-0.36	0.10	804	1	
alpha[6]	0.79	0.14	0.54	1.00	831	1	
bE	-0.31	0.16	-0.57	-0.06	838	1	
bC	-0.96	0.05	-1.04	-0.88	1757	1	
bI	-0.72	0.04	-0.77	-0.66	1982	1	
bA	-0.70	0.04	-0.77	-0.64	1779	1	
delta[1]	0.22	0.13	0.05	0.47	1227	1	
delta[2]	0.14	0.09	0.03	0.31	2258	1	
delta[3]	0.20	0.11	0.05	0.38	2256	1	
delta[4]	0.17	0.09	0.04	0.34	1926	1	
delta[5]	0.04	0.05	0.01	0.12	945	1	
delta[6]	0.10	0.07	0.02	0.23	1870	1	
delta[7]	0.13	0.08	0.03	0.27	2335	1	

bE not interpretable

> precis(mRXE,2)							
	mean	sd	5.5%	94.5%	n_eff	Rhat4	
alpha[1]	-3.07	0.14	-3.32	-2.86	793	1	
alpha[2]	-2.39	0.14	-2.63	-2.17	804	1	
alpha[3]	-1.81	0.14	-2.05	-1.60	811	1	
alpha[4]	-0.79	0.14	-1.03	-0.57	799	1	
alpha[5]	-0.12	0.14	-0.36	0.10	804	1	
alpha[6]	0.79	0.14	0.54	1.00	831	1	
bE	-0.31	0.16	-0.57	-0.06	838	1	
bC	-0.96	0.05	-1.04	-0.88	1757	1	
bI	-0.72	0.04	-0.77	-0.66	1982	1	
bA	-0.70	0.04	-0.77	-0.64	1779	1	
delta[1]	0.22	0.13	0.05	0.47	1227	1	
delta[2]	0.14	0.09	0.03	0.31	2258	1	
delta[3]	0.20	0.11	0.05	0.38	2256	1	
delta[4]	0.17	0.09	0.04	0.34	1926	1	
delta[5]	0.04	0.05	0.01	0.12	945	1	
delta[6]	0.10	0.07	0.02	0.23	1870	1	
delta[7]	0.13	0.08	0.03	0.27	2335	1	

dat\$Y <- standardize(d\$age)</pre>

```
mRXEYGt <- ulam(
    alist(
        <u>R ~ ordered_logistic( phi , alpha ),</u>
        phi <- bE[G]*sum( delta_j[1:E] ) +</pre>
               bA[G]*A + bI[G]*I + bC[G]*C +
               bY[G]*Y,
        alpha \sim normal(0, 1),
        bA[G] \sim normal(0, 0.5),
        bI[G] \sim normal(0, 0.5),
        bC[G] \sim normal(0, 0.5),
        bE[G] \sim normal(0, 0.5),
        bY[G] ~ normal( 0, 0.5),
        vector[8]: delta_j <<- append_row( 0 , delta ),</pre>
        simplex[7]: delta ~ dirichlet( a )
    ), data=dat , chains=4 , cores=4 , threads=2 )
```

 $R_i \sim \text{OrderedLogit}(\phi_i, \alpha)$ $\phi_i = \beta_{E,G[i]} \sum_{j=1}^{E_i - 1} \delta_j + \delta_j$ j=0 $\beta_{A,G[i],i}A_i + \beta_{I,G[i]}I_i + \beta_{C,G[i]}C_i +$ $\beta_{Y,G[i]}Y_i$ $\alpha_i \sim \text{Normal}(0,1)$ ~ Normal((0,0.5)) ß $\delta \sim \text{Dirichlet}(a)$

dat\$Y <- standardize(d\$age)</pre>

```
mRXEYGt <- ulam(
    alist(
        <u>R ~ ordered_logistic( phi , alpha ),</u>
        phi <- bE[G]*sum( delta_j[1:E] ) +</pre>
               bA[G]*A + bI[G]*I + bC[G]*C +
               bY[G]*Y,
        alpha \sim normal(0, 1),
        bA[G] \sim normal(0, 0.5),
        bI[G] \sim normal(0, 0.5),
        bC[G] \sim normal(0, 0.5),
        bE[G] ~ normal( 0, 0.5),
        bY[G] ~ normal( 0, 0.5),
        vector[8]: delta_j <<- append_row( 0 , delta ),</pre>
        simplex[7]: delta ~ dirichlet( a )
    ), data=dat , chains=4 , cores=4 _ threads=2 )
```

4 chains times 2 threads each = 8 cores

dat\$Y <- standardize(d\$age)</pre>

```
mRXEYGt <- ulam(
    alist(
        R ~ ordered_logistic( phi , alpha ),
        phi <- bE[G]*sum( delta_j[1:E] ) +</pre>
               bA[G] * A + bI[G] * I + bC[G] * C +
               bY[G]*Y,
        alpha \sim normal(0, 1),
        bA[G] \sim normal(0, 0.5),
        bI[G] \sim normal(0, 0.5),
        bC[G] \sim normal(0, 0.5),
        bE[G] \sim normal(0, 0.5),
        bY[G] ~ normal( 0, 0.5),
        vector[8]: delta_j <<- append_row( 0 , delta ),</pre>
        simplex[7]: delta ~ dirichlet( a )
    ), data=dat , chains=4 , cores=4 . threads=2 )
```

4 chains times 2 threads each = 8 cores

1 thread each

Sampling	durati	ions (m ⁻	inutes):
	warmup	sample	total
chain:1	6.53	3.99	10.52
chain:2	7.33	2.66	9.99
chain:3	6.88	3.70	10.58
chain:4	6.40	2.63	9.03

2 threads each

Sampling	durati	ions (mi	nutes):
	warmup	sample	total
chain:1	4.41	1.80	6.21
chain:2	4.69	1.87	6.56
chain:3	5.14	1.56	6.70
chain:4	4.21	1.84	6.05

> precis	(mRXEY	Gt,2)				
	mean	sd	5.5%	94.5%	n_eff	Rhat4
alpha[1]	-2.89	0.10	-3.06	-2.73	729	1
alpha[2]	-2.21	0.10	-2.37	-2.06	728	1
alpha[3]	-1.62	0.10	-1.78	-1.47	724	1
alpha[4]	-0.58	0.10	-0.74	-0.43	729	1
alpha[5]	0.11	0.10	-0.05	0.26	726	1
alpha[6]	1.03	0.10	0.87	1.18	746	1
bA[1]	-0.56	0.06	-0.65	-0.47	1932	1
bA[2]	-0.81	0.05	-0.90	-0.73	2013	1
bI[1]	-0.66	0.05	-0.74	-0.58	2539	1
bI[2]	-0.76	0.05	-0.84	-0.68	2283	1
bC[1]	-0.77	0.07	-0.88	-0.65	2029	1
bC[2]	-1.09	0.07	-1.20	-0.99	2012	1
bE[1]	-0.63	0.14	-0.85	-0.42	810	1
bE[2]	0.41	0.14	0.19	0.62	795	1
bY[1]	0.00	0.03	-0.05	0.05	2740	1
bY[2]	-0.13	0.03	-0.18	-0.09	1426	1
delta[1]	0.15	0.08	0.04	0.31	1759	1
delta[2]	0.15	0.09	0.04	0.30	2440	1
delta[3]	0.29	0.11	0.11	0.46	2001	1
delta[4]	0.08	0.05	0.02	0.17	2414	1
delta[5]	0.06	0.04	0.01	0.14	1087	1
delta[6]	0.24	0.07	0.13	0.34	2301	1
delta[7]	0.04	0.02	0.01	0.08	2755	1

> precis	(mRXEY)	Gt,2)				
	mean	sd	5.5%	94.5%	n_eff	Rhat4
alpha[1]	-2.89	0.10	-3.06	-2.73	729	1
alpha[2]	-2.21	0.10	-2.37	-2.06	728	1
alpha[3]	-1.62	0.10	-1.78	-1.47	724	1
alpha[4]	-0.58	0.10	-0.74	-0.43	729	1
alpha[5]	0.11	0.10	-0.05	0.26	726	1
alpha[6]	1.03	0.10	0.87	1.18	746	1
bA[1]	-0.56	0.06	-0.65	-0.47	1932	1
bA[2]	-0.81	0.05	-0.90	-0.73	2013	1
bI[1]	-0.66	0.05	-0.74	-0.58	2539	1
bI[2]	-0.76	0.05	-0.84	-0.68	2283	1
bC[1]	-0.77	0.07	-0.88	-0.65	2029	1
bC[2]	-1.09	0.07	-1.20	-0.99	2012	1
DE[T]	-0.63	U.1 4	-0.85	-0.42	RTQ	-
bE[2]	0.41	0.14	0.19	0.62	795	1
bY[1]	0.00	0.03	-0.05	0.05	2740	1
bY[2]	-0.13	0.03	-0.18	-0.09	1426	1
delta[1]	0.15	0.08	0.04	0.31	1759	1
delta[2]	0.15	0.09	0.04	0.30	2440	1
delta[3]	0.29	0.11	0.11	0.46	2001	1
delta[4]	0.08	0.05	0.02	0.17	2414	1
delta[5]	0.06	0.04	0.01	0.14	1087	1
delta[6]	0.24	0.07	0.13	0.34	2301	1
delta[7]	0.04	0.02	0.01	0.08	2755	1

> precis	(mRXEY	Gt,2)				
	mean	sd	5.5%	94.5%	n_eff	Rhat4
alpha[1]	-2.89	0.10	-3.06	-2.73	729	1
alpha[2]	-2.21	0.10	-2.37	-2.06	728	1
alpha[3]	-1.62	0.10	-1.78	-1.47	724	1
alpha[4]	-0.58	0.10	-0.74	-0.43	729	1
alpha[5]	0.11	0.10	-0.05	0.26	726	1
alpha[6]	1.03	0.10	0.87	1.18	746	1
bA[1]	-0.56	0.06	-0.65	-0.47	1932	1
bA[2]	-0.81	0.05	-0.90	-0.73	2013	1
bI[1]	-0.66	0.05	-0.74	-0.58	2539	1
bI[2]	-0.76	0.05	-0.84	-0.68	2283	1
bC[1]	-0.77	0.07	-0.88	-0.65	2029	1
bC [2]	-1.09	0.07	-1.20	-0.99	2012	1
bE[1]	-0.63	0.14	-0.85	-0.42	810	1
bE[2]	0.41	0.14	0.19	0.62	795	1
ΝΥ[Τ]			-0.05		2140	-
bY[2]	-0.13	0.03	-0.18	-0.09	1426	1
delta[1]	0.15	0.08	0.04	0.31	1759	1
delta[2]	0.15	0.09	0.04	0.30	2440	1
delta[3]	0.29	0.11	0.11	0.46	2001	1
delta[4]	0.08	0.05	0.02	0.17	2414	1
delta[5]	0.06	0.04	0.01	0.14	1087	1
delta[6]	0.24	0.07	0.13	0.34	2301	1
delta[7]	0.04	0.02	0.01	0.08	2755	1

> precis	(mRXEY(Gt.2)				
	•		5.5%	94.5%	n eff	Rhat4
alpha[1]					729	1
alpha[2]					728	1
alpha[3]	-1.62	0.10	-1.78	-1.47	724	1
alpha[4]	-0.58	0.10	-0.74	-0.43	729	1
alpha[5]	0.11	0.10	-0.05	0.26	726	1
alpha[6]	1.03	0.10	0.87	1.18	746	1
bA[1]	-0.56	0.06	-0.65	-0.47	1932	1
bA[2]	-0.81	0.05	-0.90	-0.73	2013	1
bI[1]	-0.66	0.05	-0.74	-0.58	2539	1
bI[2]	-0.76	0.05	-0.84	-0.68	2283	1
bC[1]	-0.77	0.07	-0.88	-0.65	2029	1
bC[2]	-1.09	0.07	-1.20	-0.99	2012	1
bE[1]	-0.63	0.14	-0.85	-0.42	810	1
bE[2]	0.41	0.14	0.19	0-62	795	1
bY[1]	0.00	0.03	-0.05	0.05	2740	1
bY[2]	-0.13	0.03	-0.18	-0.09	1426	1
αειτα[Ι]	U.15	80.08	0.04	U.31	T(2A	1
delta[2]	0.15	0.09	0.04	0.30	2440	1
delta[3]	0.29	0.11	0.11	0.46	2001	1
delta[4]	0.08	0.05	0.02	0.17	2414	1
delta[5]	0.06	0.04	0.01	0.14	1087	1
delta[6]	0.24	0.07	0.13	0.34	2301	1
delta[7]	0.04	0.02	0.01	0.08	2755	1

> precis	(mRXEY	Gt,2)				
	mean	sd	5.5%	94.5%	n_eff	Rhat4
alpha[1]	-2.89	0.10	-3.06	-2.73	729	1
alpha[2]	-2.21	0.10	-2.37	-2.06	728	1
alpha[3]	-1.62	0.10	-1.78	-1.47	724	1
alpha[4]	-0.58	0.10	-0.74	-0.43	729	1
alpha[5]	0.11	0.10	-0.05	0.26	726	1
alpha[6]	1.03	0.10	0.87	1.18	746	1
bA[1]	-0.56	0.06	-0.65	-0.47	1932	1
bA[2]	-0.81	0.05	-0.90	-0.73	2013	1
bI[1]	-0.66	0.05	-0.74	-0.58	2539	1
bI [2]	-0.76	0.05	-0.84	-0.68	2283	1
bC[1]	-0.77	0.07	-0.88	-0.65	2029	1
bC[2]	-1.09	0.07	-1.20	-0.99	2012	1
bE[1]	-0.63	0.14	-0.85	-0.42	810	1
bE[2]	0.41	0.14	0.19	0.62	795	1
bY[1]	0.00	0.03	-0.05	0.05	2740	1
bY[2]	-0.13	0.03	-0.18	-0.09	1426	1
delta[1]	0.15	0.08	0.04	0.31	1759	1
delta[2]	0.15	0.09	0.04	0.30	2440	1
delta[3]	0.29	0.11	0.11	0.46	2001	1
delta[4]	0.08	0.05	0.02	0.17	2414	1
delta[5]	0.06	0.04	0.01	0.14	1087	1
delta[6]	0.24	0.07	0.13	0.34	2301	1
delta[7]	0.04	0.02	0.01	0.08	2755	1

Complex causal effects

Causal effects (predicted consequences of intervention) require marginalization

Example: Causal effect of *E* requires distribution of *Y* and *G* to average over

Problem 1: Should not marginalize over this sample—*cursed P!* Post-stratify to new target.

Problem 2: Should not set all *Y* to same *E*

Example: Causal effect of *Y* requires effect of *Y* on *E*, which we cannot estimate (*P* again!)

Complex causal effects

Causal effects (predicted consequences of interve No matter how complex, still just a generative simulation using posterior samples Examp of Y ar Need generative model to plan estimation Proble sample Need generative model to compute estimates Proble

Example: Causal effect of *Y* requires effect of *Y* on *E*, which we cannot estimate (*P* again!)

Repeat observations

30 stories (S)

> table(d\$story)

aqu	boa	box	bur	car	che	pon	rub	sha
662	662	1324	1324	662	662	662	662	662

shi	spe	swi
662	993	993

Repeat observations

30 stories (S)

> table(d\$story)

aqu	boa	box	bur	car	che	pon	rub	sha
662	662	1324	1324	662	662	662	662	662

331 individuals (U)

> table(d\$id)

96;434	96;445	96;451	96;456	96;458	96;466	96;467	96;474	96;480	96;481	96;497
30	30	30	30	30	30	30	30	30	30	30
96;498	96;502	96;505	96;511	96;512	96;518	96;519	96;531	96;533	96;538	96;547
30	30	30	30	30	30	30	30	30	30	30
96;550	96;553	96;555	96;558	96;560	96;562	96;566	96;570	96;581	96;586	96;591
30	30	30	30	30	30	30	30	30	30	30

shi	spe	swi
662	993	993

X -

Course Schedule

Week 1	Bayesian inference	Chapters 1, 2, 3
Week 2	Linear models & Causal Inference	Chapter 4
Week 3	Causes, Confounds & Colliders	Chapters 5 & 6
Week 4	Overfitting / MCMC	Chapters 7, 8, 9
Week 5	Generalized Linear Models	Chapters 10, 11
Week 6	Ordered categories & Multilevel models	Chapters 12 & 13
Week 7	More Multilevel models	Chapters 13 & 14
Week 8	Multilevel models & Gaussian processes	Chapter 14
Week 9	Measurement & Missingness	Chapter 15
Week 10	Generalized Linear Madness	Chapter 16

https://github.com/rmcelreath/stat_rethinking_2023

	Description
Example of scientific question	How can women aged 60–80 years with stroke history be partitioned in classes defined by their characteristics?

Hernán et al. A second chance to get causal inference right

Data Science Task

Prediction **Causal inference** What is the probability Will starting a statin reduce, on average, the of having a stroke next year for women with cerrisk of stroke in women tain characteristics? with certain characteristics?

	Description
Example of scientific question	How can women aged 60–80 years with stroke history be partitioned in classes defined by their characteristics?
Data	 Eligibility criteria Features (symptoms, clinical parameters)

Hernán et al. A second chance to get causal inference right

Data Science Task

Prediction

What is the probability of having a stroke next year for women with certain characteristics?

- Eligibility criteria
- Output (diagnosis of stroke over the next year)
- Inputs (age, blood pressure, history of stroke, diabetes at baseline)

Causal inference

Will starting a statin reduce, on average, the risk of stroke in women with certain characteristics?

- Eligibility criteria
- Outcome (diagnosis of stroke over the next year)
- Treatment (initiation of statins at baseline)
- Confounders
- Effect modifiers (optional)

	Description
Example of scientific question	How can women aged 60–80 years with stroke history be partitioned in classes defined by their characteristics?
Data	 Eligibility criteria Features (symptoms, clinical parameters)
Examples of analytics	Cluster analysis

Hernán et al. A second chance to get causal inference right

Data Science Task

Prediction

What is the probability of having a stroke next year for women with certain characteristics?

- Eligibility
- Output (die er the

1e, • Inpl pressure ory stroke, d tes d baseline

Kegression Decision trees Random forests Support vector machines Neural networks

reduce, on verage, the risk of e in women with rin characte tics?

Causal inference

Eli v criteria

Will starting a statin

Out ot

- ke over t xr year) atment (initiation of statins at baseline)
- Confounders
- Effect modifiers (optional)

Regression Matching Inverse probability weighting G-formula G-estimation Instrumental variable estimation

• • •

• • •

Bradley et al. 2021 Unrepresentative big surveys significantly overestimated US vaccine uptake

Wang et al. 2014. Forecasting elections with non-representative polls

If the election were held today, who would you vote for?

Barack Obama

Mitt Romney

Other

Not sure

Wang et al. 2014. Forecasting elections with non-representative polls

Hitting the Target

Basic problem: **Sample** is not the **target**

Post-stratification & Transport: Transparent, principled methods for extrapolating from sample to population

Post-strat requires casual model of reasons sample differs from population

NO CAUSES IN; NO DESCRIPTION OUT

Cartoon example

Four age groups:

Cartoon example

Four age groups:

Proportions of sample:

Multi-level regression & post-stratification (MRP)

Voting intention by age

% of 11,590 British adults

YouGov

17-28 October 2019

Selection nodes

Selection nodes

Selection **S** by Age

 $Age \xrightarrow{X \longrightarrow Y} Attitude$

S: "Sample differs because of differences in what I point to"

Selection ubiquitous

Many sources of data are already filtered by selection effects

Crime & health statistics

Employment & job performance

Museum collections

Right thing to do depends upon causes of selection

"Young people don't answer their phones"

Selection S by Age $Age \xrightarrow{X \longrightarrow Y} Attitude$

"Young people don't answer their phones"

"Young people don't answer their phones and misreport their age"

Selection S by Age

A Causal Framework for Cross-Cultural Generalizability

Dominik Deffner^{1,2,3}, Julia M. Rohrer⁴, and Richard McElreath¹

Population

Sample

https://psyarxiv.com/fqukp

Many Qs are really post-strat Qs

Justified descriptions require causal information and post-stratification

Causal effects also, e.g. vaccines

Time trends should account for changes in measurement/population

Comparison is post-stratification from one population to another

Surveys Almanacs Collections A olktales Honest Methods Survey aphy Satellites for Archives Alma ecords Modest Questions Scrapi lections Ethnography Excavations

Simple 4-step plan for honest digital scholarship

(1) What are we trying to describe? (2) What is the ideal data for doing so? (3) What data do we actually have?

- (4) What causes the differences between (2) and (3)? (5) [*optional*] Is there a way to use (3) + (4) to do (1)?