forked from clawpack/riemann
-
Notifications
You must be signed in to change notification settings - Fork 0
/
geoclaw_riemann_utils_vec.f90
452 lines (384 loc) · 14.6 KB
/
geoclaw_riemann_utils_vec.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
! This code has been adapted for vectorization.
! For more details on how to use it, see the Makefile of the chile2010 example.
!-----------------------------------------------------------------------
subroutine riemann_aug_JCP(maxiter,meqn,mwaves,hL,hR,huL,huR, &
hvL,hvR,bL,bR,uL,uR,vL,vR,phiL,phiR,pL,pR,sE1,sE2,drytol,g,rho, &
sw1,sw2,sw3,fw11,fw12,fw13,fw21,fw22,fw23,fw31,fw32,fw33)
!dir$ attributes forceinline :: riemann_aug_JCP
!dir$ attributes vector: uniform(maxiter,meqn,mwaves,drytol,g,rho) :: riemann_aug_JCP
! solve shallow water equations given single left and right states
! This solver is described in J. Comput. Phys. (6): 3089-3113, March 2008
! Augmented Riemann Solvers for the Shallow Equations with Steady States and Inundation
! To use the original solver call with maxiter=1.
! This solver allows iteration when maxiter > 1. The iteration seems to help with
! instabilities that arise (with any solver) as flow becomes transcritical over variable topo
! due to loss of hyperbolicity.
implicit none
!input
integer meqn,mwaves,maxiter
! Due to what seems to be a bug with the Intel Compilers (versions 16, 17 and 18 at least),
! these arrays declared as PRIVATE in a !$OMP SIMD loop (in rpn2_geoclaw_vec.f90) had
! to be decomposed into scalars.
! This may not be necessary for future versions of the Intel Compilers.
!real(kind=8) fw(meqn,mwaves)
!real(kind=8) sw(mwaves)
real(kind=8) sw1,sw2,sw3,fw11,fw12,fw13,fw21,fw22,fw23,fw31,fw32,fw33
real(kind=8) hL,hR,huL,huR,bL,bR,uL,uR,phiL,phiR,sE1,sE2
real(kind=8) hvL,hvR,vL,vR,pL,pR
real(kind=8) drytol,g,rho
!local
integer m,mw,k,iter
real(kind=8) A(3,3)
real(kind=8) r(3,3)
real(kind=8) lambda(3)
real(kind=8) del(3)
real(kind=8) beta(3)
real(kind=8) delh,delhu,delphi,delb,delnorm
real(kind=8) rare1st,rare2st,sdelta,raremin,raremax
real(kind=8) criticaltol,convergencetol,raretol
real(kind=8) criticaltol_2, hustar_interface
real(kind=8) s1s2bar,s1s2tilde,hbar,hLstar,hRstar,hustar
real(kind=8) huRstar,huLstar,uRstar,uLstar,hstarHLL
real(kind=8) deldelh,deldelphi,delP
real(kind=8) s1m,s2m,hm
real(kind=8) det1,det2,det3,determinant
logical rare1,rare2,rarecorrector,rarecorrectortest,sonic
! used to pre-compute square roots
real(kind=8) sqrt_ghL, sqrt_ghR, sqrt_ghm
!determine del vectors
delh = hR-hL
delhu = huR-huL
delphi = phiR-phiL
delb = bR-bL
delP = pR - pL
delnorm = delh**2 + delphi**2
!DIR$ FORCEINLINE
call riemanntype(hL,hR,uL,uR,hm,s1m,s2m,rare1,rare2, &
1,drytol,g)
! pre-compute square roots:
sqrt_ghL = sqrt(g*hL)
sqrt_ghR = sqrt(g*hR)
sqrt_ghm = sqrt(g*hm)
lambda(1)= min(sE1,s2m) !Modified Einfeldt speed
lambda(3)= max(sE2,s1m) !Modified Eindfeldt speed
sE1=lambda(1)
sE2=lambda(3)
lambda(2) = 0.d0 ! ### Fix to avoid uninitialized value in loop on mw -- Correct?? ###
hstarHLL = max((huL-huR+sE2*hR-sE1*hL)/(sE2-sE1),0.d0) ! middle state in an HLL solve
!determine the middle entropy corrector wave------------------------
rarecorrectortest=.false.
rarecorrector=.false.
if (rarecorrectortest) then
sdelta=lambda(3)-lambda(1)
raremin = 0.5d0
raremax = 0.9d0
if (rare1.and.sE1*s1m.lt.0.d0) raremin=0.2d0
if (rare2.and.sE2*s2m.lt.0.d0) raremin=0.2d0
if (rare1.or.rare2) then
!see which rarefaction is larger
rare1st=3.d0*(sqrt_ghL-sqrt_ghm)
rare2st=3.d0*(sqrt_ghR-sqrt_ghm)
if (max(rare1st,rare2st).gt.raremin*sdelta.and. &
max(rare1st,rare2st).lt.raremax*sdelta) then
rarecorrector=.true.
if (rare1st.gt.rare2st) then
lambda(2)=s1m
elseif (rare2st.gt.rare1st) then
lambda(2)=s2m
else
lambda(2)=0.5d0*(s1m+s2m)
endif
endif
endif
if (hstarHLL.lt.min(hL,hR)/5.d0) rarecorrector=.false.
endif
! ## Is this correct 2-wave when rarecorrector == .true. ??
do mw=1,mwaves
r(1,mw)=1.d0
r(2,mw)=lambda(mw)
r(3,mw)=(lambda(mw))**2
enddo
if (.not.rarecorrector) then
lambda(2) = 0.5d0*(lambda(1)+lambda(3))
!lambda(2) = max(min(0.5d0*(s1m+s2m),sE2),sE1)
r(1,2)=0.d0
r(2,2)=0.d0
r(3,2)=1.d0
endif
!---------------------------------------------------
!determine the steady state wave -------------------
!criticaltol = 1.d-6
! MODIFIED:
criticaltol = max(drytol*g, 1d-6)
criticaltol_2 = sqrt(criticaltol)
deldelh = -delb
deldelphi = -0.5d0 * (hR + hL) * (g * delb + delp / rho)
!determine a few quanitites needed for steady state wave if iterated
hLstar=hL
hRstar=hR
uLstar=uL
uRstar=uR
huLstar=uLstar*hLstar
huRstar=uRstar*hRstar
!iterate to better determine the steady state wave
convergencetol=1.d-6
! do iter=1,maxiter ! since maxiter=1, no loop needed!
!determine steady state wave (this will be subtracted from the delta vectors)
if (min(hLstar,hRstar).lt.drytol.and.rarecorrector) then
rarecorrector=.false.
hLstar=hL
hRstar=hR
uLstar=uL
uRstar=uR
huLstar=uLstar*hLstar
huRstar=uRstar*hRstar
lambda(2) = 0.5d0*(lambda(1)+lambda(3))
!lambda(2) = max(min(0.5d0*(s1m+s2m),sE2),sE1)
r(1,2)=0.d0
r(2,2)=0.d0
r(3,2)=1.d0
endif
hbar = max(0.5d0*(hLstar+hRstar),0.d0)
s1s2bar = 0.25d0*(uLstar+uRstar)**2 - g*hbar
s1s2tilde= max(0.d0,uLstar*uRstar) - g*hbar
!find if sonic problem
! MODIFIED from 5.3.1 version
sonic = .false.
if (abs(s1s2bar) <= criticaltol) then
sonic = .true.
else if (s1s2bar*s1s2tilde <= criticaltol**2) then
sonic = .true.
else if (s1s2bar*sE1*sE2 <= criticaltol**2) then
sonic = .true.
else if (min(abs(sE1),abs(sE2)) < criticaltol_2) then
sonic = .true.
else if (sE1 < criticaltol_2 .and. s1m > -criticaltol_2) then
sonic = .true.
else if (sE2 > -criticaltol_2 .and. s2m < criticaltol_2) then
sonic = .true.
else if ((uL+sqrt_ghL)*(uR+sqrt_ghR) < 0.d0) then
sonic = .true.
else if ((uL- sqrt_ghL)*(uR- sqrt_ghR) < 0.d0) then
sonic = .true.
end if
!find jump in h, deldelh
if (sonic) then
deldelh = -delb
else
deldelh = delb*g*hbar/s1s2bar
endif
!find bounds in case of critical state resonance, or negative states
if (sE1.lt.-criticaltol.and.sE2.gt.criticaltol) then
deldelh = min(deldelh,hstarHLL*(sE2-sE1)/sE2)
deldelh = max(deldelh,hstarHLL*(sE2-sE1)/sE1)
elseif (sE1.ge.criticaltol) then
deldelh = min(deldelh,hstarHLL*(sE2-sE1)/sE1)
deldelh = max(deldelh,-hL)
elseif (sE2.le.-criticaltol) then
deldelh = min(deldelh,hR)
deldelh = max(deldelh,hstarHLL*(sE2-sE1)/sE2)
endif
!find jump in phi, deldelphi
if (sonic) then
deldelphi = -g*hbar*delb
else
deldelphi = -delb*g*hbar*s1s2tilde/s1s2bar
endif
!find bounds in case of critical state resonance, or negative states
deldelphi=min(deldelphi,g*max(-hLstar*delb,-hRstar*delb))
deldelphi=max(deldelphi,g*min(-hLstar*delb,-hRstar*delb))
deldelphi = deldelphi - hbar * delp / rho
del(1)=delh-deldelh
del(2)=delhu
del(3)=delphi-deldelphi
!Determine determinant of eigenvector matrix========
det1=r(1,1)*(r(2,2)*r(3,3)-r(2,3)*r(3,2))
det2=r(1,2)*(r(2,1)*r(3,3)-r(2,3)*r(3,1))
det3=r(1,3)*(r(2,1)*r(3,2)-r(2,2)*r(3,1))
determinant=det1-det2+det3
!solve for beta(k) using Cramers Rule=================
do k=1,3
do mw=1,3
A(1,mw)=r(1,mw)
A(2,mw)=r(2,mw)
A(3,mw)=r(3,mw)
enddo
A(1,k)=del(1)
A(2,k)=del(2)
A(3,k)=del(3)
det1=A(1,1)*(A(2,2)*A(3,3)-A(2,3)*A(3,2))
det2=A(1,2)*(A(2,1)*A(3,3)-A(2,3)*A(3,1))
det3=A(1,3)*(A(2,1)*A(3,2)-A(2,2)*A(3,1))
beta(k)=(det1-det2+det3)/determinant
enddo
!exit if things aren't changing -> removed to allow vectorization!
!if (abs(del(1)**2+del(3)**2-delnorm).lt.convergencetol) exit
delnorm = del(1)**2+del(3)**2
!find new states qLstar and qRstar on either side of interface
hLstar=hL
hRstar=hR
uLstar=uL
uRstar=uR
huLstar=uLstar*hLstar
huRstar=uRstar*hRstar
do mw=1,mwaves
if (lambda(mw).lt.0.d0) then
hLstar= hLstar + beta(mw)*r(1,mw)
huLstar= huLstar + beta(mw)*r(2,mw)
endif
enddo
do mw=mwaves,1,-1
if (lambda(mw).gt.0.d0) then
hRstar= hRstar - beta(mw)*r(1,mw)
huRstar= huRstar - beta(mw)*r(2,mw)
endif
enddo
if (hLstar.gt.drytol) then
uLstar=huLstar/hLstar
else
hLstar=max(hLstar,0.d0)
uLstar=0.d0
endif
if (hRstar.gt.drytol) then
uRstar=huRstar/hRstar
else
hRstar=max(hRstar,0.d0)
uRstar=0.d0
endif
! enddo ! end iteration on Riemann problem ! since maxiter=1, no loop needed!
! do mw=1,mwaves
! sw(mw)=lambda(mw)
! fw(1,mw)=beta(mw)*r(2,mw)
! fw(2,mw)=beta(mw)*r(3,mw)
! fw(3,mw)=beta(mw)*r(2,mw)
! enddo
sw1 = lambda(1)
sw2 = lambda(2)
sw3 = lambda(3)
!mw=1
fw11 = beta(1)*r(2,1)
fw21 = beta(1)*r(3,1)
fw31 = beta(1)*r(2,1)
!mw=2
fw12 = beta(2)*r(2,2)
fw22 = beta(2)*r(3,2)
fw32 = beta(2)*r(2,2)
!mw=3
fw13 = beta(3)*r(2,3)
fw23 = beta(3)*r(3,3)
fw33 = beta(3)*r(2,3)
!find transverse components (ie huv jumps).
! MODIFIED from 5.3.1 version
! fw(3,1)=fw(3,1)*vL
! fw(3,3)=fw(3,3)*vR
! fw(3,2)= 0.d0
fw31=fw31*vL
fw33=fw33*vR
fw32=0.d0
! hustar_interface = huL + fw(1,1) ! = huR - fw(1,3)
! if (hustar_interface <= 0.0d0) then
! fw(3,1) = fw(3,1) + (hR*uR*vR - hL*uL*vL - fw(3,1)- fw(3,3))
! else
! fw(3,3) = fw(3,3) + (hR*uR*vR - hL*uL*vL - fw(3,1)- fw(3,3))
! end if
hustar_interface = huL + fw11 ! = huR - fw(1,3)
if (hustar_interface <= 0.0d0) then
fw31 = fw31 + (hR*uR*vR - hL*uL*vL - fw31- fw33)
else
fw33 = fw33 + (hR*uR*vR - hL*uL*vL - fw31- fw33)
end if
return
end !subroutine riemann_aug_JCP-------------------------------------------------
!=============================================================================
subroutine riemanntype(hL,hR,uL,uR,hm,s1m,s2m,rare1,rare2, &
maxiter,drytol,g)
!determine the Riemann structure (wave-type in each family)
implicit none
!input
real(kind=8) hL,hR,uL,uR,drytol,g
integer maxiter
!output
real(kind=8) s1m,s2m
logical rare1,rare2
!local
real(kind=8) hm,u1m,u2m,um,delu
real(kind=8) h_max,h_min,h0,F_max,F_min,dfdh,F0,slope,gL,gR
integer iter
real(kind=8) sqrt_ghL, sqrt_ghR
!Test for Riemann structure
h_min=min(hR,hL)
h_max=max(hR,hL)
delu=uR-uL
! pre-compute square roots:
sqrt_ghL = sqrt(g*hL)
sqrt_ghR = sqrt(g*hR)
if (h_min.le.drytol) then
hm=0.d0
um=0.d0
s1m=uR+uL-2.d0*sqrt_ghR+2.d0*sqrt_ghL
s2m=uR+uL-2.d0*sqrt_ghR+2.d0*sqrt_ghL
if (hL.le.0.d0) then
rare2=.true.
rare1=.false.
else
rare1=.true.
rare2=.false.
endif
else
F_min= delu+2.d0*(sqrt(g*h_min)-sqrt(g*h_max))
F_max= delu + &
(h_max-h_min)*(sqrt(.5d0*g*(h_max+h_min)/(h_max*h_min)))
if (F_min.gt.0.d0) then !2-rarefactions
hm=(1.d0/(16.d0*g))* &
max(0.d0,-delu+2.d0*(sqrt_ghL+sqrt_ghR))**2
um=sign(1.d0,hm)*(uL+2.d0*(sqrt_ghL-sqrt(g*hm)))
s1m=uL+2.d0*sqrt_ghL-3.d0*sqrt(g*hm)
s2m=uR-2.d0*sqrt_ghR+3.d0*sqrt(g*hm)
rare1=.true.
rare2=.true.
elseif (F_max.le.0.d0) then !2 shocks
!root finding using a Newton iteration on sqrt(h)===
h0=h_max
do iter=1,maxiter
gL=sqrt(.5d0*g*(1/h0 + 1/hL))
gR=sqrt(.5d0*g*(1/h0 + 1/hR))
F0=delu+(h0-hL)*gL + (h0-hR)*gR
dfdh=gL-g*(h0-hL)/(4.d0*(h0**2)*gL)+ &
gR-g*(h0-hR)/(4.d0*(h0**2)*gR)
slope=2.d0*sqrt(h0)*dfdh
h0=(sqrt(h0)-F0/slope)**2
enddo
hm=h0
u1m=uL-(hm-hL)*sqrt((.5d0*g)*(1/hm + 1/hL))
u2m=uR+(hm-hR)*sqrt((.5d0*g)*(1/hm + 1/hR))
um=.5d0*(u1m+u2m)
s1m=u1m-sqrt(g*hm)
s2m=u2m+sqrt(g*hm)
rare1=.false.
rare2=.false.
else !one shock one rarefaction
h0=h_min
do iter=1,maxiter
F0=delu + 2.d0*(sqrt(g*h0)-sqrt(g*h_max)) &
+ (h0-h_min)*sqrt(.5d0*g*(1/h0+1/h_min))
slope=(F_max-F0)/(h_max-h_min)
h0=h0-F0/slope
enddo
hm=h0
if (hL.gt.hR) then
um=uL+2.d0*sqrt_ghL-2.d0*sqrt(g*hm)
s1m=uL+2.d0*sqrt_ghL-3.d0*sqrt(g*hm)
s2m=uL+2.d0*sqrt_ghL-sqrt(g*hm)
rare1=.true.
rare2=.false.
else
s2m=uR-2.d0*sqrt_ghR+3.d0*sqrt(g*hm)
s1m=uR-2.d0*sqrt_ghR+sqrt(g*hm)
um=uR-2.d0*sqrt_ghR+2.d0*sqrt(g*hm)
rare2=.true.
rare1=.false.
endif
endif
endif
return
end ! subroutine riemanntype----------------------------------------------------------------