
Locality Sensitive Hashing

Ritchie Vink

July 9, 2021



Introduction

Real world use cases
I Recommendation systems

I Search similar products / users
I De-duplication

I Determine which website is canonical
I Security

I Are similar malicious commands executed.

Core problem
All have O(n) search complexity. With the sheer amount of data
this is very problematic.



Exact Nearest Neighbor search

Let:
I P , a set of data point: p, q ∈ RD

I d : RD 7→ R1, a distance function
I R > 0, a distance threshold.

Given query q can we find a point p ∈ P , where d(p, q) ≤ R?



Exact Nearest Neighbor search
I Voronoi cells

I creation time: O(n log n)
I query time: O(log n)
I space: O(nD)

I k-d trees
I creation time: O(n log n
I query time in low dimensions: O(log n)
I query time in high dimensions: O(n)
I space: O(n)

Curse of dimensionality
All data structures for exact nearest neighbor search suffer from the
curse of dimensionality in time or space complexity.



Approximated Nearest Neighbor search

Relaxed defintion:
The algorithm is allowed to return points d(p, q) ≤ cR , where
c > 1.



Locality Sensitive Hashing

Define a family of hashers where locality is preserved.
let H be a LSH family, such that for every hash function h ∈ H:

I d(p, q) ≤ R , then P(h(p) = h(q)) ≥ P1

I d(p, q)cR , then P(h(p) = h(q)) ≤ P2

An LSH family is useful when P(h(p) = h(q)) ≤ P2.



Gap amplification

I concatenate k hash functions to a single hash (AND operation)
I create L separate hash tables (OR operation)



Locality Sensitive Hashing

Complexity

Given the number of hash digits k , and the number of hashing
tables L, and hashing duration ht we obtain the following
complexities:
I creation time: O(nLkht)

I space:O(nl)

I query time: O(L · (kht + DnPk
2 ))



LSH for cosine similarity


	Motivation

