
Playlist Manager
A PLAYLIST MANAGER FOR FOOBAR2000

USING SPIDER MONKEY PANEL AND JAVASCRIPT

BY

REGORXXX
AUTHOR OF “PLAYLIST-TOOLS-SMP”, “WORLD-MAP-SMP”, ETC.

Playlist-Manager-SMP
Published on GitHub

June 21st, 2024

https://github.com/regorxxx
https://github.com/regorxxx/Playlist-Manager-SMP

© 2021 - 2024 regorxxx
Contact me at: regorxxx@protonmail.com

This publication should be colorblind-friendly; please, contact me if you find any
accessibility difficulty or open an issue at GitHub.

This program is free software: you can redistribute it and/or modify it under the terms of the GNU
Affero General Public License as published by the Free Software Foundation, either version 3 of the

License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the GNU Affero General Public License for more details.

You should have received a copy of the GNU Affero General Public License [XIV] along with this
program. If not, see https://www.gnu.org/licenses/.

mailto:regorxxx@protonmail.com
https://www.gnu.org/licenses/

Contents

I Introduction 12

1 Why do we need a playlist manager? 12

1.1 Playlist tabs and UI limits . 12

1.2 AutoPlaylists slowdowns . 13

1.3 Playlists are a bit auto-destructive . 14

2 Multiple problems, one solution? 15

2.1 Which playlists are compatible with it? . 15

II Installation 16

3 Installation within foobar2000’s UI 16

4 As Package (recommended) 17

4.1 Package file and dependencies . 17

4.2 Package builder . 18

5 As File 19

5.1 Scripts files and dependencies . 19

5.2 Loading script file . 19

6 Portable installations tip 20

7 Wine installations 20

8 Auto-updates 21

9 Updating from older script versions 21

10 Nightly versions 22

III First steps 23

11 First time configuration 23

12 Importing AutoPlaylists 24

13 Creating and editing playlists 25

14 Further configuration 26

IV Features 27

15 Lite mode 27

16 Tracking folder 28

17 Managing Playlist files and AutoPlaylists 29

17.1 UI-only playlists . 30

17.2 AutoPlaylists . 31

17.3 Standard playlists . 32

17.4 How paths are written: absolute and relative paths 33

17.5 Setting playlists format . 34

17.6 Creating playlists . 35

17.7 Adding selected tracks . 36

17.8 Playlist loading . 37

17.9 Playlist binding . 38

17.10Converting UI-only playlists to files . 39

17.11Deleting and restoring files . 40

17.12Locking files . 41

17.13Editing UI-only playlists locks . 42

18 Working with playlist metadata 43

18.1 Metadata inheritance . 44

19 Auto-saving, Auto-loading and Auto-backup 46

19.1 Auto-saving . 46

19.2 Auto-loading . 47

19.3 Auto-backup . 47

20 Automatic playlist actions 48

21 Automatic track tagging 50

21.1 Tagging events . 52

21.2 Tagging procedure . 52

22 Importing/exporting AutoPlaylists 53

22.1 Importing native AutoPlaylists from foobar2000 . 53

22.2 Importing/exporting AutoPlaylists from files . 54

22.3 Export as json file . 55

22.4 Clone as standard playlist . 56

22.5 Clone as AutoPlaylist and edit query . 57

23 Exporting playlists and files 58

23.1 Copy Playlist file . 58

23.2 Export and copy tracks to . 59

23.3 Export and convert tracks to . 60

24 ListenBrainz integration 62

24.1 Sync playlists . 62

24.2 Import playlist from server . 63

24.3 ListenBrainz user token . 63

25 Spotify integration 64

26 Import track list from file\url 65

27 Additional tools 66

27.1 On selected playlist . 66

27.1.1 Force relative paths . 66

27.1.2 Send selection to playlist . 67

27.1.3 Clone as . 68

27.1.4 Native contextual playlist menu . 69

27.1.5 Merge-load . 70

27.2 On entire list (playlists maintenance tools) . 71

27.2.1 Mixed absolute and relative paths . 71

27.2.2 Dead items . 71

27.2.3 External items . 71

27.2.4 Duplicated items . 72

27.2.5 Playlist size mismatch . 72

27.2.6 Playlist duration mismatch . 72

27.2.7 Blank lines . 72

27.2.8 Subsong items . 73

27.2.9 Format specific errors . 73

27.2.10Find current selection . 73

27.3 On active playlist . 74

27.3.1 Revive dead items . 74

28 Manual refresh 75

29 Dynamic menus 76

29.1 Available actions . 77

29.2 Keyboard shortcuts . 77

30 Startup active playlist 78

31 Multiple selection 79

32 Folders 80

33 Drag and drop 81

33.1 Drag and Drop: Internal . 81

33.2 Drag and Drop: Tracks . 82

34 Filters, Search and Quick-search 83

35 Shortcuts 84

36 Keyboard Shortcuts 86

37 Statistics mode 87

V UI 88

38 Features 88

39 List view 89

39.1 Sorting . 90

39.2 Lock status, extension, playlist type filtering . 90

39.3 Selective category filtering . 91

39.4 Category filtering cycling . 92

39.5 Selective tag filtering . 93

39.6 Tag filtering cycling . 93

39.7 Reset filtering . 94

39.8 Tooltip . 95

40 Metadata columns 97

41 Customization 98

41.1 Color customization . 98

41.2 Other configuration . 98

41.3 Accessibility . 100

41.4 Playlist Icons . 101

41.5 Buttons, scrollbar and UI elements . 102

41.6 Background Art . 103

41.7 Playlist action shortcuts . 104

41.8 Header action shortcuts . 105

42 Search filter 106

43 Quick-searching 108

44 In panel popups 109

45 Scrolling 110

46 Configurable features and menus 111

VI Playlist formats 112

47 Playlist metadata 112

47.1 Lock state . 112

47.2 [Playlist] Tags . 112

47.3 Track tags . 113

47.4 Category . 113

47.5 UUID . 113

47.6 Author . 114

47.7 Description . 114

47.8 Playlist MBID . 114

48 Playlist features table 115

49 .m3u & .m3u8 116

49.1 Extended M3U . 116

50 .pls 118

51 .strm 119

52 .xspf 120

53 .fpl 123

54 Auto-Playlists 125

55 .xsp -Smart Playlists- 126

56 .ui -UI-only Playlists- 129

VII Other scripts integration 131

VIII Online controller 132

57 Features 132

58 Installation 132

IX FAQ 133

59 Used terms 133

60 File permissions and tracking 133

61 Managing playlists 134

62 Playlist loading 134

63 AutoPlaylists 135

64 Playlist exporting 136

65 Playlist formats 137

66 UI usage 138

67 Common warnings 139

68 Other errors and support 139

X Advanced tips 140

69 Sharing manager files 140

70 Multiple views / manager panels 140

71 Portable ’plug & play’ installation 141

72 Sharing playlists on same network 141

73 Sharing playlists between different devices 142

74 Export and convert playlists to foobar2000 mobile 143

75 Export and convert playlists to Kodi, Librelec, ... 145

76 Tag automation 147

77 Pools using AutoPlaylists and tags 147

78 Pools using Playlist-Tools-SMP 148

79 Smart Playlists queries 150

80 Pools using Smart Playlists 152

81 Working with locked playlists 153

82 Autosave & Autobackup component 153

83 Customizable icons for categories 154

84 Recycle Bin on network and USB drives 155

85 Duplicates removal 156

86 Find duplicates/dead/external items on UI-only playlists 157

87 Using playlist tags on playlists maintenance 157

88 Disable Library Paths caching 158

89 Other advanced global settings 159

XI Technical notes 160

XII Known problems 161

XIII Bug procedure 164

XIV License 165

Part I

Introduction

1 Why do we need a playlist manager?

1.1 Playlist tabs and UI limits

foobar2000 already excels at library management, specially with plugins, but there is a hole in its
set of features: playlist management. Playlists, by default, are entities always loaded within the UI,
specially annoying for those using playlist tabs. At some point, if there is a high number of them,
the UI becomes cluttered with so many tabs that it becomes useless.

Figure 1: Playlist tabs (top arrow) become useless for a high number of playlists.

For this reason there has been some attempts of playlist manager UI plugins for DUI and
CUI1 which try to work around that with lists or playlist drop-downs. The problem is that those
solutions are only workarounds... the playlists are still loaded within foobar2000, so you must either
completely remove the playlist tabs or clutter the UI with them. The managers make it easier to
look for specific playlists, but the tabs dilemma remains the same.

And lets not talk about having thousands of playlists, then the only layout possible is a
single tab for the active playlist and using a playlist list to switch between them. The problem with
that layout is obvious. Are you able to switch between 2 or 3 playlist easily? No, that’s what tabs
are meant for, but since they are unusable in this case...

The problem seems to be that playlists are always loaded within foobar2000.
Why do you need a list of playlists if they are already loaded? Would not make it more
sense if you were able to load a playlist -from the list- in the tabs on demand the same
than you add a track to a playlist -from the library-?

1Default UI and Columns UI.

1.2 AutoPlaylists slowdowns

Other of the problems experienced by advanced users appears during the prominent use of Auto-
Playlists. They are so great that it’s easy that you end creating a lot of them... but then foobar2000
magically becomes really slow at startup. Why? Because AutoPlaylists query the library for updates,
so every AutoPlaylist instance equals to a query that is constantly checked on real time2... At startup
is even worse, since all those great AutoPlaylists have to be re-created at that point, thus requiring a
lot of time until all are done.

Some examples to easily break your foobar2000 experience if you add multiple instances of
them :), enjoy:

%RATING% MISSING OR %LAST_MODIFIED% DURING LAST 1000 SECONDS
%LAST_PLAYED% DURING LAST 19 MINUTES
(%REPLAYGAIN_TRACK_GAIN% MISSING) OR (%STYLE% MISSING) OR (%AL-
BUM DYNAMIC RANGE% MISSING)
NOT ((%path% HAS ”_\”) OR (NOT %PATH% HAS ”{”) OR (%COMMENT%
MISSING) OR (%TITLE% IS -))

The problem -again- seems to be the design choice of playlists always being
loaded within the program. If AutoPlaylists were only loaded on demand, there would be no need
to check them all at startup... neither constantly on real time. For this particular problem, there is a
Spider Monkey Panel script which allows you to load previously saved queries as AutoPlaylists on
demand (without any other feature to manage them): marc2003’s AutoPlaylist Manager.

Figure 2: marc2003’s AutoPlaylist Manager. Figure 3: Editing a query.

2For ex. Check this thread: High Processor usage at foobar2000 Idle, just a single query which uses time ranges
lower than 20 minutes are a problem.

https://theqwertiest.github.io/foo_spider_monkey_panel/docs/script_showcase/single_panel_scripts/
https://hydrogenaud.io/index.php?topic=72089.0

1.3 Playlists are a bit auto-destructive

One of the consequences of playlist being an UI element by design, is that they only exist while
being loaded within the UI. That seems a redundant pleonasm (pun intended), but is not: playlists
are permanently deleted as soon as you close their instance in the UI. And that’s a big thing3...
Furthermore, while they may be ’restored’ as long as you deleted the playlist on the same session, as
soon as you close foobar2000 the playlist history is gone. So it can not be undone.

The obvious problem is playlists not having a physical counterpart file managed
in a non-destructive way. Well, to honor the truth, standard playlists do have a physical file
somewhere in the profile folder... but:

1. They are in a closed source format.

2. They use an non-human readable UUIDs as name, so there is no way to know to which
playlist they are linked to (aka good luck making backups or exporting an specific playlist).

3. The files are only updated when shutting down the program.

(a) Changes between sessions are lost if there is a crash.
(b) Playlists files are permanently deleted if you close a playlist.
(c) New playlists are only saved when closing the program.

4. All the file management is done without indication, user intervention and in a non-transparent
way.

Figure 4: Uhm... yeah. Clearly ’58E7CE21759EE609C2B40CFAB9235F37’ belongs to the library
viewer. Or is the other?

An ad-hoc solution for some of these problems is the use of another plugin to create
automatic backups (including the physical playlists files and the database for unsaved changes):
Autosave & Autobackup (foo_jesus) or the SPM enhanced version of the previous plugin Autosave
& Autobackup (AutoBackup-SMP).

3Do you imagine loosing your music files because you deleted the track from a playlist? Makes no sense, but
translated to playlist files, that’s they way they work within foobar2000.

https://hydrogenaud.io/index.php?topic=68528.0
https://regorxxx.github.io/foobar2000-SMP.github.io/scripts/autobackup-smp/
https://regorxxx.github.io/foobar2000-SMP.github.io/scripts/autobackup-smp/

2 Multiple problems, one solution?

It seems there are partial solutions for AutoPlaylists and others for standard playlists, but none for
both... and in any case, either with native foobar2000 or using plugins, some features are missing:
adding labels to playlists, sub-folders to categorize them (instead of a plain list), searching, loading
on demand (for standard playlists), easy exporting or syncing between the native foobar2000 format
and a plain text file4

Looks like you have to mix and match tons of plugins and scripts to manage different types
of playlists, without an unified UI or manager and with basic features missing. foobar2000 is meant
to manage libraries and tracks, not playlists5.

So multiple problems and limitations have been discussed and now comes the point where a
solution is proposed... and there is the place where this manager fits: a playlist manager which aims
to work with playlists and AutoPlaylists (without distinction) on the same panel, which only loads
things on demand when required. Add some neat features to the mix like labeling, auto-tagging,
auto-saving, syncing physical playlist files with loaded ones, backups, advanced exporting tools
and integrity checks... and that’s only a fraction of what can be done with it. Btw, marc2003’s
AutoPlaylists are fully compatible and can be imported, in case you wonder.

2.1 Which playlists are compatible with it?

Short answer: All relevant.

Within the Playlist Manager context, playlists are virtual items (loaded in the UI) also
linked to a physical file in the preferred format (.m3u8, .m3u, .pls, .xspf, .xsp, .strm or .fpl).

AutoPlaylists, due to its nature (its content change according to the library they reside
in), are saved into json format [59] in a file named accordingly to the folder tracked by the Playlist
Manager6. They must be added to the manager, after installation, creating an Auto-Playlist and
copying the query [17.6], cloning [22.5] or batch importing them [].

.fpl playlists, similarly to AutoPlaylists, are read only files... due to its closed source nature
they are locked for further editing by default and metadata7 is saved into the json file described
previously. They can be read/loaded without problems though.

In resume, writable formats are those that may be freely edited (.m3u8, .m3u, .pls, .xsp,
.xspf) and readable-only formats are those that may be tracked by the manager with at least a
minimum set of features8 and the capability to load their tracks within foobar2000 (.strm, .fpl or
.json). Further info about formats can be found at [VI].

4Obviously nothing stops you to save your playlist manually using ’File\Save playlist...’. But how do you do that on
100 playlists?

5Not saying there is a player out there which does it better, so lets not even talk about having all those features!
6For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar2000 profile folder)

will be at ’.\js_data\playlistManager_Playlists.json’.
7Category, tags, lock status, etc.
8Metadata editing and conversion to a writable format.

Part II

Installation

3 Installation within foobar2000’s UI

An Spider Monkey Panel must be added to the current layout anywhere on the UI. There are some
minor differences between the Default UI (DUI) and Columns UI (CUI), but in both cases the layout
can be edited using the menu ’View\Layout\Live editing’:

Figure 5: Editing the layout (CUI). Figure 6: Adding a new SMP panel.

Multiple SMP panels can be added to a layout (being totally independent entities), therefore
multiple Playlist Manager panels may be added [70], either to have different views of the same
playlists or different folders tracked. After a panel has been added to the current UI, it must be
configured to load the main script file, either as package [4] or file [5]. It can be done by right clicking
on the blank SMP panel:

Figure 7: Loading the ’playlist_manager.js’ script within a SMP panel.

Set an unique name for the panel so popups can use it instead of panel UUIDs [66].

4 As Package (recommended)

4.1 Package file and dependencies

Spider Monkey Panel 1.6.1 or higher is required. Only stable releases are supported.

Download the package zip file at the releases page, and import the file ’as is’ using the
package manager at the Spider Monkey Panel Configuration window as shown at [3]. Then close
these SMP windows and follow the instructions on the UI.

Figure 8: Installation as package within foobar2000’s UI.

Additionally, some fonts are required on the system. They can installed by double clicking
on the ’.ttf’ files and then selecting the ’install’ option (requires Admin rights):

• Font Awesome (v4.7.0 or greater): found at ’._resources\fontawesome-webfont.ttf’

Dependencies may be found at the package folder, by clicking at ’Open folder’ on the ’Script
Package Manager’ window:

Figure 9: Opening the package folder.

4.2 Package builder

At the root of the repository, a file named ’_createPackage.bat’ can be found. It may be used to
automatize the creation of the package file directly from the repository (i.e. for nightly releases [10]).

It’s usage is pretty straightforward, just follow the instructions on the CMD window:

Figure 10: Running the bat file.

The package will be created using a temporary subfolder, named according to the SMP
script, at ’.\packages...’. To create the zip file, 7z is used by default. Binaries should be provided
along the repository, otherwise download it by yourself or manually zip the package folder. Further
documentation can be found on the ’.bat’ file.

Figure 11: Output zip files.

The ’.bat’ script works on any system -with CMD/Batch support- from Windows Vista
onward. It should work fine on Wine too.

5 As File

5.1 Scripts files and dependencies

Spider Monkey Panel 1.6.1 or higher is required. Only stable releases are supported.

Copy all files from the zip into ’YOUR_FOOBAR_PROFILE_PATH\scripts\SMP\xxx-
scripts.́ If the folders don’t exist, create them. Any other path WILL NOT work
without editing the scripts. (see ’_TIPS and INSTALLATION_vX.X.jpg’). Multiple scripts
may share some files (specially helpers) so overwrite if asked to do so. Then load the script named
’playlist_manager.js’ into a SMP panel within foobar2000 [3].

• For standard installations:
’C:\Users\yourUser\AppData\Roaming\foobar2000\scripts\SMP\xxx-scripts\...’

• For portable installations >= 1.6: ’.\foobar2000\profile\scripts\SMP\xxx-scripts\...’
• For portable installations <= 1.5: ’.\foobar2000\scripts\SMP\xxx-scripts.̇.’

If you upgraded to >1.6 from an older portable version then it may be possible
that the ’profile’ folder does not exist. In such case you have to create it and move all the
configuration folders/files to it (ask for support at the forums in this case).

Additionally, some fonts are required on the system. They can installed by double clicking
on the ’.ttf’ files and then selecting the ’install’ option (requires Admin rights):

• Font Awesome (v4.7.0 or greater): found at ’._resources\fontawesome-webfont.ttf’

5.2 Loading script file

Follow the instructions at [3] and load the file named ’playlist_manager.js’:

Figure 12: Loading the ’playlist_manager.js’ script within a SMP panel.

6 Portable installations tip

When the script finds it’s being loaded within a portable installation, it will set the default paths
using relative paths. It will also warn with popups and/or the console about the -non recommended-
use of absolute paths on portable installations. For more info see [71].

7 Wine installations

Script is 100% compatible with Unix systems although some points should be taken into consideration:

• ’Segoe UI’ must be present, as it is the font by default on the script’s UI.
• In case the font is not found (check console log), revise your default font on Wine. Changing it

to a different one than ’Segoe UI’ may give problems or crashes in some cases.
• [Additional] required fonts must be installed to avoid crashes. Is not only eyecandy.
• At some point the script may use external CMD tools which must be compatible with 32 bit

systems in Wine (since that’s the most popular version, with IE). In this case 32 bit binaries
for 7z and CmdUtils are bundled.

• Script may throw an error after installation (either a foobar2000 crash or panel crash) due to
’missing files’. There is a fix for that, check [XII] and [XIII]. It’s a SMP bug, don’t report it.

• Wine installations are specially sensible to missing files, wrong paths, etc. which may lead to
crashes or bugs usually not found on Windows installations. Have that in mind and double
check your installation procedure before reporting an error [XIII].

• All scripts try to use wine-friendly methods, focusing on configuration settings that can be
changed via menus or the UI panel, instead of using HTML (which only works on Windows),
known working fonts, etc.

• Please read SMP Wine page and feel free to report any additional problem with these scripts.
• Read Wine foobar2000 thread for more info and tips.

Figure 13: Script working on Wine along Playlist Tools and World Map.

https://theqwertiest.github.io/foo_spider_monkey_panel/docs/wine/
https://hydrogenaud.io/index.php/topic,54933/

8 Auto-updates

The script has an auto-update feature which will check the current versiona against the repository at
GitHub and warn the user whenever a new version is found.

This automatic check may be disabled if desired at the settings menu [35]. The check may
also be manually run at the same menu.

Figure 14: Manual check for updates.

9 Updating from older script versions

There is nothing special to do but following the standard installation steps and overwriting all [old]
files as needed. In case an update changes something relevant or requires an additional step, that
will be warned on the release itself.

10 Nightly versions

it’s possible to download the more recent version directly from the repository, instead of the releases
page. In such case it’s possible that some changes are not fully tested; the list of ”unreleased” changes
is always shown -and updated- at the changelog. The installation instructions are the same than the
other cases (except when using packages [4], since they must be rebuilt). You have 3 options:

• Download an automatic package built from GitHub (using the latest commit).

• Download the repository and create the package by yourself.

• Download the repository and install as script file.

To download the current repository, look below:

Figure 15: Releases vs WIP.

Figure 16: Downloading most recent files on repository as zip.

https://github.com/regorxxx/Playlist-Manager-SMP/blob/main/CHANGELOG.md
https://nightly.link/regorxxx/Playlist-Manager-SMP/workflows/build/main/file.zip
https://github.com/regorxxx/Playlist-Manager-SMP/wiki/Package-builder

Part III

First steps

11 First time configuration

After installing the manager, a button will appear on the panel. Clicking on it will start the manager
configuration via popups. Feel free to cancel any of them, since all features can be switched at any
point later [46].

Figure 17: Info popups at init.

Users coming from components, like Playlist Organizer (foo_plorg), will surely want to track
UI-only playlists and use the manager like a playlist list. Although that’s perfectly fine, remember
the real aim of a playlist manager is stop having thousands of playlists loaded on UI. i.e. using
physical files instead which are loaded on demand [17.8]. The same you do with the library manager
for tracks (instead of having all tracks on a single playlist!). If only an organizer is needed, enable
lite mode [15] and skip the other steps.

When not using lite mode, the tracking folder [16] must be set, i.e. where the physical
playlist files will reside in, and choose whether you also want to track UI-only playlists [56] or just
playlist files.

Figure 18: Blank panel without playlists. Figure 19: UI-only playlists.

12 Importing AutoPlaylists

During the first time popups, you will be asked to import all AutoPlaylists into the manager.
Remember this is required since all playlists in foobar2000 are just UI elements! The query and sort
expressions are not available to external plugins, so they must be exposed in some way (at least the
first time).

Figure 20: Not imported AutoPlaylists don’t
show TF expressions.

Figure 21: Imported AutoPlaylist tooltip,
with query and sort expressions.

You may choose to do so at this step or at a later point [22.1], it’s usually only required
once (since new AutoPlaylists should be directly created on the manager).

Figure 22: AutoPlaylist importing popup.

13 Creating and editing playlists

Once the tracking folder is set, try creating a new playlist [17.6] in the default format [17.5] using
the list menu [35]. Add some tracks to the playlist as you would normally do and wait a bit until the
panel gets refreshed: the size will be updated and changes saved to the physical file.

Figure 23: Adding a new playlist. Figure 24: Playlist updated with a track.

Figure 25: The same playlist on the native playlist tabs UI.

Now close the playlist in UI (either Ctrl + W or ’File\Remove playlist’) and try loading it
again from the panel [17.8]. Note in native foobar2000 whenever a playlist is closed is gone for good;
you can try restoring it if it’s still present on the history though [17.11], during the same session.
But now, since the playlist is tied to a physical file, loading it will let us continue from the previous
state. i.e. the previously added tracks should be there as expected.

Figure 26: Loading the closed playlist.

14 Further configuration

After testing the most basic features, it may be wise to adjust the auto-saving intervals or backups
[19]. Try sending tracks to playlist without loading them on UI [27.1.2], or advanced categorization
and filtering features [39].

After playing with it, it will be obvious that organizing playlists in ”folders” seems fancy
but it’s totally useless as soon as you have hundreds of them and need to search for something; tags
and categories let you easily organize files without a graphical tree9. There is also another advantage,
if you move your playlists to other installations or panels, the metadata will be attached to the
files and thus your organization system is tied to the files their-selves (not to the panel config). In
case something goes wrong, you don’t lose your well organized folders. Anyway, folders [32] are also
available in case you need them (tied to a panel).

Continue experimenting with it and remember, in case a playlist is accidentally edited or
deleted, it may either be restored [17.11] or a previous version used from a backup [19.3]. Also feel
free to set the UI to your liking, since almost every element may be customized (icons, colors, text,
...) [41].

9Maybe not ’useless’, but at least impractical and a huge time sink. Try adding the same 3 tracks to 10 different
playlists, only if they are not already present, using these legacy managers... this same action may be done on a few
seconds with Playlist Manager. That’s why foobar2000 has queries and search features, to offer real tools for file
management as soon as you have some non-basic needs. The same philosophy applies here.

Part IV

Features

15 Lite mode

In case only a replacement of foo_plorg is needed, ’Lite mode’ disables most advanced features of
the manager along physical playlist files usage. In this mode, the manager exclusively tracks UI-only
playlists.

• No folder tracking [16].

• Disabled library path caching [XI].

• Limited to UI-only playlists [56] and AutoPlaylists [54].

• No export and convert options [23].

• No auto-loading and auto-backup options [19]

• Uses manual sorting by default [39.1].

• ListenBrainz and Spotify integration is available [24].

• Simplified menus and settings.

Figure 27: Lite mode enabled.

Lite mode may be switched at first setup [III] or at any point afterwards by using the
settings menu [35].

16 Tracking folder

The key feature of a file manager, whether it’s a library or playlist manager, can be reduced to
tracking paths in some way. The playlist manager tracks one folder per instance and lists all readable
playlist files found on it10. AutoPlaylists, while not being ”on the folder” are considered linked to it,
so different playlist manager instances have different AutoPlaylists associated. The tracked folder
can be set on the header menu [35]:

Figure 28: Setting tracking folder. Figure 29: Tracking an absolute path.

Note the name shown at the panel header matches the tracked folder name.
Usually something like ’Playlists: my folder’, but it may be shortened according to panel width.

Sub-folders are not tracked11 and the tracked path is meant to be set once and done, so
categorization is done with metadata instead [39.3]. Why? It offers the same functionality (’virtual
sub-folders’) while not making it unnecessarily complex... at the end these are playlist files (links
to tracks), not tracks. So they should be physically -more or less- all on the same place while also
having some kind of metadata to easily categorize them12.

The path may be an absolute or relative path. Relative paths have their root set at the
foobar2000 installation path (where the ’.exe’ resides in). So something like ’.\profile\playlist_man-
agerís perfectly fine. There are multiple reasons to prefer relative paths, check the tips section for
more info [71], but most users will not need it at all. If you don’t even know what a ’relative path’ is,
you are probably in that group.

10Thus multiple manager panels are allowed, without limitations, as long as each one tracks a different folder [70].
11i.e. If ’Playlists’ is tracked, ’Playlists\Summer’ will not be tracked too’
12If you think otherwise, nothing stops you to create multiple sub-folders and having multiple manager instances in

a panel with tabs for easy access.

17 Managing Playlist files and AutoPlaylists

17.1 UI-only playlists

These are the usual playlists found at foobar2000, which are only present at the UI. They are a
totally different entity to playlist files, which may be associated (or not) to a UI-only playlist [17.9].

Figure 30: An UI-only playlist does not show any extension on the tooltip.

These playlist may be used ’as is’ or associated to a physical file to be able to close and
load them on demand, as previously discussed. See the next sections for more info.

For more info about the ui format see [56].

17.2 AutoPlaylists

AutoPlaylists are essentially treated the same than standard playlists [17.3], with their physical file
being a json formatted file (containing all AutoPlaylists) [59]. They can be exported or imported the
same than standard playlists, cloned as standard playlists, etc. In other words, the differences are in
their internal format and their set of features associated, but that’s all13. There is no differences in
the way they are managed or presented to the user.

Figure 31: Tooltip shows all relevant info, like query, sort pattern, etc.

The manager contains all functionality on AutoPlaylist Manager by marc2003 plus more:

• Create, rename, delete AutoPlaylists.

• Edit query, sort pattern and sort forcing.

• Adds tooltip info, UI features, filters, etc.

• Number of tracks output is updated at foobar2000 startup, ’Manual refresh’ [28], when loaded
or automatically at startup.

• Queries and sort patterns are checked for validity before using them, instead of crashing.

• Import playlists from AutoPlaylist Manager by marc2003[22.2].

• ...

13Obviously standard playlist have no query or sort patterns. But whenever a tool or feature make sense in both
types of playlists, it’s implemented on both.

17.3 Standard playlists

Standard playlists are any playlist file in any format; the ones where you may add, remove or reorder
tracks (contrary to AutoPlaylists which are query-generated). When a playlist loaded in foobar2000
is also tracked by the manager, then a physical playlist file within the tracked folder is associated to
it. That process is called ’playlist binding’ [17.9]. There is nothing special about it, it’s simply a way
to say the physical file and the playlist within foobar2000 are in sync.

Playlist files may be freely created, renamed, deleted, etc. and their associated foobar2000’s
playlist counterpart will follow the same changes (if desired). The same applies in both directions
(with some logical exceptions). It’s key to understand this; there is a real physical playlist file with all
those tracks written to it: If at some point you close a playlist within foobar2000 and restart it, that
playlist is gone for good14. On the other hand, if you do the same with a playlist from the manager,
you may simply reload the file. The physical file is never deleted unless you do it on purpose, so you
can always load it at any point no matter what you do with the playlist on the tabs.

Figure 32: The playlist tabs (top arrow) have 4 playlists currently loaded, while both playlist manager
panels has [other] playlists not loaded yet. ’External’ playlist is loaded (bottom arrow).

Figure 33: Playlist’s tooltip show essentially the same info than AutoPlaylist’s one. Note both types
of playlists are easily identified by their color code (configurable).

14Because playlists only reside in the program as long as they are loaded within the UI.

17.4 How paths are written: absolute and relative paths

In writable playlists formats, tracks may be written as absolute or relative paths (considering as root
the folder where the playlist resides in). For ex:

Absolute path:
D:\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
Relative path on current root (D:\):
.\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
Relative path one level up from root (D:\Playlists\):
..\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3

[D:]
[Playlist]

My playlist.m3u8
[Music]

[Big Retro Hits 90s]
007. Chateau Pop - Maniac.mp3
...

...

Relative paths may be enabled changing the related configuration on the header menu [35]:

Figure 34: Enabling relative paths for tracks on (new) playlists.

Note enabling this feature is not enough condition per se, since the tracks must reside in
the same drive disk to have relative paths working. Whenever relative paths can not be set, absolute
paths are used as fallback. Relative paths would not be available on the following example :

[D:]
[Playlist]

My playlist.m3u8
[E:]

[Music]
[Big Retro Hits 90s]

007. Chateau Pop - Maniac.mp3

17.5 Setting playlists format

All playlists created or saved by the manager use the format (extension) set on the panel, no matter
their original format -by default-. In other words, new playlists will use that format, but also any
external playlist added to the tracked folder will be converted to the set format on auto-saving unless
manually locked to avoid so[17.12]. The default format can be changed at the header menu [35], along
the default behavior of forcing it to existing playlists instead of maintaining their original format.

Figure 35: Playlists default format.

Additionally, playlist files may be written with or without BOM (files are always UTF-8
encoded) [62]. For compatibility purposes it can also be enabled or disabled on the header menu [35]:

Figure 36: BOM configuration.

Further information about the differences of the multiple formats available and their
structure can be found on the respective section [VI]. Actions which involve editing playlists without
changing the format to the default one are named format friendly actions [59].

17.6 Creating playlists

Creating new playlists [files] may be done easily in 2 ways on the list contextual menu[35]: either an
empty playlist or creating a new file from the active playlist (’cloning it’). The first set of options
simply creates an empty playlist file on the tracked folder and then also a new playlist on foobar2000’s
UI with the same name:

Figure 37: Menu entries to create playlists. A
popup will appear to input the name.

Figure 38: Playlist is created in both places:
the UI and the physical folder.

The other options create the physical15 file in the tracked folder, bound to the active playlist.
A popup will appear asking to maintain the name (thus using the active playlist) or input another
one (creating a clone of the active playlist with the new name). Creating a playlist from current
selection will always output a new playlist with a configurable name.

Figure 39: Cloning active playlist. Figure 40: Query input for AutoPlaylist.

AutoPlaylists and Smart Playlists are also created using the same contextual menu. Apart
from the name, query and sorting are also set via popups.16

New playlists will inherit the category or set of tags [18] from the current view filters [39],
i.e. if the current view only shows a single category, then all new playlists created will be set with
such category by default. On the contrary, since playlists may have multiple tags [47.2], all from the
current view will be added by default (only when current filter excludes playlists without tags).

15The format used is the one set at configuration.
16The entry to create an AutoPlaylist from active playlist is not available unless the active playlist is also an

AutoPlaylist.

17.7 Adding selected tracks

There are multiple ways to add a selection of tracks to playlists:

• Loading a playlist [17.8] and adding tracks directly at the foobar2000 UI.

• Using drag n’ drop [33.2], which allows to create a new playlist, copy or move tracks to selected
playlist(s).

• Using the menu to create a playlist from the current selection [17.6].

• Using mouse shortcuts to copy/move tracks to a playlist file [35].

• Using the ’+’ button (list menu) at header [35] to send selection to new or last modified playlist.

All those actions are explained in their respective sections, except the last one, meant to be
used while scrolling your library to easily create new playlists (instead of using drag n’ drop from
one panel to another, which may be slower).

Figure 41: Adding tracks to ’Joss Stone’ playlist. Playlist is highlighted in blue.

The first step would involve creating a playlist with any track selected (Shit + L. Click)
and then, while scrolling through the library for desired tracks, keep adding them to that playlist
(Ctrl + L. Click). Since the list of playlists may be really huge for some people, instead of having to
drag n’ drop or use mouse shortcuts on the playlist entry, the button allows to directly send tracks
to the last modified one.

It automatically highlights the target playlist when the mouse is over the button (if the
modifier key is pressed), and the playlist is found with a smart lookup17.

17Since tracks are usually sent to a ’Library viewer’ playlist while scrolling through the album list/library, technically
the last modified playlist will always be that one. The panel will always skip that playlist in such case, to ensure the
last playlist is really the one the user wants. Any non writable playlist format [47] will also be skipped.

17.8 Playlist loading -format friendly action-

foobar2000 loads playlists pretty fast thanks to using a binary playlist format (.fpl) instead of looking
for the physical track files. The binary format stores all the relevant metadata needed to then display
the tracks within foobar200.

On the contrary, loading any of the writable format playlists in native foobar2000 is really
slow. The physical files are loaded one by one and then their metadata retrieved... that process is
done asynchronously and can easily take minutes as soon as a playlist has more than a hundred of
tracks18.

The manager uses those writable formats to create clones of the playlists within foobar2000
but they are loaded as fast as the native binary format (.fpl) by finding matches on library for every
track. Since playlists are supposed to be pointing to items already on foobar2000’s library on most
cases, caching the paths of every item on library greatly speeds up the process19.

Figure 42: Async loading of a playlist file with tracks not present on library.

Having in mind the previous comments, there are some key rules to optimize the loading
time of playlists:

• Use the playlist files to store only tracks present on the library whenever it’s possible.

• Don’t mix external items with items on library on the same playlist.

• Replace dead items whenever it’s possible (there are built-in tools for this [27.3.1]).

• Add streams to their own playlists.

• Add external items to their own playlists.

• Use the tools to check for external and dead items [27.2] and avoid unoptimized playlists.

18Note subsequent loading of the same playlist is much faster since those items have been already cached.
19This erratic behavior has been already reported at foobar2000 support forums without an answer.

17.9 Playlist binding

Binding is the action of associating a playlist within foobar2000 and a physical file for syncing
purposes. This is done by name, so a playlist named ’ABC’ in the manager will be a mirror of a
playlist named ’ABC’ in foobar2000 UI. Additional ways to handle playlist names can be set using
UUIDs [47.5].

Figure 43: Bind selected playlist to active
playlist.

Figure 44: The active playlists is renamed and
the playlist file updated with its contents.

Bound playlists are auto-saved if such feature is enabled, i.e. any change made to the
foobar2000 playlist will be automatically reflected in the physical file. Some restrictions may apply
though20. Other manual actions include:

• Reload: reloads the playlist within foobar2000, overwriting any non saved changes.

• Update / Force update: saves any change to the physical file21.

• Delete: deleting the file also asks to delete the bound playlist within foobar2000.

• Rename: renaming the file also renames the bound playlist22.

• Show bound playlist: bound playlist within foobar2000 becomes active playlist23.

Since the only way to assign a playlist file to a foobar2000 playlist is forcing both to have
the same name, a new problem appears... what about duplicates? By default the Playlist Manager
will not allow 2 playlists with the same name if there is already a playlist file named equal to them.
i.e. no duplicates allowed for tracked playlists. Note there is not an [exposed] UUID associated to
every playlists to work with, so in fact the only thing that may be used as UUIDs are the names.
There are multiple configurable UUIDs that can be set instead of the plain name that can be used to
allow some kind of ’duplicates’ or to differentiate tracked from non tracked playlists [47.5].

20Playlist may be locked for changes, a non writable format may be used, etc.
21The manual counterpart of auto-saving.
22This is a requisite, since the link is the name!
23Like the ’Show now playing’ action, but instead it simply shows the selected playlist.

17.10 Converting UI-only playlists to files

UI-only playlists may also be converted to standard playlist (i.e. bound to tracked files) using their
playlist contextual menu. This directly creates a playlist file with the same name bound to the
original UI playlist.

Figure 45: Single convert. Figure 46: Batch convert.

Additionally, this option is also available on the multiple selection menu, to batch convert
UI playlists to tracked files [31]. This feature will probably be used mostly the first time the panel is
installed, to convert already existing playlists.

As previously seen, there is also the option to create a playlist file using the active playlist
on the UI as reference [17.6], but in such case user input is required to select the desired name. The
convert options skip that step, thus being much faster.

17.11 Deleting and restoring files -format friendly action-

Playlist files deleted within the manager context are not permanently deleted but sent to the Recycle
Bin. Timestamps are used to uniquely identify files; this is done to ensure no collisions with other
files within the Recycle Bin. Manually deleting a playlist using the playlist contextual menu [35]
allows restoring at a later point using the list contextual menu24.

Figure 47: Delete selected playlist. Figure 48: Restore deleted playlists.

Additionally, a backup of the AutoPlaylist/fpl json database is created every time the panel
is loaded and previous backups are sent to recycle bin25.

Since playlist files are sent to the Recycle Bin every time an edit is done, as long as the Bin
is not emptied, previous versions of the playlists may be found indefinitely. Reverting an unwanted
edit, file corruption or restoring files deleted long time ago is as easy as restoring a previous version.

24Alternatively, the file may be found on the Recycle Bin... so it could be restored manually after stripping the
timestamp.

25In other words, there is always 2 versions of the file. The current and the previous [start-up] one.

17.12 Locking files -format friendly action-

Playlist may be locked to disable editing, overwriting the physical file or any change apart from
unlocking or renaming it26. Locked playlists are also skipped on auto-saving.

Figure 49: Lock selected playlist. Figure 50: Locked playlist tooltip.

Note a loaded playlist within foobar2000 may be edited even if its associated physical file is
locked. This is done on purpose 27, to allow playlist edits while having the physical file locked and
untouched. At any point the playlist may be unlocked and changes be saved or it may be directly
forced to update the changes. Alternatively they may be discarded simply reloading the playlist file.

Figure 51: Unlock selected playlist. Figure 52: Force saving to locked playlist.

Native foobar2000 playlists files (.fpl) are locked by default to avoid changing their format28.
26Only the physical file is renamed in such case.
27Contrary to what other foobar2000 playlist managers do, which lock/unlock the playlists within the program (since

there is no physical files).
28Configurable at properties panel only.

17.13 Editing UI-only playlists locks -format friendly action-

The manager may also be used to lock/unlock UI-only playlists or playlists already loaded on UI
(leaving their associated files alone). Lock/unlock actions don’t work like a simple switch but in a
fine grained way, i.e. different foobar2000 playlists actions may be locked instead of just locking all
or nothing. Available actions are called in this context ”locks”. An AutoPlaylist is an example of
this: their sort order may be changed even if the items can not be removed/added manually.

Figure 53: Available locks on loaded playlist. Figure 54: Locked by other component.

List of vailable locks (may change in different foobar2000 versions):

• Add items

• Remove items

• Reorder items

• Replace items

• Rename playlist

• Remove playlist

• Execute default action

Note lock edit is only available for playlists which are not being currently locked by other
plugins or foobar2000 itself. For ex. an AutoPlaylist can not be edited since the locks are imposed
by the program. There are other plugins which may add special locked playlists too. In such case
the option will be grayed out. Locks’ parent may be identified on the menu entry or the status bar.
Therefore lock edit is only available when it has been added by SMP.

Figure 55: Lock status is displayed at the status bar on CUI.

18 Working with playlist metadata

Playlists may have multiple metadata associated [47], in particular tags (multiple allowed), category
(one allowed) and other variables related to special actions [20] [21].

Categories may be used for easy playlist classification since playlist are only allowed to
have one category -like virtual folders-. They are also shown on the tooltip over a playlist [39.8],
but contrary to tags, categories can be used to permanently filter the list, cycle through them, etc.
Categories can be set on the selected playlist contextual menu [35].

Figure 56: Setting category menu entry. Figure 57: Category shown on tooltip.

Tags may be used for informative purposes since they will be shown on the tooltip over a
playlist [39.8]. They have no further purpose, although may be used temporarily to filter the current
view too [39.5]. Tags can be set on the selected playlist contextual menu [35].

Figure 58: Setting tag menu entry. Figure 59: Tags shown on tooltip.

18.1 Metadata inheritance

To simplify working with tags and categories, metadata inheritance has been added related to the
current filter view [17.6] or the original source used (cloning) [22.4].

For example, while using category cycling [39.4] or tag filtering [39.5], any new playlist
created will have that category or tags set by default... thus saving time on later editing [17.6]. In
real usage it’s natural to expect that a new playlist should be shown on the current view, so if you
are currently working with ’Summer’ playlists category, any new playlist should be added to that
virtual folder too. Otherwise, since the current view is being filtered, the new playlist would be
hidden due to not having a category by default.

Figure 60: Current view filtered in tag and
category.

Figure 61: New playlist inherits the tag(s)
and category.

Since playlist can only have one category, multiple categories can not be inherited at the
same time... thus only category cycling [39.4] provokes inheriting, or filtering all but one category
[39.3]. If multiple categories are shown at the same time, then new playlists will not have one set by
default29. On the contrary, multiple tags can be inherited at the same time, so all currently being
shown on the list view will be used unless files without tags are not filtered30.

Note blank playlists, with no metatada, should be created disabling all category/tag filtering
[39.7] first. Otherwise they may inherit metadata from the current filtered view.

29This is to be expected! Which one should be added and why?
30In other words, if the current view show ’2020’ tagged playlists but also those without tags, no inheritation is

applied... since untagged playlists are not being filtered. This is again following some natural logic: if you only want
an specific tag, you would filter the list to show only that... in such case new playlists would fit there. But the same
would not apply if untagged playlists are shown. Should the new playlist have a tag or none?

Cloning a standard playlist [22.4] also forces metadata inheritance, so it can be used as
an easy way to create new playlists with existing metadata: just delete all its tracks to get a blank
playlist ready to be used. Cloned AutoPlaylists follow the same behavior, whether they are cloned
into a new AutoPlaylist or a standard playlist.

Figure 62: Cloning menu entry. Figure 63: Source playlist metadata.

Figure 64: New playlist metadata.

19 Auto-saving, Auto-loading and Auto-backup

19.1 Auto-saving

The first refers to the capability of duplicating any change made within foobar2000 loaded playlists
(usually those on the playlist tabs) to their physical file counterpart. Obviously, only those playlists
with a bind file in the Playlist Manager panel will be tracked for changes31. This may be configured,
on the header menu [35], changing the tracking interval (ms) or completely disabled (to copy back
changes manually on demand).

Figure 65: Auto-save configuration. Figure 66: Auto-save interval in ms.

The manager will also throw a popup whenever a saving action would change the file format
of a playlist, allowing to abort it. Such warning can be configured on the header menu [35]. Smart
Playlists [55] are also skipped on auto-saving by default.

Figure 67: Format changing warnings and Smart Playlists saving.
31In other words, it may be possible to have both tracked and non tracked playlists within foobar2000.

19.2 Auto-loading -format friendly action-

The second refers to the capability of automatically tracking changes within the tracked folder,
reflecting any change made to files on real time. This may be configured changing the tracking
interval (ms) or completely disabling it (to only reflect changes manually or on every startup).

Figure 68: Auto-load interval in ms. Figure 69: Wrong values trigger a warning.

19.3 Auto-backup -format friendly action-

The former refers to the capability of automatically perform backups -zip files- of playlist files [VI]
within the tracked folder (’_backup’ subfolder). It may be fully disabled (0), performed according to
an interval (ms) or only whenever a playlist is loaded and at foobar2000 shutdown (infinity). Files
are named following date ISO format.

Figure 70: Auto-backup interval in ms. Figure 71: Backup files.

20 Automatic playlist actions -format friendly action-

Some reserved playlists tags names are used for special purposes by the manager to automatically
perform some actions as soon as it loads a playlist with such keywords:

- ’bAutoLoad’ makes the playlist to be loaded within foobar2000 automatically (on the UI).
Meant to be used on remote servers with online controllers.

- ’bAutoLock’ locks the playlist as soon as it’s loaded on the panel.

- ’bMultMenu’ associates playlist to dynamic main menu entries [29] which are applied on batch
to a group of playlists.

- ’bSkipMenu’ will skip dynamic menu entries creation [29] associated to the tagged playlist.

- ’bPinnedFirst’ will show the playlist pinned at top no matter the sorting [39.1].

- ’bPinnedLast’ will show the playlist pinned at bottom no matter the sorting [39.1].

The feature must be explicitly enabled on the header menu [35] to work; i.e. a playlist with
such tags will not automatically perform any action until enabled globally (except those related to
dynamic menus).

Figure 72: Enabling Automatic playlist actions on the header menu.

Additionally, tags may be added to playlists automatically as soon as they are loaded. This
may be used to enforce an specific tag on all playlists tracked by the manager, no matter what it’s
set on the playlist file. Furthermore, used along the automatic playlist actions, it may be used to
force loading or locking of all tracked playlist 32.

32It’s disabled by default, so this allows both: to selectively apply actions to ’tagged’ playlists or apply them to all.

Figure 73: Setting tags to be added automatically to tracked playlists.

Obviously, nothing stops you to use it to simply tag playlists with a custom tag that has
nothing to do with automatic actions. In any case, the tooltip shows the playlist tags (whether they
are for informative purpose or used for actions):

Figure 74: [Playlist] tags on tooltip.

21 Automatic track tagging -format friendly action-

Playlists may be used to automatically tag tracks on demand (the moment you add a track) or on
startup [47.3]. The conditions to tag tracks on a playlist are set using the contextual menu for the
selected playlist [35] and must follow json format [59]. For example:

Example Description of how tracks would be tagged
[{”rating”:5}] %RATING% and a value of 5
[{”mood”:”Chill”}] %MOOD% and a value of ’Chill’
[{”year”:”$year(%DATE%)”}] %YEAR% and a year value from the full date tag
[{”checked”:”JS:todayDate)”}] %CHECKED% and a date value using JavaScript.

Table 1: Automatic track tagging examples.

Figure 75: Add track tags to selected playlist. Figure 76: Track tags popup.

As noted, the use of arbitrary JavaScript functions is allowed, but they must be defined at
a helper file ’.\helpers\helpers_xxx_utils.js’. In this case, the function it simply returns the date
Y-M-D-h-m-s in which was tagged. Users may add their own functions to it.

Playlists may have multiple track tags, in that case all of them would be applied to the
tracks when required. Other features include:

- Can be configured separately for standard playlists, AutoPlaylists / Smart Playlists [55], locked
playlists and individual playlists.

- Standard playlists may be used to easily tag your library just by sending them to the right
playlist (which don’t need to be loaded at all).

- AutoPlaylists Auto-tagging allows to automatically (and periodically) apply some tagging logic
to the current library following some condition.

- Allows multiple conditions (must follow json format) [59]. Look at playlist metadata for more
info 47.3.

The feature must be explicitly enabled on the header menu [35] to work; i.e. a playlist with
track tags will not apply them until globally enabled.

Figure 77: Enabling Automatic track tagging on the header menu.

When a playlist has track tags set, the tooltip shows the tags which would be written in
case the feature is enabled:

Figure 78: Track tags on tooltip.

Enabling Automatic track tagging for AutoPlaylists (and Smart Playlists [55]) at startup
involves processing their queries and thus requires some processing time. The process is done
asynchronously on the background [59], thus not requiring additional startup time in most cases, but
enabling the option should be considered carefully on resource constrained PCs.

In any case, it’s recommended to make a moderate use of this feature; note having
multiple Auto-Playlists trying to tag the same files at the same time may lead to errors (due to files
being blocked), your mileage may vary. Manual refresh[28] will also force Automatic track
tagging for Auto-Playlists.There is also a setting to block the panel while processing [44].

21.1 Tagging events

- Adding tracks to a playlist file via mouse shortcuts [35] or drag n drop [33.2] will trigger tagging
only on the new tracks. Note this doesn’t apply for AutoPlaylists / Smart Playlists [55].

- Auto-saving [19] or manually saving [17.9] will trigger tagging for the entire list (so ”old” tracks
update can be forced). Note this doesn’t apply for AutoPlaylists / Smart Playlists [55].

- Loading an AutoPlaylist / Smart Playlist [55]. Applies to the entire playlist.

- On Manual refresh [28]. Only for Auto-Playlists / Smart Playlists [55]. Applies to the entire
playlist.

- Adding tracks to a playlist loaded on UI, even if no saving is done (when such option is
enabled).This may also apply when an AutoPlaylist is refreshed due to library changes, but not
to Smart Playlists (which would need to be reloaded). Applies to the entire playlist.

21.2 Tagging procedure

Tagging may be applied with value returned by a function at ’.\helpers\helpers_xxx_utils.js’ or TF,
strings, etc.

For JS:functions, ouput is similar to ’{value: [’xxx’], bOverWrite: true, bMultiple: false}’:

1. If bOverwrite and bMultiple are false, value will only be added if tag is currently missing.

2. If bOverwrite is true and value is non-empty, it will always replace current tag values.

3. If bOverwrite is true and value is empty, tag will be deleted.

4. If bMultiple is true, it will add current value to tag, no duplicates.

For TF, strings, numbers, lists, ...:

1. If value contains ’$’ symbol TF will be evaluated before further processing.

2. If value contains ’%’ symbol, tag will be evaluated before further processing.

3. Value will be split by comma (’,’) into multiple values if possible.

4. If value is empty, tag will be deleted.

5. Non-empty values will be added to tag, no duplicates

22 Importing/exporting AutoPlaylists

22.1 Importing native AutoPlaylists from foobar2000

As discussed at the first steps section [12], AutoPlaylists from foobar may require to be imported to
edit the query/sort patters within the manager or have access to all features. Otherwise they would
be treated as UI-only playlists [15].

Figure 79: Not imported AutoPlaylists don’t
show TF expressions.

Figure 80: Imported AutoPlaylist tooltip,
with query and sort expressions.

On first init, a popup asks to do it automatically (by reading the foobar2000 configuration
files), but it can also be done manually cloning the AutoPlaylists and copying/pasting the TF
expressions [22.5] or automatically at the list menu [35]. See FAQ in case of errors [63].

Figure 81: Import entry at list menu.

Note all AutoPlaylists should now be created and modified at the manager, to avoid having
to repeat this process again. However, in case you create an AutoPlaylist at a later point via native
foobar2000 UI, just re-import them and done. The manager will automatically skip already imported
AutoPlaylists (so no duplicates are created) or even ask to rewrite them if the query has been changed.

22.2 Importing/exporting AutoPlaylists from files

The original idea of a playlist manager found on AutoPlaylist Manager by marc2003 consisted only
on a list of AutoPlaylists which could be loaded on demand... thus to make it easy to transfer all
those AutoPlaylist to this manager there is an option to directly import its json files33 on the list
contextual menu [35].

Figure 82: Import AutoPlaylists from json. Figure 83: Popup asking about json’s source.

At the importing process multiple options may be chosen depending on the json file being
originary from marc2003’s panel or from this one34. All AutoPlaylists found will be checked for
validity and added to the current playlist list on the manager.

AutoPlaylists exporting process for this manager is equivalent to marc2003’s one, just
copy/paste the appropriate json file35. To import it at another panel instance just follow the steps
written previously, and choose the appropriate option (files from this panel).

Note the json file from this manager contains both AutoPlaylists and other metadata from
multiple playlists formats and folders, but the latter may discarded when importing using the menus
as described36. Anyway the format from this manager is not backwards compatible with marc2003’s
script, so it doesn’t affect in any way for regular users.

Alternatively, AutoPlaylists from the panel may be selectively exported using the playlist
contextual menu option [22.3].

33marc2003’s json file (at foobar2000 profile folder) will be at ’.\js_data\autoplaylists.json’.
34Since marc2003’s panel follows its own schema for AutoPlaylists, some internal conversion is needed [54]
35For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar2000 profile folder)

will be at ’.\js_data\playlistManager_Playlists.json’.
36Contrary to marc2003’s script, whose json file only has AutoPlaylists.

22.3 Export as json file

Single AutoPlaylists may be exported as json files, instead of following the general procedure (which
exports all of them at once), using the selected playlist contextual menu [35]:

Figure 84: Export selected AutoPlaylist. Figure 85: Path to exported json file.

Alternatively all AutoPlaylists may be exported at once using the list contextual menu too.
This option has an advantage over the general procedure of just copying the json file: .fpl playlists
may be filtered before exporting, thus exporting only the AutoPlaylists37.

Figure 86: Export all AutoPlaylists. Figure 87: Auto-Playlists and .fpl popup.

37Therefore, choosing both playlists types at exporting process is equivalent to simply copying the associated panel
json file. Note the advantage is mostly cosmetic for regular users, since .fpl playlists are filtered anyway at importing!
It may come handy for advanced users though (for backup purpose or manual .fpl syncing).

22.4 Clone as standard playlist

AutoPlaylists may be converted to standard playlists (writable formats [VI]) for further editing,
sorting or exporting as plain-text files. A new playlist file will be created in the tracked folder with a
customizable name and duplicating the tracks and original sorting from the AutoPlaylist. In case
there is no need for a new playlist file, just click cancel on the name popup (and it will simply be
cloned on UI [27.1.3]).

Figure 88: Clone selected AutoPlaylist. Figure 89: Cloned AutoPlaylist as standard
playlist.

Additionally, duplicates may be automatically removed according to tag(s) or TF expres-
sion(s) by setting ’On AutoPlaylist cloning, filter by....’ option38.

Figure 90: Enabling filtering duplicates for AutoPlaylists cloning on header menu.
38Automatizes the process of removing duplicates by tags after cloning using tools like those found on Playlist-Tools-

SMP and automatically fixes one of the worst quirks of Auto-Playlists (having multiple versions of the same tracks).
By default is set to ’$ascii($lower($trim(%TITLE%))), ARTIST, $year(%DATE%)’. Aditional settings to use RegExp
title matching are also available.

Figure 91: Cloned AutoPlaylist now has 3 less tracks (132) than the original (135).

Once an AutoPlaylist has been converted, the regular exporting tools may be used [23] to
export or convert not only the playlist but also its tracks (for ex. exporting to a portable player). In
resume, the procedure to export AutoPlaylist tracks and playlists always involves cloning it first as
standard playlist39. While this may seem like a limitation, it offers multiple advantages over simply
converting the tracks using native foobar2000:

• Duplicates can be filtered automatically. AutoPlaylists are non editable, so to achieve the same
functionality all the tracks would have to be sent to another playlist anyway manually (and
then use additional scripts to filter duplicates by tags).

• The playlist file can be exported along the tracks. Using AutoPlaylists only the tracks can be
converted/exported, the playlist can not be saved.

• The exported playlist file will point to the tracks using relative paths, contrary to the file
written using ’File/Save playlist...’.

22.5 Clone as AutoPlaylist and edit query

Alternatively, AutoPlaylists may be cloned ’as is’ to easily create new Auto-Playlists using an initial
query as reference. Name, query and sorting is edited via popups. Note cloning involves copying all
tags [47.2], track tags [47.3] and category [47.4] of the original playlist into the new one, which may
have further implications (for ex. actions [20] and automatic tagging [21]).

39There is an exception, exporting and converting its tracks [23.3] is allowed directly as a shortcut to cloning +
exporting later. Conversion to standard playlists is done on the fly without needing intermediate steps. This is offered
only for faster processing.

23 Exporting playlists and files

23.1 Copy Playlist file -format friendly action-

Exports (a copy of) the selected playlist file to the given path, the final filename may be changed40.
This is equivalent to open the tracked folder and copying/pasting the file to the desired location.

Figure 92: Copy selected playlist file. Figure 93: Output popup.

D:\foobar2000\profile\playlist_manager\example.m3u8 → D:\output\example.m3u8

This is the only option available for readable-only formats [VI] which have a physical file
(.fpl). The AutoPlaylist counterpart would be exporting as json file [22.3].

40If the folder does not exists, it will be created too.

23.2 Export and copy tracks to

Exports (a copy of) the selected playlist file along their tracks to the given path41, the final playlist
filename may be changed.

Figure 94: Copy selected playlist file and its
tracks.

Figure 95: Output folder with all media files
along the exported playlist.

Since the tracks are exported ’as is’42 along the playlist, the exported playlist will be edited
to use relative paths, no matter what the original used. This is done to easily load the playlist at
any point along its files as a portable solution.

[...]
#EXTINF:259,Jaki Graham - Round And Around
D:\My library\Big Retro Hits 90s\004. Round And Around.mp3
[...]

⇓⇓⇓

[...]
#EXTINF:259,Jaki Graham - Round And Around
.\004. Round And Around.mp3
[...]

This exporting option is not available for readable-only formats [VI]. To use it on AutoPlaylist,
first clone it as standard playlist [22.4], then proceed as usual. To do something similar with .fpl
playlists, manually convert them to a writable format and then proceed as usual.

41It’s obviously recommended to choose a new folder without any content, since it will be filled with all tracks plus
the playlist.

42No conversion is done, so the file formats will remain the same and they will be perfect copies of the original files.

23.3 Export and convert tracks to

Exports (a copy of) the selected playlist file along their tracks to the given path, the final playlist
filename may be changed. The tracks are converted on the process43 and the exported playlist is
edited to use relative paths [23.2]. Note ’.\’ on filenames (’.\01 - Talikoba.mp3’) can be configured on
presets to be added or not, thus allowing to prepend a forced absolute path if desired too.

Since the files are converted, instead of being copied, they are ready to use not only on
other PCs of foobar2000 instances but also on portable players, phones, etc. i.e. it may be used as a
one way sync tool integrated within the manager and working directly on playlists.

The feature allows to save predefined sets of converter preset + destination folder on the
menu for easy access44. The entries may be configured, added or removed on the header menu [35].

Figure 96: Setting export and convert presets: converter preset, filename mask and output folder.

Figure 97: Converter window will be shown
at execution.

Figure 98: Output path will be asked at exe-
cution.

43Using pre-defined Converter presets.
44For ex. it’s possible to have an entry to export playlist to the Ipod and another one for the server, both with

different converter configurations and destination folders.

Figure 99: Filename mask must match the
one at the converter preset to properly modify
names on the output playlist file.

Figure 100: The converter preset can be set
to ask for the output path at execution. Note
filemask matches the previous one.

On the selected playlist contextual menu, every entry shows the destination folder45, the
converter preset name and the filename mask46. When the folder or the preset is not set, ’(Folder)’
and/or ’(DSP)’ is shown instead (and they will have to be manually set at execution).

Figure 101: The current preset has a con-
verted preset defined and the filemask, but
output folder will be asked at execution.

Figure 102: Setting output path. Converter
preset should be set to also ask output path
before conversion to reuse it in both windows.

This exporting option may not be available for some readable-only formats[VI]. It is allowed
for AutoPlaylists and Smart Playlists, but .fpl playlists must be manually converted or cloned to a
writable format, then proceed as usual on the new playlist file.

45Along the disk letter in parenthesis.
46Must match the one found at the converter preset to work as intended.

24 ListenBrainz integration

The manager allows Playlist ListenBrainz integration (not related to listens), by being able to sync
or import playlists found on the server, usually the user profile.

Playlist importing works similar to .xspf format [52], i.e. tracks on server only have a Title,
Artist and recording MBID... and they will be associated to local files using those tags when possible.
When importing to a plain text format, content resolution will be applied before writing the playlist
and non matched items will be discarded. If that behavior is not desired, import to .xspf format to
maintain all tracks; matched tracks will be associated to a path and non-matched tracks saved with
Title, Artist and MBID tags.

24.1 Sync playlists

Playlists may be exported to or imported from ListenBrainz server. To uniquely identify a playlist, a
MBID is used, which is saved on the playlist file. There are multiple scenarios for exporting:

- The playlist, with a MBID, is present on server: exporting will sync the changes. Playlist
identification is done by MBID, not name. i.e. multiple playlists with same name may be
present on the server.

- The playlist, with a MBID, is not present on the server: A new playlist is created on the server
with the playlist name. A new MBID is created and assigned to the playlist file. The old MBID
is ignored and overwritten. An error popup will be shown.

- The playlist file does not have a MBID: A new playlist is created on the server with the playlist
name. A new MBID is created and assigned to the playlist file.

Figure 103: Playlist MBID shown on tooltip.

Importing will retrieve the associated playlist by MBID from the server and overwrite the local file
with it. This option is only available when the playlist file has a MBID. In case it’s not found (or not
valid) an error popup will be shown and no changes applied.

24.2 Import playlist from server

A playlist may also be imported directly from the server, without a previous file, by giving a MBID.
In this case the playlist file does not need to be associated to the user account, i.e. a playlist may be
imported from any account as long as it’s public.

Figure 104: Import by playlist MBID.

24.3 ListenBrainz user token

An user token is required for all ListenBrainz functionality; it may be set on the header menu [35].
Token encryption is allowed with a password, which will be asked on every related action afterwards.

25 Spotify integration

ListenBrainz [24] allows to export playlists in their server to an associated Spotify account, thus
playlists within foobar2000 may be exported to Spotify too using the manager.

Exporting a playlist to Spotify requires the service to be connected to your user profile, and
Ṕlay music on ListenBrainzénabled (or all features). More info at the profile page.

Figure 105: Enabling Ṕlay music on ListenBrainzón profile.

Note some tracks may not be present on the final Spotify playlist due to missing
tracks’ MBIDs and/or tracks not being present on the service for streaming. This is not
a bug and should not be reported.

In case a playlist is not correctly synchronized, check the console log for errors.

Additionally, playlists may be imported from Spotify if they are exported first to ListenBrainz
[24.2], as a track list [26] or as .XSPF playlist file (there are multiple online services for that whose
usage will not be covered in this manual, it’s the user responsibility to find one which suits their
needs).

https://listenbrainz.org/profile/music-services/details/

26 Import track list from file\url

Playlists can also be created parsing any text file with a mask to set how every line is read. This
can be used to create playlists from online sources, files from other components or programs, etc.
even if they don’t use a compatible playlist format.

For ex. with this online file: Rollingstone 500 Greatest songs of all time. Note every line
follows a %TITLE% - %ARTIST% pattern.

Figure 106: Example of text file.

Path and mask may be set along some hints to discard specific lines (in this case any line
starting with ’#’) via popups:

Figure 107: File path. Figure 108: Mask for every line.

Tracks are searched in the library and output to a playlist, any missing track is skipped. Ad-
ditionally, missing tracks may be replaced with YouTube links [whenever it’s possible] if foo_youtube
is installed.

https://raw.githubusercontent.com/epsil/spotgen/master/examples/rollingstone-500-greatest-songs-of-all-time.txt
https://fy.3dyd.com/home/

27 Additional tools

27.1 On selected playlist

The following tools can be found on the selected playlist contextual menu [35].

27.1.1 Force relative paths -format friendly action-

Paths within a playlist can be converted to relative paths stripping all but the filenames47. It’s a
destructive action, which edits the playlist file and can not be undone... although a backup can be
found at the Recycle Bin as usual [17.11]:

[...]
#EXTINF:259,Jaki Graham - Round And Around
D:\library\Big Retro Hits 90s\004. Round And Around.mp3
[...]

⇓⇓⇓

[...]
#EXTINF:259,Jaki Graham - Round And Around
.\004. Round And Around.mp3
[...]

47It’s easy to see this is equivalent to using the ’export and copy tracks’ feature [23.2] without copying the tracks
and overwriting the original playlist file

27.1.2 Copy selection to playlist -format friendly action-

Menu entry and shortcut [35] are functionality-wise the same. Copies currently selected tracks to the
selected playlist without opening or switching to it: is instant and tracks may be easily ”drag and
dropped” without changing the active playlist or moving the files with the mouse.

Figure 109: Copy selection shortcut. Figure 110: Menu entry.

As a bonus, duplicates are checked by default (may be disabled at configuration), so adding
multiple times the same tracks is not allowed; duplicates are simply skipped whenever adding multiple
tracks. The tooltip also warns when trying to add duplicates, so it may be used to easily check if a
track can be found within a playlist [39.8].

Figure 111: Skip duplicates configuration.

The main advantage of this action compared to opening the playlist into the UI and then
adding the tracks copying/pasting is not only faster processing and ease of use. (Auto-)saving a
playlists involves changing its format to the default one set on the panel [17.5], while directly sending
tracks to a playlist will simply append them to the playlist without changing its original format.
Therefore you can maintain playlists in multiple formats [VI] as long as a save action is not performed
(manually or on auto-saving).

27.1.3 Clone as

Playlists may be cloned as any of the writable formats [VI], creating another file into the tracked
folder. New file is automatically renamed with ’ (copy X)’ at the end. Cloning may also be used
to create a copy of any playlist as UI-only playlist[56]. This is meant to load a playlist into the UI
without binding it to a physical file or affecting the original one48.

Figure 112: Clone selected playlist. Figure 113: Cloned playlist with new name.

Beware of metadata losses when cloning to a playlist format without advanced metadata
support (ie. to .pls [50]), not all formats may allow storing all the metadata from the original source
[48].

Playlists may also be cloned loading them and creating a new one from the active playlist
(the loaded playlist), as explained in the FAQ [61]. This method discards any original metadata since
it simply creates a new playlist with the given tracks.

AutoPlaylists have similar features to clone them as standard playlists [22.4] (using the
output tracks) and as AutoPlaylists [22.5] (reusing the query).

48It would be ”equivalent” to previously locking a playlist file and then loading it, but this method skips setting the
metadata first and ensures no changes are made to the original file in any case. Also, cloning it into the UI does not
create another physical playlist file... so this is a ”read-only” action.

27.1.4 Native contextual playlist menu

UI-only playlists (i.e. native playlists) have a contextual menu which allow to directly apply some
actions to their tracks; while it’s still possible to the same in case the Playlist Tabs native UI panel
is used or by selecting manually all tracks, the functionality has also been replicated for UI-only
playlists within the manager.

Figure 114: Native foobar2000 menu. Figure 115: Submenu on Playlist Manager.

In case such menu is not present for UI-only playlists (or loaded playlists), check if this
feature has not been disabled [46] on first init [III]. If you don’t plan to use it, feel free to disable it
to save space.

The options shown (or hidden) at the contextual submenu follow the settings at the main
foobar2000 preferences panel:

Figure 116: Customizing the contextual menu at the preferences panel.

Note the contextual submenu only affects the playlist’s items, not the playlist file; but this
doesn’t necessarily mean it’s a ’format friendly’ action [59], for ex. when auto-saving due to playlist
changes (moving/sorting/removing tracks).

27.1.5 Merge-load -multiple selection action [31]-

Multiple playlists may be loaded, merged in a single playlist, within UI with this option. I follows the
same behavior than cloning as UI-only playlist [27.1.3], i.e. no playlist file is created. Additionally
there is an option to remove duplicates (contrary to the former).

Figure 117: Merge-load option on multiple selection menu [31].

It also works for UI-only playlists, i.e. selecting and merge-loading them will simply join
them (but along the remove duplicates option, it may be used to merge playlists without duplicates
in a really fast way).

Figure 118: Name reflects the first and last playlist selected plus the total number of playlists merged.

In case a single playlist is selected, only ’merge-load (no duplicates)’ option is available (since
the other option would just load the playlist ’as is’). This can be used to easily load non-duplicated
tracks for any single playlist, even AutoPlaylists (being equivalent to [22.4] without the need to
cancel the ’customize name’ popup).

Note this feature may be used along categories/tags (which allow to filter the list of playlist
as ’virtual folders’) and the ’Select all playlist’ shortcut [35] to load in a few clicks a dozen of related
playlists.

27.2 On entire list (and maintenance tools) -format friendly action-

The following tools can be found on the list contextual menu [35]. Executed asynchronously [59],
with the panel being blocked during the process [44]. Most of them are playlist maintenance
tools, and they may be combined with filtering options [39] for advanced usage [86].

27.2.1 Mixed absolute and relative paths

Checks all the playlists currently tracked to ensure there are no playlist files with both absolute and
relative paths at the same time. Such files are probably an error, whether intentional or not, and
should be fixed in most cases. For ex:

[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3
#EXTINF:271,Jeffery Mykals - Chico & Voicemail
D:\music\Jeffery Mykals - Chico & Voicemail.mp3

The tool will span a popup reporting a list of playlists with such ’problem’. If all items exist (no
dead items), as soon as the playlist is rewritten by the manager it will be automatically fixed49.

27.2.2 Dead items

Checks all the playlists currently tracked for dead items on them, whether the tracks are on current
foobar2000’s library or not. Dead items are considered files which don’t exist at their path, no matter
if it’s a relative or absolute path.

The tool will span a popup reporting a list of playlists with dead items (but will not list
the items their-selves). To find such items or replace them with items from current library use the
built-in tool [27.3.1] or a dedicated tool like the one found at Playlist-Tools-SMP50.

27.2.3 External items

Checks all the playlists currently tracked for external items on them, i.e. tracks not present on
foobar2000’s library but which exists at their path. Note external items are technically not dead
items, since they do exist outside foobar2000 database.

49It will use the current path configuration, thus converting all paths to absolute or relative paths, after loading the
playlist within foobar2000, on auto-update or via manual update on selected playlist menu [35].

50Look for ’Playlist Revive’.

https://github.com/regorxxx/Playlist-Tools-SMP

27.2.4 Duplicated items

Checks all the playlists currently tracked for duplicated items on them, i.e. two tracks with the same
path. Note there is a limit though, if absolute and relative paths are intentionally mixed and 2 paths
point to the same physical file, they will not be considered duplicated. For ex51:

[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3 ∗
#EXTINF:141,Jeffery Mykals - Gyal Bad
D:\music\Jeffery Mykals - Gyal Bad.mp3
[...]
#EXTINF:141,Jeffery Mykals - Gyal Bad
..\music\Jeffery Mykals - Gyal Bad.mp3 ∗

The tool will span a popup reporting a list of playlists with duplicated items (but will not
list the items their-selves). To find such items or remove them use a dedicated tool like the one found
at Playlist-Tools-SMP52

27.2.5 Playlist size mismatch

Checks all the playlists currently tracked for playlists whose actual size does not match the one
present on the file (metadata [47]).

The tool will span a popup reporting a list of playlists with this error.

27.2.6 Playlist duration mismatch

Checks all the playlists currently tracked for playlists whose actual duration does not match the one
present on the file (metadata [47]).

The tool will span a popup reporting a list of playlists with this error.

27.2.7 Blank lines

Checks all the playlists currently tracked for blank lines on them (at any position). Note some playlist
formats are supposed to only store 1 line per file (.strm) or may allow blank lines which are simply
skipped by most players (M3U).

The tool will span a popup reporting a list of playlists which contain blank lines (this
includes empty lines and lines with only blank spaces).

51Only the tracks with an ∗will be considered duplicates.
52Look for ’Duplicates and tag filtering’. foobar2000’s main menu ’Edit/Remove duplicates’, after loading the playlist,

can also be used.

https://github.com/regorxxx/Playlist-Tools-SMP

27.2.8 Subsong items

Checks all the playlists currently tracked for items which contain subsongs, i.e. cue files, ISO files,
etc. While these playlists are fully supported by the manager, other players may not play them
properly (for ex. native foobar2000).

The tool will span a popup reporting a list of playlists which contain these items.

27.2.9 Format specific errors

Checks all the playlists currently tracked for errors associated to the file format. For ex: queries
where appropriate, .strm with more than one track, .xsp files having the right ’type’, etc.

The tool will span a popup reporting a list of playlists with any error.

27.2.10 Find current selection

The manager can check all the playlists containing the currently selected track(s). In case of multiple
selection, a single track match will be enough to show a playlist. i.e. not all results will contain all
tracks. The report will show playlists sorted by name and category.

Figure 119: Report for single track.

An alternative to this, is selecting the track(s) and using the playlists’ tooltip to check if
the selection is on the playlist [27.1.2]. Obviously this method is limited to checking playlist one by
one, so that’s why there is a tool to retrieve a general report directly.

The native playlist search tool at ’Edit\Search’ (Ctrl + F by default) may be
used to find items on loaded playlists [17.8] by title, artist or queries.

27.3 On active playlist

27.3.1 Revive dead items

Checks the active playlist for dead items (so the playlist must be loaded on UI), whether the tracks
are on current foobar2000’s library or not, and replaces them with tracks found at library matching
tags, path, MD5, ...

Pressing Shift + L. Click on the menu entry will select the dead items instead (without
replacing them). The menu entry will also show the amount of dead items (if any) in brackets or if
the playlist is locked (and thus not allowed to replace them.)

Figure 120: Active playlist has 2 dead items.

To find dead items on all playlist use the built-in tool [27.2.2]. For more complex usage,
check a dedicated tool like the one found at Playlist-Tools-SMP53.

53Look for ’Playlist Revive’.

https://github.com/regorxxx/Playlist-Tools-SMP

28 Manual refresh

Since auto-loading may be disabled [19.2] or the refresh time set too high, there is an option on the
list contextual menu [35] to force updating the tracked folder and its playlists. Any new file found
will be added to the list.

Figure 121: Force manual refresh of list.

As a side effect, AutoPlaylists’s metadata will be refreshed (size) and Automatic track-
tagging applied [21]. Note this is the only way to do it unless configured to do so automatically [41.2]
at startup or individually loading them. Since doing it at startup may involve a small increase in
loading time [63], it may be better to refresh them manually from time to time using this option on
resource constrained PCs,

Figure 122: Automatically update AutoPlaylists size on startup.

29 Dynamic menus

Some playlist and panel actions can exposed as main menu entries which can be found at
’File\SpiderMonkeyPanel\ScriptCommands\PlaylistManager’. As a menu entry, they can be
run via CMD or assigned to a keyboard shortcut, used by online controllers [VIII], etc. To
use this feature, ’Dynamic menus’ must be enabled on the header menu [35]:

Figure 123: Menu at ’File\SpiderMonkeyPanel\ScriptCommands’

Additionally, to run those menus entries via CMD or within an online controller [VIII] there
are 2 more requisites:

- foo_run_main: to run dynamically created main menus with other plugins, CMD, ...

- Unique panel names: every SMP panel which is meant to be used with dynamic menus must
have a unique name. As shown on the previous figure, the menu is created using the Panel
Name as reference... so having multiple panels with the same name will provoke collisions. This
limitation is only for the name, not the script, i.e. you may load the same script in multiple
panels as long as the panels are named different.

Figure 124: When having multiple playlist manager panels, names must be edited.

https://marc2k3.github.io/run-main/

29.1 Available actions

Each available action along its description (see references) can be found below:

- Playlist context: one entry per playlist (by name), skips those tagged with ’bSkipMenu’.

+ Clone in UI [27.1.3].
+ Delete [17.11].
+ Load [17.8].
+ Lock/Unlock [17.12].
+ Copy/Move selection to [27.1.2].

- Playlist group context: one entry per action, applied to all playlists with ’bMultMenu’ tag [20].

+ Load [17.8].
+ Clone in UI [27.1.3].
+ Export and convert [23.3]. (one per preset)

- Panel context:

+ New empty playlist [17.6].
+ New playlist (active) [17.6].
+ Manual refresh [28].

Note playlist context actions are dependent on playlist names, i.e. whenever a name changes the
associated menu entry changes too. Beware of this when using them on CMD or Keyboard shortcuts.

29.2 Keyboard shortcuts

Once ”Dynamic menus” are enabled [29], entries can be directly assigned to a keyboard shortcut the
same than any native foobar2000 menu entry.

Figure 125: Setting a keyboard shortcut to SMP menu entry.

30 Startup active playlist

It’s possible to set the active playlist at panel startup, allowing to start foobar2000 automatically
with a given playlist. RegExp may be used too, returning the first playlist matched.

Figure 126: Setting the active playlist at startup.

In case it’s a playlist present on the manager but not loaded, it’s required to set ’bAutoLoad’
tag on playlist file to load it automatically on startup too [20]. When using UUIDs [47.5], they don’t
need to be included to retrieve a match. i.e. just use the plain name.

Figure 127: Match with plain name. Figure 128: Match with RegExp.

Note the feature is shared among all Playlist Manager panels, therefore it’s not possible to
set different playlists at multiple panels. A single value is shared. To disable the feature just use an
empty value.

https://regexr.com/

31 Multiple selection

Multiple playlists may be selected at the same time using mouse shortcuts [41.7]. In such case, the
’selected playlist menu’ [35] applies to the entire selection of playlists instead of a single one.

Figure 129: Multiple selection menu.

The set of available entries differs to the single playlist menu, and any action is applied
partially to allowed playlists. For ex: Using the ’Lock playlist (read only)’ menu entry on a list of
playlists will only lock those playlists that are not already locked. Similar behavior applies when
setting a tag or category.

- Load playlists [17.8].

- Merge-load playlists [27.1.5].

- Merge-load (no duplicates) [27.1.5].

- Clone playlists in UI [27.1.3].

- Set category [18].

- Set playlist tag(s) [18].

- Automatically add tag(s) to tracks [21].

- Export and Convert tracks to [23.3].

- Lock/Unlock playlists [17.12].

- Edit UI playlist lock [17.13].

32 Folders

Apart from the other available tools to categorize playlists, [virtual] folders may be created to group
multiple items in any view. Folders may be added using the list menu [35], and items moved to it
with drag and drop [33.1] or using the contextual menu.

Note the current filters [39] can affect the items shown within a folder; therefore a folder is
only shown if at least one child item would be shown with the current view settings.

Figure 130: Folder contextual menu.

Functionality is pretty similar to the multiple selection feature [31]. The contextual menu
opens a different menu than the one available at other items, offering some actions which can be
applicable on batch to all its items. All items within can be easily multiple selected to then apply
more actions:

- Load entire folder [17.8].

- Merge-load entire folder [27.1.5].

- Merge-load (no duplicates) [27.1.5].

- Clone entire folder in UI [27.1.3].

- Multi-select child items [31] (the multiple-
selection contextual menu offers more ac-
tions).

Also note all playlist action shortcuts [41.7], when applied on a folder, are applied on batch
to all its items. This is also true when track drag and drop is used [33.2] or global keyboard shortcuts
[36]. i.e. sending the current selected tracks to the folder will send the tracks to every allowed
playlists on the folder.

33 Drag and drop

33.1 Drag and Drop: Internal

Performed by L. Clicking and moving an item while the mouse is pressed.

While using manual sorting [39.1], items may be reordered using drag and drop. Note the
destination position is shown while moving the mouse over the panel.

Figure 131: Moving a playlist over the selected item.

Drag and drop may also be used to move playlists to folders (or outside them), independently
of the sorting mode used. In case manual sorting is disabled, the UI will warn about not being able
to move an item if the destination is not a [different] folder.

Figure 132: Moving a playlist to ”Folder”. Figure 133: Non valid drag and drop.

Note trying to move an item while manual sorting is disabled and there are no folders at
the current view is not allowed (and the UI will not respond to it).

33.2 Drag and Drop: Tracks

Tracks within foobar2000 context may be drag and dropped into any playlist file on the list. Note
dropping a track to a folder will send it to all playlists within [32]. By default, tracks are moved
(and deleted from the source playlist). Keyboard modifiers may change this behavior:

- Default: move tracks to selected playlist (and delete them from source).

- Ctrl: copy tracks to selected playlist.

- Alt: move tracks to a new playlist file54.

- Alt + Ctrl: copy tracks to a new playlist file.

Figure 134: Drag and drop animation.

Duplicates are skipped, filtering with the target playlist in any case. Copying is functionally
equivalent to ’Copy selection to playlist’ menu entry [27.1.2] and mouse shortcut [35]. Move drag
and drop action may also be emulated with a mouse shortcut (although there is no equivalent menu
entry due to being less frequently used).

Any other file than a track within foobar2000 context is not a valid item for drag and drop,
this includes: track from the OS explorer, playlists, arbitrary files, etc.

Additional actions are available when dropping tracks in the search filter box [42].
54To warn about this behavior, no playlist is highlighted while pressing the key (contrary to the usual drag and

drop). A new playlist is also created when dropping the tracks at any blank space or the List menu button [35].

34 Filters, Search and Quick-search

Items may be filtered by multiple metadata options. See [39] for more info.

Figure 135:

Further search capabilities can be found at the Search filter [42], with RegExp and track
identification capabilities.

Figure 136:

Additionally, the list may be easily navigated with inline Quick-searching [43].

35 Shortcuts

Note most selected playlist related actions are always assigned to left click, while the rest are usually
assigned to right click (except category cycling). All features can be reached using the following
mouse and keyboard shortcuts (unless there is a button with same function [41.5]):

- Open menus (clicking on item within parentheses):

- Right Click (list/button): Open list menu; new playlist and other playlist tools.
- Right Click (header/button) [41.5]: Open header menu. General configuration.
- Right Click (filter buttons): Open buttons menu. Sorting and filtering.

- Playlist actions (clicking on playlists/folders -user configurable shortcuts [41.7]-):

- Right Click: Open selected playlist contextual menu.
- Shift + Right Click: Open playlist’s items menu [27.1.4] for UI-only playlists [56].
- Left Click + Dragging: Move playlist (only on manual sorting [39.1]).
- Double Click: Load selected playlist / Make bound playlist active.
- Ctrl + Left Click: Send current selection to selected playlist.
- Shift + Left Click: Load selected playlist / Make bound playlist active.
- Ctrl + Shift + Left Click: Clone playlist in UI.
- Middle Click: Multiple playlist selection.
- Shift + Middle Click: Contiguous multiple playlist selection.

- Header actions (clicking on header/button -user configurable shortcuts [41.8]-):

- Double Click: Category cycling.
- Single Left Click: Select active playlist or playing playlist in the manager (if possible).
- Single Middle Click: Select all playlists.

Figure 137: UI elements legend.

Figure 138: Opened menus change according to mouse position while clicking.

Figure 139: And also according to the UI elements displayed [41.5].

36 Keyboard Shortcuts

Global keyboard shortcuts are also available, as long as the panel is in focus. Whenever an action
applies to an item, it’s executed on the focused playlist/folder (to all its content) under the mouse:

- F1: Lock / Unlock playlist file or UI-only playlist.

- F2: Rename highlighted playlist.

- F3: Clone in UI [27.1.3] highlighted playlist.

- F4: Load / Show [17.8] highlighted playlist

- F5: Copy [27.1.3] highlighted playlist. Maintains original format.

- F6: Export playlist to ListenBrainz (+ Spotify) [24].

- F7: Add new (empty) playlist [17.6].

- F8: Delete highlighted playlist [17.11].

- F9: Filter [42]/Search [27.2.10] playlists with selected tracks [17.11].

- F10: Open Settings menu [35] / List menu [35] (+ Shift).

- F11: Open documentation (this pdf file).

- F12: Open playlists tracked folder [16].

- º|\|/: Show / Hide metadata columns [40].

These keyboard shortcuts are not configurable but can be globally enabled/disabled at the
shortcuts submenu found at the configuration menu.

Figure 140: Global switch for F1-F8 actions.

37 Statistics mode

The panel offers a graphical mode to show multiple statistics related to playlists metadata [47], etc.
It uses Statistics-Framework-SMP under the hood.

Figure 141: Bars chart showing playlists per
extension.

Figure 142: Doughnut chart showing playlists
per extension.

Clicking on any point will show the playlists list filtered with the selected option (for ex.
filtered with only .m3u8 playlists).

Figure 143: Buttons.

There are multiple options to customize the chart or select the data sources (all playlists,
specific playlists by name, etc.) using the buttons menus; configuration is saved for next sessions. To
enter statistics mode, use the list menu [35] or a header button [41.5]; to exit just just press on the X
button or use the menu.

https://github.com/regorxxx/Statistics-Framework-SMP

Part V

UI

38 Features

- UI re-sizable on the fly. i.e. it will adjust layout to panel size. Font Size (configurable).

- Loaded, Active and Now playing playlist indicators: � / • / I

- Empty / not empty playlist indicators. To be used as fallback when size is not shown.

- Buttons, scrollbar and other UI elements are fully configurable.

- Separators between different names/categories (configurable).

- Colors for different playlists types, status, text, background and selection (configurable).

- Different playlist icons per format (configurable).

- Alternate row shading and automatic text color changing for readability.

- Accessibility options and presets (color blindness, grey scale).

- Multiple filtering options (which can be combined).

- Input box for filtering and track searching.

- Quick-search entire words (letters and numbers) according to sorting mode [43].

Figure 144: Now playling (’A playlist’), loaded (’External’) and four non loaded playlist.

39 List view

The main panel view features a simple listing of all currently tracked playlists (whether they are
physical or virtual -json- files). This view can be filtered according to these parameters:

• By type of playlist: AutoPlaylists & Smart playlists, standard playlists or all.

• By lock status.

• By extension.

• By chosen categories (virtual folders).

• By chosen tags.

The current view settings are always maintained on subsequent foobar2000 startups unless otherwise
configured. Note tag filtering is always reset since it’s meant for informative purposes only55, not for
playlist categorization.

Name / category separators may be shown on the UI to easily identify where the next char
begins (123, A, B, ...). This features depends on the sorting mode being used.

Figure 145: ’A’, ’H’ and ’I’ separators are shown for names.

55In fact is also used for some complex playlist automatic actions.

39.1 Sorting -permanent-

List may be sorted by name, category, size, tag (first), duration, last modified or creation date. There
is also an option for manual sorting (using the contextual menu or drag n’ drop within the panel).
By default playlists are sorted by name, using natural sorting (Az). Ordering may be changed using
the appropriate buttons. The selected sorting mode is maintained on subsequent startups.

Figure 146: Sorting with the different modes. Figure 147: Sorted by size (note the ’(S)’).

Note specific playlist may be pinned at top/bottom using special tags [20].

39.2 Lock status, extension, playlist type filtering -permanent-

Filter buttons may also be used to filter by other metadata or playlist format. The procedure is
similar to category or tag filtering. Like category filtering, the selected filters are maintained on
subsequent startups (along the buttons’ configuration).

Figure 148: Playlist type and lock status. Figure 149: Restoring resets all filters.

39.3 Selective category filtering -permanent-

Playlists may be filtered by category (like virtual folders) and multiple individual selections are
allowed via menu (for ex. to display all but one specific category). When lists are being filtered by
category, an indicator is shown in the header text. The configured category filtering is maintained on
subsequent startups.

Figure 150: ’Summer’ category has been ex-
cluded, allowing none and ’Winter’.

Figure 151: The header and tooltip indicates
a filter is active.

An additional way to filter by category is cycling the current category being shown (one by
one) [35]. This works in conjunction with playlists being allowed to only have one category at the
same time, so no playlist will be shown twice while cycling. Following the same principle, category
inheritance on playlist creation [18.1] is not available when showing multiple categories at the same
time. Playlists may only have one category at most, so to make use of metadata inheritance only one
category must be enabled on the filter.

Figure 152: Since 2 categories are being
shown, category inheritance is disabled.

Figure 153: New playlists will have ’Winter’
category by default.

39.4 Category filtering cycling -permanent-

Selective category filtering [39.3] may be used to exclude or show multiple categories, but fast cycling
-one by one- is also allowed using any of the two configurable filter buttons.

Figure 154: Filter button must be set to cate-
gory.

Figure 155: Clicking on it cycles through all
categories.

Alternatively, double clicking on the header [35] -by default- will perform the same action
than the aforementioned button; both can be used at the same time and the UI will be synced
accordingly. The shortcut may be changed if desired [41.8].

Figure 156: Double clicking on the header also cycles to the next category (’Winter’).

39.5 Selective tag filtering -temporal-

Playlists may also be filtered temporarily by tags; it gets reset on subsequent startups. Therefore
tags should only be used for informative purposes but not for categorization. Note a playlist may
have multiple tags at the same time.

Figure 157: 2 tags have been exluded, showing
only playlists without tags.

Figure 158: Note the header does not warn
about filtering for tags.

39.6 Tag filtering cycling -temporal-

Similar to categories, tags may be cycled using the filtering buttons. There is no additional mouse
shortcut for it though and tag filtering is always reset on panel reloading.

Figure 159: Filter button must be set to tag.Figure 160: Clicking on it cycles through all
tags.

39.7 Reset filtering

Category and tag filtering can be reset at any time using the header menu [35] and clicking on
’Restore all’ at the appropriate submenu.

Figure 161: Reset all categories. Figure 162: Reset all tags.

Filters may be reset globally to show all playlists; this also applies to categories and tags
(no matter if they were filtered using buttons or header menu), Search filter [42] resetting is optional.

Figure 163: Reset all existing filters.

Filters applied are saved between sessions by default, but they can be configured to be reset
on startup.

39.8 Tooltip

Tooltip font (but not color) can be configured editing the ’globFonts.json’ file [89]. The info shown is
changed according to the mouse position:

- Header:

* Absolute path of currently tracked playlist folder.
* Filters used on current view.
* Categories shown.
* Playlist and AutoPlaylists shown on current view (filtering included).
* Shortcuts info (configurable).

Figure 164: Header tooltip with general info about the current panel, all playlists, filters applied, etc.

- Playlists: (related to selected playlist)

* Playlist type: Playlist / Auto-Playlist
* Name plus UUID.
* Playlist size (tracks). Configurable for AutoPlaylists (output by query).
* File name with extension.
* Status (lock).
* Category / Tag(s).
* Track Tag(s).
* Duration.
* Tracks’ file size.
* Playlist MBID [24].
* Query. Sort Pattern. Limit. (only AutoPlaylists / Smart playlists)
* Shortcuts info (configurable).
* Warns if selected tracks are already present on playlist.

Figure 165: Playlist tooltip. Figure 166: Duplicates warning on playlist
tooltip.

40 Metadata columns

Customizable metadata columns may be added to the panel to display some statistics about the
playlists shown. This may be used in conjunction or as replacement to the tooltip info, playlist icons
or other features providing a similar info [41.2].

Figure 167:

Available metadata for columns:

- Size (# tracks).

- File size.

- Duration.

- Track tags.

- Playlist MBID.

- Lock state.

When used along folders [32], in case the metadata is represented with a number (like size),
the values shown are the aggregation of all items’ statistics within it.

41 Customization

41.1 Color customization

- Background.

- Buttons text.

- Folders [32].

- Current selection: currently selected playlist
rectangle.

- Header.

- Playlists: AutoPlaylist, Smart playlists [55],
Locked playlists, ...

- UI playlists [56].

- Standard text: Any other text. By default
inverse of background.

Figure 168: 2 panel instances with different UI colors set.

41.2 Other configuration

- Tooltip: Shortcuts info [35] can be shown or hidden.

Figure 169: Header menu to enable shortcuts info. Figure 170: Tooltip.

- Menus: menu header for selected playlist contextual menu [35] can be shown or hidden.

Figure 171: Header menu to enable playlist headers. Figure 172: Contextual menu.

- Separators: Name or Category separators may be shown when sorting by those values.

- Font size: applies to all text within the panel.

- Playlist size: Track count may be shown on parenthesis along playlist names. An additional
configuration allows to refresh AutoPlaylists on startup (optionally blocking the panel [44]).

Figure 173: Show size on list. Figure 174: Size and separators are
shown for playlists.

Figure 175: Automatically update AutoPlaylists size on startup.

41.3 Accessibility

Color customization may be easily swapped using presets. Predefined presets for color blindness
(deuteranopia), grey scale, default and dark theme may be found on the menus:

Figure 176: Color presets to change the entire UI.

Additionally, all playlist have an associated unique icon according to their format [VI]; the
same applies to locked and empty playlists. Therefore it should be possible to identify the playlist
format / state without the color codes or the tooltip.

Figure 177: Playlist icons.

41.4 Playlist Icons

Playlist (and folders -see at bottom-) icons may be set to use any of the available icons on Font
Awesome (v4.7.0 or greater). Predefined presets are already set for all the playlist formats [VI].

Figure 178: Presets for the default icons. Figure 179: Locked icon disabled.

Icons not being set will use the default preset, therefore, to override the default icons, they
must be set on the on the panel. To disable a icon for a single format it may be set to null. For ex.
nullifying the locked icon, playlist will use the playlist format icon as fallback, nullifying
both, will show none.

Note the formatting follows JSON guidelines, check WikiPedia for more info. Only keys
(extensions) written will be used and override the default ones. The values are expected to be unicode
values found on Font Awesome cheatsheet. The first time the configuration is opened will be filled
with the default preset (which can be used as a guide).

Additionally, all icons may be hidden or shown with using the global switch if desired:

Figure 180: Hiding playlist icons.

Folder [32] icons can be configured in their own submenu if feature is enabled.

https://en.wikipedia.org/wiki/JSON
https://fontawesome.com/v5/cheatsheet

41.5 Buttons, scrollbar and UI elements

Most UI elements can be selectively enabled/disabled according to the user’s preferences:

1. Header buttons: if disabled, actions fallback to mouse shortcuts [35].

2. Search Filter [42]: if disabled, panel info is shown instead.

3. Scrollbar: is automatically hidden when unused.

4. Up/down scroll buttons: alternative to scrollbar (legacy UI option).

Figure 181: Default UI. Showing from left to
right: Filter box, Power action, List menu,
Settings, Folder and Help buttons.

Figure 182: UI with most elements disabled.
Showing: blank header (with no Search filter)
and a single Help button

Some buttons override the default shortcuts mouse [35]. When such buttons are
shown on the UI, the mouse shortcuts are disabled and replaced by them. If a button
is missing, then the mouse shortcut is used instead, ensuring all actions are always available
in some way.

When the ’List menu’ button is hidden, R. Click action on the list will open the list menu
[35] instead and also L. Click action will be overridden and open the playlist contextual menu.
Enabling the button will free these 2 mouse actions [41.7] to be used for other things.

Since the settings menu may only be opened on the ’Settings menu’ button, the
header (with no search filter) or the ’Power actions’ button, there are some limitations
imposed to not reach a situation where there is no way to open the menu (like disabling the 2 buttons
and enabling only the search filter).

The ’Power actions’ button is used to run the header actions [41.8] -instead of
clicking anywhere at the header [35]- when the ’Search filter’ is also shown.

Note up/down buttons appear temporarily while drag n’ dropping tracks in case the mouse
is over the bottom/top of the list, bypassing any UI configuration. This is done to allow scrolling in
such case, since the mouse can not be used to click on other elements.

41.6 Background Art

Album art from now playing/selection may be used as panel background. There are multiple settings
available:

- Selection mode.

- Filling mode (proportions).

- Transparency.

- Blur.

- Font shading to improve readability (found at color customization for standard text [41.1]).

- Tint other UI elements.

Figure 183: Art filling the panel.

41.7 Playlist action shortcuts

Different Playlist actions [35] may be associated to the 3 available keyboard modifiers when Left,
Right Middle Clicking on any playlist (or folder) of the list. i.e.:

- Ctrl + Left/Right/Middle Click

- Shift + Left/Right/Middle Click

- Ctrl + Shift + Left/Right/Middle Click

- Double Left Click

- Single Left Click

- Double Right Click

- Single Middle Click

It should be noted that only Left Click actions are set by default on a newly installed panel,
Right and Middle Click actions are available although not set by default (except contextual menu
and multiple selection). Available actions, which can be bound to any of those mouse events, are
summarized below:

- None.

- Manage playlist (playlist contextual menu) [35].

- Playlist’s items menu [27.1.4].

- Load / show playlist [17.8] (defaults to Ctrl + L. Click).

- Copy selection to playlist [27.1.2] (defaults to Shift + L. Click).

- Move selection to playlist [33.2] (defaults to Shift + L. Click).

- Clone playlist in UI [27.1.3] (defaults to Ctrl + Shift + L. Click).

- Recycle playlist [17.11].

- Lock/unlock playlist file [17.12].

- Lock/unlock UI playlist [17.13].

- Multiple selection [31] (defaults to M. Click).

- Contiguous multiple selection [31] (defaults to Shift + M. Click).

When an action is applied on a folder [32], it is applied to all playlist within on batch
instead.

Mouse actions -if available- are shown following the tooltip configuration [39.8]. Whenever
a mouse event is set to none, no action is performed and entry will be hidden at the tooltip.

Double click timer may also be configured on the shortcuts section in case the user finds the
default timer is too fast for them. Tooltip timer can be adjusted -proportionally- in this step too.

41.8 Header action shortcuts

Different global actions [35] may be associated to the 3 available keyboard modifiers when Left or
Middle Clicking on panel the header:

- Ctrl + Left/Middle Click

- Shift + Left/Middle Click

- Ctrl + Shift + Left/Middle Click

- Single Left Click

- Double Left Click

- Single Midle Click

It should be noted that only a few actions are set by default on a newly installed panel.
Available actions, which can be bound to any of those mouse events, are summarized below:

- None.

- Show current / playing playlist -if possible- (defaults to L. Click).

- Multiple selection (all) (defaults to M. Click).

- Cycle categories (defaults to Double L. Click).

- Cycle tags.

- Add new empty playlist file.

- Add active playlist.

- Manual refresh.

- Manual saving -all non locked loaded playlists-56.

- Manual saving -all loaded playlists-.

These actions can only be used at 2 places, according to your UI settings [41.5]:

- Power actions button: enabled by default. Replaces the blank header usage [35].

- Blank header: when ’Filter box’ and ’Power actions’ button are hidden.

Mouse actions -if available- are shown following the tooltip configuration [39.8]. Whenever
a mouse event is set to none, no action is performed and entry will be hidden at the tooltip.

56Manual saving actions skip XSPF playlists [52], unless it’s set as the default extension.

42 Search filter

The input box may be used to filter the current view by playlist names, tags, ... or even tracks
metadata within the playlist (by path, tags, ...). Metadata check for filtering and path level matching
may be configured; search is case insensitive. Additional usage info and actions may be found at the
contextual menu and button.

Figure 184: List filtered by name. Figure 185: Contextual menu.

Queries are available by default and will output any playlist which returns at least an
item with such query. Query syntax may be checked at the official wiki.

Figure 186: Search with queries.

To speed up searching within playlist files (it doesn’t apply for UI-only playlists [56]), files
are cached on startup. If you don’t need to use queries, disable it at the search settings menu (to
improve startup loading time).

https://wiki.hydrogenaud.io/index.php?title=Foobar2000:Query_syntax

Figure 187: Fuzzy search.

Fuzzy search is available by adding ’~’ to the beginning/end of the search input. There
are 2 modes available, one which only works with single words (fast) and a full fledged fuzzy search
for multiple word input (slower).

Additionally, RegExp parsing may be enabled for those seeking more advanced searches.
Case sensitivity may be set via flags in such scenario.

Figure 188: RegExp expression usage. Figure 189: Search with drag n’ drop.

When searching by track’s path is enabled, drag n’ dropping [33.2] a track at the
search box will paste the filename of the selection. This may be used to easily find at
which playlists the track resides in. If RegExp parsing is enabled, it will also work with multiple
tracks. The same applies if queries or metadata search is enabled. Priority of the method used
(queries/tags/paths) can be set at the search filter menu [35].

Search filter persists between sessions by default, but it may be reset on startup [39.7].

https://regexr.com/

43 Quick-searching

It’s possible to jump directly to a playlist by pressing keys according to the sorting method. Full
word searching is allowed, but the UI will continue jumping to the first match of the current string
typed (i.e. if you want another match, keep typing the entire name). Quick-searching follows the
currently sorting method set:

- By name: matches the playlist name. [alphanumeric]

- By category: matches the playlist category. [alphanumeric]

- By tags: matches the first value of all playlist’s tags. [alphanumeric]

- By size: matches the playlist size (tracks). [numeric]

- By date: fallback to name. [alphanumeric]

Figure 190: Successful search. Figure 191: No matches.

To use it, the panel must be on focus. If pressing a key with mouse over the
panel does not initiate quick-searching, then click on the panel first and retry. Note
left/right clicking may open a menu on the panel, instead of that, middle clicking may be used
to grab focus anywhere on the panel without interacting with it.

There are multiple options to configure how quick-searching works at the header menu on
’UI\QuickSearch’, like what happens when a key is pressed multiple times, cycling between results,
etc. Feature can also be fully enabled/disabled [46].

Note -by default- matching is done from the beginning of the value/string
compared, pressing Shift or Ctrl while typing will try to find a match at any position.
For ex. ”summer” would match a playlist with name ”Summer 2000” but not ”My Summer”; pressing
Shift (or Ctrl) would match both cases.

44 In panel popups

At startup, while caching the library item’s paths [XI] or at other points where the panel is processing
asynchronously, the panel may get blocked to further usage while showing an animation.

Figure 192: Animation popup while caching the library.

The mouse can be moved over the panel and a tooltip related to the current action being
processed will be shown giving more info. Quick-searching [43] animation is also an specific example
of this feature.

45 Scrolling

When the number of playlists exceeds the number of rows present on the panel, scrolling is allowed
using multiple shortcuts:

• Mouse wheel (3 rows per move).

• Up / Down keys (3 rows per keystroke).

• The scrolling arrows on the UI (3 rows per click).

• The scrollbar on the UI (single rows).

• Av Pag / Re Pag keys (entire pages).

• Home / End keys (go to top / bottom).

Figure 193: Scrolling arrow.

Note disabling both the scrollbar and the up/down buttons [41.5] will limit the scrolling
options to the mouse wheel and keyboard shortcuts above.

46 Configurable features and menus

As seen at [III], by default some features (found on the playlist menus) are disabled to simplify usage
for new users. These features57 may be selectively enabled or disabled at the header menu [35]:

Figure 194: All features are enabled after clicking on restore defaults.

Figure 195: Full menus. Figure 196: Default menus.

57List of configurable menus may differ in different script versions.

Part VI

Playlist formats
• Writable formats: .m3u, .m3u8, .pls, .xspf and .jspf (XSPF json version).
• Readable only formats58: .strm, .fpl, Auto-Playlists and .xsp (Smart Playlist).

In general, writable formats work with more features than their readable only counterparts59.
This is specially true for .fpl playlists, which are pretty limited on all aspects60. Therefore, the use of
.m3u8 or .xspf playlists is preferred over other formats (.fpl or .pls) whenever it is possible.

For query-based formats, like AutoPlaylists and Smart Playlists, there is obviously no
’limitation’ despite being read only formats... since their aim involves creating playlists on the fly,
not a list of files and paths.

47 Playlist metadata

47.1 Lock state

Playlist files may be locked or not. Locked files are considered read only for all purposes and therefore
never rewritten unless forced to do so [by the user]. Native foobar2000 playlists files (.fpl) are locked
by default.

47.2 [Playlist] Tags

Playlists may have multiple tags, i.e. keywords for informative purposes. There are some special
purpose tags which are associated to some actions performed by the manager automatically as soon
as it loads a playlist with such keywords.

- Playlists may be tagged with ’bAutoLoad’, ’bAutoLock’ or a custom set of tags (for arbitrary
purposes).

- ’bAutoLoad’ makes the playlist to be loaded within foobar2000 automatically (on the UI).
Meant to be used on remote servers with online controllers.

- ’bAutoLock’ locks the playlist as soon as it’s loaded on the panel.

58For all purposes, locked playlists may be considered into this category, no matter their extension.
59There are some more exceptions to this rule. For example, .m3u8 playlists have more features than .pls ones.
60Neither exporting [23], nor additional tools [27] work with them. And obviously, since they are a readable only

format, no new tracks may be added to them using the manager. Auto-Playlists are an exception to the latter, since
tracks are ’calculated’ at loading time.

47.3 Track tags

[”tagName”:”tagValue”]

Playlists may have multiple track tags, i.e. tag presets which are meant to be applied to the tracks
within the playlist. Note this has nothing to do with the [Playlist] Tags which are just keywords.
Allows multiple conditions (must follow json format) [59] where the tag value(s) can be any of the
following:

- foobar2000 Title Format expressions (or %TAGS%)61.

- JavaScript functions (defined at ’helpers\helpers_xxx_utils.js’), prefixed by ’JS:’.

- Value (string or number).

47.4 Category

Playlists may have a single category for easy classification or which can be used as virtual folder. For
informative purposes or arbitrary keywords use [playlist] tags instead]47.2].

47.5 UUID

Suffixes added to the playlist names to separate them from non tracked playlists when loaded in
foobar2000. Some also allow some level of name duplication.

- Invisible Unicode chars plus (*)62

- (a-f)63

- (*)64

- Or none65.

61https://wiki.hydrogenaud.io/index.php?title=foobar2000:Titleformat_Reference
62Allows the highest degree of name duplication. For ex. multiple playlists with name ’Summer’ would have different

invisible UUID’s... Experimental feature.
63Allows some degree of name duplication. The UUID will be visible along the name, thus being less useful than the

Unicode version... but more stable.
64Duplication is not allowed but serves as a indicator of playlist being tracked by the manager.
65The only way to know if the playlist is tracked by the manager is by looking at the manager panel and checking

the loaded or now playling indicators[38].

https://wiki.hydrogenaud.io/index.php?title=foobar2000:Titleformat_Reference

47.6 Author

Non configurable metadata, set automatically by the manager to ’Playlist-Manager-SMP’, for
identification purposes. When a playlist is imported from ListenBrainz [24], the author is set to the
user name.

47.7 Description

Non configurable metadata, set automatically by the manager when a playlist is imported from
ListenBrainz [24] (if available).

47.8 Playlist MBID

Non configurable metadata, set automatically by the manager when a playlist is imported or exported
to ListenBrainz [24]. It can be considered a UUID for identification purposes.

This MBID can be used to track the playlist at ListenBrainz with the following URL:

https://listenbrainz.org/playlist/{Playlist MBID}/

⇓⇓⇓

https://listenbrainz.org/playlist/fd0a7921-d490-459e-91f5-8934c8b3c127/

48 Playlist features table

Fully supported (X), partially supported (comment), not supported (empty) or not applicable (-):

Feature M3U PLS STRM XSPF foobar2000 (FPL) foobar2000 UI
Relative paths X X X X
Subsongs (iso) X X X X
Playlist metadata X X JSON JSON
Tracks metadata X Title X X X
XBMC compatibility X X X - - -
Plain text format X X X X -
Exporting (+metadata) X X X X File+JSON JSON

Table 2: Standard playlists.

Features AutoPlaylists Smart Playlists (XSP)
Playlist Metadata JSON JSON
foobar2000 queries X Limited
XBMC queries X
XBMC compatibility X
Plain text format X
Exporting (+metadata) JSON File+JSON

Table 3: Query based playlists.

- Relative paths: path to files may be saved as relative paths; for portable disks, network
folders, etc.

- Subsongs (iso): tracks within an ISO file (DVDs, SACDs, ...) may be used, not pointing
to the entire file but only the relevant track. This feature is only relevant within foobar2000
context (since other players don’t support it).

- Playlist Metadata: additional metadata associated to the playlist and used by the manager.
This data may be sabed within the playlist file or on an external json database.

- Tracks metadata: tags like Title or Artist for every track are stored inside the playlist. Some
formats may only store partial metadata.

- XBMC compatibility: playlist is compatible (readable, writable, ready to be exported,...)
with other systems like Kodi, XBMC, etc.

- foobar2000 queries: playlist makes use of foobar2000’s queries capabilities, not pointing to
specific tracks but created on demand. Partial support limits its use to an specific subset of
queries or functions.

- XBMC queries: playlist makes use of XBMC’s queries capabilities (equivalent to foobar2000
queries functionality). Usage is not limited to foobar2000’s context in this case but also available
on XBMC’s systems. In many cases, XBMC queries have a foobar2000 query counterpart, but
not all rules have an equivalence [79].

- Plain text format: playlist can be easily opened using any text editor.

- Exporting (+metadata): playlist can be exported to other programs preserving all their
metadata. Some formats may require an additional JSON file for the metadata.

https://wiki.hydrogenaud.io/index.php?title=foobar2000:Query_syntax
https://kodi.wiki/view/Smart_playlists/Rules_and_groupings

49 .m3u & .m3u8

M3U (MP3 URL) is a file format for a multimedia playlist. Although originally designed for audio
files, such as Flac, it is commonly used to point media players to audio and video sources, including
online sources, without distinction. There is no formal specification for the M3U format, it is a de
facto standard.

An M3U file is a plain text file that specifies the locations of one or more media files. The
file is saved with the ’m3u’ filename extension if the text is encoded in the local system’s default
non-Unicode encoding (e.g., a Windows code-page), or with the ’m3u8’ extension if the text is UTF-8
encoded. Within the manager, for all purposes, files generated by it are equivalent since ’.m3u’ files
are also UTF-8 encoded66.

Each entry carries one specification. The specification can be any one of the following:

• An absolute local path-name; e.g., C:\My Music\Listen.mp3
• A local path-name relative to the M3U file location; e.g., Listen.mp3
• A URL; e.g., http://www.example.com:8000/Listen.mp3

Position Description Entries
Header: Required if using Extended M3U. #EXTM3U,#EXTENC[,...]
Track(s) Track entries, arbitrary number allowed. [#EXTINF,]file path or url

...

Table 4: M3U structure.

49.1 Extended M3U

The M3U file can also include comments, prefaced by the ’#’ character. In extended M3U, ’#’ also
introduces extended M3U directives which are terminated by a colon ’:’ if they support parameters.

Directive Description Example
#EXTM3U File header, first line #EXTM3U
#EXTENC: Text encoding, second line #EXTENC:UTF-8
#PLAYLIST: Playlist display title #PLAYLIST:My Playlist
#EXTINF: Track information: seconds and title #EXTINF:256,Chateau Pop - Maniac

Table 5: Standard M3U extensions.

66Although this ’breaks the standard’, it’s indicated with the appropriate extended M3U directive so it should be
totally safe. Also note the 2015 proposal for HTTP Live Streaming follows the same convention.

https://en.wikipedia.org/wiki/M3U

Since arbitrary comments can be prefaced by ’#’ and custom directives are allowed, the
manager includes its own set of directives to support additional playlist metadata [47]:

Directive Description Example
#UUID Playlist UUID [47.5] #UUID: (*)
#LOCKED: Lock state #LOCKED:false
#CATEGORY: Playlist category #CATEGORY:Summer
#TAGS: Playlist tags (sep by ’;’) #TAGS:Celtic;Chill
#TRACKTAGS: Tags to apply tracks (json) [47.3] #TRACKTAGS:[”Mood”:”Chill”]
#PLAYLISTSIZE: Playlist size (# of tracks) #PLAYLISTSIZE:2
#DURATION: Playlist size (in secs) #DURATION:1076.11
#PLAYLIST_MBID: ListenBrainz MBID #PLAYLIST_MBID:fd0a7921...
#AUTHOR: Playlist creator #AUTHOR:Playlist-Manager-SMP
#DESCRIPTION: Playlist description #DESCRIPTION:My playlist

Table 6: Additional M3U extensions for playlist metadata support.

The use of Extender M3U along the additional custom directives allows the manager to
make use of all features without restrictions. For ex. playlists may have UUIDs independently of
their playlist name, categories may be used to filter the list, etc.

An example of a full .m3u8 playlist with relative paths67 can be found below:

#EXTM3U
#EXTENC:UTF-8
#PLAYLIST:My playlist
#UUID: (*)
#LOCKED:false
#CATEGORY:Summer
#TAGS:Celtic;Chill
#TRACKTAGS:[”Mood”:”Chill”]
#PLAYLISTSIZE:2
#DURATION:1076.11
#PLAYLIST_MBID:fd0a7921-d490-459e-91f5-8934c8b3c127
#AUTHOR:Playlist-Manager-SMP
#DESCRIPTION:My description
#EXTINF:256,Chateau Pop - Maniac
.\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
#EXTINF:259,Jaki Graham - Round And Around
.\Music\Big Retro Hits 90s\004. Jaki Graham - Round And Around.mp3

67Playlist file would be at current folder and tracks within ’music’ subfolder.

50 .pls

PLS is a file format for a multimedia playlist. Used with audio and video sources, including online
sources, without distinction.

PLS is a more expressive playlist format than the basic M3U playlist, as it can store
information on the song title and length (supported in extended M3U only)68.

The format is case-sensitive and essentially that of an INI file structured as follows:

Position Description Entries
Header: Always required. ’As is’ [playlist]
Track(s) File entries, arbitrary number allowed. X equals entry number FileX[,TitleX,LengthX]

...
Footer Always required. NumberOfEntries,Version

Table 7: PLS structure.

Key-value pairs are separated by ’=’:

Entry Description Example
[playlist] Always required [playlist]
FileX Location of media file/stream. File1=http://stream2.streamq.net:8020/
TitleX Track title (optional) Title1=My radio station
LengthX Seconds (-1 equals indefinite) (optional) Length1=-1
NumberOfEntries Playlist size (# of tracks). Required NumberOfEntries=3
Version only a value of 2 is valid. Required Version=2

Table 8: PLS entries.

Since the PLS format follows a pretty strict format, additional metadata like categories or UUID’s
can not be used with them (playlist name is the same than the filename). Switch to another format
to make use of those features.

An example of a full .pls playlist with relative paths69 can be found below:

[playlist]
File1=.\foobar2000\Big Retro Hits 90s\004. Jaki Graham - Round And Around.mp3
Title1=Round And Around
Length1=259

File2=.\foobar2000\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
Title2=Maniac
Length2=256

NumberOfEntries=2
Version=2

68This is only true for basic M3U playlists usually found on the net. Within the manager context, M3U playlists are
always richer in metadata and features since they make use of extended M3U and the additional custom directives.

69Playlist file would be at current folder and tracks within ’music’ subfolder.

https://en.wikipedia.org/wiki/PLS_(file_format)

51 .strm

STRM is a file format for a streaming multimedia playlist. Used with online audio and video sources
without distinction.

STRM is a simple plain-text playlist format without any metadata support, only including
one line: the direct URL-link to the stream. The format is not case-sensitive and essentially a
plain-text file:

Position Description Entries
Stream: Always required. Only one value allowed. URL

Table 9: STRM structure.

Only one value is allowed at the body:

Entry Description Example
URL Location of media stream. https://rockfm-cope.flumotion.com/chunks.m3u8

Table 10: STRM entries.

Since the STRM format follows a really limited structure, no metadata or multiple streams can be
saved on a file. Switch to another format to make use of those features. In particular, most players
than can read STRM files can also read M3U files, so the latter are preferred even if the playlist will
only contain one URL70.

An example of a full .strm playlist can be found below:

https://rockfm-cope.flumotion.com/chunks.m3u8

The manager will try to ensure STRM files follow the specs by checking the actual number
of paths/links on the file on loading, throwing a warning if an error is found. Note blank lines are not
necessarily supported by some players, so these playlist may be forced to be one-line sized, although
he manager will skip blank lines if it finds one.

70For ex. Kodi: Internet video and audio streams

https://kodi.wiki/view/Internet_video_and_audio_streamshttps://kodi.wiki/view/Internet_video_and_audio_streams
https://kodi.wiki/index.php?title=Internet_video_and_audio_streams

52 .xspf

XSPF is an XML-based playlist format for digital media (audio or video), intended to shared and
played on different devices.

Traditionally playlists have been composed of file paths/links that pointed to individual
items. XSPF encourages a new kind of playlist sharing called content resolution: based on metadata.
An XSPF-compliant content resolver will open XSPF playlists and search a catalog for every title
with <creator>, <album> and <title> tags, then localize the playlist to reference the available
matching tracks.

XSPF follows a XML structure, allowing full metadata support (via built-in variables and/or
extensions). The format is case-sensitive:

Position Description Entries
XML Header: Always required. <?xml version=”1.0” encoding=”UTF-8”?>
Playlist: Always required. <playlist version=”1” xmlns=”http://xspf.org/ns/0/”>
Metadata: Optional. <title>example</title>

...
Track list: Always required. <trackList>
Track: Any number. <track><location>file:///song1.mp3</location></track>

...
Track list end: Always required. </trackList>
Playlist end: Always required. </playlist>

Table 11: XSPF structure.

The format allows some built-in playlist info and arbitrary meta values [47]:

Metadata Description Example
title Playlist name <title>example</title>
author Playlist creator <creator>Playlist-Manager-SMP</creator>
description Playlist description <annotation>My Playlist</annotation>
uuid Playlist UUID [47.5] <meta rel=”uuid”> (*)</meta>
locked Lock state <meta rel=”locked”>true</meta>
category Playlist category <meta rel=”category”>Chill</meta>
tags Playlist tags (sep by ’;’) <meta rel=”tags”>Celtic;Chill</meta>
trackTags Tags to apply (json) [47.3] <meta rel=”trackTags”>[”Mood”:”Chill”]</meta>
playlistSize Playlist size (# of tracks) <meta rel=”playlistSize”>817</meta>
duration Playlist size (in secs) <meta rel=”duration”>458000</meta>
playlist_mbid ListenBrainz MBID <meta rel=”playlist_mbid”>fd0a7921...</meta>

Table 12: XSPF meta for playlist metadata support.

https://en.wikipedia.org/wiki/XML_Shareable_Playlist_Format
https://xspf.org/xspf-v1.html

Other considerations to ensure XSPF conformance by the specs (also XSPF v1 Notes and
Errata):

• Relative paths MUST be resolved according to the XML Base specification or IETF RFC 2396.
• MUST handle valid URIs.
• MUST handle failure of any one resource. If an xspf:track element cannot be rendered, an

user-agent MUST skip to the next xspf:track element and MUST NOT interrupt the sequence.
• xspf:playlist elements MUST contain one and only one trackList element (may be empty).
• xspf:track elements MAY contain zero or more location elements, but a user-agent MUST NOT

render more than one of the named resources.
• trackNum MUST be a valid XML Schema nonNegativeInteger.
• duration MUST be a valid XML Schema nonNegativeInteger.

Multiple tracks are allowed and each one may have any of these values (case sensitive):

Entry Description Example
location URI encoded link/path to file. <location>file:///song1.mp3</location>
title Item name. <title>Find the river</title>
creator Artist. <creator>R.E.M.</creator>
album Album name. <album>Automatic for the people</album>
duration Item length, in milliseconds . <duration>233000</duration>
trackNum Item number. <trackNum>12</trackNum>
identifier Hash, MusicBrainz Id, ... <identifier>161c7-ce73-4e97-9f0c-9f0e53</identifier>

Table 13: XSPF entries. For additional variables check XSPF Version 1.

As can be noted, the XSPF format allow the same degree of arbitrary playlist metadata than the
M3U format while also setting an standard to the tracks’ metadata: tags like album, track number
or artists are enclosed in their own standardized variables and correctly identified instead of relying
on an arbitrary format for the track’s info that may change from player to player.

Content resolution is allowed via fuzzy matching using these tags to find matches on the
library via queries (something foobar2000 excels at). Therefore, whenever a track is not found on the
library, the manager will try to find a match on the library using the track’s metadata. Note this is
a clear advantage over M3U playlists, since it allows full portability no matter the media paths71.
The specification also enforces that non found items (after queries) should simply be skipped, thus
partial loading of playlists is also allowed. In many aspects this is pretty similar to Auto-Playlists,
although limited to the list of tracks and allowing only 1 result per item.

Also, multiple locations (i.e. paths) per track are allowed, and the manager will check all
of them to look for the file. So a single playlist may have paths from multiple sources for the same
tracks and work on different systems, without editing, this way. This can also be combined with
YouTube links, which would be loaded as fallback in case no local file is found.

71At another devices the files may be in a different disk, folder structure or even named totally different... but as
long as the metadata is the same, the playlist will be loaded fine.

https://wiki.xiph.org/XSPF_v1_Notes_and_Errata
https://wiki.xiph.org/XSPF_v1_Notes_and_Errata
https://xspf.org/xspf-v1.html#rfc.section.6.2
https://xspf.org/xspf-v1.html

An example of a full .xspf playlist can be found below:

<?xml version=”1.0” encoding=”UTF-8”?>
<playlist version=”1” xmlns=”http://xspf.org/ns/0/”>

<title>example</title>
<identifier>example</identifier>
<creator>XXX - Playlist-Manager-SMP<</creator>
<annotation>My description</annotation>
<info>>https://listenbrainz.org/user/xxx/playlists/</info>
<location>https://listenbrainz.org/playlist/fd0a7921-d490-459e-91f5-8934c8b3c127</location>
<identifier>https://listenbrainz.org/playlist/fd0a7921-d490-459e-91f5-8934c8b3c127</identifier>
<date>2023-04-14T15:54:35.850640+00:00</date>
<attribution>XXX</attribution>
<meta rel=”uuid”></meta>
<meta rel=”locked”>true</meta>
<meta rel=”category”></meta>
<meta rel=”tags”></meta>
<meta rel=”trackTags”></meta>
<meta rel=”playlistSize”>817</meta>
<meta rel=”duration”>458000</meta>
<meta rel=”playlist_mbid”>fd0a7921-d490-459e-91f5-8934c8b3c127</meta>
<trackList>

<track>
<location>file:///H:/music/12 - Find the river.mp3</location>
<title>Find the river</title>
<creator>R.E.M.</creator>
<album>Automatic for the people</album>
<duration>233000</duration>
<trackNum>12</trackNum>

</track>
</trackList>

</playlist>

53 .fpl

FPL is a binary file format for a multimedia playlist by foobar2000. Used with audio and video
sources, including online sources, without distinction.

It’s a closed source format whose structure has not been shared publicly, although it’s
known it uses a binary format to store the metadata of the tracks included to greatly speed up its
loading time within the program72.

Although it looks as an improvement over plain text playlist formats, the ’closed source &
binary’ format requirements no longer holds true to offer short loading times. Plain text playlist
formats may be used perfectly fine, as long as the files are matched with those on the library, without
speed penalties73. This is the behavior followed by manager and it has been already reported to
foobar2000 developers 74 to properly implement playlist loading if desired. Loading speed penalties
only happen when some items are not on library (whether they are external items or dead items) [27].

To allow additional metadata for .fpl playlists, considering the files are non-editable, an
external json file is used [59]. The same applies to Auto-Playlists. The following keys-values pairs
are used:

Entry Description Example
id UUID ”id”: ” (*)”
name Playlist name ”name”: ”example”
nameId Playlist display name ”nameId”: ”example (*)”
extension Playlist file extension ”extension”: ”.fpl”
path Playlist file path ”path”: ”.\profile\playlist_manager\example.fpl”
size Playlist size (# of tracks) ”size”: 2
fileSize Playlist file path ”fileSize”: 20739
isLocked Lock status ”isLocked”: true
isAutoPlaylist Is an Auto-Playlist? ”isAutoPlaylist”: false
query Auto-Playlist query ”query”: ””
sort Auto-Playlist sort(optional) ”sort”: ””
bSortForced Auto-Playlist sort forced? ”bSortForced”: false
category Playlist category ”category”: ”Summer”
tags Playlist tags (sep by ’;’) ”tags”: [”bAutoLoad”,”bAutoLock”]
trackTags Tags to apply tracks (json) ”trackTags”: [”Rating”: 5]
limit Playlist output size limit ”limit”: 0

Table 14: FPL (and Auto-Playlist/Smart Playlist) json format.

Note all AutoPlaylist related metadata is empty, the path points to the physical .fpl file
and its file-size is cached75. Apart from those differences, it can be easily checked that all playlist
metadata is present (the same it was in M3U format). In fact, all playlists are converted -for internal
use- to this format within the code.

72Instead of loading the tracks and retrieving their metadata from the physical files.
73Which is one of the most common use-case of playlists within foobar2000.
74Check Why m3u8 loading is so slow on hydrogenaud.io-
75For AutoPlaylists, it would be the contrary. No physical file is associated and the query and sorting is used

instead... but -essentially- they use the same format.

https://github.com/yellowcrescent/fplreader
https://hydrogenaud.io/index.php?topic=120929.0

An example of a full .fpl playlist associated json file can be found below. In real files, every
playlist would be concatenated to the same file, thus having multiple {playlists objects}, separated
by comma (’,’), between the brackets [{...}, {...}]:

[
{

”id”: ” (*)”,
”name”: ”Example”,
”nameId”: ”Example (*)”,
”extension”: ”.fpl”,
”path”: ”.\profile\playlist_manager\Intercalate mix.fpl”,
”size”: 51,
”fileSize”: 20739,
”isLocked”: true,
”isAutoPlaylist”: false,
”query”: ””,
”sort”: ””,
”bSortForced”: false,
”category”: ”Summer”,
”tags”: [”bAutoLoad”,”bAutoLock”],
”trackTags”: [”Mood”: ”Chill”]
”limit”: 0

}
]

Note on such .json file (one per Playlist Manager panel), these playlists may be present
along Auto-Playlists and Smart Playlists, since all those formats have a json counterpart for metadata
purposes. Their identification relies on the extension, file path, ’isAutoPlaylist’ boolean and/or query.

54 Auto-Playlists

AutoPlaylists are virtual playlists -no physical file- intended to retrieve multimedia items by queries
within foobar2000. Other programs have similar features: Kodi and XBMC (Smart Playlists),
Musicbee (Auto-Playlists), etc.

Structure and format is exactly the same than .fpl use-case, so check it for reference [53].
Specifics for Auto-Playlists are listed below:

Entry Description Example
extension Playlist file extension ”extension”: ””
path Playlist file path ”path”: ””
fileSize Playlist file path ”fileSize”: 0
isAutoPlaylist Is an Auto-Playlist? ”isAutoPlaylist”: true
query Auto-Playlist query ”query”: ”ALL”
sort Auto-Playlist sort (optional) ”sort”: ”SORT DESCENDING BY TITLE”
bSortForced Auto-Playlist sort forced? ”bSortForced”: true
limit Playlist output size limit ”limit”: 0

Table 15: Auto-Playlist json format changes.

Extension and path are empty, since there is no associated physical file. File-size is equal to
zero. ’isAutoPlaylist’ boolean is true and the query related value must be filled. Sorting is optional.

An example of a full Auto-Playlist associated json file can be found below76. Note, in real
files, Auto-Playlists may be mixed with other playlists:

[
{

”id”: ””,
”name”: ”Entire Library”,
”nameId”: ”Entire Library”,
”extension”: ””,
”path”: ””,
”size”: 132,
”fileSize”: 0,
”isLocked”: false,
”isAutoPlaylist”: true,
”query”: ”ALL”,
”sort”: ”SORT DESCENDING BY TITLE”,
”bSortForced”: true,
”limit”: 0,
”category”: ”Summer”,
”tags”: [],
”trackTags”: [],
”limit”: 0

}
]

76For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar2000 profile folder)
will be at ’.\js_data\playlistManager_Playlists.json’.

https://wiki.hydrogenaud.io/index.php?title=foobar2000:Query_syntax
https://wiki.hydrogenaud.io/index.php?title=foobar2000:Query_syntax

55 .xsp -Smart Playlists-

.xsp format or ’Smart Playlists’ are an XML-based playlist format on Kodi-like and XBMC systems,
pretty similar to AutoPlaylists, which also retrieve multimedia items by queries.

Their main use -within foobar2000 context- is to allow automatic queries which
load tracks from other playlists as source, something AutoPlaylists can not do [79].
Automatic refresh on playlist sources change can be switched at ’Playlists behavior\Update Smart
Playlists...’; in any other case, they have to be re-loaded to update tracks based on other type of
queries (they are not automatically refreshed like Auto-Playlists).

XBMC’s queries use their own format and tags, so they are not directly compatible with
foobar2000’s queries. To be able to use these playlist, a full translation layer has been added between
both query formats. This imposes some restrictions since most TF functions don’t have an equivalence
on XBMC’s queries, they are mostly limited to standard queries without functions. For more info
check [79].

XSP follows an strict XML structure without metadata support. The format is case-sensitive:

Position Description Example
XML Header: Required. <?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?>
Playlist Type: Required. <smartplaylist type=”songs”>
Name: Playlist name. <title>Top Rock songs</title>
Match: ’all’/’one’ <match>all</match>
Rule: Any number. <rule field=”genre” operator=”is”><value>Rock</value></rule>

...
Limit: Optional. <limit>100</limit>
Sorting: Optional. <order direction=”descending”>lastplayed</order>

Table 16: XSP structure.

Multiple rules are allowed (matching all -’all’- or any of them -’one’-), and each one may have multiple
values (case sensitive):

Entry Description Example
Rule Specifies tag field and operator. <rule field=”genre” operator=”is”>
Value Tag value to match. <value>Rock</value>

...
Rule closing Closes value list. </rule>

Table 17: XSP rule entries.

Within the same rule, multiple values are evaluated following an ’OR’ pattern. i.e. ’value = Rock,
Value = Folk’, it translates into something like ’Value = Rock or Value = Folk’. On the contrary,
rules are evaluated following the global match attribute (’all’/’one’).

Although XSP playlist allow multiple types of media types, note that only Smart Playlists
with ”song” type are compatible with the manager. Other types will throw a warning in the
tooltip, the contextual menu and when trying to load those playlists (most other actions will also be
disabled).

https://kodi.wiki/view/Smart_playlists
https://wiki.hydrogenaud.io/index.php?title=foobar2000:Query_syntax

Within a rule, the list of operators allowed to apply on its values is:

Entry Description
contains True if the field contains the value as a substring.
doesnotcontain True if the field does not contain the value as a substring.
is True if the field matches the value exactly.
isnot True if the field does not match the value exactly.
startswith True if the start of the field matches the value.
endswith True if the end of the field matches the value.
lessthan True if the content of the field is less than the value.
greaterthan True if the content of the field is greater than the value.
after True if the content of the field comes after the value. Date fields.
before True if the content of the field comes before the value. Date fields.
inthelast True if the field falls in the last range specified by the value. Date fields.
notinthelast True if the field does not fall in the last range specified by the value. Date fields.

Table 18: XSP operators.

The list of tag fields which work within XBMC systems (with foobar2000 equivalences) are:

XBMC foobar2000 XBMC foobar2000 XBMC foobar2000
albumartist ALBUM ARTIST year DATE musicbitrate %BITRATE%
virtualfolder #PLAYLIST# rating %RATING% path %PATH%
playcount %PLAY_COUNT% userrating %RATING% filename %FILENAME%
samplerate %SAMPLERATE% comment COMMENT playlist #PLAYLIST#
noofchannels $info(CHANNELS) moods MOODS source -
datemodified %LAST_MODIFIED% album ALBUM title TITLE
lastplayed %LAST_PLAYED% origyear ORIGYEAR dateadded %ADDED%
time %LENGTH_SECONDS% bpm BPM datenew %ADDED%
tracknumber TRACKNUMBER artist ARTIST genre GENRE

Table 19: XSP tag fields. Note Smart Playlist can look for tracks on other playlists.

An example of a full .xsp playlist can be found below:

<?xml version=”1.0” encoding=”UTF-8” standalone=”yes” ?>
<smartplaylist type=”songs”>

<name>Top 100 Songs</name>
<match>all</match>
<rule field=”genre” operator=”is”>

<value>Rock</value>
<value>Folk</value>

</rule>
<rule field=”year” operator=”greaterthan”>

<value>1969</value>
</rule>
<order direction=”descending”>playcount</order>
<limit>100</limit>

</smartplaylist>

The foobar2000 query equivalence would be: ’(GENRE IS Rock OR GENRE IS Folk) AND
(DATE GREATERTHAN 1969)’.

https://github.com/xbmc/xbmc/blob/master/xbmc/playlists/SmartPlayList.cpp

For the associated .json file, to store metadata, structure and format is exactly the same
than .fpl use-case, so check it for reference [53]. Specifics for Smart Playlists are listed below:

Entry Description Example
extension Playlist file extension ”extension”: ”.xsp”
path Playlist file path ”path”: ”.\profile\playlist_manager\example.xsp”
fileSize Playlist file path ”fileSize”: 20739
isAutoPlaylist Is an Auto-Playlist? ”isAutoPlaylist”: false
query Auto-Playlist query ”query”: ”ALL”
sort Auto-Playlist sort (optional) ”sort”: ”SORT DESCENDING BY TITLE”
bSortForced Auto-Playlist sort forced? ”bSortForced”: false
limit Playlist output size limit ”limit”: 100

Table 20: Smart Playlist json format changes.

Extension and path are present, contrary to Auto-Playlists, since there is an associated
physical file. File-size is therefore non zero. ’isAutoPlaylist’ boolean is false and the query related
value is filled with the foobar2000 equivalent query. Sorting is optional and ’bSortForced’ is never
used. Limit is only used by Smart Playlists and may be set to configure how many tracks will be
sent to the playlist after using the queries.

An example of a full Smart Playlist associated json file can be found below77. In real files,
Smart Playlists are mixed with .fpl playlists and Auto-Playlists... the only distinction being the
’isAutoPlaylist’ boolean value and extension:

[
{

”id”: ””,
”name”: ”Top Rock songs”,
”nameId”: ”Top Rock songs”,
”extension”: ”.xsp”,
”path”: ”.\profile\playlist_manager\example.xsp”,
”size”: 100,
”fileSize”: 20739,
”isLocked”: true,
”isAutoPlaylist”: false,
”query”: ”(GENRE IS Rock) AND (%RATING% GREATER 3)”,
”sort”: ”SORT DESCENDING BY %RATING%”,
”bSortForced”: false,
”limit”: 100,
”category”: ”Top”,
”tags”: [],
”trackTags”: []

}
]

Note the query and sort variables store the already translated Title Format expressions
instead of the original XBMC ones.

77For ex. if the panel is set to track ’H:\My Music\Playlists’, then the playlist json file (at foobar2000 profile folder)
will be at ’.\js_data\playlistManager_Playlists.json’.

56 .ui -UI-only Playlists-

UI-only playlists are simply virtual placeholders for those playlists within the UI not being tracked
by the current Playlist Manager panel as a file78. Only playlist metadata is saved as json, as an
internal format.

Their only aim is showing an entry in the list view pointing to the playlist within foobar2000
UI. This allows some non-advanced actions like fast switching to it, renaming, setting a category, etc.
[35]. In other words, using the manager as an standard playlist organizer like other components79

(without the advanced functionality of having a physical file associated).

UI-only playlists may be used/shown along the other formats, have their own custom color
[38] and are refreshed whenever a playlist is loaded/created/deleted. Their size is also shown along
the name, but it’s only updated according to the auto-saving interval configuration.

Figure 197: UI-only playlist menu. Figure 198: Warning popup.

78They may be associated to a file on another instance though.
79For ex. Playlist Organizer (foo plorg)

https://wiki.hydrogenaudio.org/index.php?title=foobar2000:Components/Playlist_Organizer_%28foo_plorg%29

This is a comprehensive list of the features allowed for UI-only playlists:

- Show binded playlist (and its shortcut counterpart[35]).

- Send selection to playlist (and its shortcut counterpart[35]) [27.1.2].

- Rename...

- Delete [17.11].

- Set category... [18]

- Set playlist tag(s)... [18]

- Automatically add tag(s) to tracks... [21]

- Clone as... [27.1.3].

- Export and covert tracks to... [23.3].

- Edit UI playlist lock [17.13]

- Additional tools [23.3]: External items, dead items and duplicated items.

To associate the active UI-only playlist to a file, it may be either bound to a selected file
[17.9] or to a new playlist file [17.6]. Then the virtual UI-only entry will get replaced with the physical
one. Note this is different to cloning, since that option just creates a copy with a new name. Trying
to rename an existing file to match an UI-only playlist’s name will fail warning about no duplication
allowed.

UI-only playlists are disabled by default on the manager but may be enabled on the config
menu.

Figure 199: Enabling UI-only playlists on list view.

When UI-only playlists are enabled on the manager, the list view filters [39] are expanded
to also consider these playlists in the ’Playlist type’ and ’Extension’ filters.

Part VII

Other scripts integration
This is a non comprehensive list of other Spider Monkey Scripts or plugins which may be used along
the manager or whose features are designed to work together:

- Playlist-Tools-SMP:

* Random Pools: Pools may use tracks from playlists files tracked by the manager, not
requiring to have the playlists loaded within foobar2000. i.e. Random Pools component-
like playlist creation, using not only queries as sources, but also other playlists or playlists
files. See [78].

* Playlist Revive: Finds and replaces dead items on loaded playlists or selection. Meant
to be used along dead items checks on playlist files [27.2.2]. First check all playlist files,
then load those with dead items and use Playlist Revive.

* Duplicates and tag filtering: The manager allows to report playlists with duplicated
items, but it’s limited to entries with same path. This tool expands foobar2000 native
functionality of removing duplicates, allowing to find duplicates by tags (for ex. any track
with same Title - Artist).80

* Import track list: Takes a plain text list of tracks (for ex. Title - Artist) and finds
matches on library to create a playlist. Meant to be used for playlist importing when the
track list does not follow an standard format or there are no paths provided81. Instead of
sharing a list of files, list of tracks may be used which work universally no matter your
configuration. Non found items are simply discarded.

80A limited functionality version has been included which applies when cloning AutoPlaylists if configured to do so
[22.4].

81Technically that is not a playlist. But note playlists with relative paths may easily be considered a track list as
long as you discard the ’.\’ part. In other words, a plain-text list can be retrieved from playlists in many cases.

https://github.com/regorxxx/Playlist-Tools-SMP

Part VIII

Online controller (ajquery-xxx)

57 Features

Playlist Manager can be integrated with foo_httpcontrol to be used within a web browser. A
compatible template is required, like ajquery-xxx, specifically designed to integrate with Spider
Monkey Scripts. Multiple panels may be integrated at the same time on the controller.This is a non
comprehensive list of features available on the online controller:

- View playlists: list of available playlists in all panels, along basic metadata.

- Load playlists [17.8]

- Clone playlists in UI [27.1.3]

- Lock / unlock playlists [17.12]

- Send selection to playlist [27.1.2]

- Delete / restore playlist [17.11]

- New empty playlist / from active playlist [17.6]

- Manual refresh [28]

58 Installation

First follow the instructions of foo_httpcontrol and ajquery-xxx; the first must be simply installed
as any plugin and the latter must be extracted within foo_httpcontrol templates folder.

Once both pieces are installed, enable ”Dynamic menus” on the integration section of the
header menu [35] along the other requisites (foo_run_main:). See [29] for more info.

Figure 200: Menu at ’File\SpiderMonkeyPanel\ScriptCommands’

https://github.com/regorxxx/ajquery-xxx
https://bitbucket.org/oblikoamorale/foo_httpcontrol/downloads/
https://github.com/regorxxx/ajquery-xxx
https://bitbucket.org/oblikoamorale/foo_httpcontrol/wiki/Installation
https://github.com/regorxxx/ajquery-xxx
https://marc2k3.github.io/run-main/

Part IX

FAQ

59 Used terms

- What’s json? It’s a standard file structure. Check https://en.wikipedia.org/wiki/JSON for
more info.

- What’s asynchronous execution? Execution of some code done on the background (usually
on iterative steps), thus not blocking the UI on the process. For ex. external playlist files
loading on native foobar2000 [17.8].

- Format friendly actions are those which don’t involve changing the original format [VI] of
the playlist to the default one set at the panel [17.5]. For ex: playlist loading into the UI [17.8],
renaming, deleting and restoring [17.11], locking [17.12], sending selection to playlist [27.1.2]
and any playlist-metadata edits [47]. Obviously, cloning or exporting tools don’t change the
original file, but may involve changing format of the output file.

60 File permissions and tracking

- Writing playlists to files fails due to permissions problems. Use something like this in
a CMD instance (replace path and disk):

attrib -r ”DISK_LETTER:\YOUR_PLAYLIST_PATH*.*” /D /S

⇓⇓⇓

attrib -r ”D:\My playlists*.*” /D /S

- To create/track a playlists folder in the same path foobar2000 resides in, relative
paths may be used (.\playlist_manager\server\): Note this will allow the manager
to work properly on portable/network installations where the drive letter or absolute path
changes.

- To create/track a playlists folder in the same path foobar2000 resides in, relative
paths may be used (.\playlist_manager\server\): Note this will allow the manager
to work properly on portable/network installations where the drive letter or absolute path
changes.

’.\playlist_manager\server\’
[foobar2000]

[playlist_manager]
[server]

My playlist.m3u8
...

[other]
summer.m3u8

.\profile\playlist_manager\server\’
[foobar2000]

[profile]
[playlist_manager]

[server]
My playlist.m3u8
...

[other]

https://en.wikipedia.org/wiki/JSON

61 Managing playlists

- Sending tracks to playlists easily: ’Send selection’ playlist menu entry and/or shortcut [35]
allows to send currently selected tracks to the desired playlist without opening or switching
to it [27.1.2]. It may be used to easily manage the playlists without cluttering the UI. Also
duplicates are checked, so adding multiple times the same tracks is not allowed;
duplicates are simply skipped.

- Can’t edit or update a playlist: Check the playlist status. It’s probably locked, unlock it
to be able to make changes.

- How to duplicate a playlist?: Load the playlist you want to duplicate, then use the list
menu [35] to ”Create new playlist file from active playlist” [17.6]. Just input a different name
and as result it will be duplicated using the new name. Alternatively use cloning [27.1.3].

Figure 201: Load desired playlist. Figure 202: And create a new one from it.

62 Playlist loading

- Some items in a playlist are not being found on library although they are present:
That probably points to code-page detection errors by SMP on reading. UTF8 files without
BOM may be incorrectly identified and thus not parsed as intended. Consider adding BOM
[17.6] or using M3U formats which have a flag to notify their code-page [49]. .m3u8 files are
always read as UTF8 files by design (whether they have BOM or not). These tips apply to
playlists created within the playlist manager but for files generated by other software similar
considerations may apply. Unix users may prefer non BOM files and simply use to M3U formats
in any case. Multiple code checks have been added to minimize these situations in any case.

- .pls playlist files have problems with unicode chars: Since .pls does not have a field
which specifies the encoding, it must be guessed using SMP heuristics (which is known to fail).
They should work fine using UTF8 with BOM, but otherwise it depends on luck. Consider
using BOM or switching to M3U formats instead.

- Some playlist load right but track names have tons of rubbish chars: Read previous
comments about UTF8 encoding.

63 AutoPlaylists

- How is AutoPlaylists size calculation processed at start-up?: Contrary to native
foobar2000, AutoPlaylists are calculated fully asynchronously since the playlists are not loaded
in the UI. Therefore there is no need to finish the process to show the main program or panel
and it can be done in the background. In other words, enabling AutoPlaylist size updating at
startup [41.2] is essentially performance-wise free at start-up in most cases.

- How is AutoPlaylists automatic tagging processed at start-up?: Idem [21].

- Which versions of foobar2000 are supported for automatic AutoPlaylist importing?
[22.1]: Currently supported versions are v1.6.X (dat file) and v2.X (sqlite file). This doesn’t
guarantee it to work (see below).

- Why automatic AutoPlaylist importing fails in some cases? [22.1]: Automatic
processing relies on parsing closed-source files as hexadecimal files, trying to find queries and
playlist names with heuristics. i.e. it may fail at any point if the format changes or the file is
not parsed successfully. While it should work fine in most cases, the code is not guaranteed to
work 100% reliably.

Figure 203: Error importing AutoPlaylists.

- What to do if automatic AutoPlaylist importing fails? [22.1]: In such cases, just clone
the AutoPlaylist manually [22.5].

64 Playlist exporting

- Are playlist exporting options asynchronous? [23]: Due to its nature, copying just the
playlist files is instantaneous. The copy and convert [with tracks] options takes some time since
they involve bigger media files. Conversion is done using the Fobar2000 native processing, so
it’s done asynchronously on the background with a popup showing the progress. Copying tracks
is done via SMP scripting and there are 2 ways to execute it, synchronous or asynchronous,
which can be configured at the header menu [35]. The first has the advantage of checking that
the files have been copied 82 (so it only ends when the last file has been processed), while the
latter performs the copy on the background -without blocking the UI- and does not warn when
the process ends.

- Are files overwritten when using the exporting tools? [23] Short answer: No. Long
answer: Copying only the playlist file explicitly disallows overwriting an existing file, so if
you try it fails. Copying the playlist file along its tracks allows to overwrite the playlist file
(because it’s in fact an edited version with relative paths which may need updating), but
tracks are not overwritten. They are skipped instead... so if you export playlists -to the
same path- with the same tracks contained in some of them, they are only copied once. The
conversion option depends on the way you set the converter preset, since it may be set to
ask/overwrite/skip. Note you can make use of the skipping feature to easily export
tons of playlists while also optimizing disk space, since physical files may be shared
between playlists. Obviously this only works if the filename mask is set properly, if you use
something like %LIST_INDEX% then every playlist will have its own files.

- How to automatically tag tracks on a playlist? What input is expected at the
popup? Some working examples with descriptions can be found at [21].

- Export and convert options may be used to export playlists with modified paths:
closing the tracks conversion window, the only file output will be the playlist. This trick may
be used to recreate playlists with different drives, update them with different folder structure
(Artist\Album\..., Artist\Date - Album\...), etc. without having to re-convert the media files.
Have in mind this is usually much faster, you can use file operations to adjust media paths
(moving files to follow different folder structure is faster than recreating them again).

82Not talking about verifying checksum against the original file, but ensuring there have not been obvious errors.

65 Playlist formats

- Native playlists are too limited in features: The use of M3U playlists is preferred since it
allows the full use of all features. This is by design, and nothing can be done unless the format
becomes open source or Spider Monkey Panel supports directly editing/saving them. Nothing
is lost using M3U playlists, since they load as fast as native playlists when using the manager.
.pls format is more limited in the metadata side.

- Playlist metadata is lost on format switch: Since only .m3u8 supports the full set of
metadata and features, converting those playlists to .pls necessarily implies discarding of not
supported metadata. Converting those playlists back to .m3u8 format will not restore that info
once is lost!

- UI-only playlists may be easily converted to a playlist file either using ’Create new
playlist file from active playlist’ [17.6] or binding them to an already existing file [17.9].

- Beware of loading and editing playlists within the UI if their original format must
be preserved: sending selection may be used instead [27.1.2] which ensures the original format
is used. On the contrary, auto-saving or manually saving a playlist file will always use the
default format set on the panel [17.5].

- How to load a playlist as read-only file (without locking it)?: use cloning [27.1.3] to
create a duplicate as an UI-only playlist.

- Native foobar2000 playlists (.fpl) can’t be edited. Why? Due to their closed source
nature [53]. Unlock them first on the manager and format will be changed to allow editing.

- How to use native foobar2000 playlists (.fpl) without changing their format? .fpl
playlists are locked by default, so they will never be auto-saved (and thus reformatted) without
user intervention. Just save all your foobar2000 playlists on the tracked folder and load them
when needed using the manager. Whenever you make a change on any of them, re-save it
manually using main menu (File/Save playlist...). This way the native format is maintained
while some neat features are still available for use (not cluttering the UI with all playlists on
tabs, categories, tags, etc.).

- How to use streaming playlists (.strm) without changing their format? .strm playlists
are locked by default, so they will never be auto-saved (and thus reformatted) without user
intervention. If you wish to rewrite its format, unlock the playlist or force an update [17].

66 UI usage

- How to ”disable” the selection rectangle?: Just change its color to the one set at the
background. It has been coded to be omitted in that case.

- Text color changes automatically after changing the background color: this is a
feature of the UI, which tries to use the opposite color to the background to improve readability
by default. It may still be changed using a custom color [41].

- Popups have a strange UUID at top as name: that’s the SMP panel UUID, which is
used in case a panel name has not been set. Check the last note at panel installation [3]. Don’t
forget to use an unique name when using multiple panels [70]!

Figure 204: Setting panel name.

- Double Click timer: can be adjusted at the mouse shortcuts submenu [41.7].

- Tooltip timer: can be adjusted at the properties panel or setting the Dbl. Click timer [41.7].

67 Common warnings

- The manager warns about some playlists having duplicated names: either rename
the reported playlists using the manager (they must be unlocked first) or using a text editor.

- Why playlist names duplication warning is configurable? Because disabling it allows to
save the same playlist to 2 different files which may have different formats, i.e. saving a playlist
as .m3u8 and .xspf at the same time.

- Playlist files can not be restored on network and USB drives. These drives don’t have
Recycle Bin by default, so files are permanently deleted without possible restoration. For a
workaround, see [84].

68 Other errors and support

- The playlists created by the manager don’t have the format shown in the examples
[49, 50]: Check the installation process and paths. Take a look at the file named ’_TIPS and
INSTALLATION.txt’ which should be found along this readme.

- The manager doesn’t work as expected at random instances: idem.

- The manager shows a loading animation and doesn’t allow further interaction: this
is expected behavior while the library cache is being (re)built [XI].

- Can not create playlist files, just UI-only playlists: check if lite mode [15] is enabled.

- Some features seem to be missing: check if lite mode [15] is enabled, which limits the
available options. Otherwise check if some features are disabled on the settings [46] and adjust
as needed.

- I have an error after installation: check known problems [XII] and bug procedure [XIII].

- I have found a possible bug not covered by this manual: please, create a new issue at
github: https://github.com/regorxxx/Playlist-Manager-SMP after checking this [XIII].

Figure 205: Opening a new issue at github.

https://github.com/regorxxx/Playlist-Manager-SMP

Part X

Advanced tips

69 Sharing manager files

- As noted on [17], AutoPlaylist’s json file is saved using the tracked playlist folder
name. Instead of using an arbitrary UUID to avoid collisions between multiple panels, this can
be used to easily share playlists between different foobar2000 instances. Just create
SymLinks83 or use some cloud syncing tool (like Dropbox) to easily share the same playlists
when tracking the same folder on different foobar2000 instances or panels. Note only the folder
name is used, so it would work even on shared network folders.

- To share all playlist, sync all files in the tracked folders (which must share the
same name) plus the json file.

- If 2 manager instances track folders with the same name, even if the physical files are different,
the json file can still be Sym-Linked or synchronized to only share AutoPlaylists. Panels
would still have different [standard] playlists.

- Note .fpl playlists’ metadata is also saved in the json file, so beware of only sharing the
json between multiple manager instances for AutoPlaylist syncing (and not physical playlist).
.fpl metadata may be lost if an instance doesn’t have associated .fpl files, thus being lost.

70 Multiple views / manager panels

- Following the same principle, it’s possible to have multiple panels tracking the same folder
in the same foobar2000 instance. For ex. to use different filters at the same time.

- Multiple panels can also track different folders, in such case follow the standard
installation instructions [3] per panel, set different folders [16] and skip these tips.

- Since configuration is panel dependent, adjust as needed to optimize startup or
responsiveness according to the contents. For ex. if used to show AutoPlaylist and physical
playlists in 2 different panels, it would be advisable to disable any AutoPlaylist processing
on the latter (size updating, auto-tagging, etc.) and auto-saving, auto-backups and
auto-loading on the former (since physical files don’t need to be up to date).

- Note multiple panels should not have auto-saving and auto-backups enabled when
tracking the same folder in any case.

- Categories may be used as virtual folders, even if all playlists are in the same
physical folder. Note every playlist can only have one category at the same time, so cycling
the categories allows to easily see different ’virtual sub-folders’. Header shortcuts make this
easier [35]. Alternatively, multiple panels tracking the same folder can be used to show 2 views
of the same physical folder but with different categories filters, again working as sub-folders.

83Symbolic links are virtual links created by the OS which may be used to have multiple virtual files pointing to
the same physical file. It’s similar to a shortcut, although the extension doesn’t change in this case... and the file
properties are those of the original one.

71 Portable ’plug & play’ installation

- Real portable installations (i.e. on a external drive, network installations, etc.)
may need to track playlist folders using their relative paths instead of absolute paths
to work properly... otherwise they will not found the tracked folder as soon as the drive letter
changes. e.g, .\profile\playlist_manager\server\

- Relative paths for files always are checked against foobar2000 path: this is true only
at places like the properties panel, etc.84 i.e. ’.\profile\playlist_manager\server\’ equals to
’D:\foobar2000\profile\playlist_manager\server\’.

- Relative paths on playlists should be preferred: this is specially a must when the music
is stored along the disk foobar2000 resides in. Otherwise the files would not be found as soon
as the drive letter changes (see previous tip). This may greatly affect the speed of the loading
playlist process or even make it fail.

- Use the ’Playlists maintenance tools...’ (right button menu) to ensure all is properly set
(library, configuration, playlists, ...) on portable installations; also handy to ensure all
playlists items are found and within the library.

- Once the panel is set properly, it just takes a matter of seconds to copy the entire manager
’as is’ to other installations: the config files (FOOBAR_PROFILE_PATH\js_data*.json),
properties panel (can be saved as json) and playlists folder (along its files) can be transferred
without changes.

72 Sharing playlists on same network

- A typical use-case would be having 2 PCs on the same network, with one being mostly
used to edit/add/sort/tag new music and the other for playback. In this situation,
the aim is syncing the same playlists between the 2 instances. Usually the library and
media is on a network disk accessible by the 2 instances.

- The tracked folder can be considered as a ’playlist library’, it’s therefore recommended
to add the playlists in a folder placed along the media library (on same disk),
and add it as a tracked folder in both foobar2000 instances. That’s all, any playlist
created/edited in any instance will be immediately synced on the other.

- Since playlists point to tracks by their paths, it would be advisable to either set the same
disk letter for the network disk in both PCs or use relative paths for the playlists
(now having the playlists in the same disk than the media comes handy).

- Finally, if you want both, having the playlists available on both PCs but also the same
playlists loaded within the UI, use the Automatic Playlist actions feature [20] to
automatically load specific playlists into the UI (or all of them).

84When checking tracks, their root is considered to be the playlist path.

73 Sharing playlists between different devices

- Playlists -as pointers to files- may be shared between multiple devices, but the
referenced media must be shared along them to work as intended. See ’Export and
convert’ tips [74] [75] for that.

- As an alternative, query-based playlists may be used which point to media by metadata
instead of only paths/links. For that purpose single Auto-Playlists may be easily
shared [22.3] between multiple foobar2000’s devices and users: the output will vary from one
library to another and -in general- it’s limited to generic tags like genre, style, etc.

- Expanding Auto-Playlist compatibility, XBMC Smart Playlists (.xsp format) may be
used to translate most Auto-Playlist queries to a format readable by Kodi-like
systems. They also allow playlist nesting (using other playlists as sources); combine that with
cloning [22.4] and that’s an easy way to create standard playlists based on queries and joining
multiple playlists.

- For a more track-specific approach consider using .xspf format [52] which allows to
point to specific tracks by tags like title, album or artist. Any library with tracks matching
those tags would be able to load the playlist. This can be used to easily share path agnostic
playlists on the net (like ’Top 100 Rock track’) which can be loaded by any Playlist Manager
instance with matched client-side tracks. Contrary to Auto-Playlists the output will be limited
to the playlist size and duplicates are not allowed. Also the format is universally supported by
other players, specially on Unix based OSes and software.

https://kodi.wiki/view/Smart_playlists

74 Export and convert playlists to foobar2000 mobile

- foobar2000 mobile app is capable of reading .pls, .m3u and .m3u8 playlists, in other
words playlists created within the pc software can be used on the mobile app too.

- foobar2000 mobile app uses plain text playlists with relative paths pointing to the
musical files within the device: so the playlist file must be converted along the tracks [17.4].

- The manager is capable of exporting the tracks along the playlist file and automat-
ically convert the paths to relative paths: that means that playlists are ready to be used
as is using the existing exporting tools [23]: export and copy or export and convert. When the
files have been exported, just copy them to the tracked folder in your device.

- Note the playlist is set with relative paths using as root the same folder where
the playlist resides, but foobar2000 mobile can be set to store playlists in another
folder different to the music folder: in fact the same that can be seen in the manager
[17.4]. You have 2 options: either setting the playlist folder as the music root folder within
the app (A) or manually editing the exporting preset for the new root (B). Note the latter is
pretty easy since the manager default preset TF is set with ’.\’ at the beginning, so you can
simple replace that part instances with ’..\Music\’.

[SD CARD:] (A)
[Music]

My playlist.m3u8
[Big Retro Hits 90s]

007. Chateau Pop - Maniac.mp3
...

...

[SD CARD:] (B)
[Playlist]

My playlist.m3u8
[Music]

[Big Retro Hits 90s]
007. Chateau Pop - Maniac.mp3
...

...

Relative path on current root (SD CARD:\\Music\):
.\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3
Relative path one level up from root (SD CARD:\\Playlists\):
..\Music\Big Retro Hits 90s\007. Chateau Pop - Maniac.mp3

- Note the music files may be placed directly in the music folder o within subfolders:
this can be set with converter preset and the TF expression for the filename. Since both the
converter preset and the manager exporting preset must use the same filename expression, the
paths will be reflected in the files and the playlist.

[SD CARD:]
[Music]

My playlist.m3u8
007. Chateau Pop - Maniac.mp3
...

[SD CARD:]
[Music]

My playlist.m3u8
[Big Retro Hits 90s]

007. Chateau Pop - Maniac.mp3
...

...

- There are 2 predefined presets in the manager to simulate these steps: they can be
used ’as is’ but remember to set the converter preset to use the same TF expressions!

- The following gif shows the process of exporting a playlist for another foobar2000
mobile device (or any software capable of reading playlists with relative paths). Note how
the converter preset and manager preset filename TF expressions match (path editing may be
omitted when setting properly a preset). The output folder is set to be asked at both places:

If animation doesn’t work, click to open the gif file on external viewer.

- The following gif shows the process of copying the files, with different folders for
playlist and tracks, and setting foobar2000 mobile to track them properly. Done on
an Android emulator, the steps are exactly the same on physical devices:

If animation doesn’t work, click to open the gif file on external viewer.

75 Export and convert playlists to Kodi, Librelec, ...

- Kodi based systems are capable of reading .m3u, .m3u8 and .xsp playlists, so playlists
created by the manager can be used too.

- [By default] Kodi associates .m3u8 playlists to video streams so it’s recommended
to use .m3u format for music-only playlists instead: note this is only a matter of
changing their extension, since both formats are equivalent (and created the same by the
manager). [49].

- Playlists must be stored in a special folder at the system drive: it varies according to
the OS. Obviously playlists may be loaded as files from any location (using the file explorer),
but adding them to the special folder will make them available on the corresponding media
section (music).

OS Playlist Folder
Android: Android/data/org.xbmc.kodi/files/.kodi/userdata/playlists
iOS(s) /private/var/mobile/Library/Preferences/Kodi/userdata/playlists
LibreELEC /storage/.kodi/userdata/playlists
Linux /.kodi/userdata/playlists
Mac /Users/<your_user_name>/Library/Application Support/Kodi/userdata/playlists
Windows %APPDATA%\Kodi\userdata\playlists

...

Table 21: Special playlists folder (on userdata folder).

- Since playlists are on the system drive and is usually placed at a different disk,
absolute paths may need to be used: but the path can not be the same than the one
found on foobar2000’s pc. If your music on the PC can be found at ’H:\music\’, on Kodi it will
be something like ’\media\<your_disk_name>\music\’85. In other words, the playlists need
different absolute paths added in prevision to where the files will be stored on the Kodi system.

[Kodi:]
[storage]

[.kodi]
[userdata]

[playlists]
My playlist.m3u8
...

[<your_disk_name>:]
[music]

[Tinariwen]
[Amadjar]
05.Anina.mp3
...

...

- There are some presets on the manager ready to be used for Kodi: they are set to
convert the output playlists to .m3u (no matter the original playlist format) and the paths
according to the previous point (where the external disk is mounted). ’<your_disk_name>’
must be edited on configuration menu (’track filename expression’) before using.
Once done, the playlists are ready to be used ’as is’ and can be copied to the special playlists
folder. The music, obviously, must be present on the external disk at the appropriate path
(usually <your_disk_name>:\music\).

85On Unix-like systems at least (and that includes android), drives are mounted to folders. So you have to find the
path to that mounted folder to point to the external drive. The path varies from OS to OS but the idea remains the
same.

- There is an alternative method to using specific absolute or relative paths on Kodi:
Path substitution. This is and avanced method which involves telling Kodi to translate
an specific path (whenever its found on a file) to another one. To use it, create a file named
’advancedsettings.xml’ in your userdata folder (look at the special playlists folder) like this:

<advancedsettings>
<pathsubstitution>

<!– ’H:/music’ to ’ExtDisk:/music’. Done on real time by Kodi–>
<substitute>

<from>H:/music/</from>
<to>/media/ExtDisk/music/</to>

</substitute>
</pathsubstitution>

</advancedsettings>

From foobar2000 2000’s system

[D:]
[Software]

[foobar2000]
[profile]

[playlist_manager]
My playlist.m3u8
...

→

[H:]
[music]

[Tinariwen]
[Amadjar]

05.Anina.flac
...

...

To Kody system:

[Kodi:]
[storage]

[.kodi]
[userdata]

[playlists]
My playlist.m3u8
...

[ExtDisk:]
[music]

[Tinariwen]
[Amadjar]

05.Anina.mp3
...

...

Note on this example the external disk is in fact mounted on the Kodi drive too, also the kodi
external disk has tracks converted to mp3:

[Kodi:]
[storage]

...
[media]

[ExtDisk]
[music]

[Tinariwen]
[Amadjar]

05.Anina.mp3
...

...

https://kodi.wiki/view/Path_substitution

76 Tag automation

- Tracks are never tagged multiple times using the Track tags feature, so there is no
need to check for duplicated values. Values are either replaced or added (new ones).

- Empty values force tag removal. This is the only way to replace an already existing tag,
by removing it.

- JS:functions allow to fine-control the ’replace and multiple addition’ behavior. File
at ’.\helpers\helpers_xxx_utils.js’ contains helper functions which allow to set personalized
behaviors for such use-cases [21.2]. For ex. the ’date added’ function adds a value once, and
it will never be replaced (or new values added) unless previously removed. Another use-case
is the ’playlist name’ function, which will force tag updating with the current playlist name,
replacing always the old value.

- Using AutoPlaylists along the Track tags feature, items on library can be auto-
tagged on startup according to some conditions without any user input. For ex. tagging all
tracks with ’Rock’ and ’Acoustic’ as genre and BPM lower than 90 with an specific mood or
occasion tag. Just set it and forget, it will be done on every new track added on library as
soon as it matches the conditions.

- Using standard playlist along the Track tags feature is an easy way to manually
tag tracks on batches while listening to them. For ex. to add tags like ’Instrumental’ or
’Acoustic’, 2 playlists may be used for auto-tagging with these conditions and just listen to the
music; as soon as one track must be tagged it takes a second to send the current track to any
of the 2 playlist (Shift + L. Click) to tag it.

- Use category filtering to have a virtual folder of ’tagging playlists’ which would
only be shown when needed, thus not convoluting the UI the rest of the time. This has
some improvements and limits compared to the use of custom buttons and Mass-tagger presets.

77 Pools using AutoPlaylists and tags

- Native foobar2000 limits the sourcing of AutoPlaylists to the library, not allowing
to create playlists from playlists... although this can be simulated copying the original
query and using in the new playlist, it becomes easily convoluted as soon as you do it 2 or 3
times. As an alternative, Track tags feature may be used. If you set any playlist to
automatically tag its tracks with an specific tag, for ex. playlist = ’Summer’, you can
then create another AutoPlaylist with a query for that tag ’PLAYLIST IS Summer’.

- The same trick can be used to merge multiple playlist sources into one (’PLAYLIST
IS Summer OR PLAYLIST IS Chill OR PLAYLIST IS BEST’), effectively using other
playlists as pools. Note ’sources’ are not limited to AutoPlaylists and that’s the real power
of this solution, both standard playlists and AutoPlaylists which automatically tag tracks this
way may be used.

- Alternatively, Playlist-Tools-SMP [VII] allows to directly use playlists as sources for
pools without requiring the use of intermediate tags.

- Used along Playlist-Tools-SMP [VII], the emulation of pools can be greatly enhanced with the
Remove Duplicates or X random selection features to create playlists in a matter of seconds
from your pre-selected set of tracks.

78 Pools using Playlist-Tools-SMP

- Feature is enabled automatically when using both scripts in the same foobar2000
instance. As previously noted, Playlist-Tools-SMP [VII] has a random pools feature which can
use playlists as sources to output a random list of tracks from all its pools. Playlist-Tools-SMP
checks periodically if there is a Playlist Manager panel and retrieves the list of playlist being
tracked to use them as source if required. In other words: there is no difference between loaded
playlists within the UI or playlist files.

- There is a preset example at ”presets\Playlist Tools\pools\test_playlisManager.json”
which uses a playlist named ”test” as source (after importing it). The file may be used as
reference to create your own presets.

Figure 206: Importing a preset file in Playlist-Tools-SMP.

- For example to use ”Playlist A” and ”Playlist B” as sources, a preset file would have
to be set like this:

{
”readme”: ”Playlist A and Playlist B as sources, 25 tracks per playlist.”,
”pools”: [{

”name”: ”Playlist Manager test V2”,
”pool”: {

”fromPls”: {
”Playlist A”: 25,
”Playlist B”: 25

},
”query”: {

”Playlist A”: ”ALL”,
”Playlist B”: ”ALL”

},
”toPls”: ”Output playlist”,
”sort”: ”%PLAYLIST_INDEX%”,
”pickMethod”: {

”Playlist A”: ”random”,
”Playlist B”: ”random”

}
}

}]
}

- Alternatively, a custom pool may be directly executed once via menus -or added as
a new entry for later use-:

If animation doesn’t work, click to open the gif file on external viewer.

- Playlists tracked by the manager(s) may be used along other sources like playlists
within the UI, library (+query) and other complex functions:

[...]
”fromPls”: {

”Playlist A”: 25,
”_LIBRARY_0”: 7,
”_SEARCHBYGRAPH_0”: 13

},

- Playlist follow this rule when trying to find a match: loaded playlist first, then matching
playlists by name (metadata) and finally by filename.

79 Smart Playlists queries

- As specified by the .xsp format [55], XBMC’s queries can be translated into foobar2000
ones without any loss of information, i.e. the translation is 100% equivalent. The following
table provides a guide:

XBMC’s rule foobar2000’s Query
contains FIELD HAS X
doesnotcontain NOT (FIELD HAS X)
is FIELD IS X
isnot NOT (FIELD IS X)
startswith $strstr(%FIELD%,X) EQUAL 1
endswith $strstr($right(%ARTIST%,$len(X)),X) EQUAL 1
lessthan FIELD LESS X
greaterthan FIELD GREATER X
after DATEFIELD AFTER X
before DATEFIELD BEFORE X
inthelast DATEFIELD DURING LAST X
notinthelast NOT (DATEFIELD DURING LAST X)

Table 22: XBMC Query translation.

- Whenever a rule has multiple values (X), the translated query must be expanded
using ’OR’ as nexus.

<rule field=”genre” operator=”is”>
<value>Rock</value>
<value>Folk</value>

</rule>

(GENRE IS Rock OR GENRE IS
Folk)

- In the case of the rule being a negative (with ’NOT’ at the beginning), note the
expression can also be expanded with ’[AND] NOT’ as nexus.

<rule field=”genre” operator=”isnot”>
<value>Rock</value>
<value>Folk</value>

</rule>

NOT (GENRE IS Rock OR GENRE
IS Folk)
(NOT GENRE IS Rock AND NOT
GENRE IS Folk)

- The last point implies that while XBMC←foobar2000 translation is always possible, the
transformation is not injective (same XBMC query has multiple foobar2000 results). The
transformation is also not surjective, not all foobar2000 queries have an XBMC equiva-
lence (most TF expressions are not supported). As consequence XBMC→foobar2000
transformation is not always possible, and even worse, there is an arbitrary number of
different ways to write the same query (same output). Not only because negative rules may be
written as ’NOT (A IS x OR A IS y ...)’ and also as ’(NOT A IS x AND NOT A IS y ...)’, but
they may also be written as ’(NOT A IS x) AND (NOT A Is y) ...’, etc. foobar2000 queries are
open to be written on any desired order with arbitrary parentheses.

- All these characteristics make XBMC→foobar2000 query automatic transformation not
100% accurate (even when such transformation is possible), relying on some form
of heuristics and ”known patterns”. This implies there may be some cases where
the foobar2000 query is not properly recognized as an XBMC pattern, needing
some refactoring or rewriting to be recognized.

XBMC’s rule XBMC’s match foobar2000 Query
is(Rock), is(Folk) one (OR) GENRE IS Rock OR GENRE IS Folk
is([Rock,Folk]) all (AND) (GENRE IS Rock OR GENRE IS Folk)
is(Rock), is(Blues), is(Folk) one (OR) GENRE IS Rock OR STYLE IS Blues OR

GENRE IS Folk
is(Instrumental), is([Rock,Folk]) all (AND) GENRE IS Instrumental AND (GENRE IS

Rock OR GENRE IS Folk)
Does not have a translation! - GENRE IS Instrumental AND (GENRE IS

Rock OR STYLE IS Blues OR GENRE IS
Folk)

Does not have a translation! - (GENRE IS Instrumental) AND (GENRE IS
Rock OR GENRE IS Folk) OR (STYLE IS
Blues)

is(Instrumental), is([Rock,Folk]),
is([Blues,Electric])

all (AND) (GENRE IS Instrumental) AND (GENRE IS
Rock OR GENRE IS Folk) AND (STYLE IS
Blues OR STYLE IS Electric)

Table 23: XBMC←foobar2000 Query translation examples.

- As can be seen on 2 of the last 3 examples (which are equivalent ways of writing the same
query), it’s not possible to have in the same rule global ’AND’ and ’OR’ statements
since that’s a limit of XBMC matching (which imposes to match either all rules
-AND- or one -OR-). The heuristics try to group patterns with ’OR’ within a parentheses
though, because they are not global.

- Note in any case, even if not all statements are matched, a translated rule is output
to try to offer the most similar rule to the query input:

XBMC’s rule XBMC’s match foobar2000 Query
is(Instrumental) all (AND) GENRE IS Instrumental AND (GENRE IS

Rock OR STYLE IS Blues OR GENRE IS
Folk)

is(Instrumental), is([Rock,Folk]) all (AND) (GENRE IS Instrumental) AND (GENRE IS
Rock OR GENRE IS Folk) OR (STYLE IS
Blues)

Table 24: XBMC←foobar2000 translation error output.

- Since globally all or one of the rules must be matched, the only way to create more complex
queries involves multiple Smart Playlists. Playlists may query other playlists, thus
allowing nesting conditions in an indirect way. To create a Smart Playlist with ’(GENRE IS A
AND STYLE IS B) OR (GENRE IS C AND STYLE IS D)’, 3 Smart Playlists are needed:

First Playlist: ’(GENRE IS A) AND (STYLE IS B)’
Second Playlist: ’(GENRE IS C) AND (STYLE IS D)’

⇓⇓⇓
Third Playlist: ’#PLAYLIST# IS First OR #PLAYLIST# IS Second’

80 Pools using Smart Playlists

- As seen on [79], Smart Playlists may use other playlists as sources to nest conditions.
But that’s is not limited to using other Smart Playlists as sources, but any playlist
in fact: Auto-Playlists (at least within foobar2000 context), standard playlists, etc.
In other words, Smart Playlists allow to use any source as pool.

- One advantage over using Auto-Playlists and tags [77] for the same purpose is
that tagging is not required at all in this case, so the original files may be left
untouched.

- Another advantage is limiting the number of tracks at output, which may be set on
Smart Playlists but not on Auto-Playlists... so it may make more sense when trying to create
’pools’.

- Limit is applied after sorting, so once an Smart Playlist has loaded all the tracks from its
sources, it sorts them and then takes only the first X elements.

- Limit and sorting is applied recursively. i.e. any source called by the Smart Playlist
may also have sorting and/or limit rules, which are applied before sending the track list
to the caller. This may be used to artificially apply limits to Auto-Playlists: you may have an
Auto-Playlist (A) used as source by an Smart-Playlist (B) which has a limit set. Effectively
that’s like calling A and only getting X tracks. If sort is random, then you are getting X
different random tracks from an AutoPlaylist every time it’s executed.

- Since Auto-Playlists allow more complex queries than Smart Playlist, this type
of nesting may be used as a way to simply impose limits to them. In the previous
example, a third Smart Playlist (C) could use (B) as source too, along other playlists. (B)
would be only an intermediary to impose how many tracks are taken from a pool.

- Note Playlist-Tools-SMP [78] still allows a greater degree of customization: different
picking methods, allowing to use complex similarity functions as sources, etc. But in a playlist
context, they are pretty much equivalent using the nesting method (although clearly
some things may require a really high number of intermediate Smart Playlists).

- Finally, it should be noted that nesting playlist is also allowed on Kodi/XBMC systems,
so they will work the same on foobar2000 or other devices. The only difference on use
is that Auto-Playlists doesn’t exist on other devices, so they must be obviously be substituted
(when used as sources) by other Smart Playlists or standard ones.

- A straightforward method to substitute Auto-Playlists in other devices, with a static copy, is
using the different exporting options provided [22.2] which allow to clone them and even export
their tracks.

- As a technical note, the manager remaps ’virtualfolder’ tag to ’playlist’ for all purposes.

81 Working with locked playlists

- Forget about lock status on foobar2000 playlists. There are some plugins or even Spider
Monkey Panel scripts which allow to lock/unlock native playlists in some way or another. While
it may come useful for advanced users, regular users should simply stick to the manager lock
features. Playlists now have a physical file counterpart which can be locked, so there is no need
to lock playlists within UI for changes86.

- Instead of forbidding edits, just reload the playlist. The native approach focuses on
forbidding specific actions on playlists (reordering, adding, removing items, etc.). Locking the
playlist file allows any of those edits on the loaded playlist and if you want to revert them just
undo them or reload the playlist to discard all of them and revert it to the original version.

- Edits on locked playlists can be saved if forced to do so but never automatically.
By default, any change made to a locked playlist loaded within foobar2000 is not auto-saved
and therefore only temporarily stored while the playlist remains opened... but this can be
bypassed on demand without unlocking the playlist using the ’Force playlist file update’ entry
on the selected playlist contextual menu [35].

82 Autosave & Autobackup component

- If using Autosave & Autobackup component it’s recommended to add ’js_data’
and ’playlist_manager’ folders at ’Preferences\Advanced\Autosave & Autobackup\Files
and directories to backup (...)’. ’js_data’ contains config json data for most of these scripts,
while ’playlist_manager’ folder is the default folder to save playlists filesr.

- When the default path is changed or when using multiple playlist manager panels (and thus
different paths), don’t forget to add them to Autosave config too. There is a limit though,
paths outside the profile folder can not be autosaved by the component. That
happens when tracking a playlist folder at the place where the music resides (for
relative paths playlist usage), network locations, etc.

- In some cases this limitation can be bypassed by creating a SymLink at the profile
folder to the external path. For ex:
’C:\foobar2000\profile\my_external_folder\’ → symlink → ’H:\Music\’

86This also simplifies some quirks about playlist locks which involve the type of lock and owners...

https://www.foobar2000.org/components/view/foo_jesus

83 Customizable icons for categories

- There is an additional hidden feature which allows to customize the icon on the
header according to the shown category: to enable it, a file must be created along the
manager’s (auto)playlists json file [2.1]. With ’_config’ appended to the filename.

[C:/Users/XXX/AppData/Roaming]
[foobar2000]

[js_data]
playlistManager_playlists.json
playlistManager_playlists_config.json
...

- The file is a simple json file, whose keys within the ’category’ section must be the
categories to be matched; the values are the Unicode chars of the icon (\f000, \f01c,
...). Font Awesome is used, a cheat-sheet can be found here: .https://www.fontawesomecheat-
sheet.com/

- An example file can be found below:

{
”ui”: {

”icons”: {
”category”: {

”Favorites”: ”\uf004”,
”Tagging”: ”\uf02c”,
”Pools”: ”\uf0e8”,
”Party”: ”\uf000”,
”Share”: ”\uf045”

}
}

}
}

- Icons set on the file will be used when panel gets manually reloaded, on manual
refresh [28] or on next startup.

Figure 207: ’Share’ category. Figure 208: ’Favorites’ category.

https://www.fontawesomecheatsheet.com/
https://www.fontawesomecheatsheet.com/

84 Recycle Bin on network and USB drives

- Playlist files can not be restored on network and USB drives. Network drives don’t
have Recycle Bin by default, so files are permanently deleted without possible restoration. This
affects to deleted playlist files before updating, backups, etc.

- As a workaround, the Recycle Bin may be configured to include additional fold-
ers/drives editing the registry.

- Check the following folder for instructions: ’.\presets\Network’

+ Add the corresponding registry entries according to your system (32 or 64 bits SO).
+ Restart the system to apply the changes.
+ Repeat the process for every network drive which will be used. Adding a different

GUID for each one. Don’t forget to create a clean entries file for each GUID!
+ Changes may be always reverted by deleting the entries associated t such GUID’s.

Figure 209: Example of registry entries for x64 SO and a drive at ’X:\’

Figure 210: Deleting the entries for the GUID reverts the changes.

- More info can be found at: social.technet.microsoft

- No further support will be given related to this (not an script related topic).

https://social.technet.microsoft.com/forums/windows/en-us/a349801f-398f-4139-8e8b-b0a92f599e2b/enable-recycle-bin-on-mapped-network-drives

85 Duplicates removal

- Only available for Auto-Playlists and Smart Playlists: On loading (the latter) or cloning
(both) [22.4].

- Feature may be enabled/disabled per playlist format.

- By default, duplicates are identified by same ’$ascii($lower($trim(%TITLE%))),
ARTIST, $year(%DATE%)’.

- TF Expression may be changed at the header menu [35].

Figure 211: Enabling filtering duplicates for AutoPlaylists cloning on header menu.

- Aditionally, RegExp may be enabled to find partial matches in 2 situations:

+ Tracks using parentheses: ’(remix)’, ’(single)’, ... except some special keywords like
’part’, ’pt’, ... For ex. ’Hello world (remix)’, ’Hello world’ and ’Hello world (take 1)’ are
all considered the same track, while ’Hello world (part 1) would be considered a different
track.

+ Tracks with gerund verbs (-ing/-in) and/or apostrophes: for ex. ’walkin’, ’walking’ and
’walkin” are all considered the same word. Most common used words on popular English
music are covered.

- RegExp used may be changed at: ’profile\js_data\presets\global\globRegExp.json’

Figure 212: RegExp global config file.

86 Find duplicates/dead/external items on UI-only playlists

- Tracking UI-only playlists [56] allows to easily look for duplicates/dead/external
items on them using the tools meant for playlist files.

- Once the manager tracks UI-only playlist, use the playlists maintenance tools as usual [27.2].

- The list may be previously filtered to only show UI-only playlists, as result the
manager will only output the problematic playlists with such format (even if the
report list them all).

- Filtering must be done before checking the playlists, otherwise the results are cleared
out as filtering always applies to the entire corpus of playlists.

- This method may be applied to any format or filtering option; is not exclusive to
UI-only playlists... so it may be used to find problematic playlists by specific tags, categories,
size, etc.

- Other tools may be used afterwards to fix them as required [VII].

Figure 213: Report shows all results, but manager honors the current filtering options.

87 Using playlist tags on playlists maintenance

- Playlists maintenance tools [27.2] filter the current view with the playlists found
with errors. This may be used to select them all and tag them with a relevant keyword like
”duplicates”.

- Tagging of found playlists may easily be done in one step using multiple selection actions
[31].

- Since the manager may be filtered by tag [39.5], those playlists may be found at a later point
to fix them if required without having to perform the check again.

88 Disable Library Paths caching

- Periodic library path caching may be temporarily disabled: To do so, check the header
menu [35].

Figure 214: Disable cache checking.

- It may be useful when adding new tracks or changing the paths of multiple items on
library, to not spend processing time on caching until all changes are made. For ex.
re-encoding the library to a different format would trigger a cache rebuilding every few seconds.

- Feature is only disabled temporarily until next startup, if it’s not enabled back.

- Action is applied to all the Playlist Manager panels, as a global switch.

- More technical notes can be found at [XI].

Figure 215: Animation popup while caching the library.

89 Other advanced global settings

- At foobar2000 profile folder there is a serie of json files which allow to set the default values
and settings used by all the scripts. These can be found at: ’js_data\presets\global’.

- These files includes settings like default fonts used, queries, tags, debug or profiling, update
checking, etc. Every file has its own notes which must be read carefully to understand their
usage.

- For ex. to change the tooltip font go to: ’js_data\presets\global’ and edit the file named
’globFonts.json’ on any text editor.

Figure 216: Tooltip font size of all scripts.

- Any edit to these files requires a panel reload (or restarting foobar2000) to apply the changes.
Also, in some cases, the affected settings must be reset to defaults to apply the changes (for ex.
for customizable menu entries which are saved on the panel properties). To reload a panel use
Shift + Win + R. Click anywhere on it (this is a native SMP feature of all panels).

Part XI

Technical notes
- All json files used by the scripts are read as UTF-8 (whether they have BOM or

not), being the only exception those imported from marc2003’s panel [22.2] according to
the popup option chosen. In such case code-page detection relies in SMP heuristics (comments
on FAQ apply [17.8]). Have this in mind when editing or creating json files with external
editors.

- Any text file created by the scripts will be UTF-8 encoded without BOM, by default.
BOM can only be enabled for playlist files, if desired, using the configuration menus
[17.5].

- Writing BOM, for playlist files, is disabled by default since it’s a windows-only idiotic
thing which breaks compatibility with many programs (written to properly identify UTF-8
files).

- By this order, .m3u8 playlist files are always read as UTF-8. .xsp and .xspf files rely on
the mandatory XML encoding flag [52][55]. Then .m3u files rely on the encoding flag [49]
if present. In any other case code-page detection relies on SMP heuristics (comments on FAQ
apply [17.8]). Have this in mind when using playlist files from external software.

- Locking of .fpl playlists by default can only be disabled using the properties panel
to ensure regular users don’t mess with it. Any other configuration related item can be set via
menus.

- Number of zip backups allowed can be set using the properties panel. Default is 50.

- Library items’ paths are cached to provide fast playlist file loading, but cache
must be rebuilt every time the library changes (paths or adding/removing tracks).
Errors on the cache may corrupt playlists with wrong tracks being saved to them. To avoid
this possibility safechecks have been added to ensure the original path and the cached item’s
path are the same, throwing a warning whenever they don’t match. Cache is also automatically
rebuilt on library changes, so for regular users all is done automatically under the hood. Note
that during a cache rebuilding, playlist loading may fail throwing the aforementioned warning;
this is expected and it will use native foobar2000 playlist loading as fallback (when forced). To
avoid such situation and make it easier to know when this happens, panel is disabled during
the process showing a loading animation with a tooltip.

- Multiple Playlist Manager panels share the same cache: there is a built-in instance
manager which ensures that anytime there are multiple Playlist Manager panels within the
same foobar2000 instance, the cache is calculated only once by one panel and shared to the
rest (instead of being calculated in parallel).

Part XII

Known problems
- Spider Monkey Panel may crash -without known reason- at startup when trying

to install the manager. The error will warn about script files not being found,
although they are in place. This is due to incorrect relative path handling on some systems.
In such case, take a look at the ’_switchPaths.zip’, decompress it and follow its
instructions. Scripts will be automatically edited to use absolute paths at script loading,
thus fixing the problem. The cmd file (.bat) will have to be rerun on future playlist manager
updates. Obviously this is only a workaround and a proper fix is expected on posterior SMP
releases. See on Github.

- Spider Monkey Panel may show a warning popup about a script. This is not an script
error but an SMP feature to avoid scripts blocking the entire software (please don’t report
it). It’s common for processor intensive tasks which require more time to finish (just press
continue). Clicking ’stop the script’ will crash the panel. See on Github.

Figure 217: Slow script warning popup. Click on continue.

Since some operations may need more time than usual, to avoid seeing the popup on consecutive
sessions, it’s recommended to change the time limit at configuration.

https://github.com/TheQwertiest/foo_spider_monkey_panel/issues/175
https://github.com/TheQwertiest/foo_spider_monkey_panel/issues/167

Figure 218: SMP Advanced configuration. Set it to a high value until the popup is not shown.

- Spider Monkey Panel (any version) may incorrectly identify code-page while reading
text files, thus reporting wrong values at some instances. This usually happens while reading
playlist files or importing tracks lists, with track names or artists using exotic chars (ä,â, ...)
getting corrupted. Multiple code checks have been added to minimize these situations in any
case. See FAQ [17.8].

- The instance manager will fail tracking panels if a panel crashes, thus after reloading
a panel, it will consider there is only one instance of Playlist Manager even if there are multiple
ones. A restart of foobar2000 is required to fix it or reloading all other Playlist Manager panels.
Note this is only a temporal problem (until next startup) and it only affects cache calculation
in any case (if it needs to be re-calculated, it will be done on all the panels in parallel).

- Playlist files can not be restored on network and USB drives. Network drives don’t
have Recycle Bin by default, so files are permanently deleted without possible restoration. This
affects to deleted playlist files before updating, backups, etc. As a workaround, the Recycle
Bin may be configured to include additional folders/drives [84]. No further support will be
given related to this (not an script related topic).

- Auto-backup [19.3] (7za) is not working as expected on some OS’es. CMD tools
may fail on Unix systems when using Wine prefixes. In particular, for 7za, since the binaries
are run via command line using bat files, OS Architecture must be matched (x64, ...). Some
measures have been taken to account for it automatically, since the 64 bit binaries are preferred
for performance. No further support will be given (although it’s possible to replace the 64 bit
binaries with 32 bits versions).

- Spider Monkey Panel (any version) may incorrectly load tracks/playlist files while
asynchronously processing them, sending the tracks to a different playlist than the one
intended (or just dropping them). It may happen if the destination playlist is moved while
loading the files or the number of playlists change (for ex. closing others). This only happens
when the playlist has dead items, which forces the manager to fallback to the native foobar2000
loading behavior (which is not implemented right in SMP). See on Github.

https://github.com/TheQwertiest/foo_spider_monkey_panel/issues/197

Figure 219: Playlists should not be moved/closed while asynchronously loading a file to avoid
problems.

Part XIII

Bug procedure

Part XIV

License

Figure 220: License abstract.

GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007

Copyright (C) 2007 Free Software Foundation, Inc. https://fsf.org/

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing
it is not allowed.

Preamble

The GNU Affero General Public License is a free, copyleft license for software and other kinds of
works, specifically designed to ensure cooperation with the community in the case of network server
software.

The licenses for most software and other practical works are designed to take away your
freedom to share and change the works. By contrast, our General Public Licenses are intended to
guarantee your freedom to share and change all versions of a program–to make sure it remains free
software for all its users.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for them if you wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs, and that you know you can do these
things.

Developers that use our General Public Licenses protect your rights with two steps: (1)
assert copyright on the software, and (2) offer you this License which gives you legal permission to
copy, distribute and/or modify the software.

A secondary benefit of defending all users’ freedom is that improvements made in alternate
versions of the program, if they receive widespread use, become available for other developers
to incorporate. Many developers of free software are heartened and encouraged by the resulting
cooperation. However, in the case of software used on network servers, this result may fail to come
about. The GNU General Public License permits making a modified version and letting the public
access it on a server without ever releasing its source code to the public.

https://fsf.org/

The GNU Affero General Public License is designed specifically to ensure that, in such
cases, the modified source code becomes available to the community. It requires the operator of a
network server to provide the source code of the modified version running there to the users of that
server. Therefore, public use of a modified version, on a publicly accessible server, gives the public
access to the source code of the modified version.

An older license, called the Affero General Public License and published by Affero, was
designed to accomplish similar goals. This is different license, not a version of the Affero GPL, but
Affero has released a new version of the Affero GPL which permits relicensing under this license.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS

0. Definitions.

”This License” refers to version 3 of the GNU Affero General Public License.

”Copyright” also means copyright-like laws that apply to other kinds of works, such as
semiconductor masks.

”The Program” refers to any copyrightable work licensed under this License. Each licensee
is addressed as ”you”. ”Licensees” and ”recipients” may be individuals or organizations.

To ”modify” a work means to copy from or adapt all or part of the work in a fashion
requiring copyright permission, other than the making of an exact copy. The resulting work is called
a ”modified version” of the earlier work or a work ”based on” the earlier work.

A ”covered work” means either the unmodified Program or a work based on the Program.

To ”propagate” a work means to do anything with it that, without permission, would make
you directly or secondarily liable for infringement under applicable copyright law, except executing
it on a computer or modifying a private copy. Propagation includes copying, distribution (with or
without modification), making available to the public, and in some countries other activities as well.

To ”convey” a work means any kind of propagation that enables other parties to make or
receive copies. Mere interaction with a user through a computer network, with no transfer of a copy,
is not conveying.

An interactive user interface displays ”Appropriate Legal Notices” to the extent that it
includes a convenient and prominently visible feature that (1) displays an appropriate copyright
notice, and (2) tells the user that there is no warranty for the work (except to the extent that
warranties are provided), that licensees may convey the work under this License, and how to view a
copy of this License. If the interface presents a list of user commands or options, such as a menu, a
prominent item in the list meets this criterion.

1. Source Code.

The ”source code” for a work means the preferred form of the work for making modifications
to it. ”Object code” means any non-source form of a work.

A ”Standard Interface” means an interface that either is an official standard defined by
a recognized standards body, or, in the case of interfaces specified for a particular programming

language, one that is widely used among developers working in that language.

The ”System Libraries” of an executable work include anything, other than the work as a
whole, that (a) is included in the normal form of packaging a Major Component, but which is not part
of that Major Component, and (b) serves only to enable use of the work with that Major Component,
or to implement a Standard Interface for which an implementation is available to the public in source
code form. A ”Major Component”, in this context, means a major essential component (kernel,
window system, and so on) of the specific operating system (if any) on which the executable work
runs, or a compiler used to produce the work, or an object code interpreter used to run it.

The ”Corresponding Source” for a work in object code form means all the source code
needed to generate, install, and (for an executable work) run the object code and to modify the
work, including scripts to control those activities. However, it does not include the work’s System
Libraries, or general-purpose tools or generally available free programs which are used unmodified in
performing those activities but which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for the work, and the source code for
shared libraries and dynamically linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those subprograms and other parts
of the work.

The Corresponding Source need not include anything that users can regenerate automatically
from other parts of the Corresponding Source.

The Corresponding Source for a work in source code form is that same work.

2. Basic Permissions.

All rights granted under this License are granted for the term of copyright on the Program,
and are irrevocable provided the stated conditions are met. This License explicitly affirms your
unlimited permission to run the unmodified Program. The output from running a covered work is
covered by this License only if the output, given its content, constitutes a covered work. This License
acknowledges your rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not convey, without conditions
so long as your license otherwise remains in force. You may convey covered works to others for the
sole purpose of having them make modifications exclusively for you, or provide you with facilities
for running those works, provided that you comply with the terms of this License in conveying all
material for which you do not control copyright. Those thus making or running the covered works for
you must do so exclusively on your behalf, under your direction and control, on terms that prohibit
them from making any copies of your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under the conditions stated
below. Sublicensing is not allowed; section 10 makes it unnecessary.

3. Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological measure under any
applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20
December 1996, or similar laws prohibiting or restricting circumvention of such measures.

When you convey a covered work, you waive any legal power to forbid circumvention of
technological measures to the extent such circumvention is effected by exercising rights under this
License with respect to the covered work, and you disclaim any intention to limit operation or

modification of the work as a means of enforcing, against the work’s users, your or third parties’ legal
rights to forbid circumvention of technological measures.

4. Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate
copyright notice; keep intact all notices stating that this License and any non-permissive terms added
in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty;
and give all recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey, and you may offer
support or warranty protection for a fee.

5. Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to produce it from the
Program, in the form of source code under the terms of section 4, provided that you also meet all of
these conditions:

a) The work must carry prominent notices stating that you modified it, and giving a relevant
date.

b) The work must carry prominent notices stating that it is released under this License and
any conditions added under section 7. This requirement modifies the requirement in section 4 to
”keep intact all notices”.

c) You must license the entire work, as a whole, under this License to anyone who comes
into possession of a copy. This License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts, regardless of how they are packaged.
This License gives no permission to license the work in any other way, but it does not invalidate such
permission if you have separately received it.

d) If the work has interactive user interfaces, each must display Appropriate Legal Notices;
however, if the Program has interactive interfaces that do not display Appropriate Legal Notices,
your work need not make them do so.

A compilation of a covered work with other separate and independent works, which are not
by their nature extensions of the covered work, and which are not combined with it such as to form
a larger program, in or on a volume of a storage or distribution medium, is called an ”aggregate”
if the compilation and its resulting copyright are not used to limit the access or legal rights of the
compilation’s users beyond what the individual works permit. Inclusion of a covered work in an
aggregate does not cause this License to apply to the other parts of the aggregate.

6. Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms of sections 4 and 5,
provided that you also convey the machine-readable Corresponding Source under the terms of this
License, in one of these ways:

a) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product (including a physical
distribution medium), accompanied by a written offer, valid for at least three years and valid for
as long as you offer spare parts or customer support for that product model, to give anyone who
possesses the object code either (1) a copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical medium customarily used for software
interchange, for a price no more than your reasonable cost of physically performing this conveying of
source, or (2) access to copy the Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the written offer to provide
the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord with subsection 6b.

d) Convey the object code by offering access from a designated place (gratis or for a charge),
and offer equivalent access to the Corresponding Source in the same way through the same place at
no further charge. You need not require recipients to copy the Corresponding Source along with the
object code. If the place to copy the object code is a network server, the Corresponding Source may
be on a different server (operated by you or a third party) that supports equivalent copying facilities,
provided you maintain clear directions next to the object code saying where to find the Corresponding
Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure
that it is available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided you inform other peers
where the object code and Corresponding Source of the work are being offered to the general public
at no charge under subsection 6d.

A separable portion of the object code, whose source code is excluded from the Corresponding
Source as a System Library, need not be included in conveying the object code work.

A ”User Product” is either (1) a ”consumer product”, which means any tangible personal
property which is normally used for personal, family, or household purposes, or (2) anything designed
or sold for incorporation into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular
user, ”normally used” refers to a typical or common use of that class of product, regardless of the
status of the particular user or of the way in which the particular user actually uses, or expects or is
expected to use, the product. A product is a consumer product regardless of whether the product
has substantial commercial, industrial or non-consumer uses, unless such uses represent the only
significant mode of use of the product.

”Installation Information” for a User Product means any methods, procedures, authorization
keys, or other information required to install and execute modified versions of a covered work in that
User Product from a modified version of its Corresponding Source. The information must suffice to
ensure that the continued functioning of the modified object code is in no case prevented or interfered
with solely because modification has been made.

If you convey an object code work under this section in, or with, or specifically for use in, a
User Product, and the conveying occurs as part of a transaction in which the right of possession and
use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of
how the transaction is characterized), the Corresponding Source conveyed under this section must be
accompanied by the Installation Information. But this requirement does not apply if neither you nor
any third party retains the ability to install modified object code on the User Product (for example,
the work has been installed in ROM).

The requirement to provide Installation Information does not include a requirement to
continue to provide support service, warranty, or updates for a work that has been modified or
installed by the recipient, or for the User Product in which it has been modified or installed. Access to
a network may be denied when the modification itself materially and adversely affects the operation
of the network or violates the rules and protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided, in accord with this
section must be in a format that is publicly documented (and with an implementation available to
the public in source code form), and must require no special password or key for unpacking, reading
or copying.

7. Additional Terms.

”Additional permissions” are terms that supplement the terms of this License by making
exceptions from one or more of its conditions. Additional permissions that are applicable to the
entire Program shall be treated as though they were included in this License, to the extent that they
are valid under applicable law. If additional permissions apply only to part of the Program, that
part may be used separately under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option remove any additional
permissions from that copy, or from any part of it. (Additional permissions may be written to require
their own removal in certain cases when you modify the work.) You may place additional permissions
on material, added by you to a covered work, for which you have or can give appropriate copyright
permission.

Notwithstanding any other provision of this License, for material you add to a covered
work, you may (if authorized by the copyright holders of that material) supplement the terms of this
License with terms:

a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16
of this License; or

b) Requiring preservation of specified reasonable legal notices or author attributions in that
material or in the Appropriate Legal Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or requiring that modified
versions of such material be marked in reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or authors of the material;
or

e) Declining to grant rights under trademark law for use of some trade names, trademarks,
or service marks; or

f) Requiring indemnification of licensors and authors of that material by anyone who conveys
the material (or modified versions of it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on those licensors and authors.

All other non-permissive additional terms are considered ”further restrictions” within the
meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating
that it is governed by this License along with a term that is a further restriction, you may remove
that term. If a license document contains a further restriction but permits relicensing or conveying

under this License, you may add to a covered work material governed by the terms of that license
document, provided that the further restriction does not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you must place, in the
relevant source files, a statement of the additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the form of a separately
written license, or stated as exceptions; the above requirements apply either way.

8. Termination.

You may not propagate or modify a covered work except as expressly provided under this
License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate
your rights under this License (including any patent licenses granted under the third paragraph of
section 11).

However, if you cease all violation of this License, then your license from a particular
copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the
copyright holder notifies you of the violation by some reasonable means, this is the first time you
have received notice of violation of this License (for any work) from that copyright holder, and you
cure the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who
have received copies or rights from you under this License. If your rights have been terminated and
not permanently reinstated, you do not qualify to receive new licenses for the same material under
section 10.

9. Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or run a copy of the Program.
Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer
transmission to receive a copy likewise does not require acceptance. However, nothing other than
this License grants you permission to propagate or modify any covered work. These actions infringe
copyright if you do not accept this License. Therefore, by modifying or propagating a covered work,
you indicate your acceptance of this License to do so.

10. Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically receives a license from
the original licensors, to run, modify and propagate that work, subject to this License. You are not
responsible for enforcing compliance by third parties with this License.

An ”entity transaction” is a transaction transferring control of an organization, or substan-
tially all assets of one, or subdividing an organization, or merging organizations. If propagation of a
covered work results from an entity transaction, each party to that transaction who receives a copy of
the work also receives whatever licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the Corresponding Source of the
work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the rights granted or affirmed
under this License. For example, you may not impose a license fee, royalty, or other charge for exercise
of rights granted under this License, and you may not initiate litigation (including a cross-claim
or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling,
offering for sale, or importing the Program or any portion of it.

11. Patents.

A ”contributor” is a copyright holder who authorizes use under this License of the Program
or a work on which the Program is based. The work thus licensed is called the contributor’s
”contributor version”.

A contributor’s ”essential patent claims” are all patent claims owned or controlled by the
contributor, whether already acquired or hereafter acquired, that would be infringed by some manner,
permitted by this License, of making, using, or selling its contributor version, but do not include
claims that would be infringed only as a consequence of further modification of the contributor
version. For purposes of this definition, ”control” includes the right to grant patent sublicenses in a
manner consistent with the requirements of this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under
the contributor’s essential patent claims, to make, use, sell, offer for sale, import and otherwise run,
modify and propagate the contents of its contributor version.

In the following three paragraphs, a ”patent license” is any express agreement or commitment,
however denominated, not to enforce a patent (such as an express permission to practice a patent or
covenant not to sue for patent infringement). To ”grant” such a patent license to a party means to
make such an agreement or commitment not to enforce a patent against the party.

If you convey a covered work, knowingly relying on a patent license, and the Corresponding
Source of the work is not available for anyone to copy, free of charge and under the terms of this
License, through a publicly available network server or other readily accessible means, then you must
either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the
benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with
the requirements of this License, to extend the patent license to downstream recipients. ”Knowingly
relying” means you have actual knowledge that, but for the patent license, your conveying the covered
work in a country, or your recipient’s use of the covered work in a country, would infringe one or
more identifiable patents in that country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or arrangement, you convey, or
propagate by procuring conveyance of, a covered work, and grant a patent license to some of the
parties receiving the covered work authorizing them to use, propagate, modify or convey a specific
copy of the covered work, then the patent license you grant is automatically extended to all recipients
of the covered work and works based on it.

A patent license is ”discriminatory” if it does not include within the scope of its coverage,
prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered work if you are a party to
an arrangement with a third party that is in the business of distributing software, under which you
make payment to the third party based on the extent of your activity of conveying the work, and
under which the third party grants, to any of the parties who would receive the covered work from
you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by
you (or copies made from those copies), or (b) primarily for and in connection with specific products

or compilations that contain the covered work, unless you entered into that arrangement, or that
patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting any implied license or
other defenses to infringement that may otherwise be available to you under applicable patent law.

12. No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or otherwise) that
contradict the conditions of this License, they do not excuse you from the conditions of this License.
If you cannot convey a covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may not convey it at all. For
example, if you agree to terms that obligate you to collect a royalty for further conveying from those
to whom you convey the Program, the only way you could satisfy both those terms and this License
would be to refrain entirely from conveying the Program.

13. Remote Network Interaction; Use with the GNU General Public License.

Notwithstanding any other provision of this License, if you modify the Program, your
modified version must prominently offer all users interacting with it remotely through a computer
network (if your version supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source from a network server at
no charge, through some standard or customary means of facilitating copying of software. This
Corresponding Source shall include the Corresponding Source for any work covered by version 3 of
the GNU General Public License that is incorporated pursuant to the following paragraph.

Notwithstanding any other provision of this License, you have permission to link or combine
any covered work with a work licensed under version 3 of the GNU General Public License into a
single combined work, and to convey the resulting work. The terms of this License will continue to
apply to the part which is the covered work, but the work with which it is combined will remain
governed by version 3 of the GNU General Public License.

14. Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of the GNU Affero
General Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies that a
certain numbered version of the GNU Affero General Public License ”or any later version” applies to
it, you have the option of following the terms and conditions either of that numbered version or of any
later version published by the Free Software Foundation. If the Program does not specify a version
number of the GNU Affero General Public License, you may choose any version ever published by
the Free Software Foundation.

If the Program specifies that a proxy can decide which future versions of the GNU Affero
General Public License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Program.

Later license versions may give you additional or different permissions. However, no
additional obligations are imposed on any author or copyright holder as a result of your choosing to
follow a later version.

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED
BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM ”AS IS” WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE
OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU
ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

16. Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES
AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING
BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY
HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

17. Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided above cannot be given
local legal effect according to their terms, reviewing courts shall apply local law that most closely
approximates an absolute waiver of all civil liability in connection with the Program, unless a warranty
or assumption of liability accompanies a copy of the Program in return for a fee.

END OF TERMS AND CONDITIONS

	I Introduction
	Why do we need a playlist manager?
	Playlist tabs and UI limits
	AutoPlaylists slowdowns
	Playlists are a bit auto-destructive

	Multiple problems, one solution?
	Which playlists are compatible with it?

	II Installation
	Installation within foobar2000's UI
	As Package (recommended)
	Package file and dependencies
	Package builder

	As File
	Scripts files and dependencies
	Loading script file

	Portable installations tip
	Wine installations
	Auto-updates
	Updating from older script versions
	Nightly versions

	III First steps
	First time configuration
	Importing AutoPlaylists
	Creating and editing playlists
	Further configuration

	IV Features
	Lite mode
	Tracking folder
	Managing Playlist files and AutoPlaylists
	UI-only playlists
	AutoPlaylists
	Standard playlists
	How paths are written: absolute and relative paths
	Setting playlists format
	Creating playlists
	Adding selected tracks
	Playlist loading
	Playlist binding
	Converting UI-only playlists to files
	Deleting and restoring files
	Locking files
	Editing UI-only playlists locks

	Working with playlist metadata
	Metadata inheritance

	Auto-saving, Auto-loading and Auto-backup
	Auto-saving
	Auto-loading
	Auto-backup

	Automatic playlist actions
	Automatic track tagging
	Tagging events
	Tagging procedure

	Importing/exporting AutoPlaylists
	Importing native AutoPlaylists from foobar2000
	Importing/exporting AutoPlaylists from files
	Export as json file
	Clone as standard playlist
	Clone as AutoPlaylist and edit query

	Exporting playlists and files
	Copy Playlist file
	Export and copy tracks to
	Export and convert tracks to

	ListenBrainz integration
	Sync playlists
	Import playlist from server
	ListenBrainz user token

	Spotify integration
	Import track list from file\url
	Additional tools
	On selected playlist
	Force relative paths
	Send selection to playlist
	Clone as
	Native contextual playlist menu
	Merge-load

	On entire list (playlists maintenance tools)
	Mixed absolute and relative paths
	Dead items
	External items
	Duplicated items
	Playlist size mismatch
	Playlist duration mismatch
	Blank lines
	Subsong items
	Format specific errors
	Find current selection

	On active playlist
	Revive dead items

	Manual refresh
	Dynamic menus
	Available actions
	Keyboard shortcuts

	Startup active playlist
	Multiple selection
	Folders
	Drag and drop
	Drag and Drop: Internal
	Drag and Drop: Tracks

	Filters, Search and Quick-search
	Shortcuts
	Keyboard Shortcuts
	Statistics mode

	V UI
	Features
	List view
	Sorting
	Lock status, extension, playlist type filtering
	Selective category filtering
	Category filtering cycling
	Selective tag filtering
	Tag filtering cycling
	Reset filtering
	Tooltip

	Metadata columns
	Customization
	Color customization
	Other configuration
	Accessibility
	Playlist Icons
	Buttons, scrollbar and UI elements
	Background Art
	Playlist action shortcuts
	Header action shortcuts

	Search filter
	Quick-searching
	In panel popups
	Scrolling
	Configurable features and menus

	VI Playlist formats
	Playlist metadata
	Lock state
	[Playlist] Tags
	Track tags
	Category
	UUID
	Author
	Description
	Playlist MBID

	Playlist features table
	.m3u & .m3u8
	Extended M3U

	.pls
	.strm
	.xspf
	.fpl
	Auto-Playlists
	.xsp -Smart Playlists-
	.ui -UI-only Playlists-

	VII Other scripts integration
	VIII Online controller
	Features
	Installation

	IX FAQ
	Used terms
	File permissions and tracking
	Managing playlists
	Playlist loading
	AutoPlaylists
	Playlist exporting
	Playlist formats
	UI usage
	Common warnings
	Other errors and support

	X Advanced tips
	Sharing manager files
	Multiple views / manager panels
	Portable 'plug & play' installation
	Sharing playlists on same network
	Sharing playlists between different devices
	Export and convert playlists to foobar2000 mobile
	Export and convert playlists to Kodi, Librelec, ...
	Tag automation
	Pools using AutoPlaylists and tags
	Pools using Playlist-Tools-SMP
	Smart Playlists queries
	Pools using Smart Playlists
	Working with locked playlists
	Autosave & Autobackup component
	Customizable icons for categories
	Recycle Bin on network and USB drives
	Duplicates removal
	Find duplicates/dead/external items on UI-only playlists
	Using playlist tags on playlists maintenance
	Disable Library Paths caching
	Other advanced global settings

	XI Technical notes
	XII Known problems
	XIII Bug procedure
	XIV License

	2.Plus:
	2.Reset:
	2.Minus:
	2.EndRight:
	2.StepRight:
	2.PlayPauseRight:
	2.PlayRight:
	2.PauseRight:
	2.PlayPauseLeft:
	2.PlayLeft:
	2.PauseLeft:
	2.StepLeft:
	2.EndLeft:
	anm2:
	2.429:
	2.428:
	2.427:
	2.426:
	2.425:
	2.424:
	2.423:
	2.422:
	2.421:
	2.420:
	2.419:
	2.418:
	2.417:
	2.416:
	2.415:
	2.414:
	2.413:
	2.412:
	2.411:
	2.410:
	2.409:
	2.408:
	2.407:
	2.406:
	2.405:
	2.404:
	2.403:
	2.402:
	2.401:
	2.400:
	2.399:
	2.398:
	2.397:
	2.396:
	2.395:
	2.394:
	2.393:
	2.392:
	2.391:
	2.390:
	2.389:
	2.388:
	2.387:
	2.386:
	2.385:
	2.384:
	2.383:
	2.382:
	2.381:
	2.380:
	2.379:
	2.378:
	2.377:
	2.376:
	2.375:
	2.374:
	2.373:
	2.372:
	2.371:
	2.370:
	2.369:
	2.368:
	2.367:
	2.366:
	2.365:
	2.364:
	2.363:
	2.362:
	2.361:
	2.360:
	2.359:
	2.358:
	2.357:
	2.356:
	2.355:
	2.354:
	2.353:
	2.352:
	2.351:
	2.350:
	2.349:
	2.348:
	2.347:
	2.346:
	2.345:
	2.344:
	2.343:
	2.342:
	2.341:
	2.340:
	2.339:
	2.338:
	2.337:
	2.336:
	2.335:
	2.334:
	2.333:
	2.332:
	2.331:
	2.330:
	2.329:
	2.328:
	2.327:
	2.326:
	2.325:
	2.324:
	2.323:
	2.322:
	2.321:
	2.320:
	2.319:
	2.318:
	2.317:
	2.316:
	2.315:
	2.314:
	2.313:
	2.312:
	2.311:
	2.310:
	2.309:
	2.308:
	2.307:
	2.306:
	2.305:
	2.304:
	2.303:
	2.302:
	2.301:
	2.300:
	2.299:
	2.298:
	2.297:
	2.296:
	2.295:
	2.294:
	2.293:
	2.292:
	2.291:
	2.290:
	2.289:
	2.288:
	2.287:
	2.286:
	2.285:
	2.284:
	2.283:
	2.282:
	2.281:
	2.280:
	2.279:
	2.278:
	2.277:
	2.276:
	2.275:
	2.274:
	2.273:
	2.272:
	2.271:
	2.270:
	2.269:
	2.268:
	2.267:
	2.266:
	2.265:
	2.264:
	2.263:
	2.262:
	2.261:
	2.260:
	2.259:
	2.258:
	2.257:
	2.256:
	2.255:
	2.254:
	2.253:
	2.252:
	2.251:
	2.250:
	2.249:
	2.248:
	2.247:
	2.246:
	2.245:
	2.244:
	2.243:
	2.242:
	2.241:
	2.240:
	2.239:
	2.238:
	2.237:
	2.236:
	2.235:
	2.234:
	2.233:
	2.232:
	2.231:
	2.230:
	2.229:
	2.228:
	2.227:
	2.226:
	2.225:
	2.224:
	2.223:
	2.222:
	2.221:
	2.220:
	2.219:
	2.218:
	2.217:
	2.216:
	2.215:
	2.214:
	2.213:
	2.212:
	2.211:
	2.210:
	2.209:
	2.208:
	2.207:
	2.206:
	2.205:
	2.204:
	2.203:
	2.202:
	2.201:
	2.200:
	2.199:
	2.198:
	2.197:
	2.196:
	2.195:
	2.194:
	2.193:
	2.192:
	2.191:
	2.190:
	2.189:
	2.188:
	2.187:
	2.186:
	2.185:
	2.184:
	2.183:
	2.182:
	2.181:
	2.180:
	2.179:
	2.178:
	2.177:
	2.176:
	2.175:
	2.174:
	2.173:
	2.172:
	2.171:
	2.170:
	2.169:
	2.168:
	2.167:
	2.166:
	2.165:
	2.164:
	2.163:
	2.162:
	2.161:
	2.160:
	2.159:
	2.158:
	2.157:
	2.156:
	2.155:
	2.154:
	2.153:
	2.152:
	2.151:
	2.150:
	2.149:
	2.148:
	2.147:
	2.146:
	2.145:
	2.144:
	2.143:
	2.142:
	2.141:
	2.140:
	2.139:
	2.138:
	2.137:
	2.136:
	2.135:
	2.134:
	2.133:
	2.132:
	2.131:
	2.130:
	2.129:
	2.128:
	2.127:
	2.126:
	2.125:
	2.124:
	2.123:
	2.122:
	2.121:
	2.120:
	2.119:
	2.118:
	2.117:
	2.116:
	2.115:
	2.114:
	2.113:
	2.112:
	2.111:
	2.110:
	2.109:
	2.108:
	2.107:
	2.106:
	2.105:
	2.104:
	2.103:
	2.102:
	2.101:
	2.100:
	2.99:
	2.98:
	2.97:
	2.96:
	2.95:
	2.94:
	2.93:
	2.92:
	2.91:
	2.90:
	2.89:
	2.88:
	2.87:
	2.86:
	2.85:
	2.84:
	2.83:
	2.82:
	2.81:
	2.80:
	2.79:
	2.78:
	2.77:
	2.76:
	2.75:
	2.74:
	2.73:
	2.72:
	2.71:
	2.70:
	2.69:
	2.68:
	2.67:
	2.66:
	2.65:
	2.64:
	2.63:
	2.62:
	2.61:
	2.60:
	2.59:
	2.58:
	2.57:
	2.56:
	2.55:
	2.54:
	2.53:
	2.52:
	2.51:
	2.50:
	2.49:
	2.48:
	2.47:
	2.46:
	2.45:
	2.44:
	2.43:
	2.42:
	2.41:
	2.40:
	2.39:
	2.38:
	2.37:
	2.36:
	2.35:
	2.34:
	2.33:
	2.32:
	2.31:
	2.30:
	2.29:
	2.28:
	2.27:
	2.26:
	2.25:
	2.24:
	2.23:
	2.22:
	2.21:
	2.20:
	2.19:
	2.18:
	2.17:
	2.16:
	2.15:
	2.14:
	2.13:
	2.12:
	2.11:
	2.10:
	2.9:
	2.8:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	1.Plus:
	1.Reset:
	1.Minus:
	1.EndRight:
	1.StepRight:
	1.PlayPauseRight:
	1.PlayRight:
	1.PauseRight:
	1.PlayPauseLeft:
	1.PlayLeft:
	1.PauseLeft:
	1.StepLeft:
	1.EndLeft:
	anm1:
	1.1385:
	1.1384:
	1.1383:
	1.1382:
	1.1381:
	1.1380:
	1.1379:
	1.1378:
	1.1377:
	1.1376:
	1.1375:
	1.1374:
	1.1373:
	1.1372:
	1.1371:
	1.1370:
	1.1369:
	1.1368:
	1.1367:
	1.1366:
	1.1365:
	1.1364:
	1.1363:
	1.1362:
	1.1361:
	1.1360:
	1.1359:
	1.1358:
	1.1357:
	1.1356:
	1.1355:
	1.1354:
	1.1353:
	1.1352:
	1.1351:
	1.1350:
	1.1349:
	1.1348:
	1.1347:
	1.1346:
	1.1345:
	1.1344:
	1.1343:
	1.1342:
	1.1341:
	1.1340:
	1.1339:
	1.1338:
	1.1337:
	1.1336:
	1.1335:
	1.1334:
	1.1333:
	1.1332:
	1.1331:
	1.1330:
	1.1329:
	1.1328:
	1.1327:
	1.1326:
	1.1325:
	1.1324:
	1.1323:
	1.1322:
	1.1321:
	1.1320:
	1.1319:
	1.1318:
	1.1317:
	1.1316:
	1.1315:
	1.1314:
	1.1313:
	1.1312:
	1.1311:
	1.1310:
	1.1309:
	1.1308:
	1.1307:
	1.1306:
	1.1305:
	1.1304:
	1.1303:
	1.1302:
	1.1301:
	1.1300:
	1.1299:
	1.1298:
	1.1297:
	1.1296:
	1.1295:
	1.1294:
	1.1293:
	1.1292:
	1.1291:
	1.1290:
	1.1289:
	1.1288:
	1.1287:
	1.1286:
	1.1285:
	1.1284:
	1.1283:
	1.1282:
	1.1281:
	1.1280:
	1.1279:
	1.1278:
	1.1277:
	1.1276:
	1.1275:
	1.1274:
	1.1273:
	1.1272:
	1.1271:
	1.1270:
	1.1269:
	1.1268:
	1.1267:
	1.1266:
	1.1265:
	1.1264:
	1.1263:
	1.1262:
	1.1261:
	1.1260:
	1.1259:
	1.1258:
	1.1257:
	1.1256:
	1.1255:
	1.1254:
	1.1253:
	1.1252:
	1.1251:
	1.1250:
	1.1249:
	1.1248:
	1.1247:
	1.1246:
	1.1245:
	1.1244:
	1.1243:
	1.1242:
	1.1241:
	1.1240:
	1.1239:
	1.1238:
	1.1237:
	1.1236:
	1.1235:
	1.1234:
	1.1233:
	1.1232:
	1.1231:
	1.1230:
	1.1229:
	1.1228:
	1.1227:
	1.1226:
	1.1225:
	1.1224:
	1.1223:
	1.1222:
	1.1221:
	1.1220:
	1.1219:
	1.1218:
	1.1217:
	1.1216:
	1.1215:
	1.1214:
	1.1213:
	1.1212:
	1.1211:
	1.1210:
	1.1209:
	1.1208:
	1.1207:
	1.1206:
	1.1205:
	1.1204:
	1.1203:
	1.1202:
	1.1201:
	1.1200:
	1.1199:
	1.1198:
	1.1197:
	1.1196:
	1.1195:
	1.1194:
	1.1193:
	1.1192:
	1.1191:
	1.1190:
	1.1189:
	1.1188:
	1.1187:
	1.1186:
	1.1185:
	1.1184:
	1.1183:
	1.1182:
	1.1181:
	1.1180:
	1.1179:
	1.1178:
	1.1177:
	1.1176:
	1.1175:
	1.1174:
	1.1173:
	1.1172:
	1.1171:
	1.1170:
	1.1169:
	1.1168:
	1.1167:
	1.1166:
	1.1165:
	1.1164:
	1.1163:
	1.1162:
	1.1161:
	1.1160:
	1.1159:
	1.1158:
	1.1157:
	1.1156:
	1.1155:
	1.1154:
	1.1153:
	1.1152:
	1.1151:
	1.1150:
	1.1149:
	1.1148:
	1.1147:
	1.1146:
	1.1145:
	1.1144:
	1.1143:
	1.1142:
	1.1141:
	1.1140:
	1.1139:
	1.1138:
	1.1137:
	1.1136:
	1.1135:
	1.1134:
	1.1133:
	1.1132:
	1.1131:
	1.1130:
	1.1129:
	1.1128:
	1.1127:
	1.1126:
	1.1125:
	1.1124:
	1.1123:
	1.1122:
	1.1121:
	1.1120:
	1.1119:
	1.1118:
	1.1117:
	1.1116:
	1.1115:
	1.1114:
	1.1113:
	1.1112:
	1.1111:
	1.1110:
	1.1109:
	1.1108:
	1.1107:
	1.1106:
	1.1105:
	1.1104:
	1.1103:
	1.1102:
	1.1101:
	1.1100:
	1.1099:
	1.1098:
	1.1097:
	1.1096:
	1.1095:
	1.1094:
	1.1093:
	1.1092:
	1.1091:
	1.1090:
	1.1089:
	1.1088:
	1.1087:
	1.1086:
	1.1085:
	1.1084:
	1.1083:
	1.1082:
	1.1081:
	1.1080:
	1.1079:
	1.1078:
	1.1077:
	1.1076:
	1.1075:
	1.1074:
	1.1073:
	1.1072:
	1.1071:
	1.1070:
	1.1069:
	1.1068:
	1.1067:
	1.1066:
	1.1065:
	1.1064:
	1.1063:
	1.1062:
	1.1061:
	1.1060:
	1.1059:
	1.1058:
	1.1057:
	1.1056:
	1.1055:
	1.1054:
	1.1053:
	1.1052:
	1.1051:
	1.1050:
	1.1049:
	1.1048:
	1.1047:
	1.1046:
	1.1045:
	1.1044:
	1.1043:
	1.1042:
	1.1041:
	1.1040:
	1.1039:
	1.1038:
	1.1037:
	1.1036:
	1.1035:
	1.1034:
	1.1033:
	1.1032:
	1.1031:
	1.1030:
	1.1029:
	1.1028:
	1.1027:
	1.1026:
	1.1025:
	1.1024:
	1.1023:
	1.1022:
	1.1021:
	1.1020:
	1.1019:
	1.1018:
	1.1017:
	1.1016:
	1.1015:
	1.1014:
	1.1013:
	1.1012:
	1.1011:
	1.1010:
	1.1009:
	1.1008:
	1.1007:
	1.1006:
	1.1005:
	1.1004:
	1.1003:
	1.1002:
	1.1001:
	1.1000:
	1.999:
	1.998:
	1.997:
	1.996:
	1.995:
	1.994:
	1.993:
	1.992:
	1.991:
	1.990:
	1.989:
	1.988:
	1.987:
	1.986:
	1.985:
	1.984:
	1.983:
	1.982:
	1.981:
	1.980:
	1.979:
	1.978:
	1.977:
	1.976:
	1.975:
	1.974:
	1.973:
	1.972:
	1.971:
	1.970:
	1.969:
	1.968:
	1.967:
	1.966:
	1.965:
	1.964:
	1.963:
	1.962:
	1.961:
	1.960:
	1.959:
	1.958:
	1.957:
	1.956:
	1.955:
	1.954:
	1.953:
	1.952:
	1.951:
	1.950:
	1.949:
	1.948:
	1.947:
	1.946:
	1.945:
	1.944:
	1.943:
	1.942:
	1.941:
	1.940:
	1.939:
	1.938:
	1.937:
	1.936:
	1.935:
	1.934:
	1.933:
	1.932:
	1.931:
	1.930:
	1.929:
	1.928:
	1.927:
	1.926:
	1.925:
	1.924:
	1.923:
	1.922:
	1.921:
	1.920:
	1.919:
	1.918:
	1.917:
	1.916:
	1.915:
	1.914:
	1.913:
	1.912:
	1.911:
	1.910:
	1.909:
	1.908:
	1.907:
	1.906:
	1.905:
	1.904:
	1.903:
	1.902:
	1.901:
	1.900:
	1.899:
	1.898:
	1.897:
	1.896:
	1.895:
	1.894:
	1.893:
	1.892:
	1.891:
	1.890:
	1.889:
	1.888:
	1.887:
	1.886:
	1.885:
	1.884:
	1.883:
	1.882:
	1.881:
	1.880:
	1.879:
	1.878:
	1.877:
	1.876:
	1.875:
	1.874:
	1.873:
	1.872:
	1.871:
	1.870:
	1.869:
	1.868:
	1.867:
	1.866:
	1.865:
	1.864:
	1.863:
	1.862:
	1.861:
	1.860:
	1.859:
	1.858:
	1.857:
	1.856:
	1.855:
	1.854:
	1.853:
	1.852:
	1.851:
	1.850:
	1.849:
	1.848:
	1.847:
	1.846:
	1.845:
	1.844:
	1.843:
	1.842:
	1.841:
	1.840:
	1.839:
	1.838:
	1.837:
	1.836:
	1.835:
	1.834:
	1.833:
	1.832:
	1.831:
	1.830:
	1.829:
	1.828:
	1.827:
	1.826:
	1.825:
	1.824:
	1.823:
	1.822:
	1.821:
	1.820:
	1.819:
	1.818:
	1.817:
	1.816:
	1.815:
	1.814:
	1.813:
	1.812:
	1.811:
	1.810:
	1.809:
	1.808:
	1.807:
	1.806:
	1.805:
	1.804:
	1.803:
	1.802:
	1.801:
	1.800:
	1.799:
	1.798:
	1.797:
	1.796:
	1.795:
	1.794:
	1.793:
	1.792:
	1.791:
	1.790:
	1.789:
	1.788:
	1.787:
	1.786:
	1.785:
	1.784:
	1.783:
	1.782:
	1.781:
	1.780:
	1.779:
	1.778:
	1.777:
	1.776:
	1.775:
	1.774:
	1.773:
	1.772:
	1.771:
	1.770:
	1.769:
	1.768:
	1.767:
	1.766:
	1.765:
	1.764:
	1.763:
	1.762:
	1.761:
	1.760:
	1.759:
	1.758:
	1.757:
	1.756:
	1.755:
	1.754:
	1.753:
	1.752:
	1.751:
	1.750:
	1.749:
	1.748:
	1.747:
	1.746:
	1.745:
	1.744:
	1.743:
	1.742:
	1.741:
	1.740:
	1.739:
	1.738:
	1.737:
	1.736:
	1.735:
	1.734:
	1.733:
	1.732:
	1.731:
	1.730:
	1.729:
	1.728:
	1.727:
	1.726:
	1.725:
	1.724:
	1.723:
	1.722:
	1.721:
	1.720:
	1.719:
	1.718:
	1.717:
	1.716:
	1.715:
	1.714:
	1.713:
	1.712:
	1.711:
	1.710:
	1.709:
	1.708:
	1.707:
	1.706:
	1.705:
	1.704:
	1.703:
	1.702:
	1.701:
	1.700:
	1.699:
	1.698:
	1.697:
	1.696:
	1.695:
	1.694:
	1.693:
	1.692:
	1.691:
	1.690:
	1.689:
	1.688:
	1.687:
	1.686:
	1.685:
	1.684:
	1.683:
	1.682:
	1.681:
	1.680:
	1.679:
	1.678:
	1.677:
	1.676:
	1.675:
	1.674:
	1.673:
	1.672:
	1.671:
	1.670:
	1.669:
	1.668:
	1.667:
	1.666:
	1.665:
	1.664:
	1.663:
	1.662:
	1.661:
	1.660:
	1.659:
	1.658:
	1.657:
	1.656:
	1.655:
	1.654:
	1.653:
	1.652:
	1.651:
	1.650:
	1.649:
	1.648:
	1.647:
	1.646:
	1.645:
	1.644:
	1.643:
	1.642:
	1.641:
	1.640:
	1.639:
	1.638:
	1.637:
	1.636:
	1.635:
	1.634:
	1.633:
	1.632:
	1.631:
	1.630:
	1.629:
	1.628:
	1.627:
	1.626:
	1.625:
	1.624:
	1.623:
	1.622:
	1.621:
	1.620:
	1.619:
	1.618:
	1.617:
	1.616:
	1.615:
	1.614:
	1.613:
	1.612:
	1.611:
	1.610:
	1.609:
	1.608:
	1.607:
	1.606:
	1.605:
	1.604:
	1.603:
	1.602:
	1.601:
	1.600:
	1.599:
	1.598:
	1.597:
	1.596:
	1.595:
	1.594:
	1.593:
	1.592:
	1.591:
	1.590:
	1.589:
	1.588:
	1.587:
	1.586:
	1.585:
	1.584:
	1.583:
	1.582:
	1.581:
	1.580:
	1.579:
	1.578:
	1.577:
	1.576:
	1.575:
	1.574:
	1.573:
	1.572:
	1.571:
	1.570:
	1.569:
	1.568:
	1.567:
	1.566:
	1.565:
	1.564:
	1.563:
	1.562:
	1.561:
	1.560:
	1.559:
	1.558:
	1.557:
	1.556:
	1.555:
	1.554:
	1.553:
	1.552:
	1.551:
	1.550:
	1.549:
	1.548:
	1.547:
	1.546:
	1.545:
	1.544:
	1.543:
	1.542:
	1.541:
	1.540:
	1.539:
	1.538:
	1.537:
	1.536:
	1.535:
	1.534:
	1.533:
	1.532:
	1.531:
	1.530:
	1.529:
	1.528:
	1.527:
	1.526:
	1.525:
	1.524:
	1.523:
	1.522:
	1.521:
	1.520:
	1.519:
	1.518:
	1.517:
	1.516:
	1.515:
	1.514:
	1.513:
	1.512:
	1.511:
	1.510:
	1.509:
	1.508:
	1.507:
	1.506:
	1.505:
	1.504:
	1.503:
	1.502:
	1.501:
	1.500:
	1.499:
	1.498:
	1.497:
	1.496:
	1.495:
	1.494:
	1.493:
	1.492:
	1.491:
	1.490:
	1.489:
	1.488:
	1.487:
	1.486:
	1.485:
	1.484:
	1.483:
	1.482:
	1.481:
	1.480:
	1.479:
	1.478:
	1.477:
	1.476:
	1.475:
	1.474:
	1.473:
	1.472:
	1.471:
	1.470:
	1.469:
	1.468:
	1.467:
	1.466:
	1.465:
	1.464:
	1.463:
	1.462:
	1.461:
	1.460:
	1.459:
	1.458:
	1.457:
	1.456:
	1.455:
	1.454:
	1.453:
	1.452:
	1.451:
	1.450:
	1.449:
	1.448:
	1.447:
	1.446:
	1.445:
	1.444:
	1.443:
	1.442:
	1.441:
	1.440:
	1.439:
	1.438:
	1.437:
	1.436:
	1.435:
	1.434:
	1.433:
	1.432:
	1.431:
	1.430:
	1.429:
	1.428:
	1.427:
	1.426:
	1.425:
	1.424:
	1.423:
	1.422:
	1.421:
	1.420:
	1.419:
	1.418:
	1.417:
	1.416:
	1.415:
	1.414:
	1.413:
	1.412:
	1.411:
	1.410:
	1.409:
	1.408:
	1.407:
	1.406:
	1.405:
	1.404:
	1.403:
	1.402:
	1.401:
	1.400:
	1.399:
	1.398:
	1.397:
	1.396:
	1.395:
	1.394:
	1.393:
	1.392:
	1.391:
	1.390:
	1.389:
	1.388:
	1.387:
	1.386:
	1.385:
	1.384:
	1.383:
	1.382:
	1.381:
	1.380:
	1.379:
	1.378:
	1.377:
	1.376:
	1.375:
	1.374:
	1.373:
	1.372:
	1.371:
	1.370:
	1.369:
	1.368:
	1.367:
	1.366:
	1.365:
	1.364:
	1.363:
	1.362:
	1.361:
	1.360:
	1.359:
	1.358:
	1.357:
	1.356:
	1.355:
	1.354:
	1.353:
	1.352:
	1.351:
	1.350:
	1.349:
	1.348:
	1.347:
	1.346:
	1.345:
	1.344:
	1.343:
	1.342:
	1.341:
	1.340:
	1.339:
	1.338:
	1.337:
	1.336:
	1.335:
	1.334:
	1.333:
	1.332:
	1.331:
	1.330:
	1.329:
	1.328:
	1.327:
	1.326:
	1.325:
	1.324:
	1.323:
	1.322:
	1.321:
	1.320:
	1.319:
	1.318:
	1.317:
	1.316:
	1.315:
	1.314:
	1.313:
	1.312:
	1.311:
	1.310:
	1.309:
	1.308:
	1.307:
	1.306:
	1.305:
	1.304:
	1.303:
	1.302:
	1.301:
	1.300:
	1.299:
	1.298:
	1.297:
	1.296:
	1.295:
	1.294:
	1.293:
	1.292:
	1.291:
	1.290:
	1.289:
	1.288:
	1.287:
	1.286:
	1.285:
	1.284:
	1.283:
	1.282:
	1.281:
	1.280:
	1.279:
	1.278:
	1.277:
	1.276:
	1.275:
	1.274:
	1.273:
	1.272:
	1.271:
	1.270:
	1.269:
	1.268:
	1.267:
	1.266:
	1.265:
	1.264:
	1.263:
	1.262:
	1.261:
	1.260:
	1.259:
	1.258:
	1.257:
	1.256:
	1.255:
	1.254:
	1.253:
	1.252:
	1.251:
	1.250:
	1.249:
	1.248:
	1.247:
	1.246:
	1.245:
	1.244:
	1.243:
	1.242:
	1.241:
	1.240:
	1.239:
	1.238:
	1.237:
	1.236:
	1.235:
	1.234:
	1.233:
	1.232:
	1.231:
	1.230:
	1.229:
	1.228:
	1.227:
	1.226:
	1.225:
	1.224:
	1.223:
	1.222:
	1.221:
	1.220:
	1.219:
	1.218:
	1.217:
	1.216:
	1.215:
	1.214:
	1.213:
	1.212:
	1.211:
	1.210:
	1.209:
	1.208:
	1.207:
	1.206:
	1.205:
	1.204:
	1.203:
	1.202:
	1.201:
	1.200:
	1.199:
	1.198:
	1.197:
	1.196:
	1.195:
	1.194:
	1.193:
	1.192:
	1.191:
	1.190:
	1.189:
	1.188:
	1.187:
	1.186:
	1.185:
	1.184:
	1.183:
	1.182:
	1.181:
	1.180:
	1.179:
	1.178:
	1.177:
	1.176:
	1.175:
	1.174:
	1.173:
	1.172:
	1.171:
	1.170:
	1.169:
	1.168:
	1.167:
	1.166:
	1.165:
	1.164:
	1.163:
	1.162:
	1.161:
	1.160:
	1.159:
	1.158:
	1.157:
	1.156:
	1.155:
	1.154:
	1.153:
	1.152:
	1.151:
	1.150:
	1.149:
	1.148:
	1.147:
	1.146:
	1.145:
	1.144:
	1.143:
	1.142:
	1.141:
	1.140:
	1.139:
	1.138:
	1.137:
	1.136:
	1.135:
	1.134:
	1.133:
	1.132:
	1.131:
	1.130:
	1.129:
	1.128:
	1.127:
	1.126:
	1.125:
	1.124:
	1.123:
	1.122:
	1.121:
	1.120:
	1.119:
	1.118:
	1.117:
	1.116:
	1.115:
	1.114:
	1.113:
	1.112:
	1.111:
	1.110:
	1.109:
	1.108:
	1.107:
	1.106:
	1.105:
	1.104:
	1.103:
	1.102:
	1.101:
	1.100:
	1.99:
	1.98:
	1.97:
	1.96:
	1.95:
	1.94:
	1.93:
	1.92:
	1.91:
	1.90:
	1.89:
	1.88:
	1.87:
	1.86:
	1.85:
	1.84:
	1.83:
	1.82:
	1.81:
	1.80:
	1.79:
	1.78:
	1.77:
	1.76:
	1.75:
	1.74:
	1.73:
	1.72:
	1.71:
	1.70:
	1.69:
	1.68:
	1.67:
	1.66:
	1.65:
	1.64:
	1.63:
	1.62:
	1.61:
	1.60:
	1.59:
	1.58:
	1.57:
	1.56:
	1.55:
	1.54:
	1.53:
	1.52:
	1.51:
	1.50:
	1.49:
	1.48:
	1.47:
	1.46:
	1.45:
	1.44:
	1.43:
	1.42:
	1.41:
	1.40:
	1.39:
	1.38:
	1.37:
	1.36:
	1.35:
	1.34:
	1.33:
	1.32:
	1.31:
	1.30:
	1.29:
	1.28:
	1.27:
	1.26:
	1.25:
	1.24:
	1.23:
	1.22:
	1.21:
	1.20:
	1.19:
	1.18:
	1.17:
	1.16:
	1.15:
	1.14:
	1.13:
	1.12:
	1.11:
	1.10:
	1.9:
	1.8:
	1.7:
	1.6:
	1.5:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.1007:
	0.1006:
	0.1005:
	0.1004:
	0.1003:
	0.1002:
	0.1001:
	0.1000:
	0.999:
	0.998:
	0.997:
	0.996:
	0.995:
	0.994:
	0.993:
	0.992:
	0.991:
	0.990:
	0.989:
	0.988:
	0.987:
	0.986:
	0.985:
	0.984:
	0.983:
	0.982:
	0.981:
	0.980:
	0.979:
	0.978:
	0.977:
	0.976:
	0.975:
	0.974:
	0.973:
	0.972:
	0.971:
	0.970:
	0.969:
	0.968:
	0.967:
	0.966:
	0.965:
	0.964:
	0.963:
	0.962:
	0.961:
	0.960:
	0.959:
	0.958:
	0.957:
	0.956:
	0.955:
	0.954:
	0.953:
	0.952:
	0.951:
	0.950:
	0.949:
	0.948:
	0.947:
	0.946:
	0.945:
	0.944:
	0.943:
	0.942:
	0.941:
	0.940:
	0.939:
	0.938:
	0.937:
	0.936:
	0.935:
	0.934:
	0.933:
	0.932:
	0.931:
	0.930:
	0.929:
	0.928:
	0.927:
	0.926:
	0.925:
	0.924:
	0.923:
	0.922:
	0.921:
	0.920:
	0.919:
	0.918:
	0.917:
	0.916:
	0.915:
	0.914:
	0.913:
	0.912:
	0.911:
	0.910:
	0.909:
	0.908:
	0.907:
	0.906:
	0.905:
	0.904:
	0.903:
	0.902:
	0.901:
	0.900:
	0.899:
	0.898:
	0.897:
	0.896:
	0.895:
	0.894:
	0.893:
	0.892:
	0.891:
	0.890:
	0.889:
	0.888:
	0.887:
	0.886:
	0.885:
	0.884:
	0.883:
	0.882:
	0.881:
	0.880:
	0.879:
	0.878:
	0.877:
	0.876:
	0.875:
	0.874:
	0.873:
	0.872:
	0.871:
	0.870:
	0.869:
	0.868:
	0.867:
	0.866:
	0.865:
	0.864:
	0.863:
	0.862:
	0.861:
	0.860:
	0.859:
	0.858:
	0.857:
	0.856:
	0.855:
	0.854:
	0.853:
	0.852:
	0.851:
	0.850:
	0.849:
	0.848:
	0.847:
	0.846:
	0.845:
	0.844:
	0.843:
	0.842:
	0.841:
	0.840:
	0.839:
	0.838:
	0.837:
	0.836:
	0.835:
	0.834:
	0.833:
	0.832:
	0.831:
	0.830:
	0.829:
	0.828:
	0.827:
	0.826:
	0.825:
	0.824:
	0.823:
	0.822:
	0.821:
	0.820:
	0.819:
	0.818:
	0.817:
	0.816:
	0.815:
	0.814:
	0.813:
	0.812:
	0.811:
	0.810:
	0.809:
	0.808:
	0.807:
	0.806:
	0.805:
	0.804:
	0.803:
	0.802:
	0.801:
	0.800:
	0.799:
	0.798:
	0.797:
	0.796:
	0.795:
	0.794:
	0.793:
	0.792:
	0.791:
	0.790:
	0.789:
	0.788:
	0.787:
	0.786:
	0.785:
	0.784:
	0.783:
	0.782:
	0.781:
	0.780:
	0.779:
	0.778:
	0.777:
	0.776:
	0.775:
	0.774:
	0.773:
	0.772:
	0.771:
	0.770:
	0.769:
	0.768:
	0.767:
	0.766:
	0.765:
	0.764:
	0.763:
	0.762:
	0.761:
	0.760:
	0.759:
	0.758:
	0.757:
	0.756:
	0.755:
	0.754:
	0.753:
	0.752:
	0.751:
	0.750:
	0.749:
	0.748:
	0.747:
	0.746:
	0.745:
	0.744:
	0.743:
	0.742:
	0.741:
	0.740:
	0.739:
	0.738:
	0.737:
	0.736:
	0.735:
	0.734:
	0.733:
	0.732:
	0.731:
	0.730:
	0.729:
	0.728:
	0.727:
	0.726:
	0.725:
	0.724:
	0.723:
	0.722:
	0.721:
	0.720:
	0.719:
	0.718:
	0.717:
	0.716:
	0.715:
	0.714:
	0.713:
	0.712:
	0.711:
	0.710:
	0.709:
	0.708:
	0.707:
	0.706:
	0.705:
	0.704:
	0.703:
	0.702:
	0.701:
	0.700:
	0.699:
	0.698:
	0.697:
	0.696:
	0.695:
	0.694:
	0.693:
	0.692:
	0.691:
	0.690:
	0.689:
	0.688:
	0.687:
	0.686:
	0.685:
	0.684:
	0.683:
	0.682:
	0.681:
	0.680:
	0.679:
	0.678:
	0.677:
	0.676:
	0.675:
	0.674:
	0.673:
	0.672:
	0.671:
	0.670:
	0.669:
	0.668:
	0.667:
	0.666:
	0.665:
	0.664:
	0.663:
	0.662:
	0.661:
	0.660:
	0.659:
	0.658:
	0.657:
	0.656:
	0.655:
	0.654:
	0.653:
	0.652:
	0.651:
	0.650:
	0.649:
	0.648:
	0.647:
	0.646:
	0.645:
	0.644:
	0.643:
	0.642:
	0.641:
	0.640:
	0.639:
	0.638:
	0.637:
	0.636:
	0.635:
	0.634:
	0.633:
	0.632:
	0.631:
	0.630:
	0.629:
	0.628:
	0.627:
	0.626:
	0.625:
	0.624:
	0.623:
	0.622:
	0.621:
	0.620:
	0.619:
	0.618:
	0.617:
	0.616:
	0.615:
	0.614:
	0.613:
	0.612:
	0.611:
	0.610:
	0.609:
	0.608:
	0.607:
	0.606:
	0.605:
	0.604:
	0.603:
	0.602:
	0.601:
	0.600:
	0.599:
	0.598:
	0.597:
	0.596:
	0.595:
	0.594:
	0.593:
	0.592:
	0.591:
	0.590:
	0.589:
	0.588:
	0.587:
	0.586:
	0.585:
	0.584:
	0.583:
	0.582:
	0.581:
	0.580:
	0.579:
	0.578:
	0.577:
	0.576:
	0.575:
	0.574:
	0.573:
	0.572:
	0.571:
	0.570:
	0.569:
	0.568:
	0.567:
	0.566:
	0.565:
	0.564:
	0.563:
	0.562:
	0.561:
	0.560:
	0.559:
	0.558:
	0.557:
	0.556:
	0.555:
	0.554:
	0.553:
	0.552:
	0.551:
	0.550:
	0.549:
	0.548:
	0.547:
	0.546:
	0.545:
	0.544:
	0.543:
	0.542:
	0.541:
	0.540:
	0.539:
	0.538:
	0.537:
	0.536:
	0.535:
	0.534:
	0.533:
	0.532:
	0.531:
	0.530:
	0.529:
	0.528:
	0.527:
	0.526:
	0.525:
	0.524:
	0.523:
	0.522:
	0.521:
	0.520:
	0.519:
	0.518:
	0.517:
	0.516:
	0.515:
	0.514:
	0.513:
	0.512:
	0.511:
	0.510:
	0.509:
	0.508:
	0.507:
	0.506:
	0.505:
	0.504:
	0.503:
	0.502:
	0.501:
	0.500:
	0.499:
	0.498:
	0.497:
	0.496:
	0.495:
	0.494:
	0.493:
	0.492:
	0.491:
	0.490:
	0.489:
	0.488:
	0.487:
	0.486:
	0.485:
	0.484:
	0.483:
	0.482:
	0.481:
	0.480:
	0.479:
	0.478:
	0.477:
	0.476:
	0.475:
	0.474:
	0.473:
	0.472:
	0.471:
	0.470:
	0.469:
	0.468:
	0.467:
	0.466:
	0.465:
	0.464:
	0.463:
	0.462:
	0.461:
	0.460:
	0.459:
	0.458:
	0.457:
	0.456:
	0.455:
	0.454:
	0.453:
	0.452:
	0.451:
	0.450:
	0.449:
	0.448:
	0.447:
	0.446:
	0.445:
	0.444:
	0.443:
	0.442:
	0.441:
	0.440:
	0.439:
	0.438:
	0.437:
	0.436:
	0.435:
	0.434:
	0.433:
	0.432:
	0.431:
	0.430:
	0.429:
	0.428:
	0.427:
	0.426:
	0.425:
	0.424:
	0.423:
	0.422:
	0.421:
	0.420:
	0.419:
	0.418:
	0.417:
	0.416:
	0.415:
	0.414:
	0.413:
	0.412:
	0.411:
	0.410:
	0.409:
	0.408:
	0.407:
	0.406:
	0.405:
	0.404:
	0.403:
	0.402:
	0.401:
	0.400:
	0.399:
	0.398:
	0.397:
	0.396:
	0.395:
	0.394:
	0.393:
	0.392:
	0.391:
	0.390:
	0.389:
	0.388:
	0.387:
	0.386:
	0.385:
	0.384:
	0.383:
	0.382:
	0.381:
	0.380:
	0.379:
	0.378:
	0.377:
	0.376:
	0.375:
	0.374:
	0.373:
	0.372:
	0.371:
	0.370:
	0.369:
	0.368:
	0.367:
	0.366:
	0.365:
	0.364:
	0.363:
	0.362:
	0.361:
	0.360:
	0.359:
	0.358:
	0.357:
	0.356:
	0.355:
	0.354:
	0.353:
	0.352:
	0.351:
	0.350:
	0.349:
	0.348:
	0.347:
	0.346:
	0.345:
	0.344:
	0.343:
	0.342:
	0.341:
	0.340:
	0.339:
	0.338:
	0.337:
	0.336:
	0.335:
	0.334:
	0.333:
	0.332:
	0.331:
	0.330:
	0.329:
	0.328:
	0.327:
	0.326:
	0.325:
	0.324:
	0.323:
	0.322:
	0.321:
	0.320:
	0.319:
	0.318:
	0.317:
	0.316:
	0.315:
	0.314:
	0.313:
	0.312:
	0.311:
	0.310:
	0.309:
	0.308:
	0.307:
	0.306:
	0.305:
	0.304:
	0.303:
	0.302:
	0.301:
	0.300:
	0.299:
	0.298:
	0.297:
	0.296:
	0.295:
	0.294:
	0.293:
	0.292:
	0.291:
	0.290:
	0.289:
	0.288:
	0.287:
	0.286:
	0.285:
	0.284:
	0.283:
	0.282:
	0.281:
	0.280:
	0.279:
	0.278:
	0.277:
	0.276:
	0.275:
	0.274:
	0.273:
	0.272:
	0.271:
	0.270:
	0.269:
	0.268:
	0.267:
	0.266:
	0.265:
	0.264:
	0.263:
	0.262:
	0.261:
	0.260:
	0.259:
	0.258:
	0.257:
	0.256:
	0.255:
	0.254:
	0.253:
	0.252:
	0.251:
	0.250:
	0.249:
	0.248:
	0.247:
	0.246:
	0.245:
	0.244:
	0.243:
	0.242:
	0.241:
	0.240:
	0.239:
	0.238:
	0.237:
	0.236:
	0.235:
	0.234:
	0.233:
	0.232:
	0.231:
	0.230:
	0.229:
	0.228:
	0.227:
	0.226:
	0.225:
	0.224:
	0.223:
	0.222:
	0.221:
	0.220:
	0.219:
	0.218:
	0.217:
	0.216:
	0.215:
	0.214:
	0.213:
	0.212:
	0.211:
	0.210:
	0.209:
	0.208:
	0.207:
	0.206:
	0.205:
	0.204:
	0.203:
	0.202:
	0.201:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

