
re-linq
A General Purpose LINQ Foundation

Fabian Schmied, rubicon informationstechnologie gmbh, 2009-09-22

Introduction
With .NET 3.5, Microsoft introduced a new technology called Language Integrated Query, short LINQ.

It is both a feature of the .NET framework and of the major .NET programming languages C# and

Visual Basic .NET. It allows programmers to write expressions in a language-integrated query

expression syntax, which get translated into an abstract syntax tree (AST) representation available

for analysis at runtime. A provider model allows for external components (called LINQ Providers) to

get involved into that analysis process

The .NET framework version 3.5 contains a simple object/relational (O/R) mapper called LINQ to SQL

(implemented in the namespace System.Data.Linq), which acts as a LINQ provider. It includes the

facilities of transforming the AST representations generated for user-defined queries into Microsoft

SQL Server-specific queries. LINQ to SQL has a very tight coupling between the O/R mapper and the

AST transformation, with all possible extension points being internal to the .NET framework, so

although it is a very complete LINQ provider, it cannot be easily reused by third parties.

In addition to LINQ to SQL, Microsoft also offers LINQ providers for the ADO.NET Entity Framework

(LINQ to Entities), for in-memory XML trees (LINQ to XML), and for in-memory collections (LINQ to

Objects).

Apart from these, there is need for additional LINQ providers:

 to enable the language-integrated query features for other O/R mappers, query languages,

and (non-relational) data sources (such as Lucene, LDAP, …);

 to enable mixed queries (such as a query to be executed partially by Microsoft SQL Server

and partially by Lucene, or partially by SQL Server and partially in-memory);

 or even to enable query generation for relational databases other than Microsoft SQL

Server.

While the LINQ provider model is powerful enough to make all of this possible, creating a new LINQ

provider is not a simple task. To understand the difficulties, one first needs to comprehend how

exactly a LINQ query is processed by a LINQ provider.

Query Execution with LINQ Providers
When a C# programmer writes a LINQ query expression, there is a lot of work going on before the

query can be executed, as illustrated in Figure 1. First, the compiler will transform the language-

integrated query expression into a chain of method calls. For example, a "select" clause will (usually,

but not always) be translated into a call to the Queryable.Select extension method, a "where" clause

will be translated into a call to Queryable.Where, an additional "from" clause will become a call to

Queryable.SelectMany, and so on. Note that the compiler needs to insert parameters ("trans", so-

called transparent identifiers); these identify objects flowing from one method call to the next.

Figure 1. Steps in processing a LINQ query expression

In Figure 1, that call chain is written using extension methods for clarity, but the actual calls are made

on static methods defined by the Queryable class. For an extension method call chain of

"a.SelectMany (b, c).Where (d).Select (e)", the static call chain actually executed is "Queryable.Select

(Queryable.Where (Queryable.SelectMany (a, b, c), d), e)". Also, these methods have a specific

feature: their arguments defining select projections, where conditions, and similar parts of the query

are not directly lambda expressions. Instead, these methods take instances of Expression<Func<T>>,

an abstract representation of lambda expressions. The compiler recognizes this and uses the

Expression.Lambda factory method to construct partial syntax trees made of Expression<Func<T>>

instances equivalent to the lambda expressions passed to the methods.

C# LINQ query expression
from c in QueryFactory.CreateLinqQuery<Customer> ()
from o in c.Orders
where o.OrderNumber == 1
select new { c, o }

Method call chain
QueryFactory.CreateLinqQuery<Customer> ()

.SelectMany (c => c.Orders, (c, o) => new {c, o})

.Where (trans => trans.o.OrderNumber == 1)

.Select (trans => new {trans.c, trans.o})

Static call chain/Expressions
Queryable.Select (Queryable.Where (Queryable.SelectMany
(QueryFactory.CreateLinqQuery<Customer> (),
Expression.Lambda (Expression.MakeMemberAccess (...)),
Expression.Lambda (Expression.New (...))),
Expression.Lambda (Expression.MakeBinary (...))),
Expression.Lambda (Expression.New (...)))

Expression Abstract Syntax Tree
MethodCallExpression ("Select",

MethodCallExpression ("Where",
MethodCallExpression ("SelectMany",

CostantExpression (IQueryable<Customer>),
UnaryExpression (...), UnaryExpression (...)),

UnaryExpression (...)),
UnaryExpression (...))

Provider-Dependent Processing
SELECT [c].*, [o].*
FROM [Customer] [c], [Order] [o]
WHERE [o].[OrderNumber] = 1

Result: {{Customer1, Order1}}

Compiler

Compiler

Queryable
class

LINQ
Provider

When the methods of the Queryable class are executed at program run-time, they do not

immediately execute the query; instead, they use the expression syntax trees passed to them to

construct an abstract syntax tree for the full query. In Figure 1, this can be seen to be a nested series

of MethodCallExpressions. The LambdaExpression nodes from the previous step are wrapped into

UnaryExpressions objects.

When the query result is enumerated, the abstract syntax tree for the full query is processed by the

LINQ provider, which analyzes it, usually creates an internal model of the query, executes it, and

returns the query results.

This last step is the difficult part in writing a custom LINQ provider; it will be discussed in the next

section.

The Difficulty in Writing LINQ Providers
The main problem in writing LINQ providers is to analyze and understand the structure of the AST

generated by the compiler for a given LINQ query.

For example, when a programmer writes "from c in QueryFactory.CreateLinqQuery<Customer> ()", as

in Figure 1, a SQL-generating LINQ provider would have to generate SQL similar to "FROM

[CustomerTable] [c]". For "from o in c.Orders", it would generate a SQL JOIN, and for "where

o.OrderNumber == 1", it would generate a SQL WHERE clause. To perform these generations, the

provider first needs to understand that the first ConstantExpression in the call chain corresponds to

the main from clause, a call to SelectMany corresponds to an additional from clause, a call to Where

corresponds to a where clause, and a call to Select corresponds to the select part of the query

statement. We call this the structural parsing part of understanding a LINQ abstract syntax tree. The

difficulties in this step lie in the facts that:

 Calls to the same methods can mean different things; for example, SelectMany can stem

from an additional from clause or also a sub-query, Select can stem from a select clause or

also a let clause;

 expression trees get very complex very quickly, and parsers need to prepare for the fact that

any query method can follow any other query method, allowing for an exorbitant number of

combinations that the parser needs to recognize and handle; and

 expression trees can contain calls to any user-defined methods, so parsers need to be

prepared for the possibility of encountering methods they do not recognize.

After the structure has been determined, the provider needs to understand the lambda expressions

(in their Expression<Func<T>> form) representing the conditions of where clauses, the projections of

select clauses, and so on. We call this the detail parsing part of understanding a LINQ AST.

This is difficult because those lambda expressions can reference data coming from clauses prior to

the current clause in the call chain. Such data is passed to the lambda expressions via parameters

(often transparent identifiers, as explained in the previous section).

For example, in Figure 1, the SelectMany method call combines the data coming from the main from

clause in the query with the data being added by the additional from clause. The method call chain

illustrating this is reprinted in Figure 2.

Figure 2. The method call chain corresponding to the LINQ query expression

This combination of data is done by a lambda expression that returns an instance of an anonymous

type, storing in it both the Customer c it gets from the main from clause and the Order o added by

the additional from clause. That instance then goes to the Where method call as a transparent

identifier. The Where method's condition lambda expression accesses the Order by accessing the

transparent identifier's o member. Note that the C# compiler preserves the naming of the objects

involved, i.e. both the member of the transparent identifier and the lambda parameter of the

SelectMany clause are called o because the variable was originally called o in the query expression. In

general, however, it is not guaranteed that parameters and transparent identifier members have

corresponding names, so a provider cannot rely on that.

Parsing the where conditions, select projections, and similar lambda expressions contained in the

query's AST is therefore hard because in order to determine what objects are actually used in such an

expression, the provider needs to follow the lambda parameters, including transparent identifiers,

through the method call chain, untangling the member access expressions, seeking to build up a

"path" to the original query sources. Only with this path it can decide how to execute a query

corresponding to the expressions written by the user.

All in all, writing a custom LINQ provider with a non-trivial feature set is a non-trivial task. Citing Frans

Bouma, author of LLBLGen Pro (an O/R mapper, which – according to its author – has one of the very

few full LINQ Providers):

Writing a Linq provider is a lot of work which requires a lot of code. If you're dealing with

a Linq provider which is just, say, 32KB in size, you can be sure it will not support the

majority of situations you will run into. However, the O/R mapper developer likely simply

said 'We have Linq support', and it's even likely the provider can handle the more basic

examples of a single entity type fetch with a Where, an Order By or even a Group By. But

in real life, once you as a developer have tasted the joy of writing compact, powerful

queries using Linq, you will write queries with much more complexity than these Linq 101

examples. Will the Linq 'provider' you chose be able to handle these as well? In other

words: is it a full Linq provider or, as some would say, a 'toy' ?
(http://weblogs.asp.net/fbouma/archive/2008/06/17/linq-to-llblgen-pro-feature-highlights-part-1.aspx)

Calling for a General Purpose LINQ Foundation
Most existing LINQ providers follow the (bad) example of LINQ to SQL in that they:

 Are bound to a very specific O/R mapper, rendering re-use with other mappers or for non-

database scenarios impossible; and/or

 are bound to a specific query system such as SQL Server, Oracle, or others, rendering reuse

with other systems (which needn't even be relational database systems) impossible.

This leads to the fact that the complex logic of parsing and understanding the LINQ ASTs is duplicated

in all of these providers, often only implemented in a half-hearted way (e.g. supporting only the most

basic query structures, not allowing usage of transparent identifiers, or relying on naming

conventions employed by the C# compilers).

Wouldn't it be much more intelligent, then, to implement that parsing logic only once in a generic

way, and have all other LINQ providers reuse it?

re-linq - A General Purpose LINQ Foundation
The idea of re-linq is to implement the difficult parts of parsing and understanding the abstract

syntax tree generated by LINQ query expressions once and to be reused for all kinds of purposes. Its

goal is to provide a semantically rich, interlinked model of the LINQ query, so that other, specific

LINQ providers can take that model to build and execute their query. Figure 3 illustrates that schema.

Figure 3. A LINQ Query Being Transformed with re-linq

LINQ Query

? ...

Data source

Compiler

re-linq

LINQ to XXX

XXX Query

What re-linq Is... and Is Not
It is important to note that while re-linq takes over much of the complexity a LINQ provider needs to

deal with, it is neither a full LINQ provider nor an O/R mapper. A full LINQ provider needs to actually

execute the query written by the user and return a result set of objects; an O/R mapper needs to

define the mappings between entity classes in the application and tables in the database.

re-linq implements neither query execution nor O/R mapping because there is no need to do so.

There are plenty of O/R mappers in the .NET ecosystem, and they usually come with their own

querying mechanisms. re-linq does not want to compete with any of them, and it also does not want

to be constrained to O/R mapping (or even to relational databases).

Instead, re-linq's goal is to solely act as a base for other LINQ providers, taking away the pain of

analyzing the abstract syntax tree produced by LINQ. It provides a well-defined interface towards

arbitrary O/R mappers and other data sources, and well-defined points to hook into for the actual

query generation and execution.

Multi-Stage Translation of LINQ Queries
re-linq's transformation mechanism works in multiple stages:

First, the structural parsing stage analyzes the LINQ AST, identifying select, from, where, order by,

group by, as well as custom clauses and subqueries. This stage constructs a Query Model, which holds

instances of SelectClause, MainFromClause, AdditionalFromClause, LetClause, OrderByClause,

GroupByClause, and other custom Clause objects. Figure 4 illustrates how the LINQ query from Figure

1 can be represented by such a QueryModel.

Next, the detail parsing stage analyzes the expressions used by the different clauses, for instance, the

projection expression from a select clause, or the condition expression from a where clause. It builds

a Data Model for each of these expressions, linking the values being used with their originating

clauses, resolving property paths (thus removing transparent identifiers), and partially evaluating

those expressions that do not involve external data. For example, the o.OrderNumber expression

Figure 4. The QueryModel for the query from Error! Reference source not found.

: QueryModel

: MainFromClause

FromIdentifier = "Customer c"

QuerySource =

 DomainObjectQueryable<Customer>

: AdditionalFromClause

FromIdentifier = "Order o"

FromExpression = "c.Orders"

: WhereClause

BoolExpression =

 "o.OrderNumber == 1"

: SelectClause

ProjectionExpression =

 "new { c, o }"

from the where clause from Figure 1 ("where o.OrderNumber == 1") would be represented by a link

to the from clause defining o ("from o in c.OrderItems"). This interlinking is illustrated in Figure 5.

The Query Model and Data Model are then passed to a query executor, which must be supplied by

the specific LINQ provider. The query executor will begin the custom query generation stage, where it

generates a custom query for its data source and executes it, returning the query results to re-linq,

which in turn hands them to the user.

Due to the simple nature of the Query Model and the high interlinking provided by the Data Model,

translation of the clauses and expressions into custom queries is usually very straight-forward. re-linq

implements the visitor pattern for both the Query Model and the Data Model in order to allow for

double-dispatch processing of the respective query elements.

The current re-linq codebase contains an exemplary implementation of custom query generation for

Microsoft SQL Server queries (with other SQL dialects to be supplied on demand) that can be reused

by specific LINQ providers based on re-linq. If this exemplary SQL generation engine is to be reused, it

needs to interface with an underlying O/R mapper in order to map the entity types to tables, the

fields to columns, and the property paths to joins. Using this with a custom O/R mapper is achieved

via a simple implementation of the IDatabaseInfo interface shown in Figure 6.

: SelectClause

: QueryModel

: MainFromClause

FromIdentifier = "Customer c"

QuerySource =

 DomainObjectQueryable<Customer>

: AdditionalFromClause

FromIdentifier = "Order o"

FromExpression = "c.Orders"

: WhereClause

BoolExpression =

 "o.OrderNumber == 1"

ProjectionExpression =

 "new { c, o }"

Figure 6. The IDatabaseInfo interface

public interface IDatabaseInfo

{

 string GetTableName (FromClauseBase fromClause);

 string GetRelatedTableName (MemberInfo relationMember);

 string GetColumnName (MemberInfo member);

 Tuple<string, string> GetJoinColumnNames (MemberInfo relationMember);

 object ProcessWhereParameter (object parameter);

 MemberInfo GetPrimaryKeyMember (Type entityType);

 bool IsTableType (Type type);

}

Figure 5. The QueryModel with interlinked clauses

All in all, the process of generating and executing custom queries based on re-linq is much easier

than working directly on the LINQ AST, as re-linq can completely supply the first two stages

(structural parsing and detail parsing), and assist in the third stage (custom query generation). For

LINQ providers generating SQL, adoption of re-linq only requires to supply an implementation of

IDatabaseInfo in order for re-linq to be able to interact with the O/R mapper.

Current Status and Outlook
The re-linq idea is not only a concept, it is already implemented as part of the re-motion project

(https://svn.re-motion.org/svn/Remotion/trunk/Remotion/Data/Linq/). It is a project of currently

4.000 lines of code (plus unit tests), which has been developed completely in a test-driven way. It is

ready for use right now, as we have demonstrated by implementing the LINQ provider of re-motion's

own O/R mapper (re-store) on top of re-linq.

