-
autoconf 2.56 or later
-
automake 1.7 or later
-
libtool 1.4 or later
-
NASM or YASM (if building x86 or x86-64 SIMD extensions)
- If using NASM, 0.98, or 2.01 or later is required for an x86 build (0.99 and 2.00 do not work properly with libjpeg-turbo's x86 SIMD code.)
- If using NASM, 2.00 or later is required for an x86-64 build.
- If using NASM, 2.07 or later (except 2.11.08) is required for an x86-64 Mac build (2.11.08 does not work properly with libjpeg-turbo's x86-64 SIMD code when building macho64 objects.) NASM or YASM can be obtained from MacPorts or Homebrew.
The binary RPMs released by the NASM project do not work on older Linux systems, such as Red Hat Enterprise Linux 5. On such systems, you can easily build and install NASM from a source RPM by downloading one of the SRPMs from
https://www.nasm.us/pub/nasm/releasebuilds
and executing the following as root:
ARCH=`uname -m` rpmbuild --rebuild nasm-{version}.src.rpm rpm -Uvh /usr/src/redhat/RPMS/$ARCH/nasm-{version}.$ARCH.rpm
NOTE: the NASM build will fail if texinfo is not installed.
-
GCC v4.1 (or later) or Clang recommended for best performance
-
If building the TurboJPEG Java wrapper, JDK or OpenJDK 1.5 or later is required. Most modern Linux distributions, as well as Solaris 10 and later, include JDK or OpenJDK. On OS X 10.5 and 10.6, it will be necessary to install the Java Developer Package, which can be downloaded from https://developer.apple.com/downloads (Apple ID required.) For other systems, you can obtain the Oracle Java Development Kit from https://www.java.com.
Binary objects, libraries, and executables are generated in the directory from
which configure
is executed (the "binary directory"), and this directory need
not necessarily be the same as the libjpeg-turbo source directory. You can
create multiple independent binary directories, in which different versions of
libjpeg-turbo can be built from the same source tree using different compilers
or settings. In the sections below, {build_directory} refers to the binary
directory, whereas {source_directory} refers to the libjpeg-turbo source
directory. For in-tree builds, these directories are the same.
The following procedure will build libjpeg-turbo on Unix and Unix-like systems. (On Solaris, this generates a 32-bit build. See "Build Recipes" below for 64-bit build instructions.)
cd {source_directory}
autoreconf -fiv
cd {build_directory}
sh {source_directory}/configure [additional configure flags]
make
NOTE: Running autoreconf in the source directory is not necessary if building libjpeg-turbo from one of the official release tarballs.
This will generate the following files under .libs/:
libjpeg.a
Static link library for the libjpeg API
libjpeg.so.{version} (Linux, Unix)
libjpeg.{version}.dylib (Mac)
cygjpeg-{version}.dll (Cygwin)
Shared library for the libjpeg API
By default, {version} is 62.2.0, 7.2.0, or 8.1.2, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled. If using Cygwin, {version} is 62, 7, or 8.
libjpeg.so (Linux, Unix)
libjpeg.dylib (Mac)
Development symlink for the libjpeg API
libjpeg.dll.a (Cygwin)
Import library for the libjpeg API
libturbojpeg.a
Static link library for the TurboJPEG API
libturbojpeg.so.0.1.0 (Linux, Unix)
libturbojpeg.0.1.0.dylib (Mac)
cygturbojpeg-0.dll (Cygwin)
Shared library for the TurboJPEG API
libturbojpeg.so (Linux, Unix)
libturbojpeg.dylib (Mac)
Development symlink for the TurboJPEG API
libturbojpeg.dll.a (Cygwin)
Import library for the TurboJPEG API
Add --with-jpeg7
to the configure
command line to build a version of
libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add --with-jpeg8
to the configure
command to build a version of libjpeg-turbo that is
API/ABI-compatible with libjpeg v8. See README.md for more
information about libjpeg v7 and v8 emulation.
When using libjpeg v6b or v7 API/ABI emulation, add --without-mem-srcdst
to
the configure
command line to build a version of libjpeg-turbo that lacks the
jpeg_mem_src()
and jpeg_mem_dest()
functions. These functions were not
part of the original libjpeg v6b and v7 APIs, so removing them ensures strict
conformance with those APIs. See README.md for more information.
Since the patent on arithmetic coding has expired, this functionality has been
included in this release of libjpeg-turbo. libjpeg-turbo's implementation is
based on the implementation in libjpeg v8, but it works when emulating libjpeg
v7 or v6b as well. The default is to enable both arithmetic encoding and
decoding, but those who have philosophical objections to arithmetic coding can
add --without-arith-enc
or --without-arith-dec
to the configure
command
line to disable encoding or decoding (respectively.)
Add --with-java
to the configure
command line to incorporate an optional
Java Native Interface (JNI) wrapper into the TurboJPEG shared library and build
the Java front-end classes to support it. This allows the TurboJPEG shared
library to be used directly from Java applications. See
java/README for more details.
You can set the JAVAC
, JAR
, and JAVA
configure variables to specify
alternate commands for javac, jar, and java (respectively.) You can also
set the JAVACFLAGS
configure variable to specify arguments that should be
passed to the Java compiler when building the TurboJPEG classes, and
JNI_CFLAGS
to specify arguments that should be passed to the C compiler when
building the JNI wrapper. Run configure --help
for more details.
Add
--host i686-pc-linux-gnu CFLAGS='-O3 -m32' LDFLAGS=-m32
to the configure
command line.
Add
--host x86_64-apple-darwin NASM=/opt/local/bin/nasm
to the configure
command line. NASM 2.07 or later from MacPorts or Homebrew
must be installed. If using Homebrew, then replace /opt/local
with
/usr/local
.
Add
--host i686-apple-darwin CFLAGS='-O3 -m32' LDFLAGS=-m32
to the configure
command line.
Add
--host x86_64-apple-darwin NASM=/opt/local/bin/nasm \
CFLAGS='-mmacosx-version-min=10.5 -O3' \
LDFLAGS='-mmacosx-version-min=10.5'
to the configure
command line. NASM 2.07 or later from MacPorts or Homebrew
must be installed. If using Homebrew, then replace /opt/local
with
/usr/local
.
Add
--host i686-apple-darwin \
CFLAGS='-mmacosx-version-min=10.5 -O3 -m32' \
LDFLAGS='-mmacosx-version-min=10.5 -m32'
to the configure
command line.
Add
--host x86_64-pc-solaris CFLAGS='-O3 -m64' LDFLAGS=-m64
to the configure
command line.
Add
--host i386-unknown-freebsd CFLAGS='-O3 -m32' LDFLAGS=-m32
to the configure
command line. NASM 2.07 or later from FreeBSD ports must be
installed.
Add
CC=cc
to the configure
command line. libjpeg-turbo will automatically be built
with the maximum optimization level (-xO5) unless you override CFLAGS
.
To build a 64-bit version of libjpeg-turbo using Oracle Solaris Studio, add
--host x86_64-pc-solaris CC=cc CFLAGS='-xO5 -m64' LDFLAGS=-m64
to the configure
command line.
Use CMake (see recipes below)
iOS platforms, such as the iPhone and iPad, use ARM processors, and all currently supported models include NEON instructions. Thus, they can take advantage of libjpeg-turbo's SIMD extensions to significantly accelerate JPEG compression/decompression. This section describes how to build libjpeg-turbo for these platforms.
- For configurations that require [gas-preprocessor.pl]
(https://raw.githubusercontent.com/libjpeg-turbo/gas-preprocessor/master/gas-preprocessor.pl),
it should be installed in your
PATH
.
gas-preprocessor.pl required
The following scripts demonstrate how to build libjpeg-turbo to run on the iPhone 3GS-4S/iPad 1st-3rd Generation and newer:
IOS_PLATFORMDIR=/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export host_alias=arm-apple-darwin10
export CC=${IOS_PLATFORMDIR}/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2
export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -march=armv7 -mcpu=cortex-a8 -mtune=cortex-a8 -mfpu=neon -miphoneos-version-min=3.0"
cd {build_directory}
sh {source_directory}/configure [additional configure flags]
make
Same as above, but replace the first line with:
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export host_alias=arm-apple-darwin10
export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang
export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -arch armv7 -miphoneos-version-min=3.0"
export CCASFLAGS="$CFLAGS -no-integrated-as"
cd {build_directory}
sh {source_directory}/configure [additional configure flags]
make
gas-preprocessor.pl required
The following scripts demonstrate how to build libjpeg-turbo to run on the iPhone 5/iPad 4th Generation and newer:
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export host_alias=arm-apple-darwin10
export CC=${IOS_PLATFORMDIR}/Developer/usr/bin/arm-apple-darwin10-llvm-gcc-4.2
export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -march=armv7s -mcpu=swift -mtune=swift -mfpu=neon -miphoneos-version-min=6.0"
cd {build_directory}
sh {source_directory}/configure [additional configure flags]
make
Same as the ARMv7 build procedure for Xcode 5 and later, except replace the compiler flags as follows:
export CFLAGS="-mfloat-abi=softfp -isysroot ${IOS_SYSROOT[0]} -O3 -arch armv7s -miphoneos-version-min=6.0"
gas-preprocessor.pl required if using Xcode < 6
The following script demonstrates how to build libjpeg-turbo to run on the iPhone 5S/iPad Mini 2/iPad Air and newer.
IOS_PLATFORMDIR=/Applications/Xcode.app/Contents/Developer/Platforms/iPhoneOS.platform
IOS_SYSROOT=($IOS_PLATFORMDIR/Developer/SDKs/iPhoneOS*.sdk)
export host_alias=aarch64-apple-darwin
export CC=/Applications/Xcode.app/Contents/Developer/Toolchains/XcodeDefault.xctoolchain/usr/bin/clang
export CFLAGS="-isysroot ${IOS_SYSROOT[0]} -O3 -arch arm64 -miphoneos-version-min=7.0 -funwind-tables"
cd {build_directory}
sh {source_directory}/configure [additional configure flags]
make
Once built, lipo can be used to combine the ARMv7, v7s, and/or v8 variants into a universal library.
Building libjpeg-turbo for Android platforms requires the Android NDK and autotools.
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle}
BUILD_PLATFORM={the platform name for the NDK package you installed--
for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"}
TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a
toolchain directory under ${NDK_PATH}/toolchains/.}
ANDROID_VERSION={The minimum version of Android to support-- for example,
"16", "19", etc.}
# It should not be necessary to modify the rest
HOST=arm-linux-androideabi
SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-arm
ANDROID_CFLAGS="-march=armv7-a -mfloat-abi=softfp -fprefetch-loop-arrays \
--sysroot=${SYSROOT}"
TOOLCHAIN=${NDK_PATH}/toolchains/${HOST}-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM}
export CPP=${TOOLCHAIN}/bin/${HOST}-cpp
export AR=${TOOLCHAIN}/bin/${HOST}-ar
export NM=${TOOLCHAIN}/bin/${HOST}-nm
export CC=${TOOLCHAIN}/bin/${HOST}-gcc
export LD=${TOOLCHAIN}/bin/${HOST}-ld
export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib
export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump
export STRIP=${TOOLCHAIN}/bin/${HOST}-strip
cd {build_directory}
sh {source_directory}/configure --host=${HOST} \
CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \
CPPFLAGS="${ANDROID_CFLAGS}" \
LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"}
make
The following is a general recipe script that can be modified for your specific needs.
# Set these variables to suit your needs
NDK_PATH={full path to the "ndk" directory-- for example, /opt/android/sdk/ndk-bundle}
BUILD_PLATFORM={the platform name for the NDK package you installed--
for example, "windows-x86" or "linux-x86_64" or "darwin-x86_64"}
TOOLCHAIN_VERSION={"4.8", "4.9", "clang3.5", etc. This corresponds to a
toolchain directory under ${NDK_PATH}/toolchains/.}
ANDROID_VERSION={The minimum version of Android to support. "21" or later
is required for a 64-bit build.}
# It should not be necessary to modify the rest
HOST=aarch64-linux-android
SYSROOT=${NDK_PATH}/platforms/android-${ANDROID_VERSION}/arch-arm64
ANDROID_CFLAGS="--sysroot=${SYSROOT}"
TOOLCHAIN=${NDK_PATH}/toolchains/${HOST}-${TOOLCHAIN_VERSION}/prebuilt/${BUILD_PLATFORM}
export CPP=${TOOLCHAIN}/bin/${HOST}-cpp
export AR=${TOOLCHAIN}/bin/${HOST}-ar
export NM=${TOOLCHAIN}/bin/${HOST}-nm
export CC=${TOOLCHAIN}/bin/${HOST}-gcc
export LD=${TOOLCHAIN}/bin/${HOST}-ld
export RANLIB=${TOOLCHAIN}/bin/${HOST}-ranlib
export OBJDUMP=${TOOLCHAIN}/bin/${HOST}-objdump
export STRIP=${TOOLCHAIN}/bin/${HOST}-strip
cd {build_directory}
sh {source_directory}/configure --host=${HOST} \
CFLAGS="${ANDROID_CFLAGS} -O3 -fPIE" \
CPPFLAGS="${ANDROID_CFLAGS}" \
LDFLAGS="${ANDROID_CFLAGS} -pie" --with-simd ${1+"$@"}
make
If building for Android 4.0.x (API level < 16) or earlier, remove -fPIE
from
CFLAGS
and -pie
from LDFLAGS
.
To install libjpeg-turbo after it is built, replace make
in the build
instructions with make install
.
The --prefix
argument to configure (or the prefix
configure variable) can
be used to specify an installation directory of your choosing. If you don't
specify an installation directory, then the default is to install libjpeg-turbo
under /opt/libjpeg-turbo and to place the libraries in
/opt/libjpeg-turbo/lib32 (32-bit) or /opt/libjpeg-turbo/lib64 (64-bit.)
The bindir
, datadir
, docdir
, includedir
, libdir
, and mandir
configure variables allow a finer degree of control over where specific files in
the libjpeg-turbo distribution should be installed. These variables can either
be specified at configure time or passed as arguments to make install
.
-
CMake v2.8.11 or later
-
- If using NASM, 0.98 or later is required for an x86 build.
- If using NASM, 2.05 or later is required for an x86-64 build.
- nasm.exe/yasm.exe should be in your
PATH
.
-
Microsoft Visual C++ 2005 or later
If you don't already have Visual C++, then the easiest way to get it is by installing the Windows SDK. The Windows SDK includes both 32-bit and 64-bit Visual C++ compilers and everything necessary to build libjpeg-turbo.
- You can also use Microsoft Visual Studio Express/Community Edition, which is a free download. (NOTE: versions prior to 2012 can only be used to build 32-bit code.)
- If you intend to build libjpeg-turbo from the command line, then add the
appropriate compiler and SDK directories to the
INCLUDE
,LIB
, andPATH
environment variables. This is generally accomplished by executingvcvars32.bat
orvcvars64.bat
andSetEnv.cmd
.vcvars32.bat
andvcvars64.bat
are part of Visual C++ and are located in the same directory as the compiler.SetEnv.cmd
is part of the Windows SDK. You can pass optional arguments toSetEnv.cmd
to specify a 32-bit or 64-bit build environment.
... OR ...
-
MinGW
MSYS2 or tdm-gcc recommended if building on a Windows machine. Both distributions install a Start Menu link that can be used to launch a command prompt with the appropriate compiler paths automatically set.
-
If building the TurboJPEG Java wrapper, JDK 1.5 or later is required. This can be downloaded from https://www.java.com.
Binary objects, libraries, and executables are generated in the directory from which CMake is executed (the "binary directory"), and this directory need not necessarily be the same as the libjpeg-turbo source directory. You can create multiple independent binary directories, in which different versions of libjpeg-turbo can be built from the same source tree using different compilers or settings. In the sections below, {build_directory} refers to the binary directory, whereas {source_directory} refers to the libjpeg-turbo source directory. For in-tree builds, these directories are the same.
NOTE: The build procedures below assume that CMake is invoked from the command line, but all of these procedures can be adapted to the CMake GUI as well.
cd {build_directory}
cmake -G"NMake Makefiles" -DCMAKE_BUILD_TYPE=Release [additional CMake flags] {source_directory}
nmake
This will build either a 32-bit or a 64-bit version of libjpeg-turbo, depending
on which version of cl.exe is in the PATH
.
The following files will be generated under {build_directory}:
jpeg-static.lib
Static link library for the libjpeg API
sharedlib/jpeg{version}.dll
DLL for the libjpeg API
sharedlib/jpeg.lib
Import library for the libjpeg API
turbojpeg-static.lib
Static link library for the TurboJPEG API
turbojpeg.dll
DLL for the TurboJPEG API
turbojpeg.lib
Import library for the TurboJPEG API
{version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
Choose the appropriate CMake generator option for your version of Visual Studio
(run cmake
with no arguments for a list of available generators.) For
instance:
cd {build_directory}
cmake -G"Visual Studio 10" [additional CMake flags] {source_directory}
NOTE: Add "Win64" to the generator name (for example, "Visual Studio 10 Win64") to build a 64-bit version of libjpeg-turbo. A separate build directory must be used for 32-bit and 64-bit builds.
You can then open ALL_BUILD.vcproj in Visual Studio and build one of the configurations in that project ("Debug", "Release", etc.) to generate a full build of libjpeg-turbo.
This will generate the following files under {build_directory}:
{configuration}/jpeg-static.lib
Static link library for the libjpeg API
sharedlib/{configuration}/jpeg{version}.dll
DLL for the libjpeg API
sharedlib/{configuration}/jpeg.lib
Import library for the libjpeg API
{configuration}/turbojpeg-static.lib
Static link library for the TurboJPEG API
{configuration}/turbojpeg.dll
DLL for the TurboJPEG API
{configuration}/turbojpeg.lib
Import library for the TurboJPEG API
{configuration} is Debug, Release, RelWithDebInfo, or MinSizeRel, depending on the configuration you built in the IDE, and {version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
NOTE: This assumes that you are building on a Windows machine using the MSYS environment. If you are cross-compiling on a Un*x platform (including Mac and Cygwin), then see "Build Recipes" below.
cd {build_directory}
cmake -G"MSYS Makefiles" [additional CMake flags] {source_directory}
make
This will generate the following files under {build_directory}:
libjpeg.a
Static link library for the libjpeg API
sharedlib/libjpeg-{version}.dll
DLL for the libjpeg API
sharedlib/libjpeg.dll.a
Import library for the libjpeg API
libturbojpeg.a
Static link library for the TurboJPEG API
libturbojpeg.dll
DLL for the TurboJPEG API
libturbojpeg.dll.a
Import library for the TurboJPEG API
{version} is 62, 7, or 8, depending on whether libjpeg v6b (default), v7, or v8 emulation is enabled.
Add -DCMAKE_BUILD_TYPE=Debug
to the CMake command line. Or, if building
with NMake, remove -DCMAKE_BUILD_TYPE=Release
(Debug builds are the default
with NMake.)
Add -DWITH_JPEG7=1
to the CMake command line to build a version of
libjpeg-turbo that is API/ABI-compatible with libjpeg v7. Add -DWITH_JPEG8=1
to the CMake command line to build a version of libjpeg-turbo that is
API/ABI-compatible with libjpeg v8. See README.md for more
information about libjpeg v7 and v8 emulation.
When using libjpeg v6b or v7 API/ABI emulation, add -DWITH_MEM_SRCDST=0
to
the CMake command line to build a version of libjpeg-turbo that lacks the
jpeg_mem_src()
and jpeg_mem_dest()
functions. These functions were not
part of the original libjpeg v6b and v7 APIs, so removing them ensures strict
conformance with those APIs. See README.md for more information.
Since the patent on arithmetic coding has expired, this functionality has been
included in this release of libjpeg-turbo. libjpeg-turbo's implementation is
based on the implementation in libjpeg v8, but it works when emulating libjpeg
v7 or v6b as well. The default is to enable both arithmetic encoding and
decoding, but those who have philosophical objections to arithmetic coding can
add -DWITH_ARITH_ENC=0
or -DWITH_ARITH_DEC=0
to the CMake command line to
disable encoding or decoding (respectively.)
Add -DWITH_JAVA=1
to the CMake command line to incorporate an optional Java
Native Interface (JNI) wrapper into the TurboJPEG shared library and build the
Java front-end classes to support it. This allows the TurboJPEG shared library
to be used directly from Java applications. See java/README for
more details.
If Java is not in your PATH
, or if you wish to use an alternate JDK to
build/test libjpeg-turbo, then (prior to running CMake) set the JAVA_HOME
environment variable to the location of the JDK that you wish to use. The
Java_JAVAC_EXECUTABLE
, Java_JAVA_EXECUTABLE
, and Java_JAR_EXECUTABLE
CMake variables can also be used to specify alternate commands or locations for
javac, jar, and java (respectively.) You can also set the JAVACFLAGS
CMake
variable to specify arguments that should be passed to the Java compiler when
building the TurboJPEG classes.
Create a file called toolchain.cmake under {build_directory}, with the following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR X86)
set(CMAKE_C_COMPILER {mingw_binary_path}/i686-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/i686-w64-mingw32-windres)
{mingw_binary_path} is the directory under which the MinGW binaries are located (usually /usr/bin.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
[additional CMake flags] {source_directory}
make
Create a file called toolchain.cmake under {build_directory}, with the following contents:
set(CMAKE_SYSTEM_NAME Windows)
set(CMAKE_SYSTEM_PROCESSOR AMD64)
set(CMAKE_C_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-gcc)
set(CMAKE_RC_COMPILER {mingw_binary_path}/x86_64-w64-mingw32-windres)
{mingw_binary_path} is the directory under which the MinGW binaries are located (usually /usr/bin.) Next, execute the following commands:
cd {build_directory}
cmake -G"Unix Makefiles" -DCMAKE_TOOLCHAIN_FILE=toolchain.cmake \
[additional CMake flags] {source_directory}
make
You can use the build system to install libjpeg-turbo (as opposed to creating
an installer package.) To do this, run make install
or nmake install
(or build the "install" target in the Visual Studio IDE.) Running
make uninstall
or nmake uninstall
(or building the "uninstall" target in
the Visual Studio IDE) will uninstall libjpeg-turbo.
The CMAKE_INSTALL_PREFIX
CMake variable can be modified in order to install
libjpeg-turbo into a directory of your choosing. If you don't specify
CMAKE_INSTALL_PREFIX
, then the default is:
c:\libjpeg-turbo
Visual Studio 32-bit build
c:\libjpeg-turbo64
Visual Studio 64-bit build
c:\libjpeg-turbo-gcc
MinGW 32-bit build
c:\libjpeg-turbo-gcc64
MinGW 64-bit build
The following commands can be used to create various types of distribution packages:
make rpm
Create Red Hat-style binary RPM package. Requires RPM v4 or later.
make srpm
This runs make dist
to create a pristine source tarball, then creates a
Red Hat-style source RPM package from the tarball. Requires RPM v4 or later.
make deb
Create Debian-style binary package. Requires dpkg.
make dmg
Create Mac package/disk image. This requires pkgbuild and productbuild, which are installed by default on OS X 10.7 and later and which can be obtained by installing Xcode 3.2.6 (with the "Unix Development" option) on OS X 10.6. Packages built in this manner can be installed on OS X 10.5 and later, but they must be built on OS X 10.6 or later.
make udmg [BUILDDIR32={32-bit build directory}]
On 64-bit OS X systems, this creates a Mac package/disk image that contains
universal i386/x86-64 binaries. You should first configure a 32-bit
out-of-tree build of libjpeg-turbo, then configure a 64-bit out-of-tree build,
then run make udmg
from the 64-bit build directory. The build system will
look for the 32-bit build under {source_directory}/osxx86 by default, but you
can override this by setting the BUILDDIR32
variable on the make command line
as shown above.
make iosdmg [BUILDDIR32={32-bit build directory}] \
[BUILDDIRARMV7={ARMv7 build directory}] \
[BUILDDIRARMV7S={ARMv7s build directory}] \
[BUILDDIRARMV8={ARMv8 build directory}]
This creates a Mac package/disk image in which the libjpeg-turbo libraries
contain ARM architectures necessary to build iOS applications. If building on
an x86-64 system, the binaries will also contain the i386 architecture, as with
make udmg
above. You should first configure ARMv7, ARMv7s, and/or ARMv8
out-of-tree builds of libjpeg-turbo (see "Building libjpeg-turbo for iOS"
above.) If you are building an x86-64 version of libjpeg-turbo, you should
configure a 32-bit out-of-tree build as well. Next, build libjpeg-turbo as you
would normally, using an out-of-tree build. When it is built, run make iosdmg
from the build directory. The build system will look for the ARMv7
build under {source_directory}/iosarmv7 by default, the ARMv7s build under
{source_directory}/iosarmv7s by default, the ARMv8 build under
{source_directory}/iosarmv8 by default, and (if applicable) the 32-bit build
under {source_directory}/osxx86 by default, but you can override this by
setting the BUILDDIR32
, BUILDDIRARMV7
, BUILDDIRARMV7S
, and/or
BUILDDIRARMV8
variables on the make
command line as shown above.
NOTE: If including an ARMv8 build in the package, then you may need to use
Xcode's version of lipo instead of the operating system's. To do this, pass
an argument of LIPO="xcrun lipo"
on the make command line.
make cygwinpkg
Build a Cygwin binary package.
If using NMake:
cd {build_directory}
nmake installer
If using MinGW:
cd {build_directory}
make installer
If using the Visual Studio IDE, build the "installer" target.
The installer package (libjpeg-turbo-{version}[-gcc|-vc][64].exe) will be located under {build_directory}. If building using the Visual Studio IDE, then the installer package will be located in a subdirectory with the same name as the configuration you built (such as {build_directory}\Debug\ or {build_directory}\Release).
Building a Windows installer requires the
Nullsoft Install System. makensis.exe should
be in your PATH
.
The most common way to test libjpeg-turbo is by invoking make test
(Un*x) or
nmake test
(Windows command line) or by building the "RUN_TESTS" target
(Visual Studio IDE), once the build has completed. This runs a series of tests
to ensure that mathematical compatibility has been maintained between
libjpeg-turbo and libjpeg v6b. This also invokes the TurboJPEG unit tests,
which ensure that the colorspace extensions, YUV encoding, decompression
scaling, and other features of the TurboJPEG C and Java APIs are working
properly (and, by extension, that the equivalent features of the underlying
libjpeg API are also working.)
Invoking make testclean
(Un*x) or nmake testclean
(Windows command line) or
building the "testclean" target (Visual Studio IDE) will clean up the output
images generated by the tests.
On Un*x platforms, more extensive tests of the TurboJPEG C and Java wrappers
can be run by invoking make tjtest
. These extended TurboJPEG tests
essentially iterate through all of the available features of the TurboJPEG APIs
that are not covered by the TurboJPEG unit tests (including the lossless
transform options) and compare the images generated by each feature to images
generated using the equivalent feature in the libjpeg API. The extended
TurboJPEG tests are meant to test for regressions in the TurboJPEG wrappers,
not in the underlying libjpeg API library.