Skip to content

BP+OSD: Belief propagation with ordered statistics post-processing for decoding quantum LDPC codes

License

Notifications You must be signed in to change notification settings

quantumgizmos/bp_osd

Repository files navigation

BP+OSD: A decoder for quantum LDPC codes

A Python library implementing belief propagation with ordered statistics post-processing for decoding sparse quantum LDPC codes as described in arXiv:2005.07016.

Installation from PyPi (recommended method)

Installtion from PyPi requires Python>=3.6. To install via pip, run:

pip install -U bposd

Installation (from source)

Installation from source requires Python>=3.6 and a local C compiler (eg. 'gcc' in Linux or 'clang' in Windows). The LDPC package can then be installed by running:

git clone https://github.com/quantumgizmos/bposd.git
cd bposd
pip install -Ue bposd

Dependencies

This package buids upon the LDPC python package.

Basic usage

Constructing CSS codes

The bposd.css.css_code class can be used to create a CSS code from two classical codes. As an example, we can create a [[7,4,3]] Steane code from the classical Hamming code

from ldpc.codes import hamming_code
from bposd.css import css_code
h=hamming_code(3) #Hamming code parity check matrix
steane_code=css_code(hx=h,hz=h) #create Steane code where both hx and hz are Hamming codes
print("Hx")
print(steane_code.hx)
print("Hz")
print(steane_code.hz)
Hx
[[0 0 0 1 1 1 1]
 [0 1 1 0 0 1 1]
 [1 0 1 0 1 0 1]]
Hz
[[0 0 0 1 1 1 1]
 [0 1 1 0 0 1 1]
 [1 0 1 0 1 0 1]]

The bposd.css.css_code class automatically computes the logical operators of the code.

print("Lx Logical")
print(steane_code.lx)
print("Lz Logical")
print(steane_code.lz)
Lx Logical
[[1 1 1 0 0 0 0]]
Lz Logical
[[1 1 1 0 0 0 0]]

Not all combinations of the hx and hz matrices will produce a valid CSS code. Use the bposd.css.css_code.test function to check whether the code is valid. For example, we can easily check that the Steane code passes all the CSS code tests:

steane_code.test()
<Unnamed CSS code>, (3,4)-[[7,1,nan]]
 -Block dimensions: Pass
 -PCMs commute [email protected]==0: Pass
 -PCMs commute [email protected]==0: Pass
 -lx \in ker{hz} AND lz \in ker{hx}: Pass
 -lx and lz anticommute: Pass
 -<Unnamed CSS code> is a valid CSS code w/ params (3,4)-[[7,1,nan]]





True

As an example of a code that isn't valid, consider the case when hx and hz are repetition codes:

from ldpc.codes import rep_code

hx=hz=rep_code(7)
qcode=css_code(hx,hz)
qcode.test()
<Unnamed CSS code>, (2,2)-[[7,-5,nan]]
 -Block dimensions incorrect
 -PCMs commute [email protected]==0: Fail
 -PCMs commute [email protected]==0: Fail
 -lx \in ker{hz} AND lz \in ker{hx}: Pass
 -lx and lz anitcommute: Fail





False

Hypergraph product codes

The hypergraph product can be used to construct a valid CSS code from any pair of classical seed codes. To use the the hypergraph product, call the bposd.hgp.hgp function. Below is an example of how the distance-3 surface code can be constructed by taking the hypergraph product of two distance-3 repetition codes.

from ldpc.codes import rep_code
from bposd.hgp import hgp
h=rep_code(3)
surface_code=hgp(h1=h,h2=h,compute_distance=True) #nb. set compute_distance=False for larger codes
surface_code.test()
<Unnamed CSS code>, (2,4)-[[13,1,3]]
 -Block dimensions: Pass
 -PCMs commute [email protected]==0: Pass
 -PCMs commute [email protected]==0: Pass
 -lx \in ker{hz} AND lz \in ker{hx}: Pass
 -lx and lz anticommute: Pass
 -<Unnamed CSS code> is a valid CSS code w/ params (2,4)-[[13,1,3]]





True

BP+OSD Decoding

BP+OSD decoding is useful for codes that do not perform well under standard-BP. To use the BP+OSD decoder, we first call the bposd.bposd_decoder class:

import numpy as np
from bposd import bposd_decoder

bpd=bposd_decoder(
    surface_code.hz,#the parity check matrix
    error_rate=0.05,
    channel_probs=[None], #assign error_rate to each qubit. This will override "error_rate" input variable
    max_iter=surface_code.N, #the maximum number of iterations for BP)
    bp_method="ms",
    ms_scaling_factor=0, #min sum scaling factor. If set to zero the variable scaling factor method is used
    osd_method="osd_cs", #the OSD method. Choose from:  1) "osd_e", "osd_cs", "osd0"
    osd_order=7 #the osd search depth
    )

We can then decode by passing a syndrome to the bposd.bposd_decoder.decode method:

error=np.zeros(surface_code.N).astype(int)
error[[5,12]]=1
syndrome=surface_code.hz@error %2
bpd.decode(syndrome)

print("Error")
print(error)
print("BP+OSD Decoding")
print(bpd.osdw_decoding)
#Decoding is successful if the residual error commutes with the logical operators
residual_error=(bpd.osdw_decoding+error) %2
a=(surface_code.lz@residual_error%2).any()
if a: a="Yes"
else: a="No"
print(f"Logical Error: {a}\n")
Error
[0 0 0 0 0 1 0 0 0 0 0 0 1]
BP+OSD Decoding
[0 0 0 0 0 0 0 0 1 0 0 0 0]
Logical Error: No

About

BP+OSD: Belief propagation with ordered statistics post-processing for decoding quantum LDPC codes

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages