// This file is a part of Julia. License is MIT: http://julialang.org/license namespace JL_I { enum intrinsic { // wrap and unwrap box=0, unbox, // arithmetic neg_int, add_int, sub_int, mul_int, sdiv_int, udiv_int, srem_int, urem_int, smod_int, neg_float, add_float, sub_float, mul_float, div_float, rem_float, fma_float, muladd_float, // fast arithmetic neg_float_fast, add_float_fast, sub_float_fast, mul_float_fast, div_float_fast, rem_float_fast, // same-type comparisons eq_int, ne_int, slt_int, ult_int, sle_int, ule_int, eq_float, ne_float, lt_float, le_float, eq_float_fast, ne_float_fast, lt_float_fast, le_float_fast, fpiseq, fpislt, // bitwise operators and_int, or_int, xor_int, not_int, shl_int, lshr_int, ashr_int, bswap_int, ctpop_int, ctlz_int, cttz_int, // conversion sext_int, zext_int, trunc_int, fptoui, fptosi, uitofp, sitofp, fptrunc, fpext, // checked conversion checked_fptosi, checked_fptoui, checked_trunc_sint, checked_trunc_uint, check_top_bit, // checked arithmetic checked_sadd, checked_uadd, checked_ssub, checked_usub, checked_smul, checked_umul, nan_dom_err, // functions abs_float, copysign_float, flipsign_int, select_value, ceil_llvm, floor_llvm, trunc_llvm, rint_llvm, sqrt_llvm, powi_llvm, sqrt_llvm_fast, // pointer access pointerref, pointerset, // c interface ccall, cglobal, jl_alloca, llvmcall }; }; using namespace JL_I; #include "ccall.cpp" /* low-level intrinsics design: functions like add_int expect unboxed values of matching bit-length. every operation that can return an unboxed value does so. this maximizes opportunities for composing functions without unnecessary boxing. this means that box and unbox functions might do nothing except change the type tag of a value. boxing is delayed until absolutely necessary, and handled at the point where the box is needed. */ static Type *FTnbits(size_t nb) { #ifndef DISABLE_FLOAT16 if (nb == 16) return Type::getHalfTy(jl_LLVMContext); else #endif if (nb == 32) return Type::getFloatTy(jl_LLVMContext); else if (nb == 64) return Type::getDoubleTy(jl_LLVMContext); else if (nb == 128) return Type::getFP128Ty(jl_LLVMContext); else jl_error("Unsupported Float Size"); } // convert int type to same-size float type static Type *FT(Type *t) { if (t->isFloatingPointTy()) return t; return FTnbits(t->getPrimitiveSizeInBits()); } // reinterpret-cast to float static Value *FP(Value *v) { if (v->getType()->isFloatingPointTy()) return v; return builder.CreateBitCast(v, FT(v->getType())); } // convert float type to same-size int type static Type *JL_INTT(Type *t) { if (t->isIntegerTy()) return t; if (t->isPointerTy()) return T_size; if (t == T_float32) return T_int32; assert(t == T_float64); return T_int64; } // reinterpret-cast to int static Value *JL_INT(Value *v) { Type *t = v->getType(); if (t->isIntegerTy()) return v; if (t->isPointerTy()) return builder.CreatePtrToInt(v, JL_INTT(t)); return builder.CreateBitCast(v, JL_INTT(t)); } static Value *uint_cnvt(Type *to, Value *x) { Type *t = x->getType(); if (t == to) return x; if (to->getPrimitiveSizeInBits() < x->getType()->getPrimitiveSizeInBits()) return builder.CreateTrunc(x, to); return builder.CreateZExt(x, to); } #define LLVM_FP(a,b) APFloat(a,b) static Constant *julia_const_to_llvm(jl_value_t *e) { jl_value_t *jt = jl_typeof(e); jl_datatype_t *bt = (jl_datatype_t*)jt; if (!jl_is_datatype(bt) || bt == jl_gensym_type) return NULL; if (e == jl_true) return ConstantInt::get(T_int1, 1); if (e == jl_false) return ConstantInt::get(T_int1, 0); if (jl_is_cpointer_type(jt)) return ConstantExpr::getIntToPtr(ConstantInt::get(T_size, jl_unbox_long(e)), julia_type_to_llvm((jl_value_t*)bt)); if (jl_is_bitstype(jt)) { int nb = jl_datatype_size(bt); //TODO: non-power-of-2 size datatypes may not be interpreted correctly on big-endian systems switch (nb) { case 1: { uint8_t data8 = *(uint8_t*)jl_data_ptr(e); return ConstantInt::get(T_int8, data8); } case 2: { uint16_t data16 = *(uint16_t*)jl_data_ptr(e); #ifndef DISABLE_FLOAT16 if (jl_is_float(e)) { return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEhalf,APInt(16,data16))); } #endif return ConstantInt::get(T_int16, data16); } case 4: { uint32_t data32 = *(uint32_t*)jl_data_ptr(e); if (jl_is_float(e)) { return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEsingle,APInt(32,data32))); } return ConstantInt::get(T_int32, data32); } case 8: { uint64_t data64 = *(uint64_t*)jl_data_ptr(e); if (jl_is_float(e)) { return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEdouble,APInt(64,data64))); } return ConstantInt::get(T_int64, data64); } default: size_t nw = (nb+sizeof(uint64_t)-1)/sizeof(uint64_t); uint64_t *data = (uint64_t*)jl_data_ptr(e); APInt val; #if !defined(_P64) // malloc may not be 16-byte aligned on P32, // but we must ensure that llvm's uint64_t reads don't fall // off the end of a page // where 16-byte alignment requirement == (8-byte typetag) % (uint64_t ArrayRef access) if (nb % 16 != 0) { uint64_t *data_a64 = (uint64_t*)alloca(sizeof(uint64_t)*nw); memcpy(data_a64, data, nb); val = APInt(8*nb, ArrayRef(data_a64, nw)); } else #endif val = APInt(8*nb, ArrayRef(data, nw)); if (nb == 16 && jl_is_float(e)) { return ConstantFP::get(jl_LLVMContext,LLVM_FP(APFloat::IEEEquad,val)); // If we have a floating point type that's not hardware supported, just treat it like an integer for LLVM purposes } return ConstantInt::get(IntegerType::get(jl_LLVMContext,8*nb),val); } } if (jl_isbits(jt)) { size_t nf = jl_datatype_nfields(bt), i; size_t llvm_nf = 0; Constant **fields = (Constant**)alloca(nf * sizeof(Constant*)); jl_value_t *f=NULL; JL_GC_PUSH1(&f); for(i=0; i < nf; i++) { f = jl_get_nth_field(e, i); Constant *val; if (f == jl_true) val = ConstantInt::get(T_int8,1); else if (f == jl_false) val = ConstantInt::get(T_int8,0); else val = julia_const_to_llvm(f); if (val == NULL) { JL_GC_POP(); return NULL; } fields[llvm_nf++] = val; } JL_GC_POP(); Type *t = julia_struct_to_llvm(jt); if (type_is_ghost(t)) return UndefValue::get(NoopType); if (t->isVectorTy()) return ConstantVector::get(ArrayRef(fields,llvm_nf)); Constant *init; if (t->isStructTy()) { StructType *st = dyn_cast(t); assert(st); init = ConstantStruct::get(st, ArrayRef(fields,llvm_nf)); } else { assert(t->isArrayTy()); ArrayType *at = dyn_cast(t); assert(at); init = ConstantArray::get(at, ArrayRef(fields,llvm_nf)); } return new GlobalVariable(*jl_Module, t, true, GlobalVariable::ExternalLinkage, init); } return NULL; } static Value *emit_unboxed(jl_value_t *e, jl_codectx_t *ctx) { Constant *c = julia_const_to_llvm(e); if (c) return mark_julia_type(c, jl_typeof(e)); return emit_expr(e, ctx, false); } static Value *ghostValue(jl_value_t *ty); // emit code to unpack a raw value from a box static Value *emit_unbox(Type *to, Value *x, jl_value_t *jt) { Type *ty = (x == NULL) ? NULL : x->getType(); if (x == NULL || ty == NoopType) { if (to == T_void) { if (jt != NULL) return (ty == NoopType && julia_type_of(x) == jt) ? x : ghostValue(jt); return NULL; } return UndefValue::get(to); } if (ty != jl_pvalue_llvmt) { if (ty->isPointerTy() && to->isAggregateType()) { x = builder.CreateLoad(x); // something stack allocated ty = x->getType(); } else { // bools are stored internally as int8 (for now) if (ty == T_int1 && to == T_int8) return builder.CreateZExt(x, T_int8); if (ty->isPointerTy() && !to->isPointerTy()) return builder.CreatePtrToInt(x, to); if (!ty->isPointerTy() && to->isPointerTy()) return builder.CreateIntToPtr(x, to); } if (ty != to) { // this can happen when a branch yielding a different type ends // up being dead code, and type inference knows that the other // branch's type is the only one that matters. // assert(ty == T_void); return UndefValue::get(to); } return x; } Value *p = x; if (to == T_int1) { // bools stored as int8, so an extra Trunc is needed to get an int1 return builder.CreateTrunc(builder. CreateLoad(builder. CreateBitCast(p, T_pint8)), T_int1); } if (to->isStructTy() && !to->isSized()) { // empty struct - TODO - is this a good way to represent it? assert(to != T_void); return UndefValue::get(to); } return builder.CreateAlignedLoad(builder.CreateBitCast(p, to->getPointerTo()), 16); // julia's gc gives 16-byte aligned addresses } // unbox trying to determine type automatically static Value *auto_unbox(jl_value_t *x, jl_codectx_t *ctx) { Value *v = emit_unboxed(x, ctx); if (v->getType() != jl_pvalue_llvmt) { return v; } jl_value_t *bt = expr_type(x, ctx); if (!jl_is_bitstype(bt)) { if (jl_is_symbol(x)) { std::map::iterator it = ctx->vars.find((jl_sym_t*)x); if (it != ctx->vars.end()) bt = (*it).second.declType; } if (bt == NULL || !jl_is_bitstype(bt)) { // TODO: make sure this code is valid; hopefully it is // unreachable but it should still be well-formed. emit_error("auto_unbox: unable to determine argument type", ctx); // This isn't correct but probably most likely to cause // the least amount of trouble return UndefValue::get(T_int64); } } Type *to = julia_type_to_llvm(bt); if (to == NULL || to == jl_pvalue_llvmt) { unsigned int nb = jl_datatype_size(bt)*8; to = IntegerType::get(jl_LLVMContext, nb); } if (to == T_void) { return NULL; } if (to->isAggregateType() && jl_is_immutable_datatype(bt)) // can lazy load on demand, no copy needed return builder.CreateBitCast(v, to->getPointerTo()); return emit_reg2mem(emit_unbox(to, v, bt), ctx); } // figure out how many bits a bitstype has at compile time, or -1 int try_to_determine_bitstype_nbits(jl_value_t *targ, jl_codectx_t *ctx) { jl_value_t *et = expr_type(targ, ctx); if (jl_is_type_type(et)) { jl_value_t *p = jl_tparam0(et); if (p == (jl_value_t*)jl_bool_type) return 1; if (jl_is_bitstype(p)) return jl_datatype_size(p)*8; if (jl_is_typevar(p)) { jl_value_t *ub = ((jl_tvar_t*)p)->ub; if (jl_is_bitstype(ub)) return jl_datatype_size(ub)*8; } } return -1; } // unbox using user-specified type static Value *generic_unbox(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx) { jl_value_t *et = expr_type(targ, ctx); if (jl_is_type_type(et)) { jl_value_t *p = jl_tparam0(et); if (jl_is_leaf_type(p)) { Type *to = julia_type_to_llvm(p); Value *lx = emit_unboxed(x,ctx); if (to->isAggregateType() && lx->getType() == PointerType::get(to,0) && jl_is_immutable(p)) // can lazy load on demand, no copy needed return lx; return emit_reg2mem(emit_unbox(to, lx, p), ctx); } } int nb = try_to_determine_bitstype_nbits(targ, ctx); if (nb == -1) { jl_value_t *bt=NULL; JL_TRY { bt = jl_interpret_toplevel_expr_in(ctx->module, targ, jl_svec_data(ctx->sp), jl_svec_len(ctx->sp)/2); } JL_CATCH { } if (bt == NULL || !jl_is_bitstype(bt)) { //jl_error("unbox: could not determine argument size"); emit_error("unbox: could not determine argument size", ctx); return UndefValue::get(T_void); } nb = (bt==(jl_value_t*)jl_bool_type) ? 1 : jl_datatype_size(bt)*8; } Type *to = IntegerType::get(jl_LLVMContext, nb); return emit_unbox(to, emit_unboxed(x, ctx), et); } static Value *generic_box(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx) { int nb = try_to_determine_bitstype_nbits(targ, ctx); Type *llvmt = NULL; jl_value_t *bt = NULL; jl_value_t *et = expr_type(targ, ctx); if (jl_is_type_type(et) && jl_is_leaf_type(jl_tparam0(et)) && jl_is_bitstype(jl_tparam0(et))) { bt = jl_tparam0(et); } else { JL_TRY { bt = jl_interpret_toplevel_expr_in(ctx->module, targ, jl_svec_data(ctx->sp), jl_svec_len(ctx->sp)/2); } JL_CATCH { } } if (bt == NULL) { } else if (!jl_is_bitstype(bt)) { emit_error("reinterpret: expected bits type as first argument", ctx); return UndefValue::get(jl_pvalue_llvmt); } else { llvmt = julia_type_to_llvm(bt); if (llvmt == jl_pvalue_llvmt) { // this happens if !jl_is_leaf_type(bt) llvmt = NULL; bt = NULL; } if (nb == -1) nb = (bt==(jl_value_t*)jl_bool_type) ? 1 : jl_datatype_size(bt)*8; } if (nb == -1) { emit_error("box: could not determine argument size", ctx); return UndefValue::get(jl_pvalue_llvmt); } if (llvmt == NULL) llvmt = IntegerType::get(jl_LLVMContext, nb); Value *vx = auto_unbox(x, ctx); Type *vxt = vx->getType(); if (llvmt->isAggregateType() && vxt->isPointerTy()) { vxt = vxt->getContainedType(0); } //if (vx->getType()->getPrimitiveSizeInBits() != (unsigned)nb) // jl_errorf("box: expected argument with %d bits, got %d", nb, // vx->getType()->getPrimitiveSizeInBits()); if (vxt != llvmt) { if (vxt == T_void) return vx; if (!vxt->isSingleValueType()) { emit_error("reinterpret: expected non-struct value as second argument", ctx); return UndefValue::get(jl_pvalue_llvmt); } if (llvmt == T_int1) { vx = builder.CreateTrunc(vx, llvmt); } else if (vxt == T_int1 && llvmt == T_int8) { vx = builder.CreateZExt(vx, llvmt); } else { // getPrimitiveSizeInBits() == 0 for pointers if (vxt->getPrimitiveSizeInBits() != llvmt->getPrimitiveSizeInBits() && !(vxt->isPointerTy() && llvmt->getPrimitiveSizeInBits() == sizeof(void*)*8) && !(llvmt->isPointerTy() && vxt->getPrimitiveSizeInBits() == sizeof(void*)*8)) { emit_error("box: argument is of incorrect size", ctx); return UndefValue::get(llvmt); } // PtrToInt and IntToPtr ignore size differences if (vxt->isPointerTy() && !llvmt->isPointerTy()) { vx = builder.CreatePtrToInt(vx, llvmt); } else if (!vxt->isPointerTy() && llvmt->isPointerTy()) { vx = builder.CreateIntToPtr(vx, llvmt); } else { vx = builder.CreateBitCast(vx, llvmt); } } } if (bt != NULL) { return mark_julia_type(vx, bt); } // dynamically-determined type; evaluate. if (llvmt->isAggregateType()) { vx = builder.CreateLoad(vx); // something stack allocated } return allocate_box_dynamic(emit_expr(targ, ctx), ConstantInt::get(T_size,nb), vx); } static Type *staticeval_bitstype(jl_value_t *targ, const char *fname, jl_codectx_t *ctx) { jl_value_t *bt = jl_interpret_toplevel_expr_in(ctx->module, targ, jl_svec_data(ctx->sp), jl_svec_len(ctx->sp)/2); if (!jl_is_bitstype(bt)) jl_errorf("%s: expected bits type as first argument", fname); Type *to = julia_type_to_llvm(bt); if (to == NULL) { unsigned int nb = jl_datatype_size(bt)*8; to = IntegerType::get(jl_LLVMContext, nb); } return to; } // NOTE: signd (signed) only relevant if check == true static Value *generic_trunc(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx, bool check, bool signd) { Type *to = staticeval_bitstype(targ, "trunc_int", ctx); Value *ix = JL_INT(auto_unbox(x,ctx)); Value *ans = builder.CreateTrunc(ix, to); if (check) { Value *back = signd ? builder.CreateSExt(ans, ix->getType()) : builder.CreateZExt(ans, ix->getType()); raise_exception_unless(builder.CreateICmpEQ(back, ix), prepare_global(jlinexacterr_var), ctx); } return ans; } static Value *generic_sext(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx) { Type *to = staticeval_bitstype(targ, "sext_int", ctx); return builder.CreateSExt(JL_INT(auto_unbox(x,ctx)), to); } static Value *generic_zext(jl_value_t *targ, jl_value_t *x, jl_codectx_t *ctx) { Type *to = staticeval_bitstype(targ, "zext_int", ctx); return builder.CreateZExt(JL_INT(auto_unbox(x,ctx)), to); } static Value *emit_eqfsi(Value *x, Value *y) { x = FP(x); Value *fy = JL_INT(y); // using all 64-bit is slightly faster than using mixed sizes Value *xx = x, *vv = fy; if (x->getType() == T_float32) xx = builder.CreateFPExt(xx, T_float64); if (vv->getType()->getPrimitiveSizeInBits() < 64) vv = builder.CreateSExt(vv, T_int64); Value *back = builder.CreateSIToFP(vv, xx->getType()); return builder.CreateAnd (builder.CreateFCmpOEQ(xx, back), builder.CreateICmpEQ(vv, builder.CreateFPToSI(back, vv->getType()))); } static Value *emit_eqfui(Value *x, Value *y) { x = FP(x); Value *fy = JL_INT(y); // using all 64-bit is slightly faster than using mixed sizes Value *xx = x, *vv = fy; if (x->getType() == T_float32) xx = builder.CreateFPExt(xx, T_float64); if (vv->getType()->getPrimitiveSizeInBits() < 64) vv = builder.CreateZExt(vv, T_int64); Value *back = builder.CreateUIToFP(vv, xx->getType()); return builder.CreateAnd (builder.CreateFCmpOEQ(xx, back), builder.CreateICmpEQ(vv, builder.CreateFPToUI(back, vv->getType()))); } static Value *emit_checked_fptosi(Type *to, Value *x, jl_codectx_t *ctx) { x = FP(x); Value *v = builder.CreateFPToSI(x, to); if (x->getType() == T_float32 && to == T_int32) { raise_exception_unless (builder.CreateFCmpOEQ(builder.CreateFPExt(x, T_float64), builder.CreateSIToFP(v, T_float64)), prepare_global(jlinexacterr_var), ctx); } else { raise_exception_unless(emit_eqfsi(x, v), prepare_global(jlinexacterr_var), ctx); } return v; } static Value *emit_checked_fptosi(jl_value_t *targ, Value *x, jl_codectx_t *ctx) { return emit_checked_fptosi(staticeval_bitstype(targ, "checked_fptosi", ctx), x, ctx); } static Value *emit_checked_fptoui(Type *to, Value *x, jl_codectx_t *ctx) { x = FP(x); Value *v = builder.CreateFPToUI(x, to); if (x->getType() == T_float32 && to == T_int32) { raise_exception_unless (builder.CreateFCmpOEQ(builder.CreateFPExt(x, T_float64), builder.CreateUIToFP(v, T_float64)), prepare_global(jlinexacterr_var), ctx); } else { raise_exception_unless(emit_eqfui(x, v), prepare_global(jlinexacterr_var), ctx); } return v; } static Value *emit_checked_fptoui(jl_value_t *targ, Value *x, jl_codectx_t *ctx) { return emit_checked_fptoui(staticeval_bitstype(targ, "checked_fptoui", ctx), x, ctx); } static Value *emit_runtime_pointerref(jl_value_t *e, jl_value_t *i, jl_codectx_t *ctx) { Value *preffunc = jl_Module->getOrInsertFunction("jl_pointerref", FunctionType::get(jl_pvalue_llvmt, two_pvalue_llvmt, false)); int ldepth = ctx->gc.argDepth; Value *parg = emit_boxed_rooted(e, ctx); Value *iarg = boxed(emit_expr(i, ctx), ctx); #ifdef LLVM37 Value *ret = builder.CreateCall(prepare_call(preffunc), { parg, iarg }); #else Value *ret = builder.CreateCall2(prepare_call(preffunc), parg, iarg); #endif ctx->gc.argDepth = ldepth; return ret; } static Value *emit_pointerref(jl_value_t *e, jl_value_t *i, jl_codectx_t *ctx) { jl_value_t *aty = expr_type(e, ctx); if (!jl_is_cpointer_type(aty)) return emit_runtime_pointerref(e, i, ctx); //jl_error("pointerref: expected pointer type as first argument"); jl_value_t *ety = jl_tparam0(aty); if (jl_is_typevar(ety)) return emit_runtime_pointerref(e, i, ctx); //jl_error("pointerref: invalid pointer"); if (expr_type(i, ctx) != (jl_value_t*)jl_long_type) return emit_runtime_pointerref(e, i, ctx); //jl_error("pointerref: invalid index type"); Value *thePtr = auto_unbox(e,ctx); Value *idx = emit_unbox(T_size, emit_unboxed(i, ctx), (jl_value_t*)jl_long_type); Value *im1 = builder.CreateSub(idx, ConstantInt::get(T_size, 1)); if (!jl_isbits(ety)) { if (ety == (jl_value_t*)jl_any_type) return builder.CreateLoad(builder.CreateGEP( builder.CreateBitCast(thePtr, jl_ppvalue_llvmt), im1)); if (!jl_is_structtype(ety) || jl_is_array_type(ety) || !jl_is_leaf_type(ety)) { emit_error("pointerref: invalid pointer type", ctx); return NULL; } assert(jl_is_datatype(ety)); uint64_t size = jl_datatype_size(ety); Value *strct = builder.CreateCall(prepare_call(jlallocobj_func), ConstantInt::get(T_size, sizeof(void*)+size)); builder.CreateStore(literal_pointer_val((jl_value_t*)ety), emit_typeptr_addr(strct)); im1 = builder.CreateMul(im1, ConstantInt::get(T_size, LLT_ALIGN(size, ((jl_datatype_t*)ety)->alignment))); thePtr = builder.CreateGEP(builder.CreateBitCast(thePtr, T_pint8), im1); builder.CreateMemCpy(builder.CreateBitCast(strct, T_pint8), thePtr, size, 1); return mark_julia_type(strct, ety); } // TODO: alignment? return typed_load(thePtr, im1, ety, ctx, tbaa_user, 1); } static Value *emit_runtime_pointerset(jl_value_t *e, jl_value_t *x, jl_value_t *i, jl_codectx_t *ctx) { Value *psetfunc = jl_Module->getOrInsertFunction("jl_pointerset", FunctionType::get(T_void, three_pvalue_llvmt, false)); int ldepth = ctx->gc.argDepth; Value *parg = emit_boxed_rooted(e, ctx); Value *iarg = emit_boxed_rooted(i, ctx); Value *xarg = boxed(emit_expr(x, ctx), ctx); #ifdef LLVM37 builder.CreateCall(prepare_call(psetfunc), { parg, xarg, iarg }); #else builder.CreateCall3(prepare_call(psetfunc), parg, xarg, iarg); #endif ctx->gc.argDepth = ldepth; return parg; } // e[i] = x static Value *emit_pointerset(jl_value_t *e, jl_value_t *x, jl_value_t *i, jl_codectx_t *ctx) { jl_value_t *aty = expr_type(e, ctx); if (!jl_is_cpointer_type(aty)) return emit_runtime_pointerset(e, x, i, ctx); //jl_error("pointerset: expected pointer type as first argument"); jl_value_t *ety = jl_tparam0(aty); if (jl_is_typevar(ety)) return emit_runtime_pointerset(e, x, i, ctx); //jl_error("pointerset: invalid pointer"); jl_value_t *xty = expr_type(x, ctx); Value *val=NULL; if (!jl_subtype(xty, ety, 0)) { val = emit_expr(x,ctx); emit_typecheck(val, ety, "pointerset: type mismatch in assign", ctx); } if (expr_type(i, ctx) != (jl_value_t*)jl_long_type) return emit_runtime_pointerset(e, x, i, ctx); //jl_error("pointerset: invalid index type"); Value *idx = emit_unbox(T_size, emit_unboxed(i, ctx),(jl_value_t*)jl_long_type); Value *im1 = builder.CreateSub(idx, ConstantInt::get(T_size, 1)); Value *thePtr = auto_unbox(e,ctx); if (!jl_isbits(ety) && ety != (jl_value_t*)jl_any_type) { if (!jl_is_structtype(ety) || jl_is_array_type(ety) || !jl_is_leaf_type(ety)) { emit_error("pointerset: invalid pointer type", ctx); return NULL; } if (val==NULL) val = emit_expr(x,ctx,true,true); assert(val->getType() == jl_pvalue_llvmt); //Boxed assert(jl_is_datatype(ety)); uint64_t size = ((jl_datatype_t*)ety)->size; im1 = builder.CreateMul(im1, ConstantInt::get(T_size, LLT_ALIGN(size, ((jl_datatype_t*)ety)->alignment))); builder.CreateMemCpy(builder.CreateGEP(builder.CreateBitCast(thePtr, T_pint8), im1), builder.CreateBitCast(val, T_pint8), size, 1); } else { if (val == NULL) { if (ety == (jl_value_t*)jl_any_type) val = emit_expr(x,ctx); else val = emit_unboxed(x,ctx); } // TODO: alignment? typed_store(thePtr, im1, val, ety, ctx, tbaa_user, NULL, 1); } return mark_julia_type(thePtr, aty); } static Value *emit_srem(Value *x, Value *den, jl_codectx_t *ctx) { Type *t = den->getType(); raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)), prepare_global(jldiverr_var), ctx); BasicBlock *m1BB = BasicBlock::Create(getGlobalContext(),"minus1",ctx->f); BasicBlock *okBB = BasicBlock::Create(getGlobalContext(),"oksrem",ctx->f); BasicBlock *cont = BasicBlock::Create(getGlobalContext(),"after_srem",ctx->f); PHINode *ret = PHINode::Create(t, 2); builder.CreateCondBr(builder.CreateICmpEQ(den,ConstantInt::get(t,-1,true)), m1BB, okBB); builder.SetInsertPoint(m1BB); builder.CreateBr(cont); builder.SetInsertPoint(okBB); Value *sremval = builder.CreateSRem(x, den); builder.CreateBr(cont); builder.SetInsertPoint(cont); ret->addIncoming(// rem(typemin, -1) is undefined ConstantInt::get(t,0), m1BB); ret->addIncoming(sremval, okBB); builder.Insert(ret); return ret; } // Temporarily switch the builder to fast-math mode if requested struct math_builder { FastMathFlags old_fmf; math_builder(jl_codectx_t *ctx, bool always_fast = false): old_fmf(builder.getFastMathFlags()) { if (jl_options.fast_math != JL_OPTIONS_FAST_MATH_OFF && (always_fast || jl_options.fast_math == JL_OPTIONS_FAST_MATH_ON)) { FastMathFlags fmf; fmf.setUnsafeAlgebra(); builder.SetFastMathFlags(fmf); } } IRBuilder<>& operator()() const { return builder; } ~math_builder() { builder.SetFastMathFlags(old_fmf); } }; static Value *emit_smod(Value *x, Value *den, jl_codectx_t *ctx) { Type *t = den->getType(); raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)), prepare_global(jldiverr_var), ctx); BasicBlock *m1BB = BasicBlock::Create(getGlobalContext(),"minus1",ctx->f); BasicBlock *okBB = BasicBlock::Create(getGlobalContext(),"oksmod",ctx->f); BasicBlock *cont = BasicBlock::Create(getGlobalContext(),"after_smod",ctx->f); PHINode *ret = PHINode::Create(t, 2); builder.CreateCondBr(builder.CreateICmpEQ(den,ConstantInt::get(t,-1,true)), m1BB, okBB); builder.SetInsertPoint(m1BB); builder.CreateBr(cont); builder.SetInsertPoint(okBB); Value *rem = builder.CreateSRem(x,den); Value *smodval = builder. CreateSelect(builder.CreateICmpEQ(builder.CreateICmpSLT(x,ConstantInt::get(t,0)), builder.CreateICmpSLT(den,ConstantInt::get(t,0))), // mod == rem for arguments with same sign rem, builder.CreateSRem(builder.CreateAdd(den,rem),den)); builder.CreateBr(cont); builder.SetInsertPoint(cont); ret->addIncoming(// rem(typemin, -1) is undefined ConstantInt::get(t,0), m1BB); ret->addIncoming(smodval, okBB); builder.Insert(ret); return ret; } #define HANDLE(intr,n) \ case intr: if (nargs!=n) jl_error(#intr": wrong number of arguments"); static Value *emit_intrinsic(intrinsic f, jl_value_t **args, size_t nargs, jl_codectx_t *ctx) { switch (f) { case ccall: return emit_ccall(args, nargs, ctx); case cglobal: return emit_cglobal(args, nargs, ctx); case llvmcall: return emit_llvmcall(args, nargs, ctx); HANDLE(box,2) return generic_box(args[1], args[2], ctx); HANDLE(unbox,2) return generic_unbox(args[1], args[2], ctx); HANDLE(trunc_int,2) return generic_trunc(args[1], args[2], ctx, false, false); HANDLE(checked_trunc_sint,2) return generic_trunc(args[1], args[2], ctx, true, true); HANDLE(checked_trunc_uint,2) return generic_trunc(args[1], args[2], ctx, true, false); HANDLE(sext_int,2) return generic_sext(args[1], args[2], ctx); HANDLE(zext_int,2) return generic_zext(args[1], args[2], ctx); HANDLE(pointerref,2) return emit_pointerref(args[1], args[2], ctx); HANDLE(pointerset,3) return emit_pointerset(args[1], args[2], args[3], ctx); HANDLE(checked_fptosi,2) { Value *x = FP(auto_unbox(args[2], ctx)); return emit_checked_fptosi(args[1], x, ctx); } HANDLE(checked_fptoui,2) { Value *x = FP(auto_unbox(args[2], ctx)); return emit_checked_fptoui(args[1], x, ctx); } HANDLE(uitofp,2) return builder.CreateUIToFP(JL_INT(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx))); HANDLE(sitofp,2) return builder.CreateSIToFP(JL_INT(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx))); case fptoui: if (nargs == 1) { Value *x = FP(auto_unbox(args[1], ctx)); return builder.CreateFPToUI(FP(x), JL_INTT(x->getType())); } else if (nargs == 2) { return builder.CreateFPToUI(FP(auto_unbox(args[2],ctx)), Type::getIntNTy(jl_LLVMContext, try_to_determine_bitstype_nbits(args[1],ctx))); } else { jl_error("fptoui: wrong number of arguments"); } case fptosi: if (nargs == 1) { Value *x = FP(auto_unbox(args[1], ctx)); return builder.CreateFPToSI(FP(x), JL_INTT(x->getType())); } else if (nargs == 2) { return builder.CreateFPToSI(FP(auto_unbox(args[2],ctx)), Type::getIntNTy(jl_LLVMContext, try_to_determine_bitstype_nbits(args[1],ctx))); } else { jl_error("fptosi: wrong number of arguments"); } HANDLE(fptrunc,2) return builder.CreateFPTrunc(FP(auto_unbox(args[2],ctx)), FTnbits(try_to_determine_bitstype_nbits(args[1],ctx))); HANDLE(fpext,2) { Value *x = auto_unbox(args[2],ctx); #if JL_NEED_FLOATTEMP_VAR // Target platform might carry extra precision. // Force rounding to single precision first. The reason is that it's // fine to keep working in extended precision as long as it's // understood that everything is implicitly rounded to 23 bits, // but if we start looking at more bits we need to actually do the // rounding first instead of carrying around incorrect low bits. builder.CreateStore(FP(x), builder.CreateBitCast(prepare_global(jlfloattemp_var),FT(x->getType())->getPointerTo()), true); x = builder.CreateLoad(builder.CreateBitCast(prepare_global(jlfloattemp_var),FT(x->getType())->getPointerTo()), true); #endif return builder.CreateFPExt(x, FTnbits(try_to_determine_bitstype_nbits(args[1],ctx))); } HANDLE(select_value,3) { Value *isfalse = emit_condition(args[1], "select_value", ctx); jl_value_t *t1 = expr_type(args[2], ctx); Type *llt1 = julia_type_to_llvm(t1); jl_value_t *t2 = expr_type(args[3], ctx); Type *llt2 = julia_type_to_llvm(t2); int argStart = ctx->gc.argDepth; Value *ifelse_result; if (llt1 == jl_pvalue_llvmt && llt2 == jl_pvalue_llvmt) { Value *arg1 = emit_expr(args[3], ctx, false); if (arg1->getType() == jl_pvalue_llvmt) make_gcroot(arg1, ctx); ifelse_result = builder.CreateSelect(isfalse, arg1, emit_expr(args[2], ctx, false)); } else if (t1 == t2 && llt1 == llt2 && llt1 != jl_pvalue_llvmt) { Value *x = auto_unbox(args[3], ctx); ifelse_result = tpropagate(x, builder.CreateSelect(isfalse, x, auto_unbox(args[2], ctx))); } else { Value *arg1 = boxed(emit_expr(args[3],ctx,false), ctx, expr_type(args[3],ctx)); make_gcroot(arg1, ctx); ifelse_result = builder.CreateSelect(isfalse, arg1, boxed(emit_expr(args[2],ctx,false), ctx, expr_type(args[2],ctx))); } ctx->gc.argDepth = argStart; return ifelse_result; } default: ; } if (nargs < 1) jl_error("invalid intrinsic call"); Value *x = auto_unbox(args[1], ctx); Value *y = NULL; if (nargs>1) { y = auto_unbox(args[2], ctx); } Value *z = NULL; if (nargs>2) { z = auto_unbox(args[3], ctx); } Type *t = x->getType(); if (t == T_void || (y && y->getType() == T_void) || (z && z->getType() == T_void)) return t == T_void ? x : y->getType() == T_void ? y : z; Value *fy; Value *den; Value *typemin; switch (f) { HANDLE(neg_int,1) return builder.CreateSub(ConstantInt::get(t, 0), JL_INT(x)); HANDLE(add_int,2) return builder.CreateAdd(JL_INT(x), JL_INT(y)); HANDLE(sub_int,2) return builder.CreateSub(JL_INT(x), JL_INT(y)); HANDLE(mul_int,2) return builder.CreateMul(JL_INT(x), JL_INT(y)); HANDLE(sdiv_int,2) den = JL_INT(y); t = den->getType(); x = JL_INT(x); typemin = builder.CreateShl(ConstantInt::get(t,1), x->getType()->getPrimitiveSizeInBits()-1); raise_exception_unless(builder. CreateAnd(builder. CreateICmpNE(den, ConstantInt::get(t,0)), builder. CreateOr(builder. CreateICmpNE(den, ConstantInt::get(t,-1,true)), builder.CreateICmpNE(x, typemin))), prepare_global(jldiverr_var), ctx); return builder.CreateSDiv(x, den); HANDLE(udiv_int,2) den = JL_INT(y); t = den->getType(); raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)), prepare_global(jldiverr_var), ctx); return builder.CreateUDiv(JL_INT(x), den); HANDLE(srem_int,2) return emit_srem(JL_INT(x), JL_INT(y), ctx); HANDLE(urem_int,2) den = JL_INT(y); t = den->getType(); raise_exception_unless(builder.CreateICmpNE(den, ConstantInt::get(t,0)), prepare_global(jldiverr_var), ctx); return builder.CreateURem(JL_INT(x), den); HANDLE(smod_int,2) return emit_smod(JL_INT(x), JL_INT(y), ctx); // Implements IEEE negate. Unfortunately there is no compliant way // to implement this in LLVM 3.4, though there are two different idioms // that do the correct thing on LLVM <= 3.3 and >= 3.5 respectively. // See issue #7868 #ifdef LLVM35 HANDLE(neg_float,1) return math_builder(ctx)().CreateFSub(ConstantFP::get(FT(t), -0.0), FP(x)); HANDLE(neg_float_fast,1) return math_builder(ctx, true)().CreateFNeg(FP(x)); #else HANDLE(neg_float,1) return math_builder(ctx)().CreateFMul(ConstantFP::get(FT(t), -1.0), FP(x)); HANDLE(neg_float_fast,1) return math_builder(ctx, true)().CreateFMul(ConstantFP::get(FT(t), -1.0), FP(x)); #endif HANDLE(add_float,2) return math_builder(ctx)().CreateFAdd(FP(x), FP(y)); HANDLE(sub_float,2) return math_builder(ctx)().CreateFSub(FP(x), FP(y)); HANDLE(mul_float,2) return math_builder(ctx)().CreateFMul(FP(x), FP(y)); HANDLE(div_float,2) return math_builder(ctx)().CreateFDiv(FP(x), FP(y)); HANDLE(rem_float,2) return math_builder(ctx)().CreateFRem(FP(x), FP(y)); HANDLE(add_float_fast,2) return math_builder(ctx, true)().CreateFAdd(FP(x), FP(y)); HANDLE(sub_float_fast,2) return math_builder(ctx, true)().CreateFSub(FP(x), FP(y)); HANDLE(mul_float_fast,2) return math_builder(ctx, true)().CreateFMul(FP(x), FP(y)); HANDLE(div_float_fast,2) return math_builder(ctx, true)().CreateFDiv(FP(x), FP(y)); HANDLE(rem_float_fast,2) return math_builder(ctx, true)().CreateFRem(FP(x), FP(y)); HANDLE(fma_float,3) { assert(y->getType() == x->getType()); assert(z->getType() == y->getType()); Value *fmaintr = Intrinsic::getDeclaration(jl_Module, Intrinsic::fma, ArrayRef(x->getType())); #ifdef LLVM37 return builder.CreateCall(fmaintr,{ FP(x), FP(y), FP(z) }); #else return builder.CreateCall3(fmaintr, FP(x), FP(y), FP(z)); #endif } HANDLE(muladd_float,3) #ifdef LLVM34 { assert(y->getType() == x->getType()); assert(z->getType() == y->getType()); #ifdef LLVM37 return builder.CreateCall #else return builder.CreateCall3 #endif (Intrinsic::getDeclaration(jl_Module, Intrinsic::fmuladd, ArrayRef(x->getType())), #ifdef LLVM37 {FP(x), FP(y), FP(z)} #else FP(x), FP(y), FP(z) #endif ); } #else return math_builder(ctx, true)(). CreateFAdd(builder.CreateFMul(FP(x), FP(y)), FP(z)); #endif HANDLE(checked_sadd,2) HANDLE(checked_uadd,2) HANDLE(checked_ssub,2) HANDLE(checked_usub,2) HANDLE(checked_smul,2) HANDLE(checked_umul,2) { Value *ix = JL_INT(x); Value *iy = JL_INT(y); assert(ix->getType() == iy->getType()); Value *intr = Intrinsic::getDeclaration(jl_Module, f==checked_sadd ? Intrinsic::sadd_with_overflow : (f==checked_uadd ? Intrinsic::uadd_with_overflow : (f==checked_ssub ? Intrinsic::ssub_with_overflow : (f==checked_usub ? Intrinsic::usub_with_overflow : (f==checked_smul ? Intrinsic::smul_with_overflow : Intrinsic::umul_with_overflow)))), ArrayRef(ix->getType())); #ifdef LLVM37 Value *res = builder.CreateCall(intr,{ix, iy}); #else Value *res = builder.CreateCall2(intr, ix, iy); #endif Value *obit = builder.CreateExtractValue(res, ArrayRef(1)); raise_exception_if(obit, prepare_global(jlovferr_var), ctx); return builder.CreateExtractValue(res, ArrayRef(0)); } HANDLE(check_top_bit,1) // raise InexactError if argument's top bit is set x = JL_INT(x); raise_exception_if(builder. CreateTrunc(builder. CreateLShr(x, ConstantInt::get(t, t->getPrimitiveSizeInBits()-1)), T_int1), prepare_global(jlinexacterr_var), ctx); return x; HANDLE(eq_int,2) return builder.CreateICmpEQ(JL_INT(x), JL_INT(y)); HANDLE(ne_int,2) return builder.CreateICmpNE(JL_INT(x), JL_INT(y)); HANDLE(slt_int,2) return builder.CreateICmpSLT(JL_INT(x), JL_INT(y)); HANDLE(ult_int,2) return builder.CreateICmpULT(JL_INT(x), JL_INT(y)); HANDLE(sle_int,2) return builder.CreateICmpSLE(JL_INT(x), JL_INT(y)); HANDLE(ule_int,2) return builder.CreateICmpULE(JL_INT(x), JL_INT(y)); HANDLE(eq_float,2) return math_builder(ctx)().CreateFCmpOEQ(FP(x), FP(y)); HANDLE(ne_float,2) return math_builder(ctx)().CreateFCmpUNE(FP(x), FP(y)); HANDLE(lt_float,2) return math_builder(ctx)().CreateFCmpOLT(FP(x), FP(y)); HANDLE(le_float,2) return math_builder(ctx)().CreateFCmpOLE(FP(x), FP(y)); HANDLE(eq_float_fast,2) return math_builder(ctx, true)().CreateFCmpOEQ(FP(x), FP(y)); HANDLE(ne_float_fast,2) return math_builder(ctx, true)().CreateFCmpUNE(FP(x), FP(y)); HANDLE(lt_float_fast,2) return math_builder(ctx, true)().CreateFCmpOLT(FP(x), FP(y)); HANDLE(le_float_fast,2) return math_builder(ctx, true)().CreateFCmpOLE(FP(x), FP(y)); HANDLE(fpiseq,2) { Value *xi = JL_INT(x); Value *yi = JL_INT(y); x = FP(x); fy = FP(y); return builder.CreateOr(builder.CreateAnd(builder.CreateFCmpUNO(x, x), builder.CreateFCmpUNO(fy, fy)), builder.CreateICmpEQ(xi, yi)); } HANDLE(fpislt,2) { Value *xi = JL_INT(x); Value *yi = JL_INT(y); x = FP(x); fy = FP(y); return builder.CreateOr( builder.CreateAnd( builder.CreateFCmpORD(x, x), builder.CreateFCmpUNO(fy, fy) ), builder.CreateAnd( builder.CreateFCmpORD(x, fy), builder.CreateOr( builder.CreateAnd( builder.CreateICmpSGE(xi, ConstantInt::get(xi->getType(), 0)), builder.CreateICmpSLT(xi, yi) ), builder.CreateAnd( builder.CreateICmpSLT(xi, ConstantInt::get(xi->getType(), 0)), builder.CreateICmpUGT(xi, yi) ) ) ) ); } HANDLE(and_int,2) return builder.CreateAnd(JL_INT(x), JL_INT(y)); HANDLE(or_int,2) return builder.CreateOr(JL_INT(x), JL_INT(y)); HANDLE(xor_int,2) return builder.CreateXor(JL_INT(x), JL_INT(y)); HANDLE(not_int,1) return builder.CreateXor(JL_INT(x), ConstantInt::get(t, -1, true)); HANDLE(shl_int,2) x = JL_INT(x); y = JL_INT(y); return builder. CreateSelect(builder. CreateICmpUGE(y, ConstantInt::get(y->getType(), x->getType()->getPrimitiveSizeInBits())), ConstantInt::get(x->getType(),0), builder.CreateShl(x, uint_cnvt(t,y))); HANDLE(lshr_int,2) x = JL_INT(x); y = JL_INT(y); return builder. CreateSelect(builder. CreateICmpUGE(y, ConstantInt::get(y->getType(), x->getType()->getPrimitiveSizeInBits())), ConstantInt::get(x->getType(),0), builder.CreateLShr(x, uint_cnvt(t,y))); HANDLE(ashr_int,2) x = JL_INT(x); y = JL_INT(y); return builder. CreateSelect(builder. CreateICmpUGE(y, ConstantInt::get(y->getType(), x->getType()->getPrimitiveSizeInBits())), builder.CreateAShr(x, ConstantInt::get(x->getType(), x->getType()->getPrimitiveSizeInBits()-1)), builder.CreateAShr(x, uint_cnvt(t,y))); HANDLE(bswap_int,1) x = JL_INT(x); return builder.CreateCall( Intrinsic::getDeclaration(jl_Module, Intrinsic::bswap, ArrayRef(x->getType())), x); HANDLE(ctpop_int,1) x = JL_INT(x); return builder.CreateCall( Intrinsic::getDeclaration(jl_Module, Intrinsic::ctpop, ArrayRef(x->getType())), x); HANDLE(ctlz_int,1) { x = JL_INT(x); Type *types[1] = {x->getType()}; Value *ctlz = Intrinsic::getDeclaration(jl_Module, Intrinsic::ctlz, ArrayRef(types)); #ifdef LLVM37 return builder.CreateCall(ctlz, {x, ConstantInt::get(T_int1,0)}); #else return builder.CreateCall2(ctlz, x, ConstantInt::get(T_int1,0)); #endif } HANDLE(cttz_int,1) { x = JL_INT(x); Type *types[1] = {x->getType()}; Value *cttz = Intrinsic::getDeclaration(jl_Module, Intrinsic::cttz, ArrayRef(types)); #ifdef LLVM37 return builder.CreateCall(cttz, {x, ConstantInt::get(T_int1, 0)}); #else return builder.CreateCall2(cttz, x, ConstantInt::get(T_int1, 0)); #endif } HANDLE(nan_dom_err,2) { // nan_dom_err(f, x) throw DomainError if isnan(f)&&!isnan(x) Value *f = FP(x); x = FP(y); raise_exception_unless(builder.CreateOr(builder.CreateFCmpORD(f,f), builder.CreateFCmpUNO(x,x)), prepare_global(jldomerr_var), ctx); return f; } HANDLE(abs_float,1) { x = FP(x); #ifdef LLVM34 return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::fabs, ArrayRef(x->getType())), x); #else Type *intt = JL_INTT(x->getType()); Value *bits = builder.CreateBitCast(FP(x), intt); Value *absbits = builder.CreateAnd(bits, ConstantInt::get(intt, APInt::getSignedMaxValue(((IntegerType*)intt)->getBitWidth()))); return builder.CreateBitCast(absbits, x->getType()); #endif } HANDLE(copysign_float,2) { x = FP(x); fy = FP(y); Type *intt = JL_INTT(x->getType()); Value *bits = builder.CreateBitCast(x, intt); Value *sbits = builder.CreateBitCast(fy, intt); unsigned nb = ((IntegerType*)intt)->getBitWidth(); APInt notsignbit = APInt::getSignedMaxValue(nb); APInt signbit0(nb, 0); signbit0.setBit(nb-1); Value *rbits = builder.CreateOr(builder.CreateAnd(bits, ConstantInt::get(intt, notsignbit)), builder.CreateAnd(sbits, ConstantInt::get(intt, signbit0))); return builder.CreateBitCast(rbits, x->getType()); } HANDLE(flipsign_int,2) { x = JL_INT(x); fy = JL_INT(y); Type *intt = x->getType(); ConstantInt *cx = dyn_cast(x); ConstantInt *cy = dyn_cast(fy); if (cx && cy) { APInt ix = cx->getValue(); APInt iy = cy->getValue(); return ConstantInt::get(intt, iy.isNonNegative() ? ix : -ix); } if (cy) { APInt iy = cy->getValue(); return iy.isNonNegative() ? x : builder.CreateSub(ConstantInt::get(intt,0), x); } Value *tmp = builder.CreateAShr(fy, ConstantInt::get(intt,((IntegerType*)intt)->getBitWidth()-1)); return builder.CreateXor(builder.CreateAdd(x,tmp),tmp); } HANDLE(jl_alloca,1) { return builder.CreateAlloca(IntegerType::get(jl_LLVMContext, 8),JL_INT(x)); } HANDLE(ceil_llvm,1) { x = FP(x); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::ceil, ArrayRef(x->getType())), x); } HANDLE(floor_llvm,1) { x = FP(x); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::floor, ArrayRef(x->getType())), x); } HANDLE(trunc_llvm,1) { x = FP(x); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::trunc, ArrayRef(x->getType())), x); } HANDLE(rint_llvm,1) { x = FP(x); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::rint, ArrayRef(x->getType())), x); } HANDLE(sqrt_llvm,1) { x = FP(x); raise_exception_unless(builder.CreateFCmpUGE(x, ConstantFP::get(x->getType(),0.0)), prepare_global(jldomerr_var), ctx); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::sqrt, ArrayRef(x->getType())), x); } HANDLE(powi_llvm,2) { x = FP(x); y = JL_INT(y); Type *tx = x->getType(); #ifdef LLVM36 Type *ts[1] = { tx }; Value *powi = Intrinsic::getDeclaration(jl_Module, Intrinsic::powi, ArrayRef(ts)); #ifdef LLVM37 return builder.CreateCall(powi, {x, y}); #else return builder.CreateCall2(powi, x, y); #endif #else // issue #6506 Type *ts[2] = { tx, tx }; Value *pow = jl_Module->getOrInsertFunction( tx==T_float64 ? "pow" : "powf", FunctionType::get(tx, ts, false)); return builder.CreateCall2(pow, x, builder.CreateSIToFP(y, tx)); #endif } HANDLE(sqrt_llvm_fast,1) { x = FP(x); return builder.CreateCall(Intrinsic::getDeclaration(jl_Module, Intrinsic::sqrt, ArrayRef(x->getType())), x); } default: assert(false); } assert(false); return NULL; } #undef HANDLE static Function *boxfunc_llvm(FunctionType *ft, const std::string &cname, void *addr, Module *m) { Function *f = Function::Create(ft, Function::ExternalLinkage, cname, m); add_named_global(f, addr); return f; } static FunctionType *ft1arg(Type *ret, Type *arg) { std::vector args1(0); args1.push_back(arg); return FunctionType::get(ret, args1, false); } static FunctionType *ft2arg(Type *ret, Type *arg1, Type *arg2) { std::vector args2(0); args2.push_back(arg1); args2.push_back(arg2); return FunctionType::get(ret, args2, false); } #define BOX_F(ct,jl_ct) \ box_##ct##_func = boxfunc_llvm(ft1arg(jl_pvalue_llvmt, T_##jl_ct), \ "jl_box_"#ct, (void*)&jl_box_##ct, m); #define SBOX_F(ct,jl_ct) BOX_F(ct,jl_ct); box_##ct##_func->addAttribute(1, Attribute::SExt); #define UBOX_F(ct,jl_ct) BOX_F(ct,jl_ct); box_##ct##_func->addAttribute(1, Attribute::ZExt); static void add_intrinsic(jl_module_t *m, const std::string &name, intrinsic f) { jl_value_t *i = jl_box32(jl_intrinsic_type, (int32_t)f); jl_sym_t *sym = jl_symbol(const_cast(name.c_str())); jl_set_const(m, sym, i); jl_module_export(m, sym); } #define ADD_I(name) add_intrinsic(inm, #name, name) extern "C" void jl_init_intrinsic_functions(void) { jl_module_t *inm = jl_new_module(jl_symbol("Intrinsics")); inm->parent = jl_core_module; jl_set_const(jl_core_module, jl_symbol("Intrinsics"), (jl_value_t*)inm); ADD_I(box); ADD_I(unbox); ADD_I(neg_int); ADD_I(add_int); ADD_I(sub_int); ADD_I(mul_int); ADD_I(sdiv_int); ADD_I(udiv_int); ADD_I(srem_int); ADD_I(urem_int); ADD_I(smod_int); ADD_I(neg_float); ADD_I(add_float); ADD_I(sub_float); ADD_I(mul_float); ADD_I(div_float); ADD_I(rem_float); ADD_I(fma_float); ADD_I(muladd_float); ADD_I(neg_float_fast); ADD_I(add_float_fast); ADD_I(sub_float_fast); ADD_I(mul_float_fast); ADD_I(div_float_fast); ADD_I(rem_float_fast); ADD_I(eq_int); ADD_I(ne_int); ADD_I(slt_int); ADD_I(ult_int); ADD_I(sle_int); ADD_I(ule_int); ADD_I(eq_float); ADD_I(ne_float); ADD_I(lt_float); ADD_I(le_float); ADD_I(eq_float_fast); ADD_I(ne_float_fast); ADD_I(lt_float_fast); ADD_I(le_float_fast); ADD_I(fpiseq); ADD_I(fpislt); ADD_I(and_int); ADD_I(or_int); ADD_I(xor_int); ADD_I(not_int); ADD_I(shl_int); ADD_I(lshr_int); ADD_I(ashr_int); ADD_I(bswap_int); ADD_I(ctpop_int); ADD_I(ctlz_int); ADD_I(cttz_int); ADD_I(sext_int); ADD_I(zext_int); ADD_I(trunc_int); ADD_I(fptoui); ADD_I(fptosi); ADD_I(uitofp); ADD_I(sitofp); ADD_I(fptrunc); ADD_I(fpext); ADD_I(abs_float); ADD_I(copysign_float); ADD_I(flipsign_int); ADD_I(select_value); ADD_I(ceil_llvm); ADD_I(floor_llvm); ADD_I(trunc_llvm); ADD_I(rint_llvm); ADD_I(sqrt_llvm); ADD_I(powi_llvm); ADD_I(sqrt_llvm_fast); ADD_I(pointerref); ADD_I(pointerset); ADD_I(checked_sadd); ADD_I(checked_uadd); ADD_I(checked_ssub); ADD_I(checked_usub); ADD_I(checked_smul); ADD_I(checked_umul); ADD_I(checked_fptosi); ADD_I(checked_fptoui); ADD_I(checked_trunc_sint); ADD_I(checked_trunc_uint); ADD_I(check_top_bit); ADD_I(nan_dom_err); ADD_I(ccall); ADD_I(cglobal); ADD_I(jl_alloca); ADD_I(llvmcall); }