
pyHMT2D v1.0 : Two-Dimensional Hydraulic
Modeling Tools in Python

https://github.com/psu-efd/pyHMT2D

Xiaofeng Liu, Ph.D., P.E., Associate Professor

Department of Civil and Environmental Engineering
Institute of Computational and Data Sciences

Pennsylvania State University

Email: xzl123@psu.edu
Web: http://water.engr.psu.edu/liu

March 11, 2024

https://github.com/psu-efd/pyHMT2D
http://water.engr.psu.edu/liu

Contents

Contents ii

1 Introduction 1
1.1 What is pyHMT2D . 1
1.2 Motivations . 1
1.3 Features and capabilities . 2
1.4 Limitations . 3
1.5 License . 4
1.6 Contributor Agreement . 5

2 Installation 6
2.1 Preparation of Python environment 6

2.1.1 Installation of Python . 6
2.1.2 Installation of dependent packages 7

2.2 Installation of pyHMT2D . 9
2.2.1 Installation from pip . 9
2.2.2 Installation from GitHub . 10
2.2.3 Directly clone or download pyHMT2D code into your own

computer from GitHub . 10

3 Application Examples 14
3.1 Simple Backwater Curve in 2D . 14
3.2 A more realistic case - Munice . 20
3.3 Run SRH-2D simulation with pyHMT2D 23
3.4 Run HEC-RAS simulation with pyHMT2D 24
3.5 Automatic Calibration . 25

3.5.1 Simple 1D Backwater Curve 25
3.5.2 SRH-2D . 28
3.5.3 HEC-RAS . 29

4 Code Structure and Implementation Details 31
4.1 Control SRH-2D with Python . 31
4.2 Control HEC-RAS with Python . 31

ii

4.2.1 Existing tools . 31
4.2.2 HEC-RAS Interface . 32

5 SRH-2D Basics, Result Format, and I/O 42
5.1 SRHHYDRO file format . 42
5.2 Convert SRH-2D result to 3D . 42

6 HEC-RAS Basics, Result Format, and I/O 43
6.1 Background . 43
6.2 Basic steps to setup and run a HEC-RAS 2D case 43
6.3 HEC-RAS files . 44
6.4 HEC-RAS results in HDF5 format 48
6.5 A python script to extract HEC-RAS 2D data 53

6.5.1 Changes to meshio package in version 4.2 56
6.5.2 Notes about RAS 2D . 57
6.5.3 Some useful packages . 57

6.6 Colormaps in RAS-Mapper . 57

Appendix A Python Related 60
A.1 Virtual Environment . 60
A.2 Python Package Installation . 61
A.3 Common problems and errors . 63

Appendix B File Format and Processing 64
B.1 Terrain and bathymetric data . 64

B.1.1 TIFF and GeoTIFF . 64
B.1.2 Artificial Terrain Creation 64

B.2 Coordinate systems, projections, and transformations 65
B.2.1 UTM . 66

B.3 Python libraries for georeferenced data 67
B.3.1 GDAL . 67

Appendix C VTK 73
C.1 Install VTK . 73

C.1.1 Windows . 73
C.1.2 Linux . 73

C.2 Glyph in Paraview . 75

Bibliography 80

iii © Xiaofeng Liu

Chapter 1

Introduction

1.1 What is pyHMT2D

pyHMT2D stands for Python Hydraulic Modeling Tools-2D. It is a Python pack-
age developed to control and (semi)automate 2D hydraulic modeling, and pre-
/postprocessing simulation results. Currently, the following 2D hydraulic models
are supported:

• SRH-2D

• HEC-RAS 2D

Despite the “2D” in the name pyHMT2D, this tool package can handle some
“1D” functionality in hydraulic models, such as HEC-RAS. For example, pyHMT2D
can control the run of a HEC-RAS case regardless it has 1D channels or not.

1.2 Motivations

Two-dimensional (2D) hydraulic modeling, replacing one-dimensional (1D) model-
ing, has become the work horse for most engineering purposes in practice. Many
agencies, such as U.S. DOT, Bureau of Reclamation (USBR), FEMA, and U.S.
Army Corp of Engineers (USACE), have developed and promoted 2D hydraulic
models to fulfill their respective missions. Example 2D models are SRH-2D (USBR)
and HEC-RAS 2D (USACE). The motivations of this package are as follows:

• One major motivation of this package is to efficiently and automatically
run 2D hydraulic modeling simulations, for example, batch simulations to
intelligently and efficiently calibrate models. Many of the 2D models have
some automation to certain degree. However, these models and their GUIs
are closed source. Therefore, a modeler is limited to what he/she can do.

• Most 2D models have good user interface and they have capability to produce
good result visualizations and analysis. However, with this package and the
power of the VTK library, 2D hydraulic modeling results can be visualized
and analyzed with more flexibilty and efficiency.

1

• This package also serves as a bridge between 2D hydraulic models and the
Python universe where many powerful libaries exist, for example statistics,
machine learning, GIS, and parallel computing.

• The read/write and tranformation of 2D hydraulic model results can be used
to feed other models which use the simulated flow field, for example external
water quality models and fish models.

• Model inter-comparison and evaluation. Almost all 2D hydraulic models
solve the shallow-water equations. However, every model does it differently.
How these differences manifest in their results and how to quantify/interpret
the differences are of great interest to practitioners.

1.3 Features and capabilities

The features and capabilities of pyHMT2D are briefly described in this section.
More features will be added in the future. Application examples are provided with
the package and some details will be provided in the following chapters.

For SRH-2D modeling:

• read SRH-2D results

• convert SRH-2D results to VTK format (if they are not already in VTK
format)

• sample and probe simulation results (with the functionality of VTK library)

• control and automate SRH-2D simulations

For HEC-RAS 2D modeling:

• read RAS 2D results (HDF files and other case specification files)

• convert RAS 2D results to VTK, one of the most popular format for scientific
data

– point and cell center data (depht, water surface elevation, velocity, etc.)
– interpolate between point and cell data
– face data (e.g., subterrain data)

• convert RAS 2D mesh, boundary conditions, and Manning’s n data into
SRH-2D format such that SRH-2D and HEC-RAS 2D can run a case with
exactly the same mesh for comparison purpose. Consequently, HEC-RAS 2D
can be used as a mesh generator for SRH-2D.

2 © Xiaofeng Liu

• sample and probe simulation results (with the functionalities of VTK library)

• control and automate HEC-RAS 2D simulations

With the control and automation capability in pyHMT2D, it is much easier to
do the following:

• automatic calibration of 2D models with any available optimization and cali-
bration Python packages. Currently pyHMT2D supports Scipy’s optimization
module, which includes many local and global optimization methods. In the
future, other optimizers will be added.

• user can define any calibration/optimization objective function (e.g., water
level, velocity, inundation area, flow split ratio, bed shear stress, recirculation
zone size/shape, force on structures, flow hydrograph, etc, and/or their
combinations).

• Monte-Carlo simulations with scripting and Python’s statistic libraries

• ...

Other features of interests:

• with the unified result format of VTK, calculate the difference between
simulation results, regardless they are on the same mesh or not.

• create rating curves for a boundary, which can be used in SRH-2D.

• extrude 2D model mesh to 3D (with either one layer or multiple layers) and
map 2D result to the 3D mesh. This is useful if the 2D flow field is to be
used in a 3D model application, or used as initial condition for 3D CFD
simulations.

1.4 Limitations

As all other software packages, pyHMT2D also has its share of limitations. For
example, the automation claimed in this document is only in the relative, not
absolute, sense. Some manual modifications are still needed. Other significant
limitations for each of the supported 2D models are listed below.

For SRH-2D:

• This package is developed and tested with SRH-2D v3.3; other versions may
work but has not been tested.

For HEC-RAS 2D:

3 © Xiaofeng Liu

• Certain functionality in pyHMT2D can only deal with one 2D flow area.

• Only 2D flow area information is processed; others such as 1D channels and
structures are not read from RAS 2D results. Addition of processing 1D data
is doable in the framework of pyHMT2D.

• Only flow data is processed; others such as sediment and water quality are
ignored. In the future, processing of other result data can be added.

• This package is developed and tested with HEC-RAS v5.0.7; other earlier
versions may work but have not been tested. The latest HEC-RAS v6 beta
versions are currently not supported because the result file does not contain
some of the variables as described in its user manual.

These limitations exist only when HEC-RAS mesh and results are read and parsed.
They do not exist if pyHMT2D is used to control the simulations.

1.5 License

pyHMT2D is released under the MIT license. Details about MIT license can be
found at https://opensource.org/licenses/MIT. If you need other license, please
contact Dr. Xiaofeng Liu.

4 © Xiaofeng Liu

https://opensource.org/licenses/MIT

Copyright (c) 2023 Xiaofeng Liu

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to
deal in the Software without restriction, including without limitation the
rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
sell copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF
ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT
SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
OR OTHER DEALINGS IN THE SOFTWARE.

1.6 Contributor Agreement

First of all, thanks for your interest in contributing to pyHMT2D. Collectively, we
can make pyHMT2D more powerful, better, and easier to use.

Because of legal reasons and like many successful open source projects, contrib-
utors have to sign a “Contributor License Agreement” to grant their rights to “Us”.
See details of the agreement on GitHub. The signing of the agreement is automatic
when a pull request is issued.

If you are just a user of pyHMT2D, the contributor agreement is irrelevant.

5 © Xiaofeng Liu

Chapter 2

Installation

2.1 Preparation of Python environment

pyHMT2D is a Python package which needs a proper Python environment and its
dependency packages. pyHMT2D is developed with Python 3.7. The steps in this
section is optional if you already have Python installed and you are familiar with
Python package installation. If that is the case, you can skip to Section 2.2.

2.1.1 Installation of Python

There are several ways to install Python. For example, you can install the latest
version of Anaconda Python from https://www.anaconda.com/products/. During
the writing of this manual, the latest version is Anaconda3-2020.11. By default,
it uses Python 3.8. But we can create a Python 3.7 virtual environment (see
Section A.1 for more details).

The concept of virtual environment in Python is mainly to avoid package
conflicts. There are large amount of Python packages (pyHMT2D is one of them)
which have their own dependency and version requirements. It is very easy to
induce conflicts. To solve this problem, we can create virtual environments to
isolate from each other and be used for different purposes.

You can have multiple virtual environments on your machine. Here we create a
virtual environment with Python 3.7. To create virtual environment, you can use
different tools, such as virtualenv, venv, or conda. Here we use conda because
we use Anaconda Python.

Basic steps and commands for virtual environment creation are as follows. We
use Windows operating system as an example. pyHMT2D can be used in Linux
and Mac OS.

• Open an “Anaconda Prompt (anaconda3)” terminal on Windows through
“start->Anaconda3 (64-bit)->Anaconda Prompt (anaconda3)”. In this com-
mand window, all proper Python and Anaconda environment variables are
set properly and you can type your commands.

• To check the list of available Python versions:

6

https://www.anaconda.com/products/

$ conda search python

• Create a new virtual environment. E.g., the following creates a virtual
environment called “py37”.

$ conda create -n py37 python=3.7 anaconda

• To check and view a list of created virtual environments:

$ conda info –e

You will see that in addition to the created virtual environment, there is also
a default environment called “base”.

• To activate the created virtual environment:

$ conda activate py37

• To deactivate the current virtual environment and go back to the “base”
environment:

$ conda deactivate

• To delete a virtual environment (do not do this if you still need it in the
future):

$ conda remove –n py37 -all

2.1.2 Installation of dependent packages

Some of the dependent packages are only used when certain functionalities of
pyHMT2D are called. If you do not use these functionalities, the dependent
packages are optional.

pyHMT2D depends on the following packages (those with ∗ are required):

• h5py∗: for HDF file I/O.

• vtk∗: for vtk file format.

• pywin32: for interacting with HEC-RAS through COM.

• gdal: for spatial data processing and artificial bathymetry creation.

7 © Xiaofeng Liu

https://www.h5py.org/
https://github.com/Kitware/VTK
https://pypi.org/project/pywin32/
https://pypi.org/project/GDAL/

• affine: for affine transformation of georeferenced system.

For pyHMT2D, make sure that the newly created virtual environment “py37” is
activated and do everything within. If you are new to Python package installation,
a quick tutorial can be found at https://packaging.python.org/tutorials/installing-
packages/.

You can install the dependent packages individually. In the following, pip is
used to install the dependent packages. Activate your new virtual environment
“py37” and do everything within this virtual environment.

• h5py: https://pypi.org/project/h5py/

$ pip install h5py

• vtk: https://pypi.org/project/vtk/

$ pip install vtk

• pywin32 (only if you want to run HEC-RAS through pyHMT2D):
https://pypi.org/project/pywin32/

$ pip install pywin32

• affine: https://pypi.org/project/affine/

$ pip install affine

• GDAL (Only needed if you use “Terrain”, “RAS_2D_Data”, their related
classes and tools, and other georeferencing functions):
https://pypi.org/project/GDAL/.
Read their instructions carefully. For example, on Windows, you need to
install “GDAL Windows binaries” first. The Python “GDAL” package is
only a binding/wrapper to the real “GDAL” binaries.

$ pip install GDAL

If there are errors reported in the installation of GDAL, you can use some pre-
compiled wheels (a metaphorical name for Python package). For example on
this website https://www.lfd.uci.edu/ gohlke/pythonlibs, you can download
a proper version of gdal, then

$ pip install GDAL-3.2.2-cp37-cp37m-win_amd64.whl

8 © Xiaofeng Liu

https://pypi.org/project/affine/
https://packaging.python.org/tutorials/installing-packages/
https://packaging.python.org/tutorials/installing-packages/
https://pypi.org/project/h5py/
https://pypi.org/project/vtk/
https://pypi.org/project/pywin32/
https://pypi.org/project/affine/
https://pypi.org/project/GDAL/
https://www.lfd.uci.edu/~gohlke/pythonlibs

After GDAL is installed, it is important to add set its environment variable.
Otherwise, GDAL may not function properly. The path to the GDAL package
on your computer can be found using

$ pip show gdal

In fact, GDAL is installed under the name of osgeo and on the author’s
computer it is installed in:

c:\users\username\appdata\roaming\python\python37\site-packages

Thus, to set GDAL’s environment variable, in a Windows command terminal,
I used the following setx commands:

$ setx GDAL_DATA 'c:\users\username\appdata\roaming\python
\python37\site-packages\osgeo\gdal-data'

$ setx GDAL_DRIVER_PATH 'c:\users\username\appdata\roaming\python
\python37\site-packages\osgeo\gdalplugins'

$ setx PROJ_LIB 'c:\users\username\appdata\roaming\python
\python37\site-packages\osgeo\projlib'

$ setx PYTHONPATH 'c:\users\username\appdata\roaming\python
\python37\site-packages\osgeo\'

2.2 Installation of pyHMT2D

There are several ways to install pyHMT2D on your computer. They are:

• Install from pip,

• Install from GitHub,

• Directly clone or download pyHMT2D code into your own computer from
GitHub.

2.2.1 Installation from pip

pyHMT2D is available from the Python Package Index. To install, activate the
desired virtual environment (if you have not done so) and simply do:

$ pip install pyHMT2D

After installation, you can check where pyHMT2D is installed and whether it is
installed properly by

9 © Xiaofeng Liu

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/setx

$ pip show pyHMT2D

The installation should be in the virtual environment, e.g.,
“anaconda3\envs\py37\lib\site-packages”.

2.2.2 Installation from GitHub

You can directly install pyHMT2D from its repository on GitHub. One reason to
do this could be that the latest version may have not been uploaded to pip yet or
you want a specific old version (commit) on GitHub. Use the following command

$ pip install git+https://github.com/psu-efd/pyHMT2D.git

The installation location should be the same as in the previous section. For more
information, you can search “git install from github”.

2.2.3 Directly clone or download pyHMT2D code into your own com-
puter from GitHub

To do this, you can use the “git clone” command or download a zip file from
GitHub.

To clone the pyHMT2D repository from GitHub,

$ git clone https://github.com/psu-efd/pyHMT2D.git

or

$ git clone git@github.com:psu-efd/pyHMT2D.git

Note that the first one uses HTTPS and the second uses SSH. After cloning the
repository, you should have “pyHMT2D” in your current directory.

If you want to directly download a zip file, you can go to pyHMT2D’s GitHub
repository and click “Clone” and then choose “Download ZIP” (see Figure 2.1).
Unzip the folder into your desired location.

To use the pyHMT2D package that you just cloned or downloaded, you need
to let the Python Interpreter know where to find it. Python interpreter uses the
“PYTHONPATH” environment variable to search for modules when it sees the
“import” command in your Python code. Thus, you need to add the location of
pyHMT2D to “PYTHONPATH”.

Please note that if you also installed pyHMT2D before with pip or git install,
you should make sure that you use the version that you want. The version used by
Python Interpreter is the one it finds first for all the paths and in their order listed
the “PYTHONPATH” environment variable.

How to modify the “PYTHONPATH” environment variable depends on your
system and how you want to use pyHMT2D. Most commonly you will use it on

10 © Xiaofeng Liu

Figure 2.1 Download ZIP from GitHub.

Windows machines. You can change the “PYTHONPATH” environment variable
through command line, PyCharm, in your Python code, or in a Jupyter Notebook.

Use pyHMT2D in a terminal

If you run your Python code in Window command line (terminal), you can do the
following:

$ set PYTHONPATH=/path/to/pyHMT2D;%PYTHONPATH%

which will put your “path/to/pyHMT2D” on the top of “PYTHONPATH”. To
verify, you can use

$ echo %PYTHONPATH%

to check the content of “PYTHONPATH”. Indeed, you can check all environment
variables by typing

$ set

11 © Xiaofeng Liu

Use pyHMT2D in PyCharm

You can use different Python Integrated Development Editors (IDEs) to work on
textitpyHMT2D’s source code and run your own Python scripts. PyCharm is one
of popular Python IDEs. You can obtain PyCharm from:

https://www.jetbrains.com/pycharm/download/
Launch PyCharm, click “File->Open”, navigate to pyHMT2D’s directory and

then click “OK”. Note that you should select the pyHMT2D’s directory itself, not
any files within. By default, PyCharm creates a project for pyHMT2D. You should
see all the content of the project as in Figure 2.2.

Figure 2.2 pyHMT2D project in PyCharm.

Next, we need to set PyCharm so it can use the virtual environment “py37”
that we created. The steps are as follows:

• “File->Settings ...”. In the pop-up window, select “Project: pyHMT2D-
>Python Interpreter”.

• By default, PyCharm uses the default Python environment. Here we need to
change it to “py37”. On the right, click “Python Interpeter” and then “Show
All . . . ”. Select the “py37” environment.

• Once you selected the “py37” environment, PyCharm will list all the packages
installed in this environment. You can have a look at whether pyHMT2D’s
dependent packages are installed (see Figure 2.3).

• Click “OK”.

12 © Xiaofeng Liu

https://www.jetbrains.com/pycharm/download/

Figure 2.3 pyHMT2D’s Python Interpreter and environment setting in PyCharm.

After all these setups are done, you can try pyHMT2D using one of the examples
or your own Python code.

• In PyCharm, double click the example Python code to open it.

• In the Python code editor window, right click and select “Run . . . ” (see
Figure 2.4).

Figure 2.4 Run pyHMT2D code in PyCharm.

13 © Xiaofeng Liu

Chapter 3

Application Examples

This chapter shows some examples of using pyHMT2D. These examples range
from simple backwater curve (in 2D), conversion of HEC-RAS mesh to SRH-2D,
comparison of results between different models, control model runs, and automatic
model calibration with Python optimization packages.

3.1 Simple Backwater Curve in 2D

This example is located in “examples/compare_SRH_2D_RAS_2D/backwater_curves”.
It has two folders, SRH-2D and HEC-RAS-2D, and some Python scripts. This example
demonstrates the following pyHMT2D’s functionalities:

• Create an artificial georeferenced terrain for a rectangular channel with a
given slope. Indeed, you can create any terrain by modifying the example
Python script.

• Create HEC-RAS case for use in pyHMT2D.

• Run the HEC-RAS case to get results.

• Convert HEC-RAS mesh to SRH-2D mesh.

• Run the case in SRH-2D with exactly the same mesh as in HEC-RAS.

• Also run a one-dimensional backwater curve solver for the same case.

• Convert HEC-RAS and SRH-2D results into VTK.

• Sample on the VTK result files and make comparison.

In this example, a simple backwater curve is simulated with both HEC-RAS 2D
and SRH-2D. The mesh is created in HEC-RAS 2D and then converted to SRH-2D.
Specifically, the following steps are followed:

• Create an artificial bathymetry using GDAL with a given constant slope and
domain size/extent. The script is named “create_channel_terrain.py”.

14

Figure 3.1 Generated terrain using pyHMT2D.

The resulted bathymetry data is in the format of GeoTIFF, which can be
imported as terrain in HEC-RAS and SMS (see Figure 3.1).
Note: if you see the following error message when you run the script

ERROR 1: PROJ: proj_create_from_database: Cannot find proj.db

it is very likely that the GDAL’s environment variables are not set properly.
Please refer to Section 2.1.2.

• Create and run HEC-RAS 2D simulation case (geometry, mesh, boundary
conditions, unsteady flow data, simulation plan, etc.). See HEC-RAS’s user
manual for details if you are not familiar with HEC-RAS.
Important notes:

– In HEC-RAS, when the “SA/2D Area BC Lines” are drawn, make sure
the lines are slightly “shorter” than the intended boundary (and as close
to the face points in the mesh as possible). This is because HEC-RAS
use both stationing and face points to record BC lines. The reason is
on page 3-43 in the section “Connecting 2D flow areas to 1D Hydraulic
Elements”. If the length of a BC line is longer than the total length of
all face edges near the BC line, HEC-RAS will search up and down the
boundary to add the adjacent boundary faces. This is reflected in the
geometry HDF file (“[Geometry][Boundary Condition Lines][External
Faces]”). pyHMT2D uses this entry in the HDF file to determine the
face points on each boundary. If extra face points are included, it will
confuse pyHMT2D and other models, such as 2D, which do not utilize
this stationing concept.
Figure 3.2a shows a proper placement of one end point, while Figure 3.2b
shows a not proper example.
To check whether the BC lines and their associated face points are
created and exported properly, one can open the HEC-RAS .g##.hdf
file in HDFView and examine the content in “[Geometry][Boundary
Condition Lines][External Faces]”. Also open RAS Mapper and turn

15 © Xiaofeng Liu

(a) BC line point slightly shorter than the
intended boundary (good)

(b) BC line point longer than the intended
boundary (not good)

Figure 3.2 Proper placing of BC line end points in HEC-RAS “Geometry Data” window
to not include any unnecessary face points.

on cell number, face point number, face number and boundary. From
the side comparison for example as shown in Figure 3.3, one can check
whether the BC line’s face points include unnecessary ones.

• Copy relevant HEC-RAS files (e.g., geometry .g01, .g01.hdf, plan .p01,
.p01.hdf, project .prj, and bathymetry file .tif) to SRH-2D directory.

• Run the Python script named “process_RAS_2D_Data.py” to process HEC-
RAS case data and save to VTK. The VTK file is called “RAS2D_channel_0012.vtk”
in this case.
The script also creates SRH-2D files (srhgeom, srhmat). The srhhydro file
needs to be edited manually. A template can be used. All these SRH-2D files

16 © Xiaofeng Liu

Figure 3.3 Inspection of BC line’s face points with HDFView and RAS Mapper.

are editable text files which can be opened with e.g. Windows Notepad or
Notepad++.
Inspect these text files (srhhydro, srhgeom, and srhmat) to make sure they are
correct and consistent, e.g., boundary condition IDs, Manning’s material IDs,
etc. Also make sure that the number of ManningsN in srhhydro is consistent
with the record in srhmat. For example, in the srhhydro file

ManningsN 0 0.03
ManningsN 1 0.03
ManningsN 2 0.04

the first line is the default Manning’s n (with an ID of 0) and the rest is for
different material zones. Correspondingly, in srhmat file,

17 © Xiaofeng Liu

https://notepad-plus-plus.org/downloads/

SRHMAT 30
NMaterials 2
MatName 1 "zone_1"
Material 1 x x x

Here, NMaterials 2 has to be the number of materials used in the case plus
the default. In this case the value is 2, which means there is one material in
the srhmat file (plus the default).

• Run the case with SRH-2D. We can use pyHMT2D to control the run of
SRH-2D. But here, we will skip this function for the time being. We run the
case through command window. You need to know where your SRH-2D is
installed.
For example, if you have SMS installed, it comes with SRH-2D. Thus, you
first run the pre-processor:

$ /path/to/SRH_Pre_Console.exe 3 backwater.srhhydro

Then, run the SRH-2D solver:

$ /path/to/SRH-2D_v330_Console.exe backwater_curve.DAT

• Run the Python script “process_SRH_2D_Data.py” to convert the SRH-2D
results to VTK. The VTK file is named “SRH2D_backwater_curve_C_0024.vtk”
in this case.
Both VTK files from SRH-2D and HEC-RAS can be loaded into ParaView
for inspection.

• Run the Python script “compare_SRH_2D_HEC_RAS_2D.py” to extract the
water surface elevations from both SRH-2D and HEC-RAS 2D results in
VTK format. It also run a simple 1D backwater curve solver. All three water
surface profiles are plotted together for comparison (Figure 3.4). In addition,
this script calculate the differences in simulation results between SRH-2D
and HEC-RAS 2D and save them into separate VTK files. You can load
these VTK files in ParaView to check the differences. For example, Figure 3.5
shows that the difference in water surface elevation is very small for this case.
Note: Current version of SRH-2D v3.3’s VTK format output (called Paraview
in SMS and the srhhydro file) does not include any solution data. As such,
make sure the output format is not “Paraview”. Other formats, such as
“SRHC” and “XMDFC” can be read by pyHMT2D and translate to VTK.

18 © Xiaofeng Liu

Figure 3.4 Comparison among SRH-2D, HEC-RAS 2D, and Backwater-1D solutions
using pyHMT2D.

Figure 3.5 Difference in water surface elevations between SRH-2D and HEC-RAS 2D
shown in ParaView.

19 © Xiaofeng Liu

3.2 A more realistic case - Munice

Use the simple example in the previous section as the foundation, this section
shows the application of pyHMT2D to a more realistic 2D case. This case uses
the terrain data in the “Munice” example that comes with HEC-RAS. The case is
built from scratch with one single 2D flow area. Figure 3.6a shows the mesh and
boundary conditions in HEC-RAS. The 2D flow area has one inlet with specified
discharge and one outlet with specified water surface elevation. The Manning’s n
is not uniform in the domain. For demonstration purpose, the domain is divided
into six zones, each of which has their own Manning’s n value. The division is
somewhat arbitrary. In reality, it should be based on the ground condition.

(a) The mesh and boundary conditions of
the Muncie case in HEC-RAS.

(b) The Manning’s n zones for the Muncie
case

Figure 3.6 Mesh, boundary conditions, and Manning’s n zones in HEC-RAS.

The boundary conditions are as follows. At the inlet boundary, the constant
discharge is 20,000 cfs. At the outlet boundary, the constant water surface elevation

20 © Xiaofeng Liu

is 930 ft. The total simulation time is six hours, which is approximately long
enough that at the end of simulation the flow field reached steady state. The
simulated water depth at the end in RAS Mapper is shown in Figure 3.7.

Figure 3.7 The simulated water depth for the Muncie case in HEC-RAS’s RAS Mapper.

After the HEC-RAS simulation is done, you can use pyHMT2D to perform
some processing:

• Run the Python script named “process_RAS_2D.py” to convert HEC-RAS
2D result to VTK and convert its mesh and Manning’s n distribution to SRH-
2D. The resulted VTK file is in the directory “HEC-RAS” and the SRH-2D
files are in the directory “SRH-2D”.

• In the directory “SRH-2D”, modify and check the case configuration files, such
as “srhhydro”, “srhgeom”, and “srhmat”.

• Run the SRH-2D case to get the results.

• Run the Python script named “process_SRH_2D.py” which converts the
SRH-2D simulation results into VTK.

• Run the Python script “compare_SRH_2D_HEC_RAS_2D.py”, which reads the
VTK files for HEC-RAS and SRH-2D results, calculate the differences in
water depth, water surface, elevation, bed elevation, and velocity, save them
into separate VTK files.

All the generated VTK files can be loaded into ParaView for inspection. For
example, Figure 3.8 shows the comparison of simulated water depth from HEC-
RAS 2D and SRH-2D in ParaView. As shown in the figure, the comparison is

21 © Xiaofeng Liu

qualitatively good for this case. To really quantify the difference, you can load the
calculated difference files in ParaView. For example, Figure 3.9 shows the difference
in bed elevation, water depth, velocity, and water surface elevation calculated using
pyHMT2D in ParaView.

Figure 3.8 Side-by-side comparison of water depth simulated by HEC-RAS 2D and
SRH-2D in ParaView.

Figure 3.9 Differences in bed elevation, water depth, , velocity, and water surface
elevation shown in ParaView.

22 © Xiaofeng Liu

3.3 Run SRH-2D simulation with pyHMT2D

This example is in the directory “examples/SRH_2D_Model”. We will demonstrate
how to use a Python script to run SRH-2D simulations (both pre-processing and
solver) using pyHMT2D. The simulation case is the same Muncie case used in
previous section. The SRH-2D configuration files, srhhydro, srhgeom, and srhmat,
have been provided.

To run the case, run the Python script file named “demo_SRH_2D_Model.py”,
which will run the SRH-2D case and convert the result into VTK. In the script,
the key part to control the run of SRH-2D is as follows:

1 #create a SRH-2D model instance

2 my_srh_2d_model = pyHMT2D.SRH_2D.SRH_2D_Model(version, srh_pre_path,

3 srh_path, extra_dll_path, faceless=False)

4

5 #initialize the SRH-2D model

6 my_srh_2d_model.init_model()

7

8 print("Hydraulic model name: ", my_srh_2d_model.getName())

9 print("Hydraulic model version: ", my_srh_2d_model.getVersion())

10

11 #open a SRH-2D project

12 my_srh_2d_model.open_project("Muncie.srhhydro")

13

14 #run SRH-2D Pre to preprocess the case

15 my_srh_2d_model.run_pre_model()

16

17 #run the SRH-2D model's current project

18 my_srh_2d_model.run_model()

19

20 #close the SRH-2D project

21 my_srh_2d_model.close_project()

22

23 #quit SRH-2D

24 my_srh_2d_model.exit_model()

It shows the typical process of creation of a SRH_2D_Model object, initialize the
model, open a simulation project (case), run the pre-processor, run the solver, close
the project, and exit the model.

23 © Xiaofeng Liu

3.4 Run HEC-RAS simulation with pyHMT2D

This example is in the directory “examples/HEC_RAS_Model”. We will demonstrate
how to use a Python script to run HEC-RAS simulations using pyHMT2D. The
simulation case is the same 2D Muncie case used in previous section. In fact, the
control of HEC-RAS run is not limited to 2D cases. Any HEC-RAS case can be
ran in the script shown here. The HEC-RAS case files have been provided.

To run the case, run the Python script file named “demo_HEC_RAS_Model.py”,
which will run the HEC-RAS case and convert the result into VTK. In the script,
the key part to control the run of HEC-RAS is as follows:

1 #create a HEC-RAS model instance

2 my_hec_ras_model = pyHMT2D.RAS_2D.HEC_RAS_Model(version="5.0.7",

3 faceless=False)

4

5 #initialize the HEC-RAS model

6 my_hec_ras_model.init_model()

7

8 print("Hydraulic model name: ", my_hec_ras_model.getName())

9 print("Hydraulic model version: ", my_hec_ras_model.getVersion())

10

11 #open a HEC-RAS project

12 my_hec_ras_model.open_project("Muncie2D.prj",

13 "Terrain/TerrainMuncie_composite.tif")

14

15 #run the HEC-RAS model's current project

16 my_hec_ras_model.run_model()

17

18 #close the HEC-RAS project

19 my_hec_ras_model.close_project()

20

21 #quit HEC-RAS

22 my_hec_ras_model.exit_model()

It shows the typical process of the creation of “HEC_RAS_Model” object, model
initialization, opening a project (case), running the model, closing project, and
exiting the model.

24 © Xiaofeng Liu

3.5 Automatic Calibration

Calibration of hydraulic models is the process of adjusting model parameters such
that the difference between model prediction and measurement data is minimized
to be below a pre-determined threshold. With pyHMT2D’s control and automation
of hydraulic models, and its ability to sample and probe simulation results, it is
relatively easy to automate the calibration process.

This section demonstrate three examples, which include a simple 1D back-
water curve solver, SRH-2D, and HEC-RAS 2D. These cases are located in
“examples/calibration”

3.5.1 Simple 1D Backwater Curve

This is a simple toy problem to demonstrate the basic elements of the automatic
calibration using pyHMT2D. It is a 1D backwater curve in a channel of 10 km.
Figure 3.10 shows the setup.

There are two zones of Manning’s n, with the value 0.055 and 0.04, for upstream
and downstream zones, respectively. The bottom slope is 0.00001 and the specific
discharge is 0.48 m2/s. The backwater curve is firstly simulated with pyHMT2D’s
Backwater_1D_Model class and four sampling points are used to sample the manu-
factured solution. The sampled water surface elevations and velocities are saved in
two CSV files, i.e., sampled_wse.csv and sampled_velocity.csv, which will be
used as measurement data for calibration.

Figure 3.10 Setup of the 1D backwater curve calibration case.

25 © Xiaofeng Liu

In the Python script named “demo_calibration_Backwater_1D.py”, two func-
tions are provided, namely “demo_backwater_1d_model_data()” to produce the
manufactured solution, and “demo_calibrator()” to perform the calibration. The
calibration function is very simple and only has two lines:

1 my_calibrator = pyHMT2D.Calibration.Calibrator("calibration.json")

2

3 my_calibrator.calibrate()

It creates a “Calibrator” object, which reads the calibration configuration
from the “calibration.json” JSON file. JSON stands for JavaScript Object
Notation and is a data format easy for human to read and edit. Details about
JSON can be found at https://www.json.org/json-en.html.

In pyHMT2D, this file has the following sections:

• model: It specifies which hydraulic model to run. Currently the three options
are Backwater-1D, SRH-2D, and HEC-RAS.

• Section for the selected model: For this example, there is a section named
Backwater-1D to specify the 1D backwater model, e.g., name, units, channel
length, Maning’s n zones, number of grid, specific discharge, etc. The content
of this section depends on the specific model. For SRH-2D and HEC-RAS, see
the two examples following this one.

• calibration: It specifies the following:

– calibration_parameters: For example, the Manning’s n for each zones.
For each calibration parameter, an initial guess and calibration value
range should be specified. Each calibration parameter can be optionally
turn on or off. If it is off, the parameter will be fixed as its initial guess.

– objectives: This is a list of calibration objectives (targets). For
example, here we have two calibration targets, water surface elevation
and velocity. For each target, we need to specify:

∗ name: just a name to identify the target,
∗ solVarName: solution variable name, used to sample the solution

for comparison)
∗ type: e.g., point measurement,
∗ weight: used in the calculation of total error,
∗ file: the measurement data file, and
∗ error_method: how the error is calculated, either absolute or rela-

tive.

26 © Xiaofeng Liu

https://www.json.org/json-en.html

– optimizer: name of the optimizer. Currently the only options are
“scipy.optimize.local”, “scipy.optimize.global” and “enumerator”.
The former two use the “scipy.optimize” package. The last one is a
customized “optimizer” which loops over user-defined enumeration of
parameter combinations.

– Section for the specified optimizer. For example, if “scipy.optimize.local”
is selected, this section should specify method and options. Informa-
tion in this section is passed along to scipy.optimize module. More
information can be found on its website.
If the “enumerator” optimizer is specified, the user needs to list the
calibration parameter combinations in the JSON file. This approach is
useful if the user only wants to find the best performing parameter set
out of a list. See the example “calibration_enumerator.json” file.

Run the python script “demo_calibration_Backwater_1D.py” to perform the
calibration. If the calibration is successful, pyHMT2D will report the calibrated
parameter. You can compare the results with the true values of 0.04 and 0.055 for
downstream and upstream, respectively.

In this example, to show the power of Python code, another script named
“calibration_plot_and_animation.py” is provided. It has two functions.

One function is to read the calibration results and plot the comparison of
water surface elevation and velocity vectors between simulation and measurement.
Figure 3.11 shows the plot, which can give the modeler direct visual comparison.
For this simple case, the match between simulation and measurement is almost
perfect.

Figure 3.11 Comparison between simulation and measurement data for the 1D backwater
curve calibration case. For the velocity plot, the red vectors are from measurement and
the black ones are from simulation.

27 © Xiaofeng Liu

https://docs.scipy.org/doc/scipy/reference/optimize.html

The second function is to animate the calibration process. For cases with less
than three calibration parameters, we can plot the trajectory of the calibration
in the parameter space. The results of this function are a MP4 video file named
“calibration_process.mp4” and a figure for the final frame of the video as shown
in Figure 3.12. The left figure shows the trajectory of (n1, n2) pair (downstream
and upstream Manning’s n) at each calibration iteration and the right figure shows
the calibration error as a function of iteration number.

Figure 3.12 Comparison process for the 1D backwater curve calibration case.

3.5.2 SRH-2D

This the same 2D Munice case except that the Manning’s n zones are modified.
As shown in previous sections for this case, the majority of the inundation area is
close to the main channel. Thus, the main calibration parameters should be the
Manning’s n values in the channel. To make the case more meaningful for practical
purpose, the main channel is future divided into three segments, namely upstream,
middle, and downstream. They have their own hypothetical Manning’s n values.
Figure 3.13 shows the zones and their names for this case.

A Python script named “demo_calibration_SRH-2D.py” is provided which has
two functions. One is called “demo_srh_2d_model_data()” which run SRH-2D
once to get the Manufactured solution and sample results as measurement data for
calibration. The run of SRH-2D case depends on the usual srhhydro, srhgeom,
and srhmat files in this directory. So make sure the Mannng’s n values in the
srhhydro files are the ones that you want to use to generate the manufactured
solution.

The other function is called “demo_calibrator” which again only has two
lines. It creates the “Calibrator” object and reads the calibration specification
in the JSON file “calibration.json”. The content in this file is similar to the
previous section and self-explanatory. One note here is that there are eight Man-

28 © Xiaofeng Liu

Figure 3.13 Manning’s n zones for the Munice 2D calibration case.

ning’s n calibration parameters. However, only three of them, namely channel_up,
channel_middle, and channel_down, are activated because they are most impor-
tant for the hydrodynamics here. During the calibration process, the optimization
package will search for the best Manning’s n values for the three zones. pyHMT2D
will modify their values in the srhhydro file for SRH-2D to simulation at every
iteration.

With the example configuration JSON where the “Powell” method is used as
the optimizer and the tolerance for both parameter and error function to be 0.01,
the calibrated Manning’s n values for upstream, middle, and downstream zones of
the channel are 0.02936002, 0.02139392, 0.04189711 on my computer (may slightly
different on your computer). The true values are 0.03, 0.02, and 0.04, respectively.
If you reduce the tolerance or change the optimization method, the calibrated
values should be closer to the true values.

To visualize the calibration results, a Python script named “calibration_plot.py”
is provided. It generate the plot shown in Figure 3.14.

3.5.3 HEC-RAS

The calibration case is the same as the SRH-2D case. The case has been created in
HEC-RAS. We again want to calibrate only the three channel zones. A Python
code named “demo_calibration_HEC-RAS.py” is provided which again contain
two main functions. One is for the generation of manufactured solution and sample

29 © Xiaofeng Liu

Figure 3.14 Comparison of water surface elevation and velocity vectors between SRH-2D
simulation and measurement for the Munice 2D calibration case. For the velocity plot,
the red vectors are from measurement and the black ones are from simulation.

result as measurement data for calibration. The other is to run the calibration.
In practice, there might be a need to calibrate the model with a limited number

of user-supplied combinations of parameters, instead of using the optimizer’s
automatic calibration. This can be achieved with scipy’s brute force method. The
JSON configuration file named “calibration_brute_force.json” shows how to
do it. In this case, for each Manning’s n parameter in its range, three values are
taken (Ns =3). Therefore, 27 combinations (= 33) of Manning’s n values will
be used and the best of these 27 will be reported at the end. It is very obvious
that this brute force method becomes very expensive as the number of calibration
parameters and the sampling number Ns increase. This method is probably only
suitable if you have a good sense of what the Manning’s values should be and
search in a small range.

1 ^^M "optimizer": "scipy.optimize.global",^^M "scipy.optimize.global": {^^M "method": "brute",^^M "callback": "None",^^M "Ns": 3,^^M "full_output": "True"^^M }^^M

30 © Xiaofeng Liu

Chapter 4

Code Structure and Implementation
Details

4.1 Control SRH-2D with Python

(To be written)

4.2 Control HEC-RAS with Python

HEC-RAS is mainly a Window-based hydraulic model with a graphical user interface.
It is designed to be operated with user’s manual input (such as keyboard and
mouse). While the manual operation provides direct access and feedback to the
user, it is not efficient for other tasks where HEC-RAS is involved, for example
uncertainty analysis and Monte-Carlo simulations where thousands of runs need to
be performed. Another scenario where manual operation is cumbersome is model
calibration. The major calibration parameter is the Manning’s n which quantifies
the channel roughness and flow resistance. The Manning’s n can vary in space and
time. Typically, different zones in the simulation domain have different Manning’s
n values which need to be calibrated.

4.2.1 Existing tools

To expedite the simulations, it is desired to interact and control HEC-RAS in
an automatic fashion, typically in the form of program scripting. A scripting
language, such as VBA, Matlab, and Python, can be written to control the pre-
processing, simulation, and post-processing of HEC-RAS. Many previous research
and development have been reported on the control of HEC-RAS with scripting
languages. For example, Moya Quiroga et al. (2013) showed the evaluation of
HEC-RAS modeling uncertainties with the combination of Delphi, VB.NET, and
Windows command line batch scripts. In Goodell (2014) and its accompany code,
VBA was used to interact with HEC-RAS and a variety of demonstration examples
were provided. Leon and Goodell (2016) developed several MATLAB scripts for
controlling HEC-RAS, which include input file reading and writing, output file

31

reading, plotting, and parallel computation. Similar implementation using Python
has been reported in Dysarz (2018).

In this document, it is unnecessary to describe in details all existing tools and
codes that can control HEC-RAS. The following is an incomplete list:

• razviz: a tool package written in R for visual inspection of HEC-RAS results
and calibration. It only has the reading function for HEC-RAS result files,
not controlling of HEC-RAS program itself.

• mcat-ras: HEC-RAS model content and analysis tool (MCAT). It is written
in the Go programming language

• pyras: A python package to control HEC-RAS (last update is six year ago).

• rascontrol: A Python package to control HEC-RAS. It is an equivalent of the
VBA code in (Goodell, 2014). It can be used to open, run and extract results
from HEC-RAS models. It seems to be developed mainly for 1D models.

• parserasgeo: a companion Python package to deal with HEC-RAS geometry
files (importing, editing, and exporting). It is also mainly for 1D models.

• hecrasio: a collection of Python scripts to read HEC-RAS results.

• FluEgg: a fluvial fish egg drifting simulator which utilizes the flow result
from HEC-RAS (Garcia et al., 2013). The code is written in MATLAB and
has a script to extract HEC-RAS results.

• RAS-Controller-with-Matlab: a Matlab script to control HEC-RAS for flood
inundation forecasting and evaluation (Gomez et al., 2019).

• MDAL: Mesh Data Abstraction Library, which is a C++ plugin for QGIS.
This library can read unstructured mesh and results from many 2D hydraulic
models and visualize in QGIS. It is not designed to control hydraulic modeling
runs.

4.2.2 HEC-RAS Interface

Although without official documentation, HEC-RAS does expose part of its internal
functions through the Component Object Model (COM), which is the foundation
for Microsoft’s OLE and ActiveX technologies. With COM, a Windows application
can be controlled from outside. All existing HEC-RAS control scripts and packages
listed in the previous section utilize this functionality to communicate with it.
pyHMT2D does the same using the Python language.

Python itself as a programming language can not directly interface with COM.
However, there are Python libraries that have been developed for that purpose.

32 © Xiaofeng Liu

https://github.com/mpdougherty/razviz
https://github.com/USACE/mcat-ras
https://github.com/solomonvimal/pyras
https://github.com/mikebannis/rascontrol
https://github.com/mikebannis/parserasgeo
https://github.com/Dewberry/hecrasio
https://github.com/tgarciabotero/FluEgg
https://github.com/MichaelGomezS/RAS-Controller-with-Matlab
https://github.com/lutraconsulting/MDAL

One such example is the “Python for Windows Extensions” (pywin32) package
(Hammond and Robinson, 2000). In pyHMT2D, pywin32 is used to access Win32
API, create and use COM objects that interact with HEC-RAS. In the Python
environment on a computer, pywin32 can be easily installed through Anaconda’s
Environments GUI or the conda command, or through pip:

$ pip install pywin32

With pywin32, there are some different options to interact with HEC-RAS from
a Python script. Essentially, all these options uses the same single functionality
that comes with pywin32.

Option 1: Directly use a HEC-RAS COM object from Python

A typical, and most straightforward, way of creating and using a COM object in
Windows with Python is as follows:

1 import win32com.client as win32

2 comObj = win32.Dispatch("Object.Name")

3 comObj.Method()

4 comObj.property = "New Value"

5 print(comObj.property)

Here, a COM object with the name of “Object.Name” is created and launched
“(dispatched)”. Then, the methods of this COM object can be called and its
properties can be modified. For the case of HEC-RAS, the “Object.Name” is
“RAS507.HECRASController” for HEC-RAS version 5.0.7 (as of the writing of this
document, it seems “HEC-RAS 6.0 Beta Update 1” uses the name “’RAS5x.HECRASController’,
which should be corrected in future release). A full example is as follows:

To make sure the “Object.Name” is correctly specified to pywin32 ’s dispatch
function, one can further inspect the Windows’s Registry Editor window un-
der Computer\HKEY_CLASSES_ROOT as shown in Figure 4.1. In this example,
there are two versions of HEC-RAS registered on this computer. Thus, there
are two HEC-RAS Controllers: RAS507.HECRASController for version 5.0.7 and
RAS5x.HECRASController for version 6 (which again needs to be corrected by
HEC in future release).

If the Python environment is set correctly (most importantly the pywin32 is
installed) and HEC-RAS version 5 or 6 is installed, this script will launch HEC-RAS,
open the specified project, run its current plan, print the message from the run,
and then exit. The power of scripting and automation with HEC-RAS rely on this
COM mechanism.

33 © Xiaofeng Liu

https://pypi.org/project/pywin32/

1 import win32com.client as win32

2 import os

3

4 ras = win32.Dispatch("RAS5x.HECRASController")

5

6 project = 'Muncie2D/Muncie2D.prj'

7

8 #get the absolute path of the project file (it seems

9 #HEC-RAS does not like the relative path)

10 project = os.path.abspath(project)

11

12 #open the project

13 ras.Project_Open(project)

14

15 #show HEC-RAS main window

16 ras.ShowRas()

17

18 #get the current project

19 res = ras.Project_Current()

20 print('Project_Current:', res, '\n ')

21

22 #compute the current plan

23 nmsg = None

24 msg = None

25 res = ras.Compute_CurrentPlan(nmsg, msg)

26 print(res, nmsg, msg)

27

28 ras.QuitRas()

Script 4.1 Control HEC-RAS with pywin32

34 © Xiaofeng Liu

Figure 4.1 HEC-RAS’s COM object name in Windows Registry Editor

All the magics of pywin32 manipulating a COM object hinge on how an
application, such as HEC-RAS, register themselves in Window’s registry. One can
open Windows “Registry Editor” and search “HEC River Analysis System”. If
HEC-RAS is installed, you will see something similar to Figure 4.2. The exact ID
in the registry depends on the version of HEC-RAS.

Figure 4.2 HEC-RAS in Windows Registry Editor

If you have multiple versions of HEC-RAS installed, they will correspond to
different entries with different IDs (named “CLSID” - Class ID, to be specific).
And that is how Windows differentiate them. These ID numbers were generated
by HEC-RAS developers and they are (theoretically) globally unique. So these
ID numbers are like the social security number of each HEC-RAS release (if HEC
developers change them in the source code of different version). In fact, you can
also generate such unique ID by yourself in Windows command window. Microsoft
provides a utility program called “GUIDGEN.exe” which generates an unique
ID based on current time, your computer’s network adapter address, and other
information.

35 © Xiaofeng Liu

Microsoft calls these CLSID numbers “globally unique identifier (GUID)”, which
consists of 128 bits in the form of one group of 8 hexadecimal digits, followed
by three groups of 4 hexadecimal digits each, and followed by one group of 12
hexadecimal digits. For the example in Figure 4.2 for HEC-RAS 5.0.7, its unique
CLSID is 4468F2A4-4933-4D39-853A-7B83A82F67E2

Although useful, the Windows registry is not so helpful to us because it does
not provide more information about what an application’s COM object can do. For
that, a user needs the documentation of the application, in particular what COM
interfaces it provides and how to use them. Unfortunately, HEC-RAS currently
does not have official documentation on its COM capability. There are some
explanations and examples in the literature, for example Goodell (2014). It is
hoped that in the future HEC will release such information.

As an alternative, there are several ways to explore what a HEC-RAS COM
object can do, i.e., its functions and variables. One way is to use a COM browser.
pywin32 ships with a simple COM browser which can be used as follows:

• First go to the “client” directory of pywin32, which depends on where and
how Python is installed. For example, on the author’s computer, “Anaconda”
is installed in the author’s user account (not for the system). For the ease of
use, it is suggested that “Anaconda” is installed individually for each user.
In the author’s case, the directory is

C:\Users\xiaof\anaconda3\Lib\site-packages\win32com\client

and its content looks like the following:

C:\Users\xiaof\anaconda3\Lib\site-packages\win32com\client>dir
Volume in drive C is OS
Volume Serial Number is 8233-87F2

Directory of C:\Users\xiaof\anaconda3\Lib\site-packages\win32com\client

03/07/2021 12:44 AM <DIR> .
03/07/2021 12:44 AM <DIR> ..
01/15/2020 10:54 AM 23,485 build.py
11/13/2019 06:29 PM 1,705 CLSIDToClass.py
01/15/2020 10:54 AM 20,236 combrowse.py
11/13/2019 06:29 PM 1,310 connect.py
01/15/2020 10:54 AM 22,086 dynamic.py
01/15/2020 10:54 AM 23,678 gencache.py
01/15/2020 10:54 AM 46,987 genpy.py
01/15/2020 10:54 AM 12,411 makepy.py

36 © Xiaofeng Liu

01/15/2020 10:54 AM 4,959 selecttlb.py
11/13/2019 06:29 PM 7,827 tlbrowse.py
01/15/2020 10:54 AM 2,968 util.py
01/15/2020 10:54 AM 22,594 __init__.py
03/07/2021 12:44 AM <DIR> __pycache__

• Then run the “combrowse.py” script:

$ python combrowse.py

A “Python Object Browser” window will show. Browse in the “Registered Type
Libraries” and find the “HEC River Analysis System” entry (see Figure 4.3). This
will show you everything in HEC-RAS this is exposed through COM. If you have
multiple versions of HEC-RAS installed, you will see multiple entries of “HEC
River Analysis System” (it is suggested that HEC adds the version information in
the entry name to differentiate different versions).

Among many other things, the most important classes (COM uses object-
oriented programming concept) are “_HECRASController”, “_HECRASGeometry”,
and “_HECRASFlow”. All callable methods (functions) in these classes are listed. For
example, under “_HECRASController” one can find “Project_Open”, “ShowRas”,
“Project_Current”, “Compute_CurrentPlan” and “QuitRas” methods used in the
simple example above.

In the “Python Object Browser” window, one can also find other classes with
similar names of “HECRASController”, “HECRASGeometry”, and “HECRASFlow”.
Respectively, they correspond to “_HECRASController”, “_HECRASGeometry”, and
“_HECRASFlow”. They are a wrapper to the classes with the names staring with an
underscore. In fact, in a Python code, if one wants to directly call the functions (not
through pywin32), one can create an object from the wrapper classes (demonstration
examples will be shown later).

In the full Python example above, the “Dispatch” method in pywin32 ’s “win32com.client”
module. There is in fact another method that can be used. Simply replace

1 ras = win32.Dispatch("RAS5x.HECRASController")

with

1 ras = win32.gencache.EnsureDispatch('RAS5x.HECRASController')

37 © Xiaofeng Liu

Figure 4.3 HEC-RAS in “combrowser”

The difference here is probably not that critical for our use of pyHMT2D. But
it is good to know. The difference is whether a cache (pre-generated) HEC-RAS
python module will be produced or not. This cache module is typically located in

USER_PROFILE\AppData\Local\Temp\gen_py\PYTHON_VERSION\

For example, on the author the computer, the location is

C:\Users\xiaof\AppData\Local\Temp\gen_py\3.8

Note: Content in this directory can be safely cleared if you need a fresh start.
pywin32 will recreate the content when necessary.

If a cache HEC-RAS python module already exists, there is practically no
difference from the point of view of a user. To show some idea about when is in the
cache module, the following is an excerpt from the file “_HECRASController.py”
within the directory

C:\Users\xiaof\AppData\Local\Temp\gen_py
\3.8\6C8C3DF5-4478-4673-9215-17ACF18140DDx0x1x0

on the author’s computer (corresponding to HEC-RAS 6.0 Beta Update 1):

38 © Xiaofeng Liu

1 from win32com.client import DispatchBaseClass

2 class _HECRASController(DispatchBaseClass):

3 ...

4 def Compute_Cancel(self):

5 return self._oleobj_.InvokeTypes(1610809350, LCID, 1, (11, 0), (),)

6

7 def Compute_Complete(self):

8 return self._oleobj_.InvokeTypes(1610809351, LCID, 1, (11, 0), (),)

9

10 ...

11

12 def Project_Current(self):

13 # Result is a Unicode object

14 return self._oleobj_.InvokeTypes(1610809428, LCID, 1, (8, 0), (),)

15

16 ...

17

18 def QuitRas(self):

19 return self._oleobj_.InvokeTypes(1610809346, LCID, 1, (24, 0), (),)

20

21 ...

22

23 def ShowRas(self):

24 return self._oleobj_.InvokeTypes(1610809347, LCID, 1, (24, 0), (),)

It is clear that all the functions what we call in the example are declared here.
When we call win32.Dispatch("RAS5x.HECRASController") and if there is

no cache HEC-RAS version 5.x python model exists, pywin32 simply builds
a generic COM object without knowing anything special about it, for example
what methods and constants it has. This is called “dynamic dispatch” or “late
binding” because the knowledge about the object will be built dynamically (later).
Your can check this in Python with

>>> repr(ras)

here the repr() returns a printable representation of the object ras. Also, you
can check whether auto-completion gives your the member functions and constants
by hitting the “Tab” key after typing the following line:

>>> ras.

39 © Xiaofeng Liu

If the “Tab” does not give you the HEC-RAS functions such as “Project_Open()”
and “ShowRas()”, that means a cache module does not exist and Python has no
clue what it has.

On the other hand, when we call win32.gencache.EnsureDispatch('RAS5x.HECRASController'),
it enforce the generation of the cache HEC-RAS Python module (if it does not
exist already). Then, pywin32 builds a COM object knowing all its functions and
constants. This is called “static dispatch” or “early binding”.

To explicitly generate the cache python module (without having to call the
gencache.EnsureDispatch() function), one can use the makepy.py script in py-
win32. Navigate to pywin32 ’s installation location and run the Python script by
typing

$ python makepy.py

In the pop up window, select the library that you want to use and click OK
(Figure 4.4). In this case, select the version of “HEC River Analysis System” you
want (again, unfortunately different versions of HEC-RAS use the same name and
therefor it is hard to distinguish; the user has to try and examine the generated
Python files and the CLSID number).

Figure 4.4 Run the “makepy.py” script to generate HEC-RAS Python module.

This step is similar to adding reference to “HEC River System Analysis” in
MS Excel if VBA is used as the scripting language to interact with HEC-RAS
(Figure 4.5).

In summary, to use Python to control HEC-RAS, one can simply use pywin32
by calling some simple functions as shown in the example (Script 4.1). However, it

40 © Xiaofeng Liu

Figure 4.5 Add the HEC-RAS reference in MS Excel’s VBA.

might be beneficial to know the inner workings and how all the parts play together.
It helps identify problems and troubleshooting.

Option 2:

Option 3:

41 © Xiaofeng Liu

Chapter 5

SRH-2D Basics, Result Format, and I/O

(To be written)
This chapter describes how to use pyHMT2D to process SRH-2D results and

demonstrate some typically applications, including format conversion, advanced
calibration using machine learning and data-driven approaches.

5.1 SRHHYDRO file format

Mesh unit: specified in srhgeom. keyword is GRIDUNIT (case insensitive):

• US: FOOT or FEET (default)

• SI: METERS

In the entry OutputFormat, there are six options:

• SRHN: result at nodal (vertex) values

• SRHC: result at cell center values

• TEC: result in Tecplot format for nodal values

• XMDF: result in XMDF file for nodal values

• XMDFC: result in XMDF file for cell center values

• Paraview: result in VTK format for nodal values

5.2 Convert SRH-2D result to 3D

42

Chapter 6

HEC-RAS Basics, Result Format, and
I/O

6.1 Background

HEC-RAS provides 2D modeling capability and its use has increased in the recent
years.

A functionality missing is that the export of the HEC-RAS 2D results in a
common format such that these results can be used for further analysis. One such
example is the use of the 2D flow field to assess the fish passage design.

6.2 Basic steps to setup and run a HEC-RAS 2D case

The setup and run of a HEC-RAS 2D case are very straightforward. The GUI
provided is relatively easy to use.

The basic steps are as follows:

• Create and save a new project

• Open RAS-Mapper and add terrain.

– In this step, the terrain file is loaded and processes (Figure 6.1). It
creates Terrain.hdf, Terrain.vrt, Stitch-TIN for merging rasters, and a
projection file Projection.prj.

• Exit RAS-Mapper and go to the main window: select Edit Geometric Data .
You will see the terrain created in previous step

• Start to create 2D Flow Area.

• Create boundaries with the SA/2D Area BC lines tool. Note: for external
boundaries, they have to be drawn close to the boundary faces and totally
outside of the 2D area. No intersection allowed.

• Create breaklines to specify significant terrain features such as river banks,
levees, etc.

43

Figure 6.1 Adding terrain in RAS-Mapper

• Select and edit the 2D Flow area by right click and choose “Edit 2D Flow
Area ...”

– Specify the background mesh resolution deltaX and deltaY
– Specify the breaklines to be enforced
– Click ok to generate the mesh.

6.3 HEC-RAS files

The major references for this section is the HEC-RAS User Manual and this blog
post.

44 © Xiaofeng Liu

http://hecrasmodel.blogspot.com/2013/04/hec-ras-file-types.html
http://hecrasmodel.blogspot.com/2013/04/hec-ras-file-types.html

When using HEC-RAS, a user can create files and the software itself also creates
some file. Here is a list:

• .prj: project file, which contains current plan files, units, and project descrip-
tion

• .g01, .g02, ..., .g##: geometry file, which contains cross-sectional data,
hydraulic structures and modeling approach data.

• .f01, .f02, ..., .f##: steady flow file, which contains profile information, flow
data, and boundary conditions

– For unsteady flow, .u## is flow file, which contains hydrographs and
initial conditions, and other user defined flow options.

– For quasi-unsteady flow (for sediment transport), .q## is the flow file

• .p01, .p02, ..., .p##: plan file, which contains a list of the associated input
files, and all simulation options.

• .p01.rst, ..., p##.rst: a restart file which can be switched on/off in the
Output Control Options window.

For unsteady flow analysis, there are also some “intermediate” files which are
created by HEC-RAS at run-time. They are not essential for postprocessing.

• .c01: geometric pre-processor binary output file, which contains the hydraulic
properties table, rating curves, and family of rating curves fro each cross-
section, bridge, culvert, storage area, inline and lateral structure. These
information is recalculated and the file is re-written when the geometry is
changed.

• .b01: boundary condition file

• .bco01: unsteady flow log output file, for things like mass balance error

• .p01.blf: binary log file

• .IC.O01 initial condition binary file

• .O01, O02, ..., .O##: is the output file, which contains all the computed
results from the associated plan. It is written in binary format and can only
be read by the software.

– For unsteady flow, a .dss file is generated as an output which contains
time series data.

45 © Xiaofeng Liu

• .r01, .r02, ..., .r##: run file for steady flow analysis, which contains all the
necessary input data for the RAS computational engine. It is created during
the model execution and is not required for postprocessing.

– For unsteady flow, the file extension is .x01, ..., .x##.

• .comp_msgs.txt: the computational message text file, which contains the
message shown in the computation window. It is a good place to examine
and trouble shoot simulation problems.

• .hyd01: the detailed computational level output file. It can switched on/off
in the Unsteady Flow Analysis window.

When sharing a HEC-RAS model with others, one can submit only the necessary
input files. The results and intermediate files are optional, without which they will
have to rerun the model to get the results.

There are also special files associated with sediment transport and water quality
analysis.

When cleaning a project folder, the following files should be kept and the others
will be regenerated:

• .prj, .p##, .g##, .f##, .u##, .s##, .h##, and .w## files

For 2D models, the following is a list of extra files. Files with the hdf extension
are in HDF5 format:

• .g##.hdf: geometry hdf file which contains all the geometric data (similar to
the .g## file.

• .p##.hdf: plan HDF5 file which contains all the output and all the geometry
input.

• .rasmapper file: which contains some basic information about layers, projec-
tions, and settings for RAS mapper.

To view the 2D model results in HDF5, one can use either the RAS-Mapper
(Figure 6.2) or the HDFView software (Figure 6.3). RAS-Mapper comes with HEC-
RAS. The HDFView software is an open source code which can be downloaded
from the website of the HDF Group. HDFView is extremely useful to inspect and
understand how HEC-RAS organizes its data.

46 © Xiaofeng Liu

https://portal.hdfgroup.org/display/support/Downloads

Figure 6.2 2D simulation results visualized in RAS-Mapper

Figure 6.3 2D simulation results shown in HDFView

47 © Xiaofeng Liu

6.4 HEC-RAS results in HDF5 format

This section documents the findings on how HEC-RAS organizes its 2D results
in HDF5 format. The findings were obtained through a simple 2D rectangular
channel case where all the mesh information (cells, faces, face points, etc) can be
easily tracked manual and compared with the data in HDFView. The sketch of
the simple 2D case is shown in Figure 6.4. It consists of one 2D flow area with one
upstream BC and one downstream BC. In total, there are 12 cells, 32 faces,and 21
face points.

Figure 6.4 Sketch of the simple 2D case

HEC-RAS uses the finite-volume method (FVM) to solve the 2D depth-averaged
shallow water equation. The mesh it uses is unstructured and each computational
cell is a polygon. However, HEC-RAS allows a polygon to have at most eight faces
(i.e., eight face points).

• FacePoints Cell Index Values and FacePoints Cell Index Info: for
each face point, these two data sets record the cells who share the point. A
face point can be shared by many cells. The two data sets also include the
boundary “extra” cells.

• FacePoints Face and Orientation Values: stores all faces who use this
face point. The sign “+” or “-” signifies the direction of the face to (“+”) or
away from (“-”) the face point. For example, Figure 6.5 shows the values for
fp3.

• FacePoints Is Perimeter: whether a face point is on the perimeter (Yes:
-1, No:0)

• Faces Cell Indexes: stores the two neighbor cells who share the face. If the
face is on boundary (perimeter), one cell is the ghost cell in the “expanded”
domain.

48 © Xiaofeng Liu

Figure 6.5 An example illustration of face point’s face and orientation values (with fp3
as an example)

• Faces FacePoint Indexes: shores the two ends (face points). Note that
the order of the two points signifies the direction of the face. Each face
corresponds to one row in the table as shown in Figure 6.6.

Figure 6.6 The content of the Faces FacePoint Indexes table

• Faces NormalUnitVector and Length: stores the two components (nx and
ny) of a face’s unit normal vector (n) and the face length (see Figure 6.7).
Note the definition of the normal vector follows the right hand rule (n×|p1 →
p2|) as shown in Figure 6.9.

• Faces Perimeter Info: whether the face is on the perimeter (Yes: 1, No:0)

49 © Xiaofeng Liu

Figure 6.7 The content of the Faces NormalUnitVector and Length table

Figure 6.8 Definition of the face normal vector

• Cells FacePoint Indexes: for each cell, the corresponding row stores its
face point indexes (Figure 6.6).

• Cell Points: the coordinates of the cell centers in the whole simulation
domain (may consists of more than one 2D areas).

• Cells Center Coordinate: for the current 2D area, the coordinates of the
cell centers (Cell Points), plus the extra points at the center of boundary
faces.

• Cells Face and Orientation Info: store the number faces and the start-
ing index of the faces in the face list (Figures 6.10 and 6.11).

• Cells Face and Orientation Values: this table works in conjunction with
Cells Face and Orientation Info (see Figure 6.12).

50 © Xiaofeng Liu

Figure 6.9 The content of the Cells FacePoint Indexes table

Figure 6.10 The content of the Cells Face and Orientation Info table

• Cells FacePoint Indexes: stores the face point indexes of each cell (see
Figures 6.13 and 6.14). Since cells may have different number of face points,
the table’s number of columns is the maximum number of face points for all
cells. Those with less face points will be padded with -1.

The definition of boundaries:

• External Faces: it is not totally clear how this table is organized, but some
of the columns are obvious. It is not clear how the column of BC LineID is
defined and how the station is defined.

• Polyline Info and Polyline Points: only store the original points given
by the user for the definition of the boundary lines.

51 © Xiaofeng Liu

Figure 6.11 The Cells Face and Orientation Info table

Figure 6.12 The Cells Face and Orientation Values table

Figure 6.13 The Cells FacePoint Indexes table

52 © Xiaofeng Liu

Figure 6.14 The Cells FacePoint Indexes table

Figure 6.15 The External Faces table

There are other nonessential data such as Cells Minimum Elevation, Cells Surface Area,
Cells Volume Elevation Info and Cells Volume Elevation Values.

6.5 A python script to extract HEC-RAS 2D data

A python script has been developed to extract HEC-RAS 2D result data mainly
from the HDF5 file. This script does the following:

• read the HDF5 file with the h5py library. It is found that the main data
structure in HEC-RAS 2D HDF5 file is similar. But discrepancies do exist.
It depends what data the user chooses to store as some of them are optional.
Sometime the names in the tree structure are slightly different. As such, the
user of this script needs to make some adjustment if necessary.

• write out the results in VTK format with the meshio library. Some notes:

– meshio only supports UNSTRUCTURED_GRID VTK format and its support
for polygonal cells is very recent. Thus, the version of meshio should be
≥ 2.3.7. In Windows with Anaconda, the installation is as follows:

53 © Xiaofeng Liu

$ pip install -U meshio

Even with the latest version, it is found that there might be some bug
in the code in the part the writing of the mesh is called. The problem
lies in the following part (Lines 8 and 17) of the code in the vtk_io.py
file of the library:

1 def write(filename, mesh, write_binary=True):

2 if mesh.points.shape[1] == 2:

3

4 ...

5

6 if mesh.point_data:

7 for name, values in mesh.point_data.items():

8 if values.shape[1] == 2:

9 logging.warning(

10 "VTK requires 3D vectors, but 2D vectors given. "

11 "Appending 0 third component to {}.".format(name)

12)

13 mesh.point_data[name] = pad(values)

14 if mesh.cell_data:

15 for t, data in mesh.cell_data.items():

16 for name, values in data.items():

17 if values.shape[1] == 2:

18 logging.warning(

19 "VTK requires 3D vectors, but 2D vectors given. "

20 "Appending 0 third component to {}.".format(name)

21)

22 ...

For vectors (such as coordinates and velocity), VTK requires 3D data,
i.e., with three components. If only two components are given in the
data values, meshio will try to pad the third component with zero.
This is what the above code does. However, if values is not vector, for
example it is a scalar, then the access of values.shape[1] will throw
an “out of bound” exception.
The solution to get around this is add a conditional before the access
of values.shape[1] as shown below. In this way, the padding is only
applied if the data have two columns (meaning two components for a
vector).

54 © Xiaofeng Liu

1 def write(filename, mesh, write_binary=True):

2 if mesh.points.shape[1] == 2:

3

4 def pad(array):

5 return numpy.pad(array, ((0, 0), (0, 1)), "constant")

6

7 logging.warning(

8 "VTK requires 3D points, but 2D points given. "

9 "Appending 0 third component."

10)

11 mesh.points = pad(mesh.points)

12

13 if mesh.point_data:

14 for name, values in mesh.point_data.items():

15 if values.ndim == 2:

16 if values.shape[1] == 2:

17 logging.warning(

18 "VTK requires 3D vectors, but 2D vectors given. "

19 "Appending 0 third component to {}.".format(name)

20)

21 mesh.point_data[name] = pad(values)

22 if mesh.cell_data:

23 for t, data in mesh.cell_data.items():

24 for name, values in data.items():

25 if values.ndim == 2:

26 if values.shape[1] == 2:

27 logging.warning(

28 "VTK requires 3D vectors, but 2D vectors given. "

29 "Appending 0 third component to {}.".format(name)

30)

Typically the python package meshio is installed here. Before this fix is
adopted in the official release, one needs to go here and manually make
the change.
C:\Users\xiaof\AppData\Local\Continuum\anaconda3\Lib\site-packages\meshio

– As of now, only one 2D area is tested and results at only the last time
step are exported. The script needs to be adjusted if multiply 2D areas
present and more time steps need to be export, both of which are not
difficult.

– Useful data in HEC-RAS 2D results are cell data (Depth and Water Surface)
and point data (Node X Vel and Node Y Vel). With VTK (and in par-

55 © Xiaofeng Liu

aview, cell data and point data can be interpolated to points and cells,
respectively.

After the data are exported in VTK format, they can be loaded into ParaView
or used for other purposes. Figure B.1 is a comparison between RAS-Mapper and
ParaView showing the same result.

(a) RAS-Mapper (b) Paraview

Figure 6.16 Comparison between RAS-Mapper and Paraview showing the same HEC-
RAS 2D result

6.5.1 Changes to meshio package in version 4.2

It seems the Python package meshio has made some changes in recent versions. I
have to make the following changes to the meshio package.

• “_common.py” file:

1 def raw_from_cell_data(cell_data):

2 return {name: numpy.concatenate([value]) for name, value in cell_data.items()} #modified by XL

3 #return {name: numpy.concatenate(value) for name, value in cell_data.items()}

4

• “_vtk.py”: need to add the output of field_data (for time information)

1 with open_file(filename, "wb") as f:

2 f.write(b"# vtk DataFile Version 4.2\n ")

3 f.write(f"written by meshio v{__version__}\n ".encode("utf-8"))

4 f.write(("BINARY\n " if binary else "ASCII\n ").encode("utf-8"))

5 f.write(b"DATASET UNSTRUCTURED_GRID\n ")

6

56 © Xiaofeng Liu

7 # write field data (added by XL)

8 _write_field_data(f, mesh.field_data, binary)

9

10 # write points and cells

11 _write_points(f, points, binary)

12 _write_cells(f, mesh.cells, binary)

13

6.5.2 Notes about RAS 2D

• It seems HEC-RAS 2D (up till v6 beta) does not export “Face Profile” in
the geometry and result HDF files, although the face profile can be plotted
in RAS Mapper. Need to externally extract the face profile (approximately
as what HEC-RAS does, something like tolerance etc.)

• HEC-RAS 2D (up till v6 beta) can have only one Manning’s n value per face
although Face’s Manning’s n is exported as a function of elevation. HEC-RAS
2D User Manual states the following (Page 2-22):
For this version of HEC-RAS, the program will select only one Manning’s
n value for the entire cell face. Future versions of HEC-RAS will allow for
multiple Manning’s n values across each cell face. So, this is a limitation
right now when using large cell sizes.

• In HEC-RAS, we need to export velocity at nodes in order for pyHMT2D
to extract. To do that, in HEC-RAS’s “Unsteady Flow Analysis”, select
“Options” and then “HDF5 Write Parameters”. Make sure to check the box
“Write velocity data at the face node locations in 2D meshes”.

6.5.3 Some useful packages

• convert GIS shape file to VTK: https://github.com/paulo-herrera/PyGTV

6.6 Colormaps in RAS-Mapper

RAS-Mapper comes with some predefined colormaps for the contours of depth,
WSE, velocity, etc. If desired, one can define the same colormap in ParaView so it
can produce similar contour figures.

Colormap in ParaView can be defined and imported through a XML (Extensible
Markup Language) file. The definition and examples of ParaView colormaps can
be found at

https://www.paraview.org/Wiki/Colormaps

57 © Xiaofeng Liu

https://github.com/paulo-herrera/PyGTV
https://www.paraview.org/Wiki/Colormaps

The colormap definition in RAS-Mapper can be found by first selecting a data
layer, right clicking and select “Layer Properties”. In the popup window, one can
access the colormap by following the steps highlighted in Figure 6.17. Note the
definition and the RGB values for each colormap.

Figure 6.17 Colormap in RAS-Mapper

To define equivalent colormap for ParaView. One can manually edit the XML
file. An automated process is to do it through a script. An example python script is
written as follows (indeed a ipython notebook generate_HEC_RAS_colormap.ipynb
was created):

1 import xml.etree.cElementTree as ET

2 import numpy as np

3

4 #add new line after each element

5 def indent(elem, level=0):

6 i = "\n " + level*" "

7 if len(elem):

8 if not elem.text or not elem.text.strip():

9 elem.text = i + " "

10 if not elem.tail or not elem.tail.strip():

11 elem.tail = i

58 © Xiaofeng Liu

12 for elem in elem:

13 indent(elem, level+1)

14 if not elem.tail or not elem.tail.strip():

15 elem.tail = i

16 else:

17 if level and (not elem.tail or not elem.tail.strip()):

18 elem.tail = i

19

20 #HEC-RAS 2D colormap for depth

21 values = np.array([0, 3.75, 7.5, 11.25, 15])

22 r=np.array([0,0,0,0,0])/255.0

23 g=np.array([255,191,128,64,0])/255.0

24 b=np.array([255,226,197,168,139])/255.0

25

26

27 root = ET.Element("ColorMaps")

28

29 ColorMap = ET.SubElement(root, "ColorMap", name="HECRAS_Water_Depth", space="RGB")

30 for i in range(5):

31 ET.SubElement(ColorMap, "Point x=\" " + str(values[i]) + "\" o=\"1\" " \^^M + "r=\"" +str(r[i]) +"\" " \^^M + "g=\"" +str(g[i]) +"\" " \^^M + "b=\"" +str(b[i]) +"\"").text = ""

32

33 tree = ET.ElementTree(root)

34

35 indent(root)

36

37 # writing xml

38 tree.write("HEC_RAS_colormaps.xml", encoding="utf-8", xml_declaration=True)

39

40 print("Done!")

41

In this script, the ElementTree package is used for XML.

59 © Xiaofeng Liu

Appendix A

Python Related

A.1 Virtual Environment

Many Python applications require certain versions of dependent packages. There
can easily be conflicts among different applications. To solve this problem, virtual
environment can be used. Multiple virtual environments can be created and one of
them can be activated. There are several ways to create and management virtual
environment, for example virtualenv, venv, and conda. If the Anaconda Python
distribution is used, conda is the preferred way.

The following is a simple demonstration on how to use conda. But before conda
is used, it may be beneficial to update the conda environment by

$ conda update conda

• check the list of available Python versions:

$ conda search python

Make sure the version of Python that you want to create the virtual environ-
ment with is available.

• create the new virtual environment:

$ conda create -n vename python=x.x anaconda

Here, vename is the name of the created virtual environment, x.x is the
Python version. For example,

$ conda create -n py37 python=3.7 anaconda

will create a new virtual environment named py37 with Python 3.7.

• view the list of available virtual environments:

$ conda info -e

60

• activate the virtual environment:

$ conda activate py37

which will activate the virtual environment named py37 and modify PATH and
other environment variables to point to the current active virtual environment.

• deactivate the virtual environment:

$ conda deactivate

which will deactivate the current virtual environment and fall back to the
base virtual environment.

• delete a virtual environment:

$ conda remove -n py37 --all

which will delete the virtual environment named py37.

A.2 Python Package Installation

Python package installation can be done through different ways.

pip

pip is the package installer for Python. It can install packages from the Python
Package Index (PyPI) and other indexes.

• pip’s website: https://pypi.org/project/pip/

• To check information about \pip:

$ pip -V (note: this will show the version of pip)
$ pip -h (note: this will show the help information about pip)

• To search for a package:

$ pip search package_name

• To install a package:

$ pip install package_name

61 © Xiaofeng Liu

https://pypi.org/project/pip/

• To upgrade a package:

$ pip install package_name --upgrade

• To install a package of a specific version:

$ pip install -Iv package_name==version_number

Here, -I means ignore package already installed.

• To list all installed packages in the current virtual environment:

$ pip list

• To show information about a particular package

$ pip show package_name

• To uninstall a package:

$ pip uninstall package_name

conda

We already used conda in previous section to create virtual environment. Indeed,
conda is a package management system and environment management system. It
not only manages Python packages, but also virtual environments.

• conda’s website: https://docs.conda.io/en/latest/

• To check conda’s information:

$ conda -V (note: this will show its version information)
$ conda -h (note: this will show its help information)

• To install a package:

$ conda install package_name

Whether to use pip or conda mainly depends on:

• availability of your desired packages (and their different versions) through
pip and conda,

• personal preference.

62 © Xiaofeng Liu

https://docs.conda.io/en/latest/

A.3 Common problems and errors

• How to deal with the error message “win32com.gen_py has no attribute
’CLSIDToPackageMap’ ”?
Delete the content in the C:\Users\<username>\AppData\Local\Temp\gen_py.

63 © Xiaofeng Liu

Appendix B

File Format and Processing

B.1 Terrain and bathymetric data

There are two formats for terrain and bathymetric data: raster and vector. Exam-
ples of raster format are TIFF, GeoTIFF.

B.1.1 TIFF and GeoTIFF

Tagged Image File Format (TIFF or TIF) is a file format for storing raster images.
A TIFF file has information about an image and its data, which include size,
definition, image compression, etc. The image contained in a TIFF file can use
lossy compression or lossless compression, or no compression at all to ensure the
image quality.

GeoTIFF is for built on top of TIFF with additional georeferencing information,
such as map projection, coordinate systems, ellipsoids, and datum.

BigTIFF: HEC-RAS’s re-samples and rounds the terrain data and create a new
TIFF file inside the “Terrain” directory. It seems the created new TIFF is in the
BigTIFF format. Earlier versions of GDAL (≤ 2.3.3) can not read BigTIFF format.
The user can either install a later version of GDAL (>3.0) or use some tools to
convert the BigTIFF file to regular GeoTIFF file, for example the “tifffile” library
at https://pypi.org/project/tifffile/.

In HEC-RAS, it is also important to pay attention to the rounding precision
when importing terrain data. HEC-RAS re-samples the terrain data and rounds
the elevation. It is recommended that the rounding precision to be compatible
with the terrain elevation precision. Otherwise, the resulted terrain will look like
Figure B.1a, instead of Figure B.1b.

B.1.2 Artificial Terrain Creation

• https://github.com/caseman/noise/blob/master/examples/2dtexture.py

64

https://pypi.org/project/tifffile/
https://github.com/caseman/noise/blob/master/examples/2dtexture.py

(a) Rounding (Precision) = 1/128

(b) Rounding (Precision) = 1/1000

Figure B.1 Effect of rounding precision on the imported (re-sampled) terrain data

B.2 Coordinate systems, projections, and transformations

Spatial data are defined in specific coordinate systems, both horizontally (to place
a point on the surface of the earth) and vertically (to place a point in height).

There are three different types of horizontal coordinate systems (named “Coor-
dinate Reference System (CRS)” in GDAL’s OGRSpatialReference class):

• geographic coordinate system (GCS): uses longitudinal (x) and latitude (y)
coordinates in degrees. For example, the WGS84 - World Geodetic System
1984 is often used in GPS.

• projected coordinate system (PCS): uses linear (length) measurements for
the x and y coordinates. PCS needs an underlying GCS and a definition
for the projection. For example, the Universal Transverse Mercator (UTM)
coordinate system is one kind of PCS. For instance, the PCS “WGS 84 / UTM
zone 18N” defines UTM zone 18 in northern hemisphere with an underlying
GCS of WGS 84.

• local coordinate system: coordinates in a locally defined system with a false
origin.

There are two different types of vertical coordinate systems:

• gravity based: relative to a mean sea level

• Ellipsoidal coordinate system: relative to a spheroidal or ellipsoidal surface
approximating the earth.

65 © Xiaofeng Liu

Projection is the process of mathematically transforming the coordinate system
for the earth onto a flat surface. Different projection methods have been proposed
with different goals, such as preserving shape, distance, area, or direction.

B.2.1 UTM

The UTM system divides the Earth into 60 zones, each 6 degrees of longitude in
width. Figure B.2 shows the UTM zones for the U.S. The location of a point in
UTM coordinate system is in the form of a UTM zone number and the easting and
northing coordinates in that zone. The coordinate origin for each UTM zone is at
the intersection of the zone’s central meridian and the equator. In fact, to avoid
negative easting coordinate, a constant of 500,000 meters is added to the easting,
which in effect puts the origin of each UTM zone at easting 500,000 meters.

Fro a point in the northern hemisphere, it has a northing coordinate of 0 at the
equator and increases to about 9,300,000 meters at the northern end.

As an example, the center of the Penn State Beaver Stadium is at “18N 259101
4521837”, which means it is in UTM zone 18 in the northern hemisphere with an
easting coordinate of 259101 and a northing coordinate of 4521837.

In degrees, minutes, and seconds: 40°48’43.95"N, 77°51’22.04"W
In decimal degrees: latitude = 40.81220833333333, and longitude = -77.85612222222221.
European Petroleum Survey Group, known as EPSG, is a public registry of

geodetic systems. Each entry in the dataset has an EPSG code between 1024 and
32767 and a standard text file called “well-known text (WKT)”. Many GIS libraries
support EPSG to identify spatial reference systems and their coordinate reference
systems and projections.

Some example EPSG coordinate systems of interest:

• EPSG:4326, WGS (World Geodetic System) 84, latitude/longitude coordinate
system based on the Earth’s center of mass, used by the Global Positioning
System. This is used for the whole world.

• EPSG:3857, Web Mercator projection. It is used for display by many web-
based mapping tools, including Google Maps.

• EPSG:32128, NAD83 Pennsylvania North (unit = meter)

• EPSG:2271, NAD83 Pennsylvania North (unit = foot)

• EPSG:26918, NAD83 / UTM zone 18N

• EPSG:32618, WGS 84 / UTM zone 18N. Same UTM zone 18N, but with
WGS 84 datum.

More information can be found at http://epsg.io.

66 © Xiaofeng Liu

http://epsg.io

Figure B.2 UTM zones for the U.S. (source: wikipeida)

B.3 Python libraries for georeferenced data

B.3.1 GDAL

The Geospatial Data Abstraction Library (GDAL) is a computer library for reading
and writing geospatial data in both raster and vector formats. Because HEC-RAS
uses the BigTiff format for terrain data and the support of BigTiff is only in recent
versions of GDAL, it is important to install the correct and recent version of GDAL.
For example, in a Python 3.7 virtual environment, if GDAL v2.3.3 is installed, an
error will occur complaining about the BigTiff support.

One can use pip or conda to install recent version of GDAL, e.g, 3.2. However,
if there are errors reported in the installation, one can use some pre-compiled
wheels, for example on this website: https://www.lfd.uci.edu/ gohlke/pythonlibs/.
Download a proper version, then

$ pip install GDAL-3.2.2-cp37-cp37m-win_amd64.whl --user

An example Python code using GDAL is as follows:

1 def create_bathymetry_GeoTiff(nx, ny, geoTiffFileName,GCSName,):

2 """

3 create a bathymetry GeoTiff

67 © Xiaofeng Liu

https://en.wikipedia.org/wiki/Universal_Transverse_Mercator_coordinate_system
https://www.lfd.uci.edu/~gohlke/pythonlibs

4

5 :return:

6 """

7

8 driver = gdal.GetDriverByName('GTiff')

9 dst_filename = 'x_tmp.tif'

10 dst_ds=driver.Create(dst_filename,nx,ny,1,gdal.GDT_Float32)

11

12 dst_ds.SetGeoTransform([444720, 30, 0, 3751320, 0, -30])

13

14 srs = osr.SpatialReference()

15 srs.ImportFromEPSG(32128) # NAD83 Pennsylvania North (unit = meter)

16

17 dst_ds.SetProjection(srs.ExportToWkt())

18 raster = np.zeros((ny, nx))

19

20 for ix in range(nx):

21 for iy in range(ny):

22 raster[iy,ix] = np.sin(ix/nx*2*np.pi)

23 #print(raster[ix,iy])

24

25 dst_ds.GetRasterBand(1).WriteArray(raster)

26

27 # Once we're done, close properly the dataset

28 dst_ds = None

29

30

SetGeoTransform sets the parameters for the affine geotransformation to de-
scribe the relationship between raster position (pixel/line coordinates) and georef-
erenced coordinates. The affine transformation needs six coefficients, say in a list
GT[0:5]. The transformation is then

Xgeo = GT [0] + Xpixel ∗ GT [1] + Y line ∗ GT [2] (B.1)
Y geo = GT [3] + Xpixel ∗ GT [4] + Y line ∗ GT [5] (B.2)

where (Xgeo, Y geo) are the georeferenced coordinates, (Xpixel,Y line) are the
raster position in the image. For a north up image, the GT [2] and GT [4] rotation
coefficients are zero, and the GT [1] is pixel width, and GT [5] is pixel height. The
(GT [0],GT [3]) position is the georeferenced location of the top left pixel of the
raster image.

It is necessary to know that the pixel/line coordinates in a raster in GDAL
are from (0.0,0.0) at the top left corner of the top left pixel to (width_in_pixels,

68 © Xiaofeng Liu

height_in_pixels) at the bottom right corner of the bottom right pixel. The
pixel/line location of the center of the top left pixel is then (0.5,0.5).

How to convert VRT file format to GeoTiff?
VRT is the short name for GDAL’s Virtual Format. It allows the composition

of a “virtual” GDAL dataset from other sources with optional transformations. As
such, VRT is often used as a container with links to other datasets without actually
including them. The VRT file is in fact an XML file with the extension of “.vrt”.

Some hydraulic models, such as HEC-RAS, can use VRT as its terrain data.
For example, in its example “Muncie”, there exist the following files:

• TerrainWithChannel.vrt

• TerrainWithChannel.muncie_clip.tif

• TerrainWithChannel.ChannelOnly.tif

The content of the TerrainWithChannel.vrt file is as follows:

1 <VRTDataset rasterXSize="7892" rasterYSize="4538">

2 <SRS>PROJCS["NAD_1983_StatePlane_Indiana_East_FIPS_1301_Feet",GEOGCS["NAD83",DATUM["North_American_Datum_1983",SPHEROID["GRS 1980",6378137,298.2572221010002,AUTHORITY["EPSG","7019"]],AUTHORITY["EPSG","6269"]],PRIMEM["Greenwich",0],UNIT["degree",0.0174532925199433],AUTHORITY["EPSG","4269"]],PROJECTION["Transverse_Mercator"],PARAMETER["latitude_of_origin",37.5],PARAMETER["central_meridian",-85.66666666666667],PARAMETER["scale_factor",0.9999666666666667],PARAMETER["false_easting",328083.3333333333],PARAMETER["false_northing",820208.3333333333],UNIT["US survey foot",0.3048006096012192,AUTHORITY["EPSG","9003"]]]</SRS>

3 <GeoTransform> 3.8497784867792000e+005, 5.0000000000000000e+000, 0.0000000000000000e+000, 1.8115535402635999e+006, 0.0000000000000000e+000,-5.0000000000000000e+000</GeoTransform>

4 <VRTRasterBand dataType="Float32" band="1">

5 <Metadata>

6 <MDI key="STATISTICS_MAXIMUM">1013.15625</MDI>

7 <MDI key="STATISTICS_MEAN">951.21268449051</MDI>

8 <MDI key="STATISTICS_MINIMUM">898.90625</MDI>

9 <MDI key="STATISTICS_STDDEV">15.679383378553</MDI>

10 </Metadata>

11 <NoDataValue>-9.99900000000000E+003</NoDataValue>

12 <ColorInterp>Gray</ColorInterp>

13 <Histograms>

14 <HistItem>

15 <HistMin>898.90625</HistMin>

16 <HistMax>1013.15625</HistMax>

17 <BucketCount>256</BucketCount>

18 <IncludeOutOfRange>1</IncludeOutOfRange>

19 <Approximate>0</Approximate>

20 <HistCounts>142|557|635|524|411|719|542|507|1307|641|1857|1234|1599|4555|3133|4636|11050|6177|8521|10206|7033|13417|8806|6772|16417|8723|15288|30596|16193|19222|28995|25134|35453|29580|25829|41413|22592|24406|51126|29185|30454|54388|32559|37292|48296|29851|49167|43759|34308|68089|34852|38446|68277|42662|51484|76015|47603|65612|88657|55542|105050|62474|63046|109316|66838|91773|101644|75811|112175|121852|84335|168936|115222|102179|227014|149412|185284|239859|159317|262483|288586|206132|354412|313869|252179|471727|328624|318738|565135|349622|455470|583336|398062|568575|595324|414447|653173|507146|449064|709518|421181|476725|491058|346236|454911|318856|314960|449982|273249|327762|426396|279367|430736|360457|302990|465663|297485|327169|359873|223771|347906|256102|225346|318983|230668|198315|290187|179980|259701|296716|189514|356018|260807|230276|392953|273434|242693|383381|248626|337094|360062|243058|415289|275960|231495|411619|252758|291134|385230|230124|325826|273389|208159|343811|221129|182842|303816|156498|176331|232230|129712|194758|190544|133214|211355|155911|134022|238473|114058|145258|216709|122395|165715|159452|105285|196209|134994|108712|175168|89892|88775|141628|65187|81964|82698|47868|60473|46597|30422|56782|29594|25090|43866|19579|19665|30066|18210|23352|26351|14324|21443|14758|12181|23093|11314|10710|19685|10016|11083|17030|8097|10670|10333|7418|16801|9553|9273|13946|6139|6563|11895|5300|6615|10273|5054|8763|4935|3845|8500|3687|3257|7523|4391|3612|4774|1764|1805|983|259|666|692|310|146|190|228|48|34|96|39|47|114|58|73|125|41|22</HistCounts>

21 </HistItem>

22 </Histograms>

23 <ComplexSource>

24 <SourceFilename relativeToVRT="1">TerrainWithChannel.ChannelOnly.tif</SourceFilename>

25 <SourceBand>1</SourceBand>

69 © Xiaofeng Liu

https://gdal.org/drivers/raster/vrt.html

26 <SourceProperties RasterXSize="1891" RasterYSize="1155" DataType="Float32" BlockXSize="256" BlockYSize="256" />

27 <SrcRect xOff="0" yOff="0" xSize="1891" ySize="1155" />

28 <DstRect xOff="3846" yOff="1168" xSize="1891" ySize="1155" />

29 <NODATA>-9999</NODATA>

30 </ComplexSource>

31 <ComplexSource>

32 <SourceFilename relativeToVRT="1">TerrainWithChannel.muncie_clip.tif</SourceFilename>

33 <SourceBand>1</SourceBand>

34 <SourceProperties RasterXSize="7892" RasterYSize="4538" DataType="Float32" BlockXSize="256" BlockYSize="256" />

35 <SrcRect xOff="0" yOff="0" xSize="7892" ySize="4538" />

36 <DstRect xOff="0" yOff="0" xSize="7892" ySize="4538" />

37 <NODATA>-9999</NODATA>

38 </ComplexSource>

39 </VRTRasterBand>

40 </VRTDataset>

At the end of the VRT file, it can be observed that there are two “ComplexSource”
entries, which are the two external data sources in the “GeoTiff” format. The
order of these source data files matters. However, it matters in an opposite way in
HEC-RAS and GDAL. In HEC-RAS, the top files get priority when the terrain
is interpolated onto the computational mesh. On the other hand, in GDAL, the
bottom files get priority.

Datasets in a VRT file can be converted into one composite “GeoTiff” using
GDAL’s “gdal_translate” command line tool. If your GDAL is installed with
Anaconda, open “Anaconda Prompt” with the proper Python virtual environment.
Then, use the command, for example

$ gdal_translate -co compress=LZW TerrainWithChannel.vrt composite_terrain.tif

This will create a new GeoTiff file named composite_terrain.tif using the
compression algorithm “LZW”. Compression is used to reduce the size of the
generated GeoTiff file. However, one should be mindful of characteristics of
different compression algorithms. GDAL supports many compression algorithm
options, for example, JPEG, LZW, PACKBITS, DEFLATE, LZMA, ZSTD, NONE.
The details can be found here:

https://gdal.org/drivers/raster/gtiff.html
There are two types of compression: lossless (original data values preserved)

and lossy (accuracy degradation). Examples of lossless comperssion are LZW,
DEFLATE, and PACKBITS. It is recommended to use lossless compression for
terrain data. Example of lossy compression is JPEG.

In GDAL, there are also some other options for each compression algorithm
which can affect the compression efficiency and the file size. For example, with
LZW and DEFLATE, one can do

70 © Xiaofeng Liu

https://gdal.org/drivers/raster/gtiff.html

$ gdal_translate -co compress=LZW -co predictor=2 TerrainWithChannel.vrt composite_terrain.tif

which uses a predictor level of 2. This is especially useful if the terrain is changing
smoothly and the algorithm only records the inter-pixel differences, instead of their
absolute values. This can potentially reduce the GeoTiff file size drastically. For
more information about available options for each GDAL driver, use the following
command for example to get information about GeoTiff:

$ gdalinfo --format GTIFF

This command can also be used to get detailed information, such as projection,
compression, units, origin, and pixel size, about a GeoTiff file, for example:

$ gdalinfo TerrainWithChannel.ChannelOnly.tif

To compose a VRT file from multiple GeoTiff source files, use the gdalbuildvrt
command:

$ gdalbuildvrt result.vrt -input_file_list myRasterList.txt

where the myRasterList.txt contains a list of GeoTiff files, such as

file1.tif
file2.tif
file3.tif

Due to the difference in the priority assigned to file order in VRT file, it is
important to make sure the priority terrain files are located at the bottom (reverse
the order in HEC-RAS) and then use the gdal_translate command. In the
example above, the order needs to be changed as follows such that the channel
bathymetry has priority over the terrain.

1 <VRTDataset rasterXSize="7892" rasterYSize="4538">

2 <ComplexSource>

3

4 ...

5

6 <ComplexSource>

7 <SourceFilename relativeToVRT="1">TerrainWithChannel.muncie_clip.tif</SourceFilename>

8 <SourceBand>1</SourceBand>

9 <SourceProperties RasterXSize="7892" RasterYSize="4538" DataType="Float32" BlockXSize="256" BlockYSize="256" />

10 <SrcRect xOff="0" yOff="0" xSize="7892" ySize="4538" />

11 <DstRect xOff="0" yOff="0" xSize="7892" ySize="4538" />

12 <NODATA>-9999</NODATA>

71 © Xiaofeng Liu

13 </ComplexSource>

14 <SourceFilename relativeToVRT="1">TerrainWithChannel.ChannelOnly.tif</SourceFilename>

15 <SourceBand>1</SourceBand>

16 <SourceProperties RasterXSize="1891" RasterYSize="1155" DataType="Float32" BlockXSize="256" BlockYSize="256" />

17 <SrcRect xOff="0" yOff="0" xSize="1891" ySize="1155" />

18 <DstRect xOff="3846" yOff="1168" xSize="1891" ySize="1155" />

19 <NODATA>-9999</NODATA>

20 </ComplexSource>

21 </VRTRasterBand>

22 </VRTDataset>

In fact, HEC-RAS (RAS Mapper) uses another file in the HDF format to identify
all GeoTiff files in the terrain layer and their priority order (not the order in the
VRT file). Like the VRT file, the HDF file itself does not contain the terrain data.

72 © Xiaofeng Liu

Appendix C

VTK

C.1 Install VTK

C.1.1 Windows

To use pyHMT2D, you only need the Python-combined version of VTK. See Sec-
tion 2.1.2 for details.

C.1.2 Linux

The installation of Python-combined version of VTK is the same as in Windows.
However, one may also need to install the VTK library for other purposes. For
example, if 2D hydraulic model results are extruded to 3D and imported into
3D CFD code such as OpenFOAM, the VTK library needs to be installed so its
functions can be called within C++ or other programming languages.

Depending on what Linux system is used, the detailed steps may vary. On a
public shared Linux system, such as a HPC cluster, VTK might have already been
installed. You just need to figure out where it is installed.

To check a package

$ apt-cache search vtk

will search all packages that matches the work “vtk”. There will be many matches.
The ones we need here are the library and the development header files.

$ sudo apt-get install libvtk7.1

which will install the vtk library version 7.1. To check where the library is installed
on your computer, do

$ dpkg -L libvtk7.1

By default, the library will be installed in /usr/lib. For example, on my computer
it is installed in

/usr/lib/x86_64-linux-gnu

73

Note that the above step will only install the shared library files, not the headers.
Headers files, e.g., “vtkPoints.h”, are needed when compile a source code which
includes them, for example the mapSRH2DToFoam too. To install the header files,

$ sudo apt-get install libvtk7-dev

By default, all the header files will be installed in

/usr/include/vtk-7.1

You can add this location to the PATH environment variable by

export PATH=/usr/include/vtk-7.1:$PATH

Adding this line to the ~/.bashrc file will automatically set this every time you
open a new terminal.

There is an issue for the use of earlier versions of VTK with OpenFOAM. The
issues is the ambiguity of the sqrt(...) function call reported here: https://
gitlab.kitware.com/vtk/vtk/-/issues/17144. This is in the Common/Core/vtkMath.h
file. In recent versions (>8), the sqrt(...) call is replaced with std::sqrt(...)
and the issue goes away. So either install a latest version of VTK (version >
8), or compile from source code as instructed here: https://vtk.org/Wiki/VTK/
Building/Linux. To compile, I did the following:

• install a relatively recent version of CMake, e.g., v3.20.
https://cmake.org/download/
And put the CMake’s bin path to the PATH, e.g.,

export PATH = path/to/CMake/bin:$PATH

• install VTK
https://vtk.org/Wiki/VTK/Building/Linux

$ make install

By default, it will install VTK to /usr/local. But if you don’t have admin
previlige, you can configure CMake to install in user’s home directory.

• add the VTk include and lib paths to OpenFOAM code’s Make/options file,
e.g.

74 © Xiaofeng Liu

https://gitlab.kitware.com/vtk/vtk/-/issues/17144
https://gitlab.kitware.com/vtk/vtk/-/issues/17144
https://vtk.org/Wiki/VTK/Building/Linux
https://vtk.org/Wiki/VTK/Building/Linux
https://cmake.org/download/
https://vtk.org/Wiki/VTK/Building/Linux

EXE_INC = \
...

-I/usr/local/include/vtk-9.0

EXE_LIB = \
...

-L/usr/local/lib -lvtkIOImport-9.0 -lvtkIOGeometry-9.0

When run the compiled OpenFOAM code, it is important also to set the
LD_LIBRARY_PATH so the code can find the VTK shared libraries:

export LD_LIBRARY_PATH=/usr/local/lib:$LD_LIBRARY_PATH

In OpenFOAM v5.x, one needs to increase writePrecision to say 9 (instead
of the default 6) when the coordinates are georeferenced which typically entails
large value. If the write precision is low, the mesh points location will not be
accurate and the mesh is corrupted. In other versions of OpenFOA, such as
v2006, there seems no such problem even when writePrecision is set to 6.
Maybe the default is changed when the value exceeds certain range. But to
be safe, just set it a large value like 9.

In OpenFOAM, to change boundary (and other fields, which are all dictionaries),
we can use changeDictionary. For example, gmshToFoam does not create empty
patches, we can change that with changeDictionary.

C.2 Glyph in Paraview

VTk files can be loaded into Paraview for visualization. One potential problem
in the context of 2D hydraulic modeling is that the coordinates in a real-world
coordinate system. The horizontal coordinates (x and y) can be large numbers,
which may cause problem for the visualization of glyph (vectors). Figure C.1 shows
such problem. The arrows are calculated wrong. It is suspected that this is due
to the loss numerical accuracy when operating on a large value and a small value.
This problem is present in the latest version of ParaView version 5.9.1 as of the
writing of this document.

To further prove this point, a simple VTK unstructured grid with only one 2D
cell is created. At the cell center, a vector is defined. Two VTK files are used for
comparison: one is with large coordinates and the other with small coordinates (by
shifting the cell toward origin).

The first example VTK file with small horizontal coordinates is as follows:

75 © Xiaofeng Liu

Figure C.1 Problem of glyph in ParaView for showing vectors with large coordinates.

vtk DataFile Version 3.0
vtk output
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 4 double
103 35 0
104 35 0
103 36 0
104.1 36.1 0
CELLS 1 5
4 0 1 3 2
CELL_TYPES 1
9
CELL_DATA 1
FIELD FieldData 1
Velocity_ft_p_s 3 1 double
0.3 0.2 0

The second example VTK file with large horizontal coordinates is as follows. It
is generated by shifting the coordinates of the first example.

vtk DataFile Version 3.0
vtk output
ASCII
DATASET UNSTRUCTURED_GRID
POINTS 4 double

76 © Xiaofeng Liu

259103 4521835 0
259104 4521835 0
259103 4521836 0
259104.1 4521836.1 0
CELLS 1 5
4 0 1 3 2
CELL_TYPES 1
9
CELL_DATA 1
FIELD FieldData 1
Velocity_ft_p_s 3 1 double
0.3 0.2 0

So how to solve this problem when using ParaView to visualize VTK generated
from pyHMT2D? We can wait for ParaView to resolve this issue (it should not be
very difficult to fix this now we know what is causing the problem). Before this
is fixed in ParaView, a more practical solution is that we can shift the data set
toward the origin by using the “Transform” filter in ParaView. For the same data
set shown in Figure C.1, if it is translated toward the origin such that all the x
and y coordinates are not large values, the glyph is plotted correctly (Figure C.3.

77 © Xiaofeng Liu

(a) The first example VTK file where the hor-
izontal coordinates are small and the glyph
is plotted correctly.

(b) The second example VTK file where
the horizontal coordinates are large and the
glyph is plotted wrong.

Figure C.2 Glyph plots from the two example VTK files whose only difference is the
shifting of horizontal coordinates.

78 © Xiaofeng Liu

Figure C.3 Solution of the glyph problem in ParaView by using the “Transform” filter
to move the data set toward the origin.

79 © Xiaofeng Liu

Bibliography

T. Dysarz. Application of python scripting techniques for control and automation
of hec-ras simulations. Water, 10(10):1382, 2018. doi: 10.3390/w10101382.

T. Garcia, P. R. Jackson, E. A. Murphy, A. J. Valocchi, and M. H. Garcia.
Development of a fluvial egg drift simulator to evaluate the transport and
dispersion of asian carp eggs in rivers. Ecological Modelling, 263:211–222, 2013.

M. Gomez, S. Sharma, S. Reed, and A. Mejia. Skill of ensemble flood inundation
forecasts at short- to medium-range timescales. Journal of Hydrology, 568:
207–220, 2019.

C. R. Goodell. Breaking the HEC-RAS Code: A User’s Guide to Automating
HEC-RAS. h2ls, Portland, OR, 1 edition, 2014.

M. Hammond and A. Robinson. Python Programming On Win32: Help for Windows
Programmers. O’Reilly Media, Sebastopol, CA, 1 edition, 2000.

A. S. Leon and C. Goodell. Controlling hec-ras using matlab. Environmental
Modelling & Software, 84:339–348, 2016. ISSN 1364-8152. doi: https://doi.org/
10.1016/j.envsoft.2016.06.026.

V. Moya Quiroga, I. Popescu, D. P. Solomatine, and L. Bociort. Cloud and
cluster computing in uncertainty analysis of integrated flood models. Journal of
Hydroinformatics, 15(1):55–70, 2013.

80

	Contents
	Introduction
	What is pyHMT2D
	Motivations
	Features and capabilities
	Limitations
	License
	Contributor Agreement

	Installation
	Preparation of Python environment
	Installation of Python
	Installation of dependent packages

	Installation of pyHMT2D
	Installation from pip
	Installation from GitHub
	Directly clone or download pyHMT2D code into your own computer from GitHub

	Application Examples
	Simple Backwater Curve in 2D
	A more realistic case - Munice
	Run SRH-2D simulation with pyHMT2D
	Run HEC-RAS simulation with pyHMT2D
	Automatic Calibration
	Simple 1D Backwater Curve
	SRH-2D
	HEC-RAS

	Code Structure and Implementation Details
	Control SRH-2D with Python
	Control HEC-RAS with Python
	Existing tools
	HEC-RAS Interface

	SRH-2D Basics, Result Format, and I/O
	SRHHYDRO file format
	Convert SRH-2D result to 3D

	HEC-RAS Basics, Result Format, and I/O
	Background
	Basic steps to setup and run a HEC-RAS 2D case
	HEC-RAS files
	HEC-RAS results in HDF5 format
	A python script to extract HEC-RAS 2D data
	Changes to meshio package in version 4.2
	Notes about RAS 2D
	Some useful packages

	Colormaps in RAS-Mapper

	Python Related
	Virtual Environment
	Python Package Installation
	Common problems and errors

	File Format and Processing
	Terrain and bathymetric data
	TIFF and GeoTIFF
	Artificial Terrain Creation

	Coordinate systems, projections, and transformations
	UTM

	Python libraries for georeferenced data
	GDAL

	VTK
	Install VTK
	Windows
	Linux

	Glyph in Paraview

	Bibliography

