
1.1

1.2

1.2.1

1.2.2

1.2.3

1.2.4

1.2.5

1.2.6

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.4

1.4.1

1.4.2

1.4.3

1.4.4

1.4.5

1.5

1.5.1

1.5.2

1.5.3

1.5.4

1.5.5

1.5.6

1.6

1.6.1

1.6.2

1.7

Table	of	Contents
Mix	and	OTP

Introduction	to	Mix

Our	first	project

Project	compilation

Running	tests

Environments

Exploring

The	trouble	with	state

Agent

Agents

ExUnit	callbacks

Other	agent	actions

Client/Server	in	agents

GenServer

Our	first	GenServer

Testing	a	GenServer

The	need	for	monitoring

call,	cast	or	info?

Monitors	or	links?

Supervisor	and	Application

Our	first	supervisor

Understanding	applications

Simple	one	for	one	supervisors

Supervision	trees

Observer

Shared	state	in	tests

ETS

ETS	as	a	cache

Race	conditions?

Dependencies	and	umbrella	projects

1

1.7.1

1.7.2

1.7.3

1.7.4

1.7.5

1.7.6

1.8

1.8.1

1.8.2

1.9

1.9.1

1.9.2

1.9.3

1.10

1.10.1

1.10.2

1.10.3

1.10.4

1.10.5

1.10.6

1.10.7

External	dependencies

Internal	dependencies

Umbrella	projects

In	umbrella	dependencies

Summing	up

Echo	server

Task	and	gen_tcp

Tasks

Task	supervisor

Docs,	tests	and	with

Doctests

with

Running	commands

Distributed	tasks	and	configuration

Our	first	distributed	code

async/await

Distributed	tasks

Routing	layer

Test	filters	and	tags

Application	environment	and	configuration

Summing	up

2

Mix	and	OTP
This	file	serves	as	your	book's	preface,	a	great	place	to	describe	your	book's	content	and
ideas.

Mix	and	OTP

3

Introduction	to	Mix
In	this	guide,	we	will	learn	how	to	build	a	complete	Elixir	application,	with	its	own	supervision
tree,	configuration,	tests	and	more.

The	application	works	as	a	distributed	key-value	store.	We	are	going	to	organize	key-value
pairs	into	buckets	and	distribute	those	buckets	across	multiple	nodes.	We	will	also	build	a
simple	client	that	allows	us	to	connect	to	any	of	those	nodes	and	send	requests	such	as:

CREATE	shopping

OK

PUT	shopping	milk	1

OK

PUT	shopping	eggs	3

OK

GET	shopping	milk

1

OK

DELETE	shopping	eggs

OK

In	order	to	build	our	key-value	application,	we	are	going	to	use	three	main	tools:

OTP	(Open	Telecom	Platform)	is	a	set	of	libraries	that	ships	with	Erlang.	Erlang
developers	use	OTP	to	build	robust,	fault-tolerant	applications.	In	this	chapter	we	will
explore	how	many	aspects	from	OTP	integrate	with	Elixir,	including	supervision	trees,
event	managers	and	more;

Mix	is	a	build	tool	that	ships	with	Elixir	that	provides	tasks	for	creating,	compiling,
testing	your	application,	managing	its	dependencies	and	much	more;

ExUnit	is	a	test-unit	based	framework	that	ships	with	Elixir;

In	this	chapter,	we	will	create	our	first	project	using	Mix	and	explore	different	features	in
OTP,	Mix	and	ExUnit	as	we	go.

Introduction	to	Mix

4

Note:	this	guide	requires	Elixir	v1.2.0	or	later.	You	can	check	your	Elixir	version	with
	elixir	-v		and	install	a	more	recent	version	if	required	by	following	the	steps
described	in	the	first	chapter	of	the	Getting	Started	guide.

If	you	have	any	questions	or	improvements	to	the	guide,	please	let	us	know	in	our
mailing	list	or	issues	tracker	respectively.	Your	input	is	really	important	to	help	us
guarantee	the	guides	are	accessible	and	up	to	date!

Introduction	to	Mix

5

https://groups.google.com/d/forum/elixir-lang-talk
https://github.com/elixir-lang/elixir-lang.github.com/issues

Our	first	project
When	you	install	Elixir,	besides	getting	the		elixir	,		elixirc		and		iex		executables,	you
also	get	an	executable	Elixir	script	named		mix	.

Let's	create	our	first	project	by	invoking		mix	new		from	the	command	line.	We'll	pass	the
project	name	as	argument	(kv	,	in	this	case),	and	tell	Mix	that	our	main	module	should	be
the	all-uppercase		KV	,	instead	of	the	default,	which	would	have	been		Kv	:

$	mix	new	kv	--module	KV

Mix	will	create	a	directory	named		kv		with	a	few	files	in	it:

*	creating	README.md

*	creating	.gitignore

*	creating	mix.exs

*	creating	config

*	creating	config/config.exs

*	creating	lib

*	creating	lib/kv.ex

*	creating	test

*	creating	test/test_helper.exs

*	creating	test/kv_test.exs

Let's	take	a	brief	look	at	those	generated	files.

Note:	Mix	is	an	Elixir	executable.	This	means	that	in	order	to	run		mix	,	you	need	to
have	Elixir's	executable	in	your	PATH.	If	not,	you	can	run	it	by	passing	the	script	as
argument	to		elixir	:

$	bin/elixir	bin/mix	new	kv	--module	KV

Note	that	you	can	also	execute	any	script	in	your	PATH	from	Elixir	via	the	-S	option:

$	bin/elixir	-S	mix	new	kv	--module	KV

When	using	-S,		elixir		finds	the	script	wherever	it	is	in	your	PATH	and	executes	it.

Our	first	project

6

Project	compilation
A	file	named		mix.exs		was	generated	inside	our	new	project	folder	(kv)	and	its	main
responsibility	is	to	configure	our	project.	Let's	take	a	look	at	it	(comments	removed):

defmodule	KV.Mixfile	do

		use	Mix.Project

		def	project	do

				[app:	:kv,

					version:	"0.1.0",

					elixir:	"~>	1.3",

					build_embedded:	Mix.env	==	:prod,

					start_permanent:	Mix.env	==	:prod,

					deps:	deps()]

		end

		def	application	do

				[applications:	[:logger]]

		end

		defp	deps	do

				[]

		end

end

Our		mix.exs		defines	two	public	functions:		project	,	which	returns	project	configuration	like
the	project	name	and	version,	and		application	,	which	is	used	to	generate	an	application
file.

There	is	also	a	private	function	named		deps	,	which	is	invoked	from	the		project		function,
that	defines	our	project	dependencies.	Defining		deps		as	a	separate	function	is	not	required,
but	it	helps	keep	the	project	configuration	tidy.

Mix	also	generates	a	file	at		lib/kv.ex		with	a	simple	module	definition:

defmodule	KV	do

end

This	structure	is	enough	to	compile	our	project:

$	cd	kv

$	mix	compile

Project	compilation

7

Will	output:	Compiling	1	file	(.ex)	Generated	kv	app

The		lib/kv.ex		file	was	compiled,	an	application	manifest	named		kv.app		was	generated
and	all	protocols	were	consolidated	as	described	in	the	Getting	Started	guide.	All
compilation	artifacts	are	placed	inside	the		_build		directory	using	the	options	defined	in	the
	mix.exs		file.

Once	the	project	is	compiled,	you	can	start	an		iex		session	inside	the	project	by	running:

$	iex	-S	mix

Project	compilation

8

Running	tests
Mix	also	generated	the	appropriate	structure	for	running	our	project	tests.	Mix	projects
usually	follow	the	convention	of	having	a		<filename>_test.exs		file	in	the		test	
directory	for	each	file	in	the		lib		directory.	For	this	reason,	we	can	already	find	a
	test/kv_test.exs		corresponding	to	our		lib/kv.ex		file.	It	doesn't	do	much	at	this	point:

defmodule	KVTest	do

		use	ExUnit.Case

		doctest	KV

		test	"the	truth"	do

				assert	1	+	1	==	2

		end

end

It	is	important	to	note	a	couple	things:

1.	 the	test	file	is	an	Elixir	script	file	(.exs).	This	is	convenient	because	we	don't	need	to
compile	test	files	before	running	them;

2.	 we	define	a	test	module	named		KVTest	,	use		ExUnit.Case		to	inject	the	testing	API	and
define	a	simple	test	using	the		test/2		macro;

Mix	also	generated	a	file	named		test/test_helper.exs		which	is	responsible	for	setting	up
the	test	framework:

ExUnit.start()

This	file	will	be	automatically	required	by	Mix	every	time	before	we	run	our	tests.	We	can	run
tests	with		mix	test	:

Compiled	lib/kv.ex

Generated	kv	app

[...]

.

Finished	in	0.04	seconds	(0.04s	on	load,	0.00s	on	tests)

1	test,	0	failures

Randomized	with	seed	540224

Running	tests

9

Notice	that	by	running		mix	test	,	Mix	has	compiled	the	source	files	and	generated	the
application	file	once	again.	This	happens	because	Mix	supports	multiple	environments,
which	we	will	explore	in	the	next	section.

Furthermore,	you	can	see	that	ExUnit	prints	a	dot	for	each	successful	test	and	automatically
randomizes	tests	too.	Let's	make	the	test	fail	on	purpose	and	see	what	happens.

Change	the	assertion	in		test/kv_test.exs		to	the	following:

assert	1	+	1	==	3

Now	run		mix	test		again	(notice	this	time	there	will	be	no	compilation):

1)	test	the	truth	(KVTest)

			test/kv_test.exs:5

			Assertion	with	==	failed

			code:	1	+	1	==	3

			lhs:		2

			rhs:		3

			stacktrace:

					test/kv_test.exs:6

Finished	in	0.05	seconds	(0.05s	on	load,	0.00s	on	tests)

1	test,	1	failure

For	each	failure,	ExUnit	prints	a	detailed	report,	containing	the	test	name	with	the	test	case,
the	code	that	failed	and	the	values	for	the	left-hand	side	(lhs)	and	right-hand	side	(rhs)	of	the
	==		operator.

In	the	second	line	of	the	failure,	right	below	the	test	name,	there	is	the	location	where	the
test	was	defined.	If	you	copy	the	test	location	in	this	full	second	line	(including	the	file	and
line	number)	and	append	it	to		mix	test	,	Mix	will	load	and	run	just	that	particular	test:

$	mix	test	test/kv_test.exs:5

This	shortcut	will	be	extremely	useful	as	we	build	our	project,	allowing	us	to	quickly	iterate	by
running	just	a	specific	test.

Finally,	the	stacktrace	relates	to	the	failure	itself,	giving	information	about	the	test	and	often
the	place	the	failure	was	generated	from	within	the	source	files.

Running	tests

10

Environments
Mix	supports	the	concept	of	"environments".	They	allow	a	developer	to	customize
compilation	and	other	options	for	specific	scenarios.	By	default,	Mix	understands	three
environments:

	:dev		-	the	one	in	which	Mix	tasks	(like		compile)	run	by	default
	:test		-	used	by		mix	test	
	:prod		-	the	one	you	will	use	to	run	your	project	in	production

The	environment	applies	only	to	the	current	project.	As	we	will	see	later	on,	any	dependency
you	add	to	your	project	will	by	default	run	in	the		:prod		environment.

Customization	per	environment	can	be	done	by	accessing	the		Mix.env		function	in	your
	mix.exs		file,	which	returns	the	current	environment	as	an	atom.	That's	what	we	have	used
in	both		:build_embedded		and		:start_permanent		options:

def	project	do

		[...,

			build_embedded:	Mix.env	==	:prod,

			start_permanent:	Mix.env	==	:prod,

			...]

end

When	you	compile	your	source	code,	Elixir	compiles	artifacts	to	the		_build		directory.
However,	in	many	occasions	to	avoid	unnecessary	copying,	Elixir	will	create	filesystem	links
from		_build		to	actual	source	files.	When	true,		:build_embedded		disables	this	behaviour	as
it	aims	to	provide	everything	you	need	to	run	your	application	inside		_build	.

Similarly,	when	true,	the		:start_permanent		option	starts	your	application	in	permanent
mode,	which	means	the	Erlang	VM	will	crash	if	your	application's	supervision	tree	shuts
down.	Notice	we	don't	want	this	behaviour	in	dev	and	test	because	it	is	useful	to	keep	the
VM	instance	running	in	those	environments	for	troubleshooting	purposes.

Mix	will	default	to	the		:dev		environment,	except	for	the		test		task	that	will	default	to	the
	:test		environment.	The	environment	can	be	changed	via	the		MIX_ENV		environment
variable:

$	MIX_ENV=prod	mix	compile

Or	on	Windows:

Environments

11

>	set	"MIX_ENV=prod"	&&	mix	compile

Environments

12

Exploring
There	is	much	more	to	Mix,	and	we	will	continue	to	explore	it	as	we	build	our	project.	A
general	overview	is	available	on	the	Mix	documentation.

Keep	in	mind	that	you	can	always	invoke	the	help	task	to	list	all	available	tasks:

$	mix	help

You	can	get	further	information	about	a	particular	task	by	invoking		mix	help	TASK	.

Let's	write	some	code!

Exploring

13

The	trouble	with	state
Elixir	is	an	immutable	language	where	nothing	is	shared	by	default.	If	we	want	to	provide
state,	where	we	create	buckets	putting	and	reading	values	from	multiple	places,	we	have
two	main	options	in	Elixir:

Processes
ETS	(Erlang	Term	Storage)

We	have	already	talked	about	processes,	while	ETS	is	something	new	that	we	will	explore
later	in	this	guide.	When	it	comes	to	processes	though,	we	rarely	hand-roll	our	own,	instead
we	use	the	abstractions	available	in	Elixir	and	OTP:

Agent	-	Simple	wrappers	around	state.
GenServer	-	"Generic	servers"	(processes)	that	encapsulate	state,	provide	sync	and
async	calls,	support	code	reloading,	and	more.
GenEvent	-	"Generic	event"	managers	that	allow	publishing	events	to	multiple	handlers.
Task	-	Asynchronous	units	of	computation	that	allow	spawning	a	process	and	potentially
retrieving	its	result	at	a	later	time.

We	will	explore	most	of	these	abstractions	in	this	guide.	Keep	in	mind	that	they	are	all
implemented	on	top	of	processes	using	the	basic	features	provided	by	the	VM,	like		send	,
	receive	,		spawn		and		link	.

The	trouble	with	state

14

http://www.erlang.org/doc/man/ets.html

Agent
In	this	chapter,	we	will	create	a	module	named		KV.Bucket	.	This	module	will	be	responsible
for	storing	our	key-value	entries	in	a	way	it	can	be	read	and	modified	by	other	processes.

If	you	have	skipped	the	Getting	Started	guide	or	if	you	have	read	it	long	ago,	be	sure	to	re-
read	the	chapter	about	Processes.	We	will	use	it	as	a	starting	point.

Agent

15

Agents
Agents	are	simple	wrappers	around	state.	If	all	you	want	from	a	process	is	to	keep	state,
agents	are	a	great	fit.	Let's	start	an		iex		session	inside	the	project	with:

$	iex	-S	mix

And	play	a	bit	with	agents:

iex>	{:ok,	agent}	=	Agent.start_link	fn	->	[]	end

{:ok,	#PID<0.57.0>}

iex>	Agent.update(agent,	fn	list	->	["eggs"	|	list]	end)

:ok

iex>	Agent.get(agent,	fn	list	->	list	end)

["eggs"]

iex>	Agent.stop(agent)

:ok

We	started	an	agent	with	an	initial	state	of	an	empty	list.	We	updated	the	agent's	state,
adding	our	new	item	to	the	head	of	the	list.	The	second	argument	of		Agent.update/3		is	a
function	that	takes	the	agent's	current	state	as	input	and	returns	its	desired	new	state.
Finally,	we	retrieved	the	whole	list.	The	second	argument	of		Agent.get/3		is	a	function	that
takes	the	state	as	input	and	returns	the	value	that		Agent.get/3		itself	will	return.	Once	we
are	done	with	the	agent,	we	can	call		Agent.stop/3		to	terminate	the	agent	process.

Let's	implement	our		KV.Bucket		using	agents.	But	before	starting	the	implementation,	let's
first	write	some	tests.	Create	a	file	at		test/kv/bucket_test.exs		(remember	the		.exs	
extension)	with	the	following:

defmodule	KV.BucketTest	do

		use	ExUnit.Case,	async:	true

		test	"stores	values	by	key"	do

				{:ok,	bucket}	=	KV.Bucket.start_link

				assert	KV.Bucket.get(bucket,	"milk")	==	nil

				KV.Bucket.put(bucket,	"milk",	3)

				assert	KV.Bucket.get(bucket,	"milk")	==	3

		end

end

Agents

16

Our	first	test	starts	a	new		KV.Bucket		and	perform	some		get/2		and		put/3		operations	on	it,
asserting	the	result.	We	don't	need	to	explicitly	stop	the	agent	because	it	is	linked	to	the	test
process	and	the	agent	is	shut	down	automatically	once	the	test	finishes.	This	will	always
work	unless	the	process	is	named.

Also	note	that	we	passed	the		async:	true		option	to		ExUnit.Case	.	This	option	makes	this
test	case	run	in	parallel	with	other	test	cases	that	set	up	the		:async		option.	This	is
extremely	useful	to	speed	up	our	test	suite	by	using	multiple	cores	in	our	machine.	Note
though	the		:async		option	must	only	be	set	if	the	test	case	does	not	rely	or	change	any
global	value.	For	example,	if	the	test	requires	writing	to	the	filesystem,	registering	processes,
accessing	a	database,	you	must	not	make	it	async	to	avoid	race	conditions	in	between	tests.

Regardless	of	being	async	or	not,	our	new	test	should	obviously	fail,	as	none	of	the
functionality	is	implemented.

In	order	to	fix	the	failing	test,	let's	create	a	file	at		lib/kv/bucket.ex		with	the	contents	below.
Feel	free	to	give	a	try	at	implementing	the		KV.Bucket		module	yourself	using	agents	before
peeking	at	the	implementation	below.

defmodule	KV.Bucket	do

		@doc	"""

		Starts	a	new	bucket.

"""

		def	start_link	do

				Agent.start_link(fn	->	%{}	end)

		end

		@doc	"""

		Gets	a	value	from	the	`bucket`	by	`key`.

"""

		def	get(bucket,	key)	do

				Agent.get(bucket,	&Map.get(&1,	key))

		end

		@doc	"""

		Puts	the	`value`	for	the	given	`key`	in	the	`bucket`.

"""

		def	put(bucket,	key,	value)	do

				Agent.update(bucket,	&Map.put(&1,	key,	value))

		end

end

We	are	using	a	map	to	store	our	keys	and	values.	The	capture	operator,		&	,	is
introduced	in	the	Getting	Started	guide.

Now	that	the		KV.Bucket		module	has	been	defined,	our	test	should	pass!	You	can	try	it
yourself	by	running:		mix	test	.

Agents

17

Agents

18

ExUnit	callbacks
Before	moving	on	and	adding	more	features	to		KV.Bucket	,	let's	talk	about	ExUnit	callbacks.
As	you	may	expect,	all		KV.Bucket		tests	will	require	a	bucket	to	be	started	during	setup	and
stopped	after	the	test.	Luckily,	ExUnit	supports	callbacks	that	allow	us	to	skip	such	repetitive
tasks.

Let's	rewrite	the	test	case	to	use	callbacks:

defmodule	KV.BucketTest	do

		use	ExUnit.Case,	async:	true

		setup	do

				{:ok,	bucket}	=	KV.Bucket.start_link

				{:ok,	bucket:	bucket}

		end

		test	"stores	values	by	key",	%{bucket:	bucket}	do

				assert	KV.Bucket.get(bucket,	"milk")	==	nil

				KV.Bucket.put(bucket,	"milk",	3)

				assert	KV.Bucket.get(bucket,	"milk")	==	3

		end

end

We	have	first	defined	a	setup	callback	with	the	help	of	the		setup/1		macro.	The		setup/1	
callback	runs	before	every	test,	in	the	same	process	as	the	test	itself.

Note	that	we	need	a	mechanism	to	pass	the		bucket		pid	from	the	callback	to	the	test.	We	do
so	by	using	the	test	context.	When	we	return		{:ok,	bucket:	bucket}		from	the	callback,
ExUnit	will	merge	the	second	element	of	the	tuple	(a	dictionary)	into	the	test	context.	The
test	context	is	a	map	which	we	can	then	match	in	the	test	definition,	providing	access	to
these	values	inside	the	block:

test	"stores	values	by	key",	%{bucket:	bucket}	do

		#	`bucket`	is	now	the	bucket	from	the	setup	block

end

You	can	read	more	about	ExUnit	cases	in	the		ExUnit.Case		module	documentation	and
more	about	callbacks	in		ExUnit.Callbacks		docs.

ExUnit	callbacks

19

ExUnit	callbacks

20

Other	agent	actions
Besides	getting	a	value	and	updating	the	agent	state,	agents	allow	us	to	get	a	value	and
update	the	agent	state	in	one	function	call	via		Agent.get_and_update/2	.	Let's	implement	a
	KV.Bucket.delete/2		function	that	deletes	a	key	from	the	bucket,	returning	its	current	value:

@doc	"""

Deletes	`key`	from	`bucket`.

Returns	the	current	value	of	`key`,	if	`key`	exists.

"""

def	delete(bucket,	key)	do

		Agent.get_and_update(bucket,	&Map.pop(&1,	key))

end

Now	it	is	your	turn	to	write	a	test	for	the	functionality	above!	Also,	be	sure	to	explore	the
documentation	for	the		Agent		module	to	learn	more	about	them.

Other	agent	actions

21

Client/Server	in	agents
Before	we	move	on	to	the	next	chapter,	let's	discuss	the	client/server	dichotomy	in	agents.
Let's	expand	the		delete/2		function	we	have	just	implemented:

def	delete(bucket,	key)	do

		Agent.get_and_update(bucket,	fn	dict->

				Map.pop(dict,	key)

		end)

end

Everything	that	is	inside	the	function	we	passed	to	the	agent	happens	in	the	agent	process.
In	this	case,	since	the	agent	process	is	the	one	receiving	and	responding	to	our	messages,
we	say	the	agent	process	is	the	server.	Everything	outside	the	function	is	happening	in	the
client.

This	distinction	is	important.	If	there	are	expensive	actions	to	be	done,	you	must	consider	if	it
will	be	better	to	perform	these	actions	on	the	client	or	on	the	server.	For	example:

def	delete(bucket,	key)	do

		Process.sleep(1000)	#	puts	client	to	sleep

		Agent.get_and_update(bucket,	fn	dict	->

				Process.sleep(1000)	#	puts	server	to	sleep

				Map.pop(dict,	key)

		end)

end

When	a	long	action	is	performed	on	the	server,	all	other	requests	to	that	particular	server	will
wait	until	the	action	is	done,	which	may	cause	some	clients	to	timeout.

In	the	next	chapter	we	will	explore	GenServers,	where	the	segregation	between	clients	and
servers	is	made	even	more	apparent.

Client/Server	in	agents

22

GenServer
In	the	previous	chapter	we	used	agents	to	represent	our	buckets.	In	the	first	chapter,	we
specified	we	would	like	to	name	each	bucket	so	we	can	do	the	following:

CREATE	shopping

OK

PUT	shopping	milk	1

OK

GET	shopping	milk

1

OK

Since	agents	are	processes,	each	bucket	has	a	process	identifier	(pid)	but	it	doesn't	have	a
name.	We	have	learned	about	the	name	registry	in	the	Process	chapter	and	you	could	be
inclined	to	solve	this	problem	by	using	such	registry.	For	example,	we	could	create	a	bucket
as:

iex>	Agent.start_link(fn	->	%{}	end,	name:	:shopping)

{:ok,	#PID<0.43.0>}

iex>	KV.Bucket.put(:shopping,	"milk",	1)

:ok

iex>	KV.Bucket.get(:shopping,	"milk")

1

However,	this	is	a	terrible	idea!	Process	names	in	Elixir	must	be	atoms,	which	means	we
would	need	to	convert	the	bucket	name	(often	received	from	an	external	client)	to	atoms,
and	we	should	never	convert	user	input	to	atoms.	This	is	because	atoms	are	not
garbage	collected.	Once	an	atom	is	created,	it	is	never	reclaimed.	Generating	atoms	from
user	input	would	mean	the	user	can	inject	enough	different	names	to	exhaust	our	system
memory!

In	practice	it	is	more	likely	you	will	reach	the	Erlang	VM	limit	for	the	maximum	number	of
atoms	before	you	run	out	of	memory,	which	will	bring	your	system	down	regardless.

Instead	of	abusing	the	name	registry	facility,	we	will	create	our	own	registry	process	that
holds	a	map	that	associates	the	bucket	name	to	the	bucket	process.

GenServer

23

The	registry	needs	to	guarantee	the	dictionary	is	always	up	to	date.	For	example,	if	one	of
the	bucket	processes	crashes	due	to	a	bug,	the	registry	must	clean	up	the	dictionary	in	order
to	avoid	serving	stale	entries.	In	Elixir,	we	describe	this	by	saying	that	the	registry	needs	to
monitor	each	bucket.

We	will	use	a	GenServer	to	create	a	registry	process	that	can	monitor	the	bucket	processes.
GenServers	are	the	go-to	abstraction	for	building	generic	servers	in	both	Elixir	and	OTP.

GenServer

24

Our	first	GenServer
A	GenServer	is	implemented	in	two	parts:	the	client	API	and	the	server	callbacks,	either	in	a
single	module	or	in	two	different	modules	implementing	client	API	in	one	and	server
callbacks	in	the	other.	The	client	and	server	run	in	separate	processes,	with	the	client
passing	messages	back	and	forth	to	the	server	as	its	functions	are	called.	Here	we	use	a
single	module	for	both	the	server	callbacks	and	client	API.	Create	a	new	file	at
	lib/kv/registry.ex		with	the	following	contents:

Our	first	GenServer

25

defmodule	KV.Registry	do

		use	GenServer

		##	Client	API

		@doc	"""

		Starts	the	registry.

"""

		def	start_link	do

				GenServer.start_link(__MODULE__,	:ok,	[])

		end

		@doc	"""

		Looks	up	the	bucket	pid	for	`name`	stored	in	`server`.

		Returns	`{:ok,	pid}`	if	the	bucket	exists,	`:error`	otherwise.

"""

		def	lookup(server,	name)	do

				GenServer.call(server,	{:lookup,	name})

		end

		@doc	"""

		Ensures	there	is	a	bucket	associated	to	the	given	`name`	in	`server`.

"""

		def	create(server,	name)	do

				GenServer.cast(server,	{:create,	name})

		end

		##	Server	Callbacks

		def	init(:ok)	do

				{:ok,	%{}}

		end

		def	handle_call({:lookup,	name},	_from,	names)	do

				{:reply,	Map.fetch(names,	name),	names}

		end

		def	handle_cast({:create,	name},	names)	do

				if	Map.has_key?(names,	name)	do

						{:noreply,	names}

				else

						{:ok,	bucket}	=	KV.Bucket.start_link

						{:noreply,	Map.put(names,	name,	bucket)}

				end

		end

end

The	first	function	is		start_link/3	,	which	starts	a	new	GenServer	passing	three	arguments:

Our	first	GenServer

26

1.	 The	module	where	the	server	callbacks	are	implemented,	in	this	case		__MODULE__	,
meaning	the	current	module

2.	 The	initialization	arguments,	in	this	case	the	atom		:ok	

3.	 A	list	of	options	which	can,	for	example,	hold	the	name	of	the	server.	For	now,	we	pass
an	empty	list

There	are	two	types	of	requests	you	can	send	to	a	GenServer:	calls	and	casts.	Calls	are
synchronous	and	the	server	must	send	a	response	back	to	such	requests.	Casts	are
asynchronous	and	the	server	won't	send	a	response	back.

The	next	two	functions,		lookup/2		and		create/2		are	responsible	for	sending	these	requests
to	the	server.	The	requests	are	represented	by	the	first	argument	to		handle_call/3		or
	handle_cast/2	.	In	this	case,	we	have	used		{:lookup,	name}		and		{:create,	name}	
respectively.	Requests	are	often	specified	as	tuples,	like	this,	in	order	to	provide	more	than
one	"argument"	in	that	first	argument	slot.	It's	common	to	specify	the	action	being	requested
as	the	first	element	of	a	tuple,	and	arguments	for	that	action	in	the	remaining	elements.

On	the	server	side,	we	can	implement	a	variety	of	callbacks	to	guarantee	the	server
initialization,	termination	and	handling	of	requests.	Those	callbacks	are	optional	and	for	now
we	have	only	implemented	the	ones	we	care	about.

The	first	is	the		init/1		callback,	that	receives	the	argument	given	to
	GenServer.start_link/3		and	returns		{:ok,	state}	,	where	state	is	a	new	map.	We	can
already	notice	how	the		GenServer		API	makes	the	client/server	segregation	more	apparent.
	start_link/3		happens	in	the	client,	while		init/1		is	the	respective	callback	that	runs	on
the	server.

For		call/2		requests,	we	must	implement	a		handle_call/3		callback	that	receives	the
	request	,	the	process	from	which	we	received	the	request	(_from),	and	the	current	server
state	(names).	The		handle_call/3		callback	returns	a	tuple	in	the	format		{:reply,	reply,
new_state}	,	where		reply		is	what	will	be	sent	to	the	client	and	the		new_state		is	the	new
server	state.

For		cast/2		requests,	we	must	implement	a		handle_cast/2		callback	that	receives	the
	request		and	the	current	server	state	(names).	The		handle_cast/2		callback	returns	a	tuple
in	the	format		{:noreply,	new_state}	.

There	are	other	tuple	formats	both		handle_call/3		and		handle_cast/2		callbacks	may	return.
There	are	also	other	callbacks	like		terminate/2		and		code_change/3		that	we	could
implement.	You	are	welcome	to	explore	the	full	GenServer	documentation	to	learn	more
about	those.

For	now,	let's	write	some	tests	to	guarantee	our	GenServer	works	as	expected.

Our	first	GenServer

27

Our	first	GenServer

28

Testing	a	GenServer
Testing	a	GenServer	is	not	much	different	from	testing	an	agent.	We	will	spawn	the	server
on	a	setup	callback	and	use	it	throughout	our	tests.	Create	a	file	at
	test/kv/registry_test.exs		with	the	following:

defmodule	KV.RegistryTest	do

		use	ExUnit.Case,	async:	true

		setup	do

				{:ok,	registry}	=	KV.Registry.start_link

				{:ok,	registry:	registry}

		end

		test	"spawns	buckets",	%{registry:	registry}	do

				assert	KV.Registry.lookup(registry,	"shopping")	==	:error

				KV.Registry.create(registry,	"shopping")

				assert	{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

				KV.Bucket.put(bucket,	"milk",	1)

				assert	KV.Bucket.get(bucket,	"milk")	==	1

		end

end

Our	test	should	pass	right	out	of	the	box!

We	don't	need	to	explicitly	shut	down	the	registry	because	it	will	receive	a		:shutdown		signal
when	our	test	finishes.	While	this	solution	is	ok	for	tests,	if	there	is	a	need	to	stop	a
	GenServer		as	part	of	the	application	logic,	one	can	use	the		GenServer.stop/1		function:

##	Client	API

@doc	"""

Stops	the	registry.

"""

def	stop(server)	do

		GenServer.stop(server)

end

Testing	a	GenServer

29

The	need	for	monitoring
Our	registry	is	almost	complete.	The	only	remaining	issue	is	that	the	registry	may	become
stale	if	a	bucket	stops	or	crashes.	Let's	add	a	test	to		KV.RegistryTest		that	exposes	this	bug:

test	"removes	buckets	on	exit",	%{registry:	registry}	do

		KV.Registry.create(registry,	"shopping")

		{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

		Agent.stop(bucket)

		assert	KV.Registry.lookup(registry,	"shopping")	==	:error

end

The	test	above	will	fail	on	the	last	assertion	as	the	bucket	name	remains	in	the	registry	even
after	we	stop	the	bucket	process.

In	order	to	fix	this	bug,	we	need	the	registry	to	monitor	every	bucket	it	spawns.	Once	we	set
up	a	monitor,	the	registry	will	receive	a	notification	every	time	a	bucket	exits,	allowing	us	to
clean	the	dictionary	up.

Let's	first	play	with	monitors	by	starting	a	new	console	with		iex	-S	mix	:

iex>	{:ok,	pid}	=	KV.Bucket.start_link

{:ok,	#PID<0.66.0>}

iex>	Process.monitor(pid)

#Reference<0.0.0.551>

iex>	Agent.stop(pid)

:ok

iex>	flush

{:DOWN,	#Reference<0.0.0.551>,	:process,	#PID<0.66.0>,	:normal}

Note		Process.monitor(pid)		returns	a	unique	reference	that	allows	us	to	match	upcoming
messages	to	that	monitoring	reference.	After	we	stop	the	agent,	we	can		flush/0		all
messages	and	notice	a		:DOWN		message	arrived,	with	the	exact	reference	returned	by
monitor,	notifying	that	the	bucket	process	exited	with	reason		:normal	.

Let's	reimplement	the	server	callbacks	to	fix	the	bug	and	make	the	test	pass.	First,	we	will
modify	the	GenServer	state	to	two	dictionaries:	one	that	contains		name	->	pid		and
another	that	holds		ref	->	name	.	Then	we	need	to	monitor	the	buckets	on		handle_cast/2	
as	well	as	implement	a		handle_info/2		callback	to	handle	the	monitoring	messages.	The	full
server	callbacks	implementation	is	shown	below:

The	need	for	monitoring

30

##	Server	callbacks

def	init(:ok)	do

		names	=	%{}

		refs		=	%{}

		{:ok,	{names,	refs}}

end

def	handle_call({:lookup,	name},	_from,	{names,	_}	=	state)	do

		{:reply,	Map.fetch(names,	name),	state}

end

def	handle_cast({:create,	name},	{names,	refs})	do

		if	Map.has_key?(names,	name)	do

				{:noreply,	{names,	refs}}

		else

				{:ok,	pid}	=	KV.Bucket.start_link

				ref	=	Process.monitor(pid)

				refs	=	Map.put(refs,	ref,	name)

				names	=	Map.put(names,	name,	pid)

				{:noreply,	{names,	refs}}

		end

end

def	handle_info({:DOWN,	ref,	:process,	_pid,	_reason},	{names,	refs})	do

		{name,	refs}	=	Map.pop(refs,	ref)

		names	=	Map.delete(names,	name)

		{:noreply,	{names,	refs}}

end

def	handle_info(_msg,	state)	do

		{:noreply,	state}

end

Observe	that	we	were	able	to	considerably	change	the	server	implementation	without
changing	any	of	the	client	API.	That's	one	of	the	benefits	of	explicitly	segregating	the	server
and	the	client.

Finally,	different	from	the	other	callbacks,	we	have	defined	a	"catch-all"	clause	for
	handle_info/2		that	discards	any	unknown	message.	To	understand	why,	let's	move	on	to
the	next	section.

The	need	for	monitoring

31

	call	,		cast		or		info	?
So	far	we	have	used	three	callbacks:		handle_call/3	,		handle_cast/2		and		handle_info/2	.
Deciding	when	to	use	each	is	straightforward:

1.	 	handle_call/3		must	be	used	for	synchronous	requests.	This	should	be	the	default
choice	as	waiting	for	the	server	reply	is	a	useful	backpressure	mechanism.

2.	 	handle_cast/2		must	be	used	for	asynchronous	requests,	when	you	don't	care	about	a
reply.	A	cast	does	not	even	guarantee	the	server	has	received	the	message	and,	for	this
reason,	must	be	used	sparingly.	For	example,	the		create/2		function	we	have	defined
in	this	chapter	should	have	used		call/2	.	We	have	used		cast/2		for	didactic	purposes.

3.	 	handle_info/2		must	be	used	for	all	other	messages	a	server	may	receive	that	are	not
sent	via		GenServer.call/2		or		GenServer.cast/2	,	including	regular	messages	sent	with
	send/2	.	The	monitoring		:DOWN		messages	are	a	perfect	example	of	this.

Since	any	message,	including	the	ones	sent	via		send/2	,	go	to		handle_info/2	,	there	is	a
chance	unexpected	messages	will	arrive	to	the	server.	Therefore,	if	we	don't	define	the
catch-all	clause,	those	messages	could	lead	our	registry	to	crash,	because	no	clause	would
match.

We	don't	need	to	worry	about	this	for		handle_call/3		and		handle_cast/2		because	these
requests	are	only	done	via	the		GenServer		API,	so	an	unknown	message	is	quite	likely	to	be
due	to	a	developer	mistake.

call,	cast	or	info?

32

Monitors	or	links?
We	have	previously	learned	about	links	in	the	Process	chapter.	Now,	with	the	registry
complete,	you	may	be	wondering:	when	should	we	use	monitors	and	when	should	we	use
links?

Links	are	bi-directional.	If	you	link	two	processes	and	one	of	them	crashes,	the	other	side
will	crash	too	(unless	it	is	trapping	exits).	A	monitor	is	uni-directional:	only	the	monitoring
process	will	receive	notifications	about	the	monitored	one.	Simply	put,	use	links	when	you
want	linked	crashes,	and	monitors	when	you	just	want	to	be	informed	of	crashes,	exits,	and
so	on.

Returning	to	our		handle_cast/2		implementation,	you	can	see	the	registry	is	both	linking	and
monitoring	the	buckets:

{:ok,	pid}	=	KV.Bucket.start_link

ref	=	Process.monitor(pid)

This	is	a	bad	idea,	as	we	don't	want	the	registry	to	crash	when	a	bucket	crashes!	We
typically	avoid	creating	new	processes	directly,	instead	we	delegate	this	responsibility	to
supervisors.	As	we'll	see	in	the	next	chapter,	supervisors	rely	on	links	and	that	explains	why
link-based	APIs	(spawn_link	,		start_link	,	etc)	are	so	prevalent	in	Elixir	and	OTP.

Monitors	or	links?

33

Supervisor	and	Application
So	far	our	application	has	a	registry	that	may	monitor	dozens,	if	not	hundreds,	of	buckets.
While	we	think	our	implementation	so	far	is	quite	good,	no	software	is	bug	free,	and	failures
are	definitely	going	to	happen.

When	things	fail,	your	first	reaction	may	be:	"let's	rescue	those	errors".	But	in	Elixir	we	avoid
the	defensive	programming	habit	of	rescuing	exceptions,	as	commonly	seen	in	other
languages.	Instead,	we	say	"let	it	crash".	If	there	is	a	bug	that	leads	our	registry	to	crash,	we
have	nothing	to	worry	about	because	we	are	going	to	set	up	a	supervisor	that	will	start	a
fresh	copy	of	the	registry.

In	this	chapter,	we	are	going	to	learn	about	supervisors	and	also	about	applications.	We	are
going	to	create	not	one,	but	two	supervisors,	and	use	them	to	supervise	our	processes.

Supervisor	and	Application

34

Our	first	supervisor
Creating	a	supervisor	is	not	much	different	from	creating	a	GenServer.	We	are	going	to
define	a	module	named		KV.Supervisor	,	which	will	use	the	Supervisor	behaviour,	inside	the
	lib/kv/supervisor.ex		file:

defmodule	KV.Supervisor	do

		use	Supervisor

		def	start_link	do

				Supervisor.start_link(__MODULE__,	:ok)

		end

		def	init(:ok)	do

				children	=	[

						worker(KV.Registry,	[KV.Registry])

]

				supervise(children,	strategy:	:one_for_one)

		end

end

Our	supervisor	has	a	single	child	so	far:	the	registry.	A	worker	in	the	format	of:

worker(KV.Registry,	[KV.Registry])

is	going	to	start	a	process	using	the	following	call:

KV.Registry.start_link(KV.Registry)

The	argument	we	are	passing	to		start_link		is	the	name	of	the	process.	It's	common	to
give	names	to	processes	under	supervision	so	that	other	processes	can	access	them	by
name	without	needing	to	know	their	pid.	This	is	useful	because	a	supervised	process	might
crash,	in	which	case	its	pid	will	change	when	the	supervisor	restarts	it.	By	using	a	name,	we
can	guarantee	the	newly	started	process	will	register	itself	under	the	same	name,	without	a
need	to	explicitly	fetch	the	latest	pid.	Notice	it	is	also	common	to	register	the	process	under
the	same	name	of	the	module	that	defines	it,	this	makes	things	more	straight-forward	when
debugging	or	introspecting	a	live-system.

Finally,	we	call		supervise/2	,	passing	the	list	of	children	and	the	strategy	of		:one_for_one	.

Our	first	supervisor

35

The	supervision	strategy	dictates	what	happens	when	one	of	the	children	crashes.
	:one_for_one		means	that	if	a	child	dies,	it	will	be	the	only	one	restarted.	Since	we	have	only
one	child	now,	that's	all	we	need.	The		Supervisor		behaviour	supports	many	different
strategies	and	we	will	discuss	them	in	this	chapter.

Since		KV.Registry.start_link/1		is	now	expecting	an	argument,	we	need	to	change	our
implementation	to	receive	such	argument.	Open	up		lib/kv/registry.ex		and	replace	the
	start_link/0		definition	by:

		@doc	"""

		Starts	the	registry	with	the	given	`name`.

"""

		def	start_link(name)	do

				GenServer.start_link(__MODULE__,	:ok,	name:	name)

		end

We	also	need	to	update	our	tests	to	give	a	name	when	starting	the	registry.	Replace	the
	setup		function	in		test/kv/registry_test.exs		by:

		setup	context	do

				{:ok,	registry}	=	KV.Registry.start_link(context.test)

				{:ok,	registry:	registry}

		end

	setup/2		may	also	receive	the	test	context,	similar	to		test/3	.	Besides	whatever	value	we
may	add	in	our	setup	blocks,	the	context	includes	some	default	keys,	like		:case	,		:test	,
	:file		and		:line	.	We	have	used		context.test		as	a	shortcut	to	spawn	a	registry	with	the
same	name	of	the	test	currently	running.

Now	with	our	tests	passing,	we	can	take	our	supervisor	for	a	spin.	If	we	start	a	console
inside	our	project	using		iex	-S	mix	,	we	can	manually	start	the	supervisor:

iex>	KV.Supervisor.start_link

{:ok,	#PID<0.66.0>}

iex>	KV.Registry.create(KV.Registry,	"shopping")

:ok

iex>	KV.Registry.lookup(KV.Registry,	"shopping")

{:ok,	#PID<0.70.0>}

When	we	started	the	supervisor,	the	registry	worker	was	automatically	started,	allowing	us	to
create	buckets	without	the	need	to	manually	start	it.

In	practice	we	rarely	start	the	application	supervisor	manually.	Instead	it	is	started	as	part	of
the	application	callback.

Our	first	supervisor

36

Our	first	supervisor

37

Understanding	applications
We	have	been	working	inside	an	application	this	entire	time.	Every	time	we	changed	a	file
and	ran		mix	compile	,	we	could	see	a		Generated	kv	app		message	in	the	compilation	output.

We	can	find	the	generated		.app		file	at		_build/dev/lib/kv/ebin/kv.app	.	Let's	have	a	look	at
its	contents:

{application,kv,

													[{registered,[]},

														{description,"kv"},

														{applications,[kernel,stdlib,elixir,logger]},

														{vsn,"0.0.1"},

														{modules,['Elixir.KV','Elixir.KV.Bucket',

																								'Elixir.KV.Registry','Elixir.KV.Supervisor']}]}.

This	file	contains	Erlang	terms	(written	using	Erlang	syntax).	Even	though	we	are	not	familiar
with	Erlang,	it	is	easy	to	guess	this	file	holds	our	application	definition.	It	contains	our
application		version	,	all	the	modules	defined	by	it,	as	well	as	a	list	of	applications	we
depend	on,	like	Erlang's		kernel	,		elixir		itself,	and		logger		which	is	specified	in	the
application	list	in		mix.exs	.

It	would	be	pretty	boring	to	update	this	file	manually	every	time	we	add	a	new	module	to	our
application.	That's	why	Mix	generates	and	maintains	it	for	us.

We	can	also	configure	the	generated		.app		file	by	customizing	the	values	returned	by	the
	application/0		inside	our		mix.exs		project	file.	We	are	going	to	do	our	first	customization
soon.

Starting	applications

When	we	define	a		.app		file,	which	is	the	application	specification,	we	are	able	to	start	and
stop	the	application	as	a	whole.	We	haven't	worried	about	this	so	far	for	two	reasons:

1.	 Mix	automatically	starts	our	current	application	for	us

2.	 Even	if	Mix	didn't	start	our	application	for	us,	our	application	does	not	yet	do	anything
when	it	starts

In	any	case,	let's	see	how	Mix	starts	the	application	for	us.	Let's	start	a	project	console	with
	iex	-S	mix		and	try:

Understanding	applications

38

iex>	Application.start(:kv)

{:error,	{:already_started,	:kv}}

Oops,	it's	already	started.	Mix	normally	starts	the	whole	hierarchy	of	applications	defined	in
our	project's		mix.exs		file	and	it	does	the	same	for	all	dependencies	if	they	depend	on	other
applications.

We	can	pass	an	option	to	Mix	to	ask	it	to	not	start	our	application.	Let's	give	it	a	try	by
running		iex	-S	mix	run	--no-start	:

iex>	Application.start(:kv)

:ok

We	can	stop	our		:kv		application	as	well	as	the		:logger		application,	which	is	started	by
default	with	Elixir:

iex>	Application.stop(:kv)

:ok

iex>	Application.stop(:logger)

:ok

And	let's	try	to	start	our	application	again:

iex>	Application.start(:kv)

{:error,	{:not_started,	:logger}}

Now	we	get	an	error	because	an	application	that		:kv		depends	on	(:logger		in	this	case)
isn't	started.	We	need	to	either	start	each	application	manually	in	the	correct	order	or	call
	Application.ensure_all_started		as	follows:

iex>	Application.ensure_all_started(:kv)

{:ok,	[:logger,	:kv]}

Nothing	really	exciting	happens	but	it	shows	how	we	can	control	our	application.

When	you	run		iex	-S	mix	,	it	is	equivalent	to	running		iex	-S	mix	run	.	So	whenever
you	need	to	pass	more	options	to	Mix	when	starting	IEx,	it's	just	a	matter	of	typing		iex
-S	mix	run		and	then	passing	any	options	the		run		command	accepts.	You	can	find
more	information	about		run		by	running		mix	help	run		in	your	shell.

The	application	callback

Understanding	applications

39

Since	we	spent	all	this	time	talking	about	how	applications	are	started	and	stopped,	there
must	be	a	way	to	do	something	useful	when	the	application	starts.	And	indeed,	there	is!

We	can	specify	an	application	callback	function.	This	is	a	function	that	will	be	invoked	when
the	application	starts.	The	function	must	return	a	result	of		{:ok,	pid}	,	where		pid		is	the
process	identifier	of	a	supervisor	process.

We	can	configure	the	application	callback	in	two	steps.	First,	open	up	the		mix.exs		file	and
change		def	application		to	the	following:

		def	application	do

				[applications:	[:logger],

					mod:	{KV,	[]}]

		end

The		:mod		option	specifies	the	"application	callback	module",	followed	by	the	arguments	to
be	passed	on	application	start.	The	application	callback	module	can	be	any	module	that
implements	the	Application	behaviour.

Now	that	we	have	specified		KV		as	the	module	callback,	we	need	to	change	the		KV	
module,	defined	in		lib/kv.ex	:

defmodule	KV	do

		use	Application

		def	start(_type,	_args)	do

				KV.Supervisor.start_link

		end

end

When	we		use	Application	,	we	need	to	define	a	couple	functions,	similar	to	when	we	used
	Supervisor		or		GenServer	.	This	time	we	only	need	to	define	a		start/2		function.	If	we
wanted	to	specify	custom	behaviour	on	application	stop,	we	could	define	a		stop/1		function.

Let's	start	our	project	console	once	again	with		iex	-S	mix	.	We	will	see	a	process	named
	KV.Registry		is	already	running:

iex>	KV.Registry.create(KV.Registry,	"shopping")

:ok

iex>	KV.Registry.lookup(KV.Registry,	"shopping")

{:ok,	#PID<0.88.0>}

How	do	we	know	this	is	working?	After	all,	we	are	creating	the	bucket	and	then	looking	it	up;
of	course	it	should	work,	right?	Well,	remember	that		KV.Registry.create/2		uses
	GenServer.cast/3	,	and	therefore	will	return		:ok		regardless	of	whether	the	message	finds

Understanding	applications

40

its	target	or	not.	At	that	point,	we	don't	know	whether	the	supervisor	and	the	server	are	up,
and	if	the	bucket	was	created.	However,		KV.Registry.lookup/2		uses		GenServer.call/3	,	and
will	block	and	wait	for	a	response	from	the	server.	We	do	get	a	positive	response,	so	we
know	all	is	up	and	running.

For	an	experiment,	try	reimplementing		KV.Registry.create/2		to	use		GenServer.call/3	
instead,	and	momentarily	disable	the	application	callback.	Run	the	code	above	on	the
console	again,	and	you	will	see	the	creation	step	fail	straightaway.

Don't	forget	to	bring	the	code	back	to	normal	before	resuming	this	tutorial!

Projects	or	applications?

Mix	makes	a	distinction	between	projects	and	applications.	Based	on	the	contents	of	our
	mix.exs		file,	we	would	say	we	have	a	Mix	project	that	defines	the		:kv		application.	As	we
will	see	in	later	chapters,	there	are	projects	that	don't	define	any	application.

When	we	say	"project"	you	should	think	about	Mix.	Mix	is	the	tool	that	manages	your	project.
It	knows	how	to	compile	your	project,	test	your	project	and	more.	It	also	knows	how	to
compile	and	start	the	application	relevant	to	your	project.

When	we	talk	about	applications,	we	talk	about	OTP.	Applications	are	the	entities	that	are
started	and	stopped	as	a	whole	by	the	runtime.	You	can	learn	more	about	applications	in	the
docs	for	the	Application	module,	as	well	as	by	running		mix	help	compile.app		to	learn	more
about	the	supported	options	in		def	application	.

Understanding	applications

41

Simple	one	for	one	supervisors
We	have	now	successfully	defined	our	supervisor	which	is	automatically	started	(and
stopped)	as	part	of	our	application	lifecycle.

Remember	however	that	our		KV.Registry		is	both	linking	and	monitoring	bucket	processes
in	the		handle_cast/2		callback:

{:ok,	pid}	=	KV.Bucket.start_link

ref	=	Process.monitor(pid)

Links	are	bi-directional,	which	implies	that	a	crash	in	a	bucket	will	crash	the	registry.
Although	we	now	have	the	supervisor,	which	guarantees	the	registry	will	be	back	up	and
running,	crashing	the	registry	still	means	we	lose	all	data	associating	bucket	names	to	their
respective	processes.

In	other	words,	we	want	the	registry	to	keep	on	running	even	if	a	bucket	crashes.	Let's	write
a	new	registry	test:

		test	"removes	bucket	on	crash",	%{registry:	registry}	do

				KV.Registry.create(registry,	"shopping")

				{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

				#	Stop	the	bucket	with	non-normal	reason

				Process.exit(bucket,	:shutdown)

				#	Wait	until	the	bucket	is	dead

				ref	=	Process.monitor(bucket)

				assert_receive	{:DOWN,	^ref,	_,	_,	_}

				assert	KV.Registry.lookup(registry,	"shopping")	==	:error

		end

The	test	is	similar	to	"removes	bucket	on	exit"	except	that	we	are	being	a	bit	more	harsh	by
sending		:shutdown		as	the	exit	reason	instead	of		:normal	.	Opposite	to		Agent.stop/1	,
	Process.exit/2		is	an	asynchronous	operation,	therefore	we	cannot	simply	query
	KV.Registry.lookup/2		right	after	sending	the	exit	signal	because	there	will	be	no	guarantee
the	bucket	will	be	dead	by	then.	To	solve	this,	we	also	monitor	the	bucket	during	test	and
only	query	the	registry	once	we	are	sure	it	is	DOWN,	avoiding	race	conditions.

Since	the	bucket	is	linked	to	the	registry,	which	is	then	linked	to	the	test	process,	killing	the
bucket	causes	the	registry	to	crash	which	then	causes	the	test	process	to	crash	too:

Simple	one	for	one	supervisors

42

1)	test	removes	bucket	on	crash	(KV.RegistryTest)

			test/kv/registry_test.exs:52

			**	(EXIT	from	#PID<0.94.0>)	shutdown

One	possible	solution	to	this	issue	would	be	to	provide	a		KV.Bucket.start/0	,	that	invokes
	Agent.start/1	,	and	use	it	from	the	registry,	removing	the	link	between	registry	and	buckets.
However,	this	would	be	a	bad	idea	because	buckets	would	not	be	linked	to	any	process	after
this	change.	This	means	that	if	someone	stops	the		:kv		application,	all	buckets	would
remain	alive	as	they	are	unreachable.	Not	only	that,	if	a	process	is	unreacheable,	they	are
harder	to	introspect.

We	are	going	to	solve	this	issue	by	defining	a	new	supervisor	that	will	spawn	and	supervise
all	buckets.	There	is	one	supervisor	strategy,	called		:simple_one_for_one	,	that	is	the	perfect
fit	for	such	situations:	it	allows	us	to	specify	a	worker	template	and	supervise	many	children
based	on	this	template.	With	this	strategy,	no	workers	are	started	during	the	supervisor
initialization,	and	a	new	worker	is	started	each	time		start_child/2		is	called.

Let's	define	our		KV.Bucket.Supervisor		in		lib/kv/bucket/supervisor.ex		as	follows:

defmodule	KV.Bucket.Supervisor	do

		use	Supervisor

		#	A	simple	module	attribute	that	stores	the	supervisor	name

		@name	KV.Bucket.Supervisor

		def	start_link	do

				Supervisor.start_link(__MODULE__,	:ok,	name:	@name)

		end

		def	start_bucket	do

				Supervisor.start_child(@name,	[])

		end

		def	init(:ok)	do

				children	=	[

						worker(KV.Bucket,	[],	restart:	:temporary)

]

				supervise(children,	strategy:	:simple_one_for_one)

		end

end

There	are	three	changes	in	this	supervisor	compared	to	the	first	one.

Simple	one	for	one	supervisors

43

Instead	of	receiving	the	registered	process	name	as	argument,	we	have	simply	decided	to
name	it		KV.Bucket.Supervisor		as	we	won't	spawn	different	versions	of	this	process.	We
have	also	defined	a		start_bucket/0		function	that	will	start	a	bucket	as	a	child	of	our
supervisor	named		KV.Bucket.Supervisor	.		start_bucket/0		is	the	function	we	are	going	to
invoke	instead	of	calling		KV.Bucket.start_link		directly	in	the	registry.

Finally,	in	the		init/1		callback,	we	are	marking	the	worker	as		:temporary	.	This	means	that
if	the	bucket	dies,	it	won't	be	restarted!	That's	because	we	only	want	to	use	the	supervisor
as	a	mechanism	to	group	the	buckets.	The	creation	of	buckets	should	always	pass	through
the	registry.

Run		iex	-S	mix		so	we	can	give	our	new	supervisor	a	try:

iex>	{:ok,	_}	=	KV.Bucket.Supervisor.start_link

{:ok,	#PID<0.70.0>}

iex>	{:ok,	bucket}	=	KV.Bucket.Supervisor.start_bucket

{:ok,	#PID<0.72.0>}

iex>	KV.Bucket.put(bucket,	"eggs",	3)

:ok

iex>	KV.Bucket.get(bucket,	"eggs")

3

Let's	change	the	registry	to	work	with	the	buckets	supervisor	by	rewriting	how	buckets	are
started:

		def	handle_cast({:create,	name},	{names,	refs})	do

				if	Map.has_key?(names,	name)	do

						{:noreply,	{names,	refs}}

				else

						{:ok,	pid}	=	KV.Bucket.Supervisor.start_bucket

						ref	=	Process.monitor(pid)

						refs	=	Map.put(refs,	ref,	name)

						names	=	Map.put(names,	name,	pid)

						{:noreply,	{names,	refs}}

				end

		end

Once	we	perform	those	changes,	our	test	suite	should	fail	as	there	is	no	bucket	supervisor.
Instead	of	directly	starting	the	bucket	supervisor	on	every	test,	let's	automatically	start	it	as
part	of	our	main	supervision	tree.

Simple	one	for	one	supervisors

44

Supervision	trees
In	order	to	use	the	buckets	supervisor	in	our	application,	we	need	to	add	it	as	a	child	of
	KV.Supervisor	.	Notice	we	are	beginning	to	have	supervisors	that	supervise	other
supervisors,	forming	so-called	"supervision	trees."

Open	up		lib/kv/supervisor.ex		and	change		init/1		to	match	the	following:

		def	init(:ok)	do

				children	=	[

						worker(KV.Registry,	[KV.Registry]),

						supervisor(KV.Bucket.Supervisor,	[])

]

				supervise(children,	strategy:	:one_for_one)

		end

This	time	we	have	added	a	supervisor	as	child,	starting	it	with	no	arguments.	Re-run	the	test
suite	and	now	all	tests	should	pass.

Since	we	have	added	more	children	to	the	supervisor,	it	is	also	important	to	evaluate	if	the
	:one_for_one		supervision	strategy	is	still	correct.	One	flaw	that	shows	up	right	away	is	the
relationship	between	the		KV.Registry		worker	process	and	the		KV.Bucket.Supervisor	
supervisor	process.	If		KV.Registry		dies,	all	information	linking		KV.Bucket		names	to
	KV.Bucket		processes	is	lost,	and	therefore		KV.Bucket.Supervisor		must	die	too-	otherwise,
the		KV.Bucket		processes	it	manages	would	be	orphaned.

In	light	of	this	observation,	we	should	consider	moving	to	another	supervision	strategy.	Two
likely	candidates	are		:one_for_all		and		:rest_for_one	.	A	supervisor	using	the
	:one_for_all		strategy	will	kill	and	restart	all	of	its	children	processes	whenever	any	one	of
them	dies.	At	first	glance,	this	would	appear	to	suit	our	use	case,	but	it	also	seems	a	little
heavy-handed,	because		KV.Registry		is	perfectly	capable	of	cleaning	itself	up	if
	KV.Bucket.Supervisor		dies.	In	this	case,	the		:rest_for_one		strategy	comes	in	handy-	when
a	child	process	crashes,	the	supervisor	will	only	kill	and	restart	child	processes	which	were
started	after	the	crashed	child.	Let's	rewrite	our	supervision	tree	to	use	this	strategy	instead:

Supervision	trees

45

		def	init(:ok)	do

				children	=	[

						worker(KV.Registry,	[KV.Registry]),

						supervisor(KV.Bucket.Supervisor,	[])

]

				supervise(children,	strategy:	:rest_for_one)

		end

Now,	if	the	registry	worker	crashes,	both	the	registry	and	the	"rest"	of		KV.Supervisor	's
children	(i.e.		KV.Bucket.Supervisor)	will	be	restarted.	However,	if		KV.Bucket.Supervisor	
crashes,		KV.Registry		will	not	be	restarted,	because	it	was	started	prior	to
	KV.Bucket.Supervisor	.

There	are	other	strategies	and	other	options	that	could	be	given	to		worker/2	,		supervisor/2	
and		supervise/2		functions,	so	don't	forget	to	check	both		Supervisor		and		Supervisor.Spec	
modules.

There	are	two	topics	left	before	we	move	on	to	the	next	chapter.

Supervision	trees

46

Observer
Now	that	we	have	defined	our	supervision	tree,	it	is	a	great	opportunity	to	introduce	the
Observer	tool	that	ships	with	Erlang.	Start	your	application	with		iex	-S	mix		and	key	this	in:

iex>	:observer.start

A	GUI	should	pop-up	containing	all	sorts	of	information	about	our	system,	from	general
statistics	to	load	charts	as	well	as	a	list	of	all	running	processes	and	applications.

In	the	Applications	tab,	you	will	see	all	applications	currently	running	in	your	system	along
side	their	supervision	tree.	You	can	select	the		kv		application	to	explore	it	further:

Not	only	that,	as	you	create	new	buckets	on	the	terminal,	you	should	see	new	processes
spawned	in	the	supervision	tree	shown	in	Observer:

iex>	KV.Registry.create	KV.Registry,	"shopping"

:ok

We	will	leave	it	up	to	you	to	further	explore	what	Observer	provides.	Note	you	can	double
click	any	process	in	the	supervision	tree	to	retrieve	more	information	about	it,	as	well	as
right-click	a	process	to	send	"a	kill	signal",	a	perfect	way	to	emulate	failures	and	see	if	your
supervisor	reacts	as	expected.

At	the	end	of	the	day,	tools	like	Observer	is	one	of	the	main	reasons	you	want	to	always	start
processes	inside	supervision	trees,	even	if	they	are	temporary,	to	ensure	they	are	always
reachable	and	introspectable.

Observer

47

Shared	state	in	tests
So	far	we	have	been	starting	one	registry	per	test	to	ensure	they	are	isolated:

		setup	context	do

				{:ok,	registry}	=	KV.Registry.start_link(context.test)

				{:ok,	registry:	registry}

		end

Since	we	have	now	changed	our	registry	to	use		KV.Bucket.Supervisor	,	which	is	registered
globally,	our	tests	are	now	relying	on	this	shared,	global	supervisor	even	though	each	test
has	its	own	registry.	The	question	is:	should	we?

It	depends.	It	is	ok	to	rely	on	shared	global	state	as	long	as	we	depend	only	on	a	non-shared
partition	of	this	state.	For	example,	every	time	we	register	a	process	under	a	given	name,	we
are	registering	a	process	against	a	shared	name	registry.	However,	as	long	as	we	guarantee
the	names	are	specific	to	each	test,	by	using	a	construct	like		context.test	,	we	won't	have
concurrency	or	data	dependency	issues	between	tests.

Similar	reasoning	should	be	applied	to	our	bucket	supervisor.	Although	multiple	registries
may	start	buckets	on	the	shared	bucket	supervisor,	those	buckets	and	registries	are	isolated
from	each	other.	We	would	only	run	into	concurrency	issues	if	we	used	a	function	like
	Supervisor.count_children(KV.Bucket.Supervisor)		which	would	count	all	buckets	from	all
registries,	potentially	giving	different	results	when	tests	run	concurrently.

Since	we	have	relied	only	on	a	non-shared	partition	of	the	bucket	supervisor	so	far,	we	don't
need	to	worry	about	concurrency	issues	in	our	test	suite.	In	case	it	ever	becomes	a	problem,
we	can	start	a	supervisor	per	test	and	pass	it	as	an	argument	to	the	registry		start_link	
function.

Now	that	our	application	is	properly	supervised	and	tested,	let's	see	how	we	can	speed
things	up.

Shared	state	in	tests

48

ETS
Every	time	we	need	to	look	up	a	bucket,	we	need	to	send	a	message	to	the	registry.	In	case
our	registry	is	being	accessed	concurrently	by	multiple	processes,	the	registry	may	become
a	bottleneck!

In	this	chapter	we	will	learn	about	ETS	(Erlang	Term	Storage)	and	how	to	use	it	as	a	cache
mechanism.

Warning!	Don't	use	ETS	as	a	cache	prematurely!	Log	and	analyze	your	application
performance	and	identify	which	parts	are	bottlenecks,	so	you	know	whether	you	should
cache,	and	what	you	should	cache.	This	chapter	is	merely	an	example	of	how	ETS	can
be	used,	once	you've	determined	the	need.

ETS

49

ETS	as	a	cache
ETS	allows	us	to	store	any	Elixir	term	in	an	in-memory	table.	Working	with	ETS	tables	is
done	via	Erlang's		:ets		module:

iex>	table	=	:ets.new(:buckets_registry,	[:set,	:protected])

8207

iex>	:ets.insert(table,	{"foo",	self})

true

iex>	:ets.lookup(table,	"foo")

[{"foo",	#PID<0.41.0>}]

When	creating	an	ETS	table,	two	arguments	are	required:	the	table	name	and	a	set	of
options.	From	the	available	options,	we	passed	the	table	type	and	its	access	rules.	We	have
chosen	the		:set		type,	which	means	that	keys	cannot	be	duplicated.	We've	also	set	the
table's	access	to		:protected	,	meaning	only	the	process	that	created	the	table	can	write	to
it,	but	all	processes	can	read	from	it.	Those	are	actually	the	default	values,	so	we	will	skip
them	from	now	on.

ETS	tables	can	also	be	named,	allowing	us	to	access	them	by	a	given	name:

iex>	:ets.new(:buckets_registry,	[:named_table])

:buckets_registry

iex>	:ets.insert(:buckets_registry,	{"foo",	self})

true

iex>	:ets.lookup(:buckets_registry,	"foo")

[{"foo",	#PID<0.41.0>}]

Let's	change	the		KV.Registry		to	use	ETS	tables.	Since	our	registry	requires	a	name	as
argument,	we	are	going	to	name	the	ETS	table	with	the	same	name	as	the	registry.	ETS
names	and	process	names	are	stored	in	different	locations,	so	there	is	no	chance	of
conflicts.

Open	up		lib/kv/registry.ex	,	and	let's	change	its	implementation.	We've	added	comments
to	the	source	code	to	highlight	the	changes	we've	made:

defmodule	KV.Registry	do

		use	GenServer

		##	Client	API

		@doc	"""

		Starts	the	registry	with	the	given	`name`.

ETS	as	a	cache

50

http://www.erlang.org/doc/man/ets.html

"""

		def	start_link(name)	do

				#	1\.	Pass	the	name	to	GenServer's	init

				GenServer.start_link(__MODULE__,	name,	name:	name)

		end

		@doc	"""

		Looks	up	the	bucket	pid	for	`name`	stored	in	`server`.

		Returns	`{:ok,	pid}`	if	the	bucket	exists,	`:error`	otherwise.

"""

		def	lookup(server,	name)	when	is_atom(server)	do

				#	2\.	Lookup	is	now	done	directly	in	ETS,	without	accessing	the	server

				case	:ets.lookup(server,	name)	do

						[{^name,	pid}]	->	{:ok,	pid}

						[]	->	:error

				end

		end

		@doc	"""

		Ensures	there	is	a	bucket	associated	to	the	given	`name`	in	`server`.

"""

		def	create(server,	name)	do

				GenServer.cast(server,	{:create,	name})

		end

		@doc	"""

		Stops	the	registry.

"""

		def	stop(server)	do

				GenServer.stop(server)

		end

		##	Server	callbacks

		def	init(table)	do

				#	3\.	We	have	replaced	the	names	map	by	the	ETS	table

				names	=	:ets.new(table,	[:named_table,	read_concurrency:	true])

				refs		=	%{}

				{:ok,	{names,	refs}}

		end

		#	4\.	The	previous	handle_call	callback	for	lookup	was	removed

		def	handle_cast({:create,	name},	{names,	refs})	do

				#	5\.	Read	and	write	to	the	ETS	table	instead	of	the	map

				case	lookup(names,	name)	do

						{:ok,	_pid}	->

								{:noreply,	{names,	refs}}

						:error	->

								{:ok,	pid}	=	KV.Bucket.Supervisor.start_bucket

								ref	=	Process.monitor(pid)

								refs	=	Map.put(refs,	ref,	name)

ETS	as	a	cache

51

								:ets.insert(names,	{name,	pid})

								{:noreply,	{names,	refs}}

				end

		end

		def	handle_info({:DOWN,	ref,	:process,	_pid,	_reason},	{names,	refs})	do

				#	6\.	Delete	from	the	ETS	table	instead	of	the	map

				{name,	refs}	=	Map.pop(refs,	ref)

				:ets.delete(names,	name)

				{:noreply,	{names,	refs}}

		end

		def	handle_info(_msg,	state)	do

				{:noreply,	state}

		end

end

Notice	that	before	our	changes		KV.Registry.lookup/2		sent	requests	to	the	server,	but	now	it
reads	directly	from	the	ETS	table,	which	is	shared	across	all	processes.	That's	the	main	idea
behind	the	cache	mechanism	we	are	implementing.

In	order	for	the	cache	mechanism	to	work,	the	created	ETS	table	needs	to	have	access
	:protected		(the	default),	so	all	clients	can	read	from	it,	while	only	the		KV.Registry		process
writes	to	it.	We	have	also	set		read_concurrency:	true		when	starting	the	table,	optimizing	the
table	for	the	common	scenario	of	concurrent	read	operations.

The	changes	we	have	performed	above	have	broken	our	tests	because	they	were	using	the
pid	of	the	registry	process	for	all	operations	and	now	the	registry	lookup	requires	the	ETS
table	name.	However,	since	the	ETS	table	has	the	same	name	as	the	registry	process,	it	is
an	easy	fix.	Change	the	setup	function	in		test/kv/registry_test.exs		to	the	following:

		setup	context	do

				{:ok,	_}	=	KV.Registry.start_link(context.test)

				{:ok,	registry:	context.test}

		end

Once	we	change		setup	,	some	tests	will	continue	to	fail.	You	may	even	notice	tests	pass
and	fail	inconsistently	between	runs.	For	example,	the	"spawns	buckets"	test:

ETS	as	a	cache

52

		test	"spawns	buckets",	%{registry:	registry}	do

				assert	KV.Registry.lookup(registry,	"shopping")	==	:error

				KV.Registry.create(registry,	"shopping")

				assert	{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

				KV.Bucket.put(bucket,	"milk",	1)

				assert	KV.Bucket.get(bucket,	"milk")	==	1

		end

may	be	failing	on	this	line:

{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

How	can	this	line	fail	if	we	just	created	the	bucket	in	the	previous	line?

The	reason	those	failures	are	happening	is	because,	for	didactic	purposes,	we	have	made
two	mistakes:

1.	 We	are	prematurely	optimizing	(by	adding	this	cache	layer)
2.	 We	are	using		cast/2		(while	we	should	be	using		call/2)

ETS	as	a	cache

53

Race	conditions?
Developing	in	Elixir	does	not	make	your	code	free	of	race	conditions.	However,	Elixir's
simple	abstractions	where	nothing	is	shared	by	default	make	it	easier	to	spot	a	race
condition's	root	cause.

What	is	happening	in	our	tests	is	that	there	is	a	delay	in	between	an	operation	and	the	time
we	can	observe	this	change	in	the	ETS	table.	Here	is	what	we	were	expecting	to	happen:

1.	 We	invoke		KV.Registry.create(registry,	"shopping")	
2.	 The	registry	creates	the	bucket	and	updates	the	cache	table
3.	 We	access	the	information	from	the	table	with		KV.Registry.lookup(registry,

"shopping")	

4.	 The	command	above	returns		{:ok,	bucket}	

However,	since		KV.Registry.create/2		is	a	cast	operation,	the	command	will	return	before
we	actually	write	to	the	table!	In	other	words,	this	is	happening:

1.	 We	invoke		KV.Registry.create(registry,	"shopping")	
2.	 We	access	the	information	from	the	table	with		KV.Registry.lookup(ets,

"shopping")	

3.	 The	command	above	returns		:error	
4.	 The	registry	creates	the	bucket	and	updates	the	cache	table

To	fix	the	failure	we	just	need	to	make		KV.Registry.create/2		synchronous	by	using		call/2	
rather	than		cast/2	.	This	will	guarantee	that	the	client	will	only	continue	after	changes	have
been	made	to	the	table.	Let's	change	the	function	and	its	callback	as	follows:

		def	create(server,	name)	do

				GenServer.call(server,	{:create,	name})

		end

		def	handle_call({:create,	name},	_from,	{names,	refs})	do

				case	lookup(names,	name)	do

						{:ok,	pid}	->

								{:reply,	pid,	{names,	refs}}

						:error	->

								{:ok,	pid}	=	KV.Bucket.Supervisor.start_bucket

								ref	=	Process.monitor(pid)

								refs	=	Map.put(refs,	ref,	name)

								:ets.insert(names,	{name,	pid})

								{:reply,	pid,	{names,	refs}}

				end

		end

Race	conditions?

54

We	simply	changed	the	callback	from		handle_cast/2		to		handle_call/3		and	changed	it	to
reply	with	the	pid	of	the	created	bucket.	Generally	speaking,	Elixir	developers	prefer	to	use
	call/2		instead	of		cast/2		as	it	also	provides	back-pressure	(you	block	until	you	get	a
reply).	Using		cast/2		when	not	necessary	can	also	be	considered	a	premature	optimization.

Let's	run	the	tests	once	again.	This	time	though,	we	will	pass	the		--trace		option:

$	mix	test	--trace

The		--trace		option	is	useful	when	your	tests	are	deadlocking	or	there	are	race	conditions,
as	it	runs	all	tests	synchronously	(async:	true		has	no	effect)	and	shows	detailed
information	about	each	test.	This	time	we	should	be	down	to	one	or	two	intermittent	failures:

		1)	test	removes	buckets	on	exit	(KV.RegistryTest)

					test/kv/registry_test.exs:19

					Assertion	with	==	failed

					code:	KV.Registry.lookup(registry,	"shopping")	==	:error

					lhs:		{:ok,	#PID<0.109.0>}

					rhs:		:error

					stacktrace:

							test/kv/registry_test.exs:23

According	to	the	failure	message,	we	are	expecting	that	the	bucket	no	longer	exists	on	the
table,	but	it	still	does!	This	problem	is	the	opposite	of	the	one	we	have	just	solved:	while
previously	there	was	a	delay	between	the	command	to	create	a	bucket	and	updating	the
table,	now	there	is	a	delay	between	the	bucket	process	dying	and	its	entry	being	removed
from	the	table.

Unfortunately	this	time	we	cannot	simply	change		handle_info/2	,	the	operation	responsible
for	cleaning	the	ETS	table,	to	a	synchronous	operation.	Instead	we	need	to	find	a	way	to
guarantee	the	registry	has	processed	the		:DOWN		notification	sent	when	the	bucket	crashed.

An	easy	way	to	do	so	is	by	sending	a	synchronous	request	to	the	registry:	because
messages	are	processed	in	order,	if	the	registry	replies	to	a	request	sent	after	the
	Agent.stop		call,	it	means	that	the		:DOWN		message	has	been	processed.	Let's	do	so	by
creating	a	"bogus"	bucket,	which	is	a	synchronous	request,	after		Agent.stop		in	both	tests:

Race	conditions?

55

		test	"removes	buckets	on	exit",	%{registry:	registry}	do

				KV.Registry.create(registry,	"shopping")

				{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

				Agent.stop(bucket)

				#	Do	a	call	to	ensure	the	registry	processed	the	DOWN	message

				_	=	KV.Registry.create(registry,	"bogus")

				assert	KV.Registry.lookup(registry,	"shopping")	==	:error

		end

		test	"removes	bucket	on	crash",	%{registry:	registry}	do

				KV.Registry.create(registry,	"shopping")

				{:ok,	bucket}	=	KV.Registry.lookup(registry,	"shopping")

				#	Kill	the	bucket	and	wait	for	the	notification

				Process.exit(bucket,	:shutdown)

				#	Wait	until	the	bucket	is	dead

				ref	=	Process.monitor(bucket)

				assert_receive	{:DOWN,	^ref,	_,	_,	_}

				#	Do	a	call	to	ensure	the	registry	processed	the	DOWN	message

				_	=	KV.Registry.create(registry,	"bogus")

				assert	KV.Registry.lookup(registry,	"shopping")	==	:error

		end

Our	tests	should	now	(always)	pass!

This	concludes	our	optimization	chapter.	We	have	used	ETS	as	a	cache	mechanism	where
reads	can	happen	from	any	processes	but	writes	are	still	serialized	through	a	single	process.
More	importantly,	we	have	also	learned	that	once	data	can	be	read	asynchronously,	we
need	to	be	aware	of	the	race	conditions	it	might	introduce.

Next	let's	discuss	external	and	internal	dependencies	and	how	Mix	helps	us	manage	large
codebases.

Race	conditions?

56

Dependencies	and	umbrella	projects
In	this	chapter,	we	will	discuss	how	to	manage	dependencies	in	Mix.

Our		kv		application	is	complete,	so	it's	time	to	implement	the	server	that	will	handle	the
requests	we	defined	in	the	first	chapter:

CREATE	shopping

OK

PUT	shopping	milk	1

OK

PUT	shopping	eggs	3

OK

GET	shopping	milk

1

OK

DELETE	shopping	eggs

OK

However,	instead	of	adding	more	code	to	the		kv		application,	we	are	going	to	build	the	TCP
server	as	another	application	that	is	a	client	of	the		kv		application.	Since	the	whole	runtime
and	Elixir	ecosystem	are	geared	towards	applications,	it	makes	sense	to	break	our	projects
into	smaller	applications	that	work	together	rather	than	building	a	big,	monolithic	app.

Before	creating	our	new	application,	we	must	discuss	how	Mix	handles	dependencies.	In
practice,	there	are	two	kinds	of	dependencies	we	usually	work	with:	internal	and	external
dependencies.	Mix	supports	mechanisms	to	work	with	both	of	them.

Dependencies	and	umbrella	projects

57

External	dependencies
External	dependencies	are	the	ones	not	tied	to	your	business	domain.	For	example,	if	you
need	a	HTTP	API	for	your	distributed	KV	application,	you	can	use	the	Plug	project	as	an
external	dependency.

Installing	external	dependencies	is	simple.	Most	commonly,	we	use	the	Hex	Package
Manager,	by	listing	the	dependency	inside	the	deps	function	in	our		mix.exs		file:

def	deps	do

		[{:plug,	"~>	1.0"}]

end

This	dependency	refers	to	the	latest	version	of	Plug	in	the	1.x.x	version	series	that	has	been
pushed	to	Hex.	This	is	indicated	by	the		~>		preceding	the	version	number.	For	more
information	on	specifying	version	requirements,	see	the	documentation	for	the	Version
module.

Typically,	stable	releases	are	pushed	to	Hex.	If	you	want	to	depend	on	an	external
dependency	still	in	development,	Mix	is	able	to	manage	git	dependencies	too:

def	deps	do

		[{:plug,	git:	"git://github.com/elixir-lang/plug.git"}]

end

You	will	notice	that	when	you	add	a	dependency	to	your	project,	Mix	generates	a		mix.lock	
file	that	guarantees	repeatable	builds.	The	lock	file	must	be	checked	in	to	your	version
control	system,	to	guarantee	that	everyone	who	uses	the	project	will	use	the	same
dependency	versions	as	you.

Mix	provides	many	tasks	for	working	with	dependencies,	which	can	be	seen	in		mix	help	:

$	mix	help

mix	deps														#	List	dependencies	and	their	status

mix	deps.clean								#	Remove	the	given	dependencies'	files

mix	deps.compile						#	Compile	dependencies

mix	deps.get										#	Get	all	out	of	date	dependencies

mix	deps.unlock							#	Unlock	the	given	dependencies

mix	deps.update							#	Update	the	given	dependencies

External	dependencies

58

https://github.com/elixir-lang/plug
https://hex.pm

The	most	common	tasks	are		mix	deps.get		and		mix	deps.update	.	Once	fetched,
dependencies	are	automatically	compiled	for	you.	You	can	read	more	about	deps	by	typing
	mix	help	deps	,	and	in	the	documentation	for	the	Mix.Tasks.Deps	module.

External	dependencies

59

Internal	dependencies
Internal	dependencies	are	the	ones	that	are	specific	to	your	project.	They	usually	don't	make
sense	outside	the	scope	of	your	project/company/organization.	Most	of	the	time,	you	want	to
keep	them	private,	whether	due	to	technical,	economic	or	business	reasons.

If	you	have	an	internal	dependency,	Mix	supports	two	methods	to	work	with	them:	git
repositories	or	umbrella	projects.

For	example,	if	you	push	the		kv		project	to	a	git	repository,	you	just	need	to	list	it	in	your
deps	code	in	order	to	use	it:

def	deps	do

		[{:kv,	git:	"https://github.com/YOUR_ACCOUNT/kv.git"}]

end

If	the	repository	is	private	though,	you	may	need	to	specify	the	private	URL
	git@github.com:YOUR_ACCOUNT/kv.git	.	In	any	case,	Mix	will	be	able	to	fetch	it	for	you	as	long
as	you	have	the	proper	credentials.

Using	git	dependencies	for	internal	dependencies	is	somewhat	discouraged	in	Elixir.
Remember	that	the	runtime	and	the	Elixir	ecosystem	already	provide	the	concept	of
applications.	As	such,	we	expect	you	to	frequently	break	your	code	into	applications	that	can
be	organized	logically,	even	within	a	single	project.

However,	if	you	push	every	application	as	a	separate	project	to	a	git	repository,	your	projects
may	become	very	hard	to	maintain	as	you	will	spend	a	lot	of	time	managing	those	git
repositories	rather	than	writing	your	code.

For	this	reason,	Mix	supports	"umbrella	projects."	Umbrella	projects	allow	you	to	create	one
project	that	hosts	many	applications	while	keeping	all	of	them	in	a	single	source	code
repository.	That	is	exactly	the	style	we	are	going	to	explore	in	the	next	sections.

Let's	create	a	new	Mix	project.	We	are	going	to	creatively	name	it		kv_umbrella	,	and	this
new	project	will	have	both	the	existing		kv		application	and	the	new		kv_server		application
inside.	The	directory	structure	will	look	like	this:

+	kv_umbrella

		+	apps

				+	kv

				+	kv_server

Internal	dependencies

60

The	interesting	thing	about	this	approach	is	that	Mix	has	many	conveniences	for	working
with	such	projects,	such	as	the	ability	to	compile	and	test	all	applications	inside		apps		with	a
single	command.	However,	even	though	they	are	all	listed	together	inside		apps	,	they	are
still	decoupled	from	each	other,	so	you	can	build,	test	and	deploy	each	application	in
isolation	if	you	want	to.

So	let's	get	started!

Internal	dependencies

61

Umbrella	projects
Let's	start	a	new	project	using		mix	new	.	This	new	project	will	be	named		kv_umbrella		and
we	need	to	pass	the		--umbrella		option	when	creating	it.	Do	not	create	this	new	project
inside	the	existing		kv		project!

$	mix	new	kv_umbrella	--umbrella

*	creating	.gitignore

*	creating	README.md

*	creating	mix.exs

*	creating	apps

*	creating	config

*	creating	config/config.exs

From	the	printed	information,	we	can	see	far	fewer	files	are	generated.	The	generated
	mix.exs		file	is	different	too.	Let's	take	a	look	(comments	have	been	removed):

defmodule	KvUmbrella.Mixfile	do

		use	Mix.Project

		def	project	do

				[apps_path:	"apps",

					build_embedded:	Mix.env	==	:prod,

					start_permanent:	Mix.env	==	:prod,

					deps:	deps]

		end

		defp	deps	do

				[]

		end

end

What	makes	this	project	different	from	the	previous	one	is	simply	the		apps_path:
"apps"		entry	in	the	project	definition.	This	means	this	project	will	act	as	an
umbrella.	Such	projects	do	not	have	source	files	nor	tests,	although	they	can	have	their	own
dependencies	(not	shared	with	children).	We'll	create	new	applications	inside	the	apps
directory.

Let's	move	inside	the	apps	directory	and	start	building		kv_server	.	This	time,	we	are	going
to	pass	the		--sup		flag,	which	will	tell	Mix	to	generate	a	supervision	tree	automatically	for
us,	instead	of	building	one	manually	as	we	did	in	previous	chapters:

Umbrella	projects

62

$	cd	kv_umbrella/apps

$	mix	new	kv_server	--module	KVServer	--sup

The	generated	files	are	similar	to	the	ones	we	first	generated	for		kv	,	with	a	few	differences.
Let's	open	up		mix.exs	:

defmodule	KVServer.Mixfile	do

		use	Mix.Project

		def	project	do

				[app:	:kv_server,

					version:	"0.1.0",

					build_path:	"../../_build",

					config_path:	"../../config/config.exs",

					deps_path:	"../../deps",

					lockfile:	"../../mix.lock",

					elixir:	"~>	1.3",

					build_embedded:	Mix.env	==	:prod,

					start_permanent:	Mix.env	==	:prod,

					deps:	deps]

		end

		def	application	do

				[applications:	[:logger],

					mod:	{KVServer,	[]}]

		end

		defp	deps	do

				[]

		end

end

First	of	all,	since	we	generated	this	project	inside		kv_umbrella/apps	,	Mix	automatically
detected	the	umbrella	structure	and	added	four	lines	to	the	project	definition:

build_path:	"../../_build",

config_path:	"../../config/config.exs",

deps_path:	"../../deps",

lockfile:	"../../mix.lock",

Those	options	mean	all	dependencies	will	be	checked	out	to		kv_umbrella/deps	,	and	they
will	share	the	same	build,	config	and	lock	files.	This	ensures	dependencies	will	be	fetched
and	compiled	once	for	the	whole	umbrella	structure,	instead	of	once	per	umbrella
application.

The	second	change	is	in	the		application		function	inside		mix.exs	:

Umbrella	projects

63

def	application	do

		[applications:	[:logger],

			mod:	{KVServer,	[]}]

end

Because	we	passed	the		--sup		flag,	Mix	automatically	added		mod:	{KVServer,	[]}	,
specifying	that		KVServer		is	our	application	callback	module.		KVServer		will	start	our
application	supervision	tree.

In	fact,	let's	open	up		lib/kv_server.ex	:

defmodule	KVServer	do

		use	Application

		def	start(_type,	_args)	do

				import	Supervisor.Spec,	warn:	false

				children	=	[

						#	worker(KVServer.Worker,	[arg1,	arg2,	arg3])

]

				opts	=	[strategy:	:one_for_one,	name:	KVServer.Supervisor]

				Supervisor.start_link(children,	opts)

		end

end

Notice	that	it	defines	the	application	callback	function,		start/2	,	and	instead	of	defining	a
supervisor	named		KVServer.Supervisor		that	uses	the		Supervisor		module,	it	conveniently
defined	the	supervisor	inline!	You	can	read	more	about	such	supervisors	by	reading	the
Supervisor	module	documentation.

We	can	already	try	out	our	first	umbrella	child.	We	could	run	tests	inside	the		apps/kv_server	
directory,	but	that	wouldn't	be	much	fun.	Instead,	go	to	the	root	of	the	umbrella	project	and
run		mix	test	:

$	mix	test

And	it	works!

Since	we	want		kv_server		to	eventually	use	the	functionality	we	defined	in		kv	,	we	need	to
add		kv		as	a	dependency	to	our	application.

Umbrella	projects

64

In	umbrella	dependencies
Mix	supports	an	easy	mechanism	to	make	one	umbrella	child	depend	on	another.	Open	up
	apps/kv_server/mix.exs		and	change	the		deps/0		function	to	the	following:

defp	deps	do

		[{:kv,	in_umbrella:	true}]

end

The	line	above	makes		:kv		available	as	a	dependency	inside		:kv_server	.	We	can	invoke
the	modules	defined	in		:kv		but	it	does	not	automatically	start	the		:kv		application.	For
that,	we	also	need	to	list		:kv		as	an	application	inside		application/0	:

def	application	do

		[applications:	[:logger,	:kv],

			mod:	{KVServer,	[]}]

end

Now	Mix	will	guarantee	the		:kv		application	is	started	before		:kv_server		is	started.

Finally,	copy	the		kv		application	we	have	built	so	far	to	the		apps		directory	in	our	new
umbrella	project.	The	final	directory	structure	should	match	the	structure	we	mentioned
earlier:

+	kv_umbrella

		+	apps

				+	kv

				+	kv_server

We	now	just	need	to	modify		apps/kv/mix.exs		to	contain	the	umbrella	entries	we	have	seen
in		apps/kv_server/mix.exs	.	Open	up		apps/kv/mix.exs		and	add	to	the		project		function:

build_path:	"../../_build",

config_path:	"../../config/config.exs",

deps_path:	"../../deps",

lockfile:	"../../mix.lock",

Now	you	can	run	tests	for	both	projects	from	the	umbrella	root	with		mix	test	.	Sweet!

Remember	that	umbrella	projects	are	a	convenience	to	help	you	organize	and	manage	your
applications.	Applications	inside	the		apps		directory	are	still	decoupled	from	each	other.
Dependencies	between	them	must	be	explicitly	listed.	This	allows	them	to	be	developed

In	umbrella	dependencies

65

together,	but	compiled,	tested	and	deployed	independently	if	desired.

In	umbrella	dependencies

66

Summing	up
In	this	chapter	we	have	learned	more	about	Mix	dependencies	and	umbrella	projects.	We
have	decided	to	build	an	umbrella	project	because	we	consider		kv		and		kv_server		to	be
internal	dependencies	that	matter	only	in	the	context	of	this	project.

In	the	future,	you	are	going	to	write	applications	and	you	will	notice	they	can	be	extracted
into	a	concise	unit	that	can	be	used	by	different	projects.	In	such	cases,	using	Git	or	Hex
dependencies	is	the	way	to	go.

Here	are	a	couple	questions	you	can	ask	yourself	when	working	with	dependencies.	Start
with:	does	this	application	make	sense	outside	this	project?

If	no,	use	an	umbrella	project	with	umbrella	children.
If	yes,	can	this	project	be	shared	outside	your	company	/	organization?
If	no,	use	a	private	git	repository.
If	yes,	push	your	code	to	a	git	repository	and	do	frequent	releases	using	Hex.

With	our	umbrella	project	up	and	running,	it	is	time	to	start	writing	our	server.

Summing	up

67

https://hex.pm

Echo	server
We	will	start	our	TCP	server	by	first	implementing	an	echo	server.	It	will	simply	send	a
response	with	the	text	it	received	in	the	request.	We	will	slowly	improve	our	server	until	it	is
supervised	and	ready	to	handle	multiple	connections.

A	TCP	server,	in	broad	strokes,	performs	the	following	steps:

1.	 Listens	to	a	port	until	the	port	is	available	and	it	gets	hold	of	the	socket
2.	 Waits	for	a	client	connection	on	that	port	and	accepts	it
3.	 Reads	the	client	request	and	writes	a	response	back

Let's	implement	those	steps.	Move	to	the		apps/kv_server		application,	open	up
	lib/kv_server.ex	,	and	add	the	following	functions:

Echo	server

68

require	Logger

def	accept(port)	do

		#	The	options	below	mean:

		#

		#	1\.	`:binary`	-	receives	data	as	binaries	(instead	of	lists)

		#	2\.	`packet:	:line`	-	receives	data	line	by	line

		#	3\.	`active:	false`	-	blocks	on	`:gen_tcp.recv/2`	until	data	is	available

		#	4\.	`reuseaddr:	true`	-	allows	us	to	reuse	the	address	if	the	listener	crashes

		#

		{:ok,	socket}	=	:gen_tcp.listen(port,

																				[:binary,	packet:	:line,	active:	false,	reuseaddr:	true])

		Logger.info	"Accepting	connections	on	port	#{port}"

		loop_acceptor(socket)

end

defp	loop_acceptor(socket)	do

		{:ok,	client}	=	:gen_tcp.accept(socket)

		serve(client)

		loop_acceptor(socket)

end

defp	serve(socket)	do

		socket

		|>	read_line()

		|>	write_line(socket)

		serve(socket)

end

defp	read_line(socket)	do

		{:ok,	data}	=	:gen_tcp.recv(socket,	0)

		data

end

defp	write_line(line,	socket)	do

		:gen_tcp.send(socket,	line)

end

We	are	going	to	start	our	server	by	calling		KVServer.accept(4040)	,	where	4040	is	the	port.
The	first	step	in		accept/1		is	to	listen	to	the	port	until	the	socket	becomes	available	and	then
call		loop_acceptor/1	.		loop_acceptor/1		is	just	a	loop	accepting	client	connections.	For	each
accepted	connection,	we	call		serve/1	.

	serve/1		is	another	loop	that	reads	a	line	from	the	socket	and	writes	those	lines	back	to	the
socket.	Note	that	the		serve/1		function	uses	the	pipe	operator		|>		to	express	this	flow	of
operations.	The	pipe	operator	evaluates	the	left	side	and	passes	its	result	as	first	argument
to	the	function	on	the	right	side.	The	example	above:

Echo	server

69

socket	|>	read_line()	|>	write_line(socket)

is	equivalent	to:

write_line(read_line(socket),	socket)

The		read_line/1		implementation	receives	data	from	the	socket	using		:gen_tcp.recv/2		and
	write_line/2		writes	to	the	socket	using		:gen_tcp.send/2	.

This	is	pretty	much	all	we	need	to	implement	our	echo	server.	Let's	give	it	a	try!

Start	an	IEx	session	inside	the		kv_server		application	with		iex	-S	mix	.	Inside	IEx,	run:

iex>	KVServer.accept(4040)

The	server	is	now	running,	and	you	will	even	notice	the	console	is	blocked.	Let's	use	a
	telnet		client	to	access	our	server.	There	are	clients	available	on	most	operating	systems,
and	their	command	lines	are	generally	similar:

$	telnet	127.0.0.1	4040

Trying	127.0.0.1...

Connected	to	localhost.

Escape	character	is	'^]'.

hello

hello

is	it	me

is	it	me

you	are	looking	for?

you	are	looking	for?

Type	"hello",	press	enter,	and	you	will	get	"hello"	back.	Excellent!

My	particular	telnet	client	can	be	exited	by	typing		ctrl	+]	,	typing		quit	,	and	pressing
	<Enter>	,	but	your	client	may	require	different	steps.

Once	you	exit	the	telnet	client,	you	will	likely	see	an	error	in	the	IEx	session:

**	(MatchError)	no	match	of	right	hand	side	value:	{:error,	:closed}

				(kv_server)	lib/kv_server.ex:41:	KVServer.read_line/1

				(kv_server)	lib/kv_server.ex:33:	KVServer.serve/1

				(kv_server)	lib/kv_server.ex:27:	KVServer.loop_acceptor/1

That's	because	we	were	expecting	data	from		:gen_tcp.recv/2		but	the	client	closed	the
connection.	We	need	to	handle	such	cases	better	in	future	revisions	of	our	server.

Echo	server

70

https://en.wikipedia.org/wiki/Telnet

For	now	there	is	a	more	important	bug	we	need	to	fix:	what	happens	if	our	TCP	acceptor
crashes?	Since	there	is	no	supervision,	the	server	dies	and	we	won't	be	able	to	serve	more
requests,	because	it	won't	be	restarted.	That's	why	we	must	move	our	server	to	a
supervision	tree.

Echo	server

71

Task	and	gen_tcp
In	this	chapter,	we	are	going	to	learn	how	to	use	Erlang's		:gen_tcp		module	to	serve
requests.	This	provides	a	great	opportunity	to	explore	Elixir's		Task		module.	In	future
chapters	we	will	expand	our	server	so	it	can	actually	serve	the	commands.

Task	and	gen_tcp

72

http://www.erlang.org/doc/man/gen_tcp.html

Tasks
We	have	learned	about	agents,	generic	servers,	and	supervisors.	They	are	all	meant	to	work
with	multiple	messages	or	manage	state.	But	what	do	we	use	when	we	only	need	to	execute
some	task	and	that	is	it?

The	Task	module	provides	this	functionality	exactly.	For	example,	it	has	a		start_link/3	
function	that	receives	a	module,	function	and	arguments,	allowing	us	to	run	a	given	function
as	part	of	a	supervision	tree.

Let's	give	it	a	try.	Open	up		lib/kv_server.ex	,	and	let's	change	the	supervisor	in	the
	start/2		function	to	the	following:

def	start(_type,	_args)	do

		import	Supervisor.Spec

		children	=	[

				worker(Task,	[KVServer,	:accept,	[4040]])

]

		opts	=	[strategy:	:one_for_one,	name:	KVServer.Supervisor]

		Supervisor.start_link(children,	opts)

end

With	this	change,	we	are	saying	that	we	want	to	run		KVServer.accept(4040)		as	a	worker.	We
are	hardcoding	the	port	for	now,	but	we	will	discuss	ways	in	which	this	could	be	changed
later.

Now	that	the	server	is	part	of	the	supervision	tree,	it	should	start	automatically	when	we	run
the	application.	Type		mix	run	--no-halt		in	the	terminal,	and	once	again	use	the		telnet	
client	to	make	sure	that	everything	still	works:

$	telnet	127.0.0.1	4040

Trying	127.0.0.1...

Connected	to	localhost.

Escape	character	is	'^]'.

say	you

say	you

say	me

say	me

Yes,	it	works!	If	you	kill	the	client,	causing	the	whole	server	to	crash,	you	will	see	another
one	starts	right	away.	However,	does	it	scale?

Tasks

73

Try	to	connect	two	telnet	clients	at	the	same	time.	When	you	do	so,	you	will	notice	that	the
second	client	doesn't	echo:

$	telnet	127.0.0.1	4040

Trying	127.0.0.1...

Connected	to	localhost.

Escape	character	is	'^]'.

hello

hello?

HELLOOOOOO?

It	doesn't	seem	to	work	at	all.	That's	because	we	are	serving	requests	in	the	same	process
that	are	accepting	connections.	When	one	client	is	connected,	we	can't	accept	another
client.

Tasks

74

Task	supervisor
In	order	to	make	our	server	handle	simultaneous	connections,	we	need	to	have	one	process
working	as	an	acceptor	that	spawns	other	processes	to	serve	requests.	One	solution	would
be	to	change:

defp	loop_acceptor(socket)	do

		{:ok,	client}	=	:gen_tcp.accept(socket)

		serve(client)

		loop_acceptor(socket)

end

to	use		Task.start_link/1	,	which	is	similar	to		Task.start_link/3	,	but	it	receives	an
anonymous	function	instead	of	module,	function	and	arguments:

defp	loop_acceptor(socket)	do

		{:ok,	client}	=	:gen_tcp.accept(socket)

		Task.start_link(fn	->	serve(client)	end)

		loop_acceptor(socket)

end

We	are	starting	a	linked	Task	directly	from	the	acceptor	process.	But	we've	already	made
this	mistake	once.	Do	you	remember?

This	is	similar	to	the	mistake	we	made	when	we	called		KV.Bucket.start_link/0		straight	from
the	registry.	That	meant	a	failure	in	any	bucket	would	bring	the	whole	registry	down.

The	code	above	would	have	the	same	flaw:	if	we	link	the		serve(client)		task	to	the
acceptor,	a	crash	when	serving	a	request	would	bring	the	acceptor,	and	consequently	all
other	connections,	down.

We	fixed	the	issue	for	the	registry	by	using	a	simple	one	for	one	supervisor.	We	are	going	to
use	the	same	tactic	here,	except	that	this	pattern	is	so	common	with	tasks	that		Task	
already	comes	with	a	solution:	a	simple	one	for	one	supervisor	with	temporary	workers	that
we	can	just	use	in	our	supervision	tree!

Let's	change		start/2		once	again,	to	add	a	supervisor	to	our	tree:

Task	supervisor

75

def	start(_type,	_args)	do

		import	Supervisor.Spec

		children	=	[

				supervisor(Task.Supervisor,	[[name:	KVServer.TaskSupervisor]]),

				worker(Task,	[KVServer,	:accept,	[4040]])

]

		opts	=	[strategy:	:one_for_one,	name:	KVServer.Supervisor]

		Supervisor.start_link(children,	opts)

end

We	simply	start	a		Task.Supervisor		process	with	name		KVServer.TaskSupervisor	.
Remember,	since	the	acceptor	task	depends	on	this	supervisor,	the	supervisor	must	be
started	first.

Now	we	just	need	to	change		loop_acceptor/1		to	use		Task.Supervisor		to	serve	each
request:

defp	loop_acceptor(socket)	do

		{:ok,	client}	=	:gen_tcp.accept(socket)

		{:ok,	pid}	=	Task.Supervisor.start_child(KVServer.TaskSupervisor,	fn	->	serve(client

)	end)

		:ok	=	:gen_tcp.controlling_process(client,	pid)

		loop_acceptor(socket)

end

You	might	notice	that	we	added	a	line,		:ok	=	:gen_tcp.controlling_process(client,	pid)	.
This	makes	the	child	process	the	"controlling	process"	of	the		client		socket.	If	we	didn't	do
this,	the	acceptor	would	bring	down	all	the	clients	if	it	crashed	because	sockets	are	tied	to
the	process	that		accept	ed	them	by	default.

Start	a	new	server	with		mix	run	--no-halt		and	we	can	now	open	up	many	concurrent	telnet
clients.	You	will	also	notice	that	quitting	a	client	does	not	bring	the	acceptor	down.	Excellent!

Here	is	the	full	echo	server	implementation,	in	a	single	module:

defmodule	KVServer	do

		use	Application

		require	Logger

		@doc	false

		def	start(_type,	_args)	do

				import	Supervisor.Spec

				children	=	[

						supervisor(Task.Supervisor,	[[name:	KVServer.TaskSupervisor]]),

Task	supervisor

76

						worker(Task,	[KVServer,	:accept,	[4040]])

]

				opts	=	[strategy:	:one_for_one,	name:	KVServer.Supervisor]

				Supervisor.start_link(children,	opts)

		end

		@doc	"""

		Starts	accepting	connections	on	the	given	`port`.

"""

		def	accept(port)	do

				{:ok,	socket}	=	:gen_tcp.listen(port,

																						[:binary,	packet:	:line,	active:	false,	reuseaddr:	true])

				Logger.info	"Accepting	connections	on	port	#{port}"

				loop_acceptor(socket)

		end

		defp	loop_acceptor(socket)	do

				{:ok,	client}	=	:gen_tcp.accept(socket)

				{:ok,	pid}	=	Task.Supervisor.start_child(KVServer.TaskSupervisor,	fn	->	serve(clie

nt)	end)

				:ok	=	:gen_tcp.controlling_process(client,	pid)

				loop_acceptor(socket)

		end

		defp	serve(socket)	do

				socket

				|>	read_line()

				|>	write_line(socket)

				serve(socket)

		end

		defp	read_line(socket)	do

				{:ok,	data}	=	:gen_tcp.recv(socket,	0)

				data

		end

		defp	write_line(line,	socket)	do

				:gen_tcp.send(socket,	line)

		end

end

Since	we	have	changed	the	supervisor	specification,	we	need	to	ask:	is	our	supervision
strategy	still	correct?

In	this	case,	the	answer	is	yes:	if	the	acceptor	crashes,	there	is	no	need	to	crash	the	existing
connections.	On	the	other	hand,	if	the	task	supervisor	crashes,	there	is	no	need	to	crash	the
acceptor	too.

Task	supervisor

77

In	the	next	chapter	we	will	start	parsing	the	client	requests	and	sending	responses,	finishing
our	server.

Task	supervisor

78

Docs,	tests	and	with
In	this	chapter,	we	will	implement	the	code	that	parses	the	commands	we	described	in	the
first	chapter:

CREATE	shopping

OK

PUT	shopping	milk	1

OK

PUT	shopping	eggs	3

OK

GET	shopping	milk

1

OK

DELETE	shopping	eggs

OK

After	the	parsing	is	done,	we	will	update	our	server	to	dispatch	the	parsed	commands	to	the
	:kv		application	we	built	previously.

Docs,	tests	and	with

79

Doctests
On	the	language	homepage,	we	mention	that	Elixir	makes	documentation	a	first-class	citizen
in	the	language.	We	have	explored	this	concept	many	times	throughout	this	guide,	be	it	via
	mix	help		or	by	typing		h	Enum		or	another	module	in	an	IEx	console.

In	this	section,	we	will	implement	the	parse	functionality	using	doctests,	which	allows	us	to
write	tests	directly	from	our	documentation.	This	helps	us	provide	documentation	with
accurate	code	samples.

Let's	create	our	command	parser	at		lib/kv_server/command.ex		and	start	with	the	doctest:

defmodule	KVServer.Command	do

		@doc	~S"""

		Parses	the	given	`line`	into	a	command.

		##	Examples

						iex>	KVServer.Command.parse	"CREATE	shopping\r\n"

						{:ok,	{:create,	"shopping"}}

		"""

		def	parse(line)	do

				:not_implemented

		end

end

Doctests	are	specified	in	by	an	indentation	of	four	spaces	followed	by	the		iex>		prompt
in	a	documentation	string.	If	a	command	spans	multiple	lines,	you	can	use		...>	,	as	in
IEx.	The	expected	result	should	start	at	the	next	line	after		iex>		or		...>		line(s)	and
is	terminated	either	by	a	newline	or	a	new		iex>		prefix.

Also	note	that	we	started	the	documentation	string	using		@doc	~S"""	.	The
	~S		prevents	the		\r\n		characters	from	being	converted	to	a	carriage	return	and	line	feed
until	they	are	evaluated	in	the	test.

To	run	our	doctests,	we'll	create	a	file	at		test/kv_server/command_test.exs		and	call		doctest
KVServer.Command		in	the	test	case:

defmodule	KVServer.CommandTest	do

		use	ExUnit.Case,	async:	true

		doctest	KVServer.Command

end

Doctests

80

Run	the	test	suite	and	the	doctest	should	fail:

1)	test	doc	at	KVServer.Command.parse/1	(1)	(KVServer.CommandTest)

			test/kv_server/command_test.exs:3

			Doctest	failed

			code:	KVServer.Command.parse	"CREATE	shopping\r\n"	===	{:ok,	{:create,	"shopping"}}

			lhs:		:not_implemented

			stacktrace:

					lib/kv_server/command.ex:11:	KVServer.Command	(module)

Excellent!

Now	it	is	just	a	matter	of	making	the	doctest	pass.	Let's	implement	the		parse/1		function:

def	parse(line)	do

		case	String.split(line)	do

				["CREATE",	bucket]	->	{:ok,	{:create,	bucket}}

		end

end

Our	implementation	simply	splits	the	line	on	whitespace	and	then	matches	the	command
against	a	list.	Using		String.split/1		means	our	commands	will	be	whitespace-insensitive.
Leading	and	trailing	whitespace	won't	matter,	nor	will	consecutive	spaces	between	words.
Let's	add	some	new	doctests	to	test	this	behaviour	along	with	the	other	commands:

Doctests

81

@doc	~S"""

Parses	the	given	`line`	into	a	command.

##	Examples

				iex>	KVServer.Command.parse	"CREATE	shopping\r\n"

				{:ok,	{:create,	"shopping"}}

				iex>	KVServer.Command.parse	"CREATE		shopping		\r\n"

				{:ok,	{:create,	"shopping"}}

				iex>	KVServer.Command.parse	"PUT	shopping	milk	1\r\n"

				{:ok,	{:put,	"shopping",	"milk",	"1"}}

				iex>	KVServer.Command.parse	"GET	shopping	milk\r\n"

				{:ok,	{:get,	"shopping",	"milk"}}

				iex>	KVServer.Command.parse	"DELETE	shopping	eggs\r\n"

				{:ok,	{:delete,	"shopping",	"eggs"}}

Unknown	commands	or	commands	with	the	wrong	number	of

arguments	return	an	error:

				iex>	KVServer.Command.parse	"UNKNOWN	shopping	eggs\r\n"

				{:error,	:unknown_command}

				iex>	KVServer.Command.parse	"GET	shopping\r\n"

				{:error,	:unknown_command}

"""

With	doctests	at	hand,	it	is	your	turn	to	make	tests	pass!	Once	you're	ready,	you	can
compare	your	work	with	our	solution	below:

def	parse(line)	do

		case	String.split(line)	do

				["CREATE",	bucket]	->	{:ok,	{:create,	bucket}}

				["GET",	bucket,	key]	->	{:ok,	{:get,	bucket,	key}}

				["PUT",	bucket,	key,	value]	->	{:ok,	{:put,	bucket,	key,	value}}

				["DELETE",	bucket,	key]	->	{:ok,	{:delete,	bucket,	key}}

				_	->	{:error,	:unknown_command}

		end

end

Notice	how	we	were	able	to	elegantly	parse	the	commands	without	adding	a	bunch	of
	if/else		clauses	that	check	the	command	name	and	number	of	arguments!

Doctests

82

Finally,	you	may	have	observed	that	each	doctest	was	considered	to	be	a	different	test	in
our	test	case,	as	our	test	suite	now	reports	a	total	of	7	tests.	That	is	because	ExUnit
considers	the	following	to	define	two	different	tests:

iex>	KVServer.Command.parse	"UNKNOWN	shopping	eggs\r\n"

{:error,	:unknown_command}

iex>	KVServer.Command.parse	"GET	shopping\r\n"

{:error,	:unknown_command}

Without	new	lines,	as	seen	below,	ExUnit	compiles	it	into	a	single	test:

iex>	KVServer.Command.parse	"UNKNOWN	shopping	eggs\r\n"

{:error,	:unknown_command}

iex>	KVServer.Command.parse	"GET	shopping\r\n"

{:error,	:unknown_command}

You	can	read	more	about	doctests	in	the		ExUnit.DocTest		docs.

Doctests

83

with
As	we	are	now	able	to	parse	commands,	we	can	finally	start	implementing	the	logic	that	runs
the	commands.	Let's	add	a	stub	definition	for	this	function	for	now:

defmodule	KVServer.Command	do

		@doc	"""

		Runs	the	given	command.

"""

		def	run(command)	do

				{:ok,	"OK\r\n"}

		end

end

Before	we	implement	this	function,	let's	change	our	server	to	start	using	our	new		parse/1	
and		run/1		functions.	Remember,	our		read_line/1		function	was	also	crashing	when	the
client	closed	the	socket,	so	let's	take	the	opportunity	to	fix	it,	too.	Open	up		lib/kv_server.ex	
and	replace	the	existing	server	definition:

defp	serve(socket)	do

		socket

		|>	read_line()

		|>	write_line(socket)

		serve(socket)

end

defp	read_line(socket)	do

		{:ok,	data}	=	:gen_tcp.recv(socket,	0)

		data

end

defp	write_line(line,	socket)	do

		:gen_tcp.send(socket,	line)

end

by	the	following:

with

84

defp	serve(socket)	do

		msg	=

				case	read_line(socket)	do

						{:ok,	data}	->

								case	KVServer.Command.parse(data)	do

										{:ok,	command}	->

												KVServer.Command.run(command)

										{:error,	_}	=	err	->

												err

								end

						{:error,	_}	=	err	->

								err

				end

		write_line(socket,	msg)

		serve(socket)

end

defp	read_line(socket)	do

		:gen_tcp.recv(socket,	0)

end

defp	write_line(socket,	{:ok,	text})	do

		:gen_tcp.send(socket,	text)

end

defp	write_line(socket,	{:error,	:unknown_command})	do

		#	Known	error.	Write	to	the	client.

		:gen_tcp.send(socket,	"UNKNOWN	COMMAND\r\n")

end

defp	write_line(_socket,	{:error,	:closed})	do

		#	The	connection	was	closed,	exit	politely.

		exit(:shutdown)

end

defp	write_line(socket,	{:error,	error})	do

		#	Unknown	error.	Write	to	the	client	and	exit.

		:gen_tcp.send(socket,	"ERROR\r\n")

		exit(error)

end

If	we	start	our	server,	we	can	now	send	commands	to	it.	For	now	we	will	get	two	different
responses:	"OK"	when	the	command	is	known	and	"UNKNOWN	COMMAND"	otherwise:

with

85

$	telnet	127.0.0.1	4040

Trying	127.0.0.1...

Connected	to	localhost.

Escape	character	is	'^]'.

CREATE	shopping

OK

HELLO

UNKNOWN	COMMAND

This	means	our	implementation	is	going	in	the	correct	direction,	but	it	doesn't	look	very
elegant,	does	it?

The	previous	implementation	used	pipelines	which	made	the	logic	straight-forward	to	follow.
However,	now	that	we	need	to	handle	different	error	codes	along	the	way,	our	server	logic	is
nested	inside	many		case		calls.

Thankfully,	Elixir	v1.2	introduced	a	construct	called		with		which	allows	to	simplify	code	like
above.	Let's	rewrite	the		serve/1		function	to	use	it:

defp	serve(socket)	do

		msg	=

				with	{:ok,	data}	<-	read_line(socket),

									{:ok,	command}	<-	KVServer.Command.parse(data),

									do:	KVServer.Command.run(command)

		write_line(socket,	msg)

		serve(socket)

end

Much	better!	Syntax-wise,		with		is	quite	similar	to		for		comprehensions.		with		will	retrieve
the	value	returned	by	the	right-side	of		<-		and	match	it	against	the	pattern	on	the	left
side.	If	the	value	matches	the	pattern,		with		moves	on	to	the	next	expression.	In	case	there
is	no	match,	the	non-matching	value	is	returned.

In	other	words,	we	converted	each	expression	given	to		case/2		as	a	step	in		with	.	As	soon
as	any	of	the	steps	return	something	that	does	not	match		{:ok,	x}	,		with		aborts,	and
returns	the	non-matching	value.

You	can	read	more	about		with		in	our	documentation.

with

86

Running	commands
The	last	step	is	to	implement		KVServer.Command.run/1	,	to	run	the	parsed	commands	against
the		:kv		application.	Its	implementation	is	shown	below:

@doc	"""

Runs	the	given	command.

"""

def	run(command)

def	run({:create,	bucket})	do

		KV.Registry.create(KV.Registry,	bucket)

		{:ok,	"OK\r\n"}

end

def	run({:get,	bucket,	key})	do

		lookup	bucket,	fn	pid	->

				value	=	KV.Bucket.get(pid,	key)

				{:ok,	"#{value}\r\nOK\r\n"}

		end

end

def	run({:put,	bucket,	key,	value})	do

		lookup	bucket,	fn	pid	->

				KV.Bucket.put(pid,	key,	value)

				{:ok,	"OK\r\n"}

		end

end

def	run({:delete,	bucket,	key})	do

		lookup	bucket,	fn	pid	->

				KV.Bucket.delete(pid,	key)

				{:ok,	"OK\r\n"}

		end

end

defp	lookup(bucket,	callback)	do

		case	KV.Registry.lookup(KV.Registry,	bucket)	do

				{:ok,	pid}	->	callback.(pid)

				:error	->	{:error,	:not_found}

		end

end

The	implementation	is	straightforward:	we	just	dispatch	to	the		KV.Registry		server	that	we
registered	during	the		:kv		application	startup.	Since	our		:kv_server		depends	on	the		:kv	
application,	it	is	completely	fine	to	depend	on	the	servers/services	it	provides.

Running	commands

87

Note	that	we	have	also	defined	a	private	function	named		lookup/2		to	help	with	the	common
functionality	of	looking	up	a	bucket	and	returning	its		pid		if	it	exists,		{:error,	:not_found}	
otherwise.

By	the	way,	since	we	are	now	returning		{:error,	:not_found}	,	we	should	amend	the
	write_line/2		function	in		KV.Server		to	print	such	error	as	well:

defp	write_line(socket,	{:error,	:not_found})	do

		:gen_tcp.send(socket,	"NOT	FOUND\r\n")

end

And	our	server	functionality	is	almost	complete!	We	just	need	to	add	tests.	This	time,	we
have	left	tests	for	last	because	there	are	some	important	considerations	to	be	made.

	KVServer.Command.run/1	's	implementation	is	sending	commands	directly	to	the	server
named		KV.Registry	,	which	is	registered	by	the		:kv		application.	This	means	this	server	is
global	and	if	we	have	two	tests	sending	messages	to	it	at	the	same	time,	our	tests	will
conflict	with	each	other	(and	likely	fail).	We	need	to	decide	between	having	unit	tests	that	are
isolated	and	can	run	asynchronously,	or	writing	integration	tests	that	work	on	top	of	the
global	state,	but	exercise	our	application's	full	stack	as	it	is	meant	to	be	exercised	in
production.

So	far	we	have	only	written	unit	tests,	typically	testing	a	single	module	directly.	However,	in
order	to	make		KVServer.Command.run/1		testable	as	a	unit	we	would	need	to	change	its
implementation	to	not	send	commands	directly	to	the		KV.Registry		process	but	instead	pass
a	server	as	argument.	This	means	we	would	need	to	change		run	's	signature	to		def
run(command,	pid)		and	the	implementation	for	the		:create		command	would	look	like:

def	run({:create,	bucket},	pid)	do

		KV.Registry.create(pid,	bucket)

		{:ok,	"OK\r\n"}

end

Then	in		KVServer.Command	's	test	case,	we	would	need	to	start	an	instance	of	the
	KV.Registry	,	similar	to	what	we've	done	in		apps/kv/test/kv/registry_test.exs	,	and	pass	it
as	an	argument	to		run/2	.

This	has	been	the	approach	we	have	taken	so	far	in	our	tests,	and	it	has	some	benefits:

1.	 Our	implementation	is	not	coupled	to	any	particular	server	name
2.	 We	can	keep	our	tests	running	asynchronously,	because	there	is	no	shared	state

However,	it	comes	with	the	downside	that	our	APIs	become	increasingly	large	in	order	to
accommodate	all	external	parameters.

Running	commands

88

The	alternative	is	to	write	integration	tests	that	will	rely	on	the	global	server	names	to
exercise	the	whole	stack,	from	the	TCP	server	to	the	bucket.	The	downside	of	integration
tests	is	that	they	can	be	much	slower	than	unit	tests,	and	as	such	they	must	be	used	more
sparingly.	For	example,	we	should	not	use	integration	tests	to	test	an	edge	case	in	our
command	parsing	implementation.

This	time	we	will	write	an	integration	test.	The	integration	test	will	use	a	TCP	client	that
sends	commands	to	our	server	and	assert	we	are	getting	the	desired	responses.

Let's	implement	the	integration	test	in		test/kv_server_test.exs		as	shown	below:

Running	commands

89

defmodule	KVServerTest	do

		use	ExUnit.Case

		setup	do

				Application.stop(:kv)

				:ok	=	Application.start(:kv)

		end

		setup	do

				opts	=	[:binary,	packet:	:line,	active:	false]

				{:ok,	socket}	=	:gen_tcp.connect('localhost',	4040,	opts)

				{:ok,	socket:	socket}

		end

		test	"server	interaction",	%{socket:	socket}	do

				assert	send_and_recv(socket,	"UNKNOWN	shopping\r\n")	==

											"UNKNOWN	COMMAND\r\n"

				assert	send_and_recv(socket,	"GET	shopping	eggs\r\n")	==

											"NOT	FOUND\r\n"

				assert	send_and_recv(socket,	"CREATE	shopping\r\n")	==

											"OK\r\n"

				assert	send_and_recv(socket,	"PUT	shopping	eggs	3\r\n")	==

											"OK\r\n"

				#	GET	returns	two	lines

				assert	send_and_recv(socket,	"GET	shopping	eggs\r\n")	==	"3\r\n"

				assert	send_and_recv(socket,	"")	==	"OK\r\n"

				assert	send_and_recv(socket,	"DELETE	shopping	eggs\r\n")	==

											"OK\r\n"

				#	GET	returns	two	lines

				assert	send_and_recv(socket,	"GET	shopping	eggs\r\n")	==	"\r\n"

				assert	send_and_recv(socket,	"")	==	"OK\r\n"

		end

		defp	send_and_recv(socket,	command)	do

				:ok	=	:gen_tcp.send(socket,	command)

				{:ok,	data}	=	:gen_tcp.recv(socket,	0,	1000)

				data

		end

end

Our	integration	test	checks	all	server	interaction,	including	unknown	commands	and	not
found	errors.	It	is	worth	noting	that,	as	with	ETS	tables	and	linked	processes,	there	is	no
need	to	close	the	socket.	Once	the	test	process	exits,	the	socket	is	automatically	closed.

Running	commands

90

This	time,	since	our	test	relies	on	global	data,	we	have	not	given		async:	true		to		use
ExUnit.Case	.	Furthermore,	in	order	to	guarantee	our	test	is	always	in	a	clean	state,	we	stop
and	start	the		:kv		application	before	each	test.	In	fact,	stopping	the		:kv		application	even
prints	a	warning	on	the	terminal:

18:12:10.698	[info]	Application	kv	exited:	:stopped

To	avoid	printing	log	messages	during	tests,	ExUnit	provides	a	neat	feature	called
	:capture_log	.	By	setting		@tag	:capture_log		before	each	test	or		@moduletag	:capture_log	
for	the	whole	test	case,	ExUnit	will	automatically	capture	anything	that	is	logged	while	the
test	runs.	In	case	our	test	fails,	the	captured	logs	will	be	printed	alongside	the	ExUnit	report.

Before	setup,	add	the	following	call:

@moduletag	:capture_log

In	case	the	test	crashes,	you	will	see	a	report	as	follows:

		1)	test	server	interaction	(KVServerTest)

					test/kv_server_test.exs:17

					**	(RuntimeError)	oops

					stacktrace:

							test/kv_server_test.exs:29

					The	following	output	was	logged:

					13:44:10.035	[info]		Application	kv	exited:	:stopped

With	this	simple	integration	test,	we	start	to	see	why	integration	tests	may	be	slow.	Not	only
can	this	particular	test	not	run	asynchronously,	it	also	requires	the	expensive	setup	of
stopping	and	starting	the		:kv		application.

At	the	end	of	the	day,	it	is	up	to	you	and	your	team	to	figure	out	the	best	testing	strategy	for
your	applications.	You	need	to	balance	code	quality,	confidence,	and	test	suite	runtime.	For
example,	we	may	start	with	testing	the	server	only	with	integration	tests,	but	if	the	server
continues	to	grow	in	future	releases,	or	it	becomes	a	part	of	the	application	with	frequent
bugs,	it	is	important	to	consider	breaking	it	apart	and	writing	more	intensive	unit	tests	that
don't	have	the	weight	of	an	integration	test.

In	the	next	chapter	we	will	finally	make	our	system	distributed	by	adding	a	bucket	routing
mechanism.	We'll	also	learn	about	application	configuration.

Running	commands

91

Running	commands

92

Distributed	tasks	and	configuration
In	this	last	chapter,	we	will	go	back	to	the		:kv		application	and	add	a	routing	layer	that	will
allow	us	to	distribute	requests	between	nodes	based	on	the	bucket	name.

The	routing	layer	will	receive	a	routing	table	of	the	following	format:

[{?a..?m,	:"foo@computer-name"},

	{?n..?z,	:"bar@computer-name"}]

The	router	will	check	the	first	byte	of	the	bucket	name	against	the	table	and	dispatch	to	the
appropriate	node	based	on	that.	For	example,	a	bucket	starting	with	the	letter	"a"	(?a	
represents	the	Unicode	codepoint	of	the	letter	"a")	will	be	dispatched	to	node		foo@computer-
name	.

If	the	matching	entry	points	to	the	node	evaluating	the	request,	then	we've	finished	routing,
and	this	node	will	perform	the	requested	operation.	If	the	matching	entry	points	to	a	different
node,	we'll	pass	the	request	to	this	node,	which	will	look	at	its	own	routing	table	(which	may
be	different	from	the	one	in	the	first	node)	and	act	accordingly.	If	no	entry	matches,	an	error
will	be	raised.

You	may	wonder	why	we	don't	simply	tell	the	node	we	find	in	our	routing	table	to	perform	the
requested	operation	directly,	but	instead	pass	the	routing	request	on	to	that	node	to	process.
While	a	routing	table	as	simple	as	the	one	above	might	reasonably	be	shared	between	all
nodes,	passing	on	the	routing	request	in	this	way	makes	it	much	simpler	to	break	the	routing
table	into	smaller	pieces	as	our	application	grows.	Perhaps	at	some	point,		foo@computer-
name		will	only	be	responsible	for	routing	bucket	requests,	and	the	buckets	it	handles	will	be
dispatched	to	different	nodes.	In	this	way,		bar@computer-name		does	not	need	to	know
anything	about	this	change.

Note:	we	will	be	using	two	nodes	in	the	same	machine	throughout	this	chapter.	You	are
free	to	use	two	(or	more)	different	machines	in	the	same	network	but	you	need	to	do
some	prep	work.	First	of	all,	you	need	to	ensure	all	machines	have	a		~/.erlang.cookie	
file	with	exactly	the	same	value.	Second,	you	need	to	guarantee	epmd	is	running	on	a
port	that	is	not	blocked	(you	can	run		epmd	-d		for	debug	info).	Third,	if	you	want	to	learn
more	about	distribution	in	general,	we	recommend	this	great	Distribunomicon	chapter
from	Learn	You	Some	Erlang.

Distributed	tasks	and	configuration

93

http://www.erlang.org/doc/man/epmd.html
http://learnyousomeerlang.com/distribunomicon

Distributed	tasks	and	configuration

94

Our	first	distributed	code
Elixir	ships	with	facilities	to	connect	nodes	and	exchange	information	between	them.	In	fact,
we	use	the	same	concepts	of	processes,	message	passing	and	receiving	messages	when
working	in	a	distributed	environment	because	Elixir	processes	are	location	transparent.	This
means	that	when	sending	a	message,	it	doesn't	matter	if	the	recipient	process	is	on	the
same	node	or	on	another	node,	the	VM	will	be	able	to	deliver	the	message	in	both	cases.

In	order	to	run	distributed	code,	we	need	to	start	the	VM	with	a	name.	The	name	can	be
short	(when	in	the	same	network)	or	long	(requires	the	full	computer	address).	Let's	start	a
new	IEx	session:

$	iex	--sname	foo

You	can	see	now	the	prompt	is	slightly	different	and	shows	the	node	name	followed	by	the
computer	name:

Interactive	Elixir	-	press	Ctrl+C	to	exit	(type	h()	ENTER	for	help)

iex(foo@jv)1>

My	computer	is	named		jv	,	so	I	see		foo@jv		in	the	example	above,	but	you	will	get	a
different	result.	We	will	use		foo@computer-name		in	the	following	examples	and	you	should
update	them	accordingly	when	trying	out	the	code.

Let's	define	a	module	named		Hello		in	this	shell:

iex>	defmodule	Hello	do

...>		def	world,	do:	IO.puts	"hello	world"

...>	end

If	you	have	another	computer	on	the	same	network	with	both	Erlang	and	Elixir	installed,	you
can	start	another	shell	on	it.	If	you	don't,	you	can	simply	start	another	IEx	session	in	another
terminal.	In	either	case,	give	it	the	short	name	of		bar	:

$	iex	--sname	bar

Note	that	inside	this	new	IEx	session,	we	cannot	access		Hello.world/0	:

Our	first	distributed	code

95

iex>	Hello.world

**	(UndefinedFunctionError)	undefined	function:	Hello.world/0

				Hello.world()

However	we	can	spawn	a	new	process	on		foo@computer-name		from		bar@computer-name	!
Let's	give	it	a	try	(where		@computer-name		is	the	one	you	see	locally):

iex>	Node.spawn_link	:"foo@computer-name",	fn	->	Hello.world	end

#PID<9014.59.0>

hello	world

Elixir	spawned	a	process	on	another	node	and	returned	its	pid.	The	code	then	executed	on
the	other	node	where	the		Hello.world/0		function	exists	and	invoked	that	function.	Note	that
the	result	of	"hello	world"	was	printed	on	the	current	node		bar		and	not	on		foo	.	In	other
words,	the	message	to	be	printed	was	sent	back	from		foo		to		bar	.	This	happens	because
the	process	spawned	on	the	other	node	(foo)	still	has	the	group	leader	of	the	current	node
(bar).	We	have	briefly	talked	about	group	leaders	in	the	IO	chapter.

We	can	send	and	receive	message	from	the	pid	returned	by		Node.spawn_link/2		as	usual.
Let's	try	a	quick	ping-pong	example:

iex>	pid	=	Node.spawn_link	:"foo@computer-name",	fn	->

...>			receive	do

...>					{:ping,	client}	->	send	client,	:pong

...>			end

...>	end

#PID<9014.59.0>

iex>	send	pid,	{:ping,	self}

{:ping,	#PID<0.73.0>}

iex>	flush

:pong

:ok

From	our	quick	exploration,	we	could	conclude	that	we	should	simply	use
	Node.spawn_link/2		to	spawn	processes	on	a	remote	node	every	time	we	need	to	do	a
distributed	computation.	However	we	have	learned	throughout	this	guide	that	spawning
processes	outside	of	supervision	trees	should	be	avoided	if	possible,	so	we	need	to	look	for
other	options.

There	are	three	better	alternatives	to		Node.spawn_link/2		that	we	could	use	in	our
implementation:

Our	first	distributed	code

96

1.	 We	could	use	Erlang's	:rpc	module	to	execute	functions	on	a	remote	node.	Inside	the
	bar@computer-name		shell	above,	you	can	call		:rpc.call(:"foo@computer-name",
Hello,	:world,	[])		and	it	will	print	"hello	world"

2.	 We	could	have	a	server	running	on	the	other	node	and	send	requests	to	that	node	via
the	GenServer	API.	For	example,	you	can	call	a	remote	named	server	using
	GenServer.call({name,	node},	arg)		or	simply	passing	the	remote	process	PID	as	first
argument

3.	 We	could	use	tasks,	which	we	have	learned	about	in	a	previous	chapter,	as	they	can	be
spawned	on	both	local	and	remote	nodes

The	options	above	have	different	properties.	Both		:rpc		and	using	a	GenServer	would
serialize	your	requests	on	a	single	server,	while	tasks	are	effectively	running	asynchronously
on	the	remote	node,	with	the	only	serialization	point	being	the	spawning	done	by	the
supervisor.

For	our	routing	layer,	we	are	going	to	use	tasks,	but	feel	free	to	explore	the	other	alternatives
too.

Our	first	distributed	code

97

http://www.erlang.org/doc/man/rpc.html

async/await
So	far	we	have	explored	tasks	that	are	started	and	run	in	isolation,	with	no	regard	for	their
return	value.	However,	sometimes	it	is	useful	to	run	a	task	to	compute	a	value	and	read	its
result	later	on.	For	this,	tasks	also	provide	the		async/await		pattern:

task	=	Task.async(fn	->	compute_something_expensive	end)

res		=	compute_something_else()

res	+	Task.await(task)

	async/await		provides	a	very	simple	mechanism	to	compute	values	concurrently.	Not	only
that,		async/await		can	also	be	used	with	the	same		Task.Supervisor		we	have	used	in
previous	chapters.	We	just	need	to	call		Task.Supervisor.async/2		instead	of
	Task.Supervisor.start_child/2		and	use		Task.await/2		to	read	the	result	later	on.

async/await

98

Distributed	tasks
Distributed	tasks	are	exactly	the	same	as	supervised	tasks.	The	only	difference	is	that	we
pass	the	node	name	when	spawning	the	task	on	the	supervisor.	Open	up
	lib/kv/supervisor.ex		from	the		:kv		application.	Let's	add	a	task	supervisor	as	the	last
child	of	the	tree:

supervisor(Task.Supervisor,	[[name:	KV.RouterTasks]]),

Now,	let's	start	two	named	nodes	again,	but	inside	the		:kv		application:

$	iex	--sname	foo	-S	mix

$	iex	--sname	bar	-S	mix

From	inside		bar@computer-name	,	we	can	now	spawn	a	task	directly	on	the	other	node	via	the
supervisor:

iex>	task	=	Task.Supervisor.async	{KV.RouterTasks,	:"foo@computer-name"},	fn	->

...>			{:ok,	node()}

...>	end

%Task{pid:	#PID<12467.88.0>,	ref:	#Reference<0.0.0.400>}

iex>	Task.await(task)

{:ok,	:"foo@computer-name"}

Our	first	distributed	task	simply	retrieves	the	name	of	the	node	the	task	is	running	on.	Notice
we	have	given	an	anonymous	function	to		Task.Supervisor.async/2		but,	in	distributed	cases,
it	is	preferable	to	give	the	module,	function	and	arguments	explicitly:

iex>	task	=	Task.Supervisor.async	{KV.RouterTasks,	:"foo@computer-name"},	Kernel,	:nod

e,	[]

%Task{pid:	#PID<12467.88.0>,	ref:	#Reference<0.0.0.400>}

iex>	Task.await(task)

:"foo@computer-name"

The	difference	is	that	anonymous	functions	requires	the	target	node	to	have	exactly	the
same	code	version	as	the	caller.	Using	module,	function	and	arguments	is	more	robust
because	you	only	need	to	find	a	function	with	matching	arity	in	the	given	module.

With	this	knowledge	in	hand,	let's	finally	write	the	routing	code.

Distributed	tasks

99

Distributed	tasks

100

Routing	layer
Create	a	file	at		lib/kv/router.ex		with	the	following	contents:

defmodule	KV.Router	do

		@doc	"""

		Dispatch	the	given	`mod`,	`fun`,	`args`	request

		to	the	appropriate	node	based	on	the	`bucket`.

"""

		def	route(bucket,	mod,	fun,	args)	do

				#	Get	the	first	byte	of	the	binary

				first	=	:binary.first(bucket)

				#	Try	to	find	an	entry	in	the	table	or	raise

				entry	=

						Enum.find(table,	fn	{enum,	_node}	->

								first	in	enum

						end)	||	no_entry_error(bucket)

				#	If	the	entry	node	is	the	current	node

				if	elem(entry,	1)	==	node()	do

						apply(mod,	fun,	args)

				else

						{KV.RouterTasks,	elem(entry,	1)}

						|>	Task.Supervisor.async(KV.Router,	:route,	[bucket,	mod,	fun,	args])

						|>	Task.await()

				end

		end

		defp	no_entry_error(bucket)	do

				raise	"could	not	find	entry	for	#{inspect	bucket}	in	table	#{inspect	table}"

		end

		@doc	"""

		The	routing	table.

"""

		def	table	do

				#	Replace	computer-name	with	your	local	machine	name.

				[{?a..?m,	:"foo@computer-name"},

					{?n..?z,	:"bar@computer-name"}]

		end

end

Let's	write	a	test	to	verify	our	router	works.	Create	a	file	named		test/kv/router_test.exs	
containing:

Routing	layer

101

defmodule	KV.RouterTest	do

		use	ExUnit.Case,	async:	true

		test	"route	requests	across	nodes"	do

				assert	KV.Router.route("hello",	Kernel,	:node,	[])	==

											:"foo@computer-name"

				assert	KV.Router.route("world",	Kernel,	:node,	[])	==

											:"bar@computer-name"

		end

		test	"raises	on	unknown	entries"	do

				assert_raise	RuntimeError,	~r/could	not	find	entry/,	fn	->

						KV.Router.route(<<0>>,	Kernel,	:node,	[])

				end

		end

end

The	first	test	simply	invokes		Kernel.node/0	,	which	returns	the	name	of	the	current	node,
based	on	the	bucket	names	"hello"	and	"world".	According	to	our	routing	table	so	far,	we
should	get		foo@computer-name		and		bar@computer-name		as	responses,	respectively.

The	second	test	just	checks	that	the	code	raises	for	unknown	entries.

In	order	to	run	the	first	test,	we	need	to	have	two	nodes	running.	Move	into		apps/kv		and
let's	restart	the	node	named		bar		which	is	going	to	be	used	by	tests.

$	iex	--sname	bar	-S	mix

And	now	run	tests	with:

$	elixir	--sname	foo	-S	mix	test

Our	test	should	successfully	pass.	Excellent!

Routing	layer

102

Test	filters	and	tags
Although	our	tests	pass,	our	testing	structure	is	getting	more	complex.	In	particular,	running
tests	with	only		mix	test		causes	failures	in	our	suite,	since	our	test	requires	a	connection	to
another	node.

Luckily,	ExUnit	ships	with	a	facility	to	tag	tests,	allowing	us	to	run	specific	callbacks	or	even
filter	tests	altogether	based	on	those	tags.	We	have	already	used	the		:capture_log		tag	in
the	previous	chapter,	which	has	its	semantics	specified	by	ExUnit	itself.

This	time	let's	add	a		:distributed		tag	to		test/kv/router_test.exs	:

@tag	:distributed

test	"route	requests	across	nodes"	do

Writing		@tag	:distributed		is	equivalent	to	writing		@tag	distributed:	true	.

With	the	test	properly	tagged,	we	can	now	check	if	the	node	is	alive	on	the	network	and,	if
not,	we	can	exclude	all	distributed	tests.	Open	up		test/test_helper.exs		inside	the		:kv	
application	and	add	the	following:

exclude	=

		if	Node.alive?,	do:	[],	else:	[distributed:	true]

ExUnit.start(exclude:	exclude)

Now	run	tests	with		mix	test	:

$	mix	test

Excluding	tags:	[distributed:	true]

.......

Finished	in	0.1	seconds	(0.1s	on	load,	0.01s	on	tests)

7	tests,	0	failures,	1	skipped

This	time	all	tests	passed	and	ExUnit	warned	us	that	distributed	tests	were	being	excluded.
If	you	run	tests	with		$	elixir	--sname	foo	-S	mix	test	,	one	extra	test	should	run	and
successfully	pass	as	long	as	the		bar@computer-name		node	is	available.

Test	filters	and	tags

103

The		mix	test		command	also	allows	us	to	dynamically	include	and	exclude	tags.	For
example,	we	can	run		$	mix	test	--include	distributed		to	run	distributed	tests	regardless	of
the	value	set	in		test/test_helper.exs	.	We	could	also	pass		--exclude		to	exclude	a
particular	tag	from	the	command	line.	Finally,		--only		can	be	used	to	run	only	tests	with	a
particular	tag:

$	elixir	--sname	foo	-S	mix	test	--only	distributed

You	can	read	more	about	filters,	tags	and	the	default	tags	in		ExUnit.Case		module
documentation.

Test	filters	and	tags

104

Application	environment	and	configuration
So	far	we	have	hardcoded	the	routing	table	into	the		KV.Router		module.	However,	we	would
like	to	make	the	table	dynamic.	This	allows	us	not	only	to	configure
development/test/production,	but	also	to	allow	different	nodes	to	run	with	different	entries	in
the	routing	table.	There	is	a	feature	of	OTP	that	does	exactly	that:	the	application
environment.

Each	application	has	an	environment	that	stores	the	application's	specific	configuration	by
key.	For	example,	we	could	store	the	routing	table	in	the		:kv		application	environment,
giving	it	a	default	value	and	allowing	other	applications	to	change	the	table	as	needed.

Open	up		apps/kv/mix.exs		and	change	the		application/0		function	to	return	the	following:

def	application	do

		[applications:	[],

			env:	[routing_table:	[]],

			mod:	{KV,	[]}]

end

We	have	added	a	new		:env		key	to	the	application.	It	returns	the	application	default
environment,	which	has	an	entry	of	key		:routing_table		and	value	of	an	empty	list.	It	makes
sense	for	the	application	environment	to	ship	with	an	empty	table,	as	the	specific	routing
table	depends	on	the	testing/deployment	structure.

In	order	to	use	the	application	environment	in	our	code,	we	just	need	to	replace
	KV.Router.table/0		with	the	definition	below:

@doc	"""

The	routing	table.

"""

def	table	do

		Application.fetch_env!(:kv,	:routing_table)

end

We	use		Application.fetch_env!/2		to	read	the	entry	for		:routing_table		in		:kv	's
environment.	You	can	find	more	information	and	other	functions	to	manipulate	the	app
environment	in	the	Application	module.

Since	our	routing	table	is	now	empty,	our	distributed	test	should	fail.	Restart	the	apps	and	re-
run	tests	to	see	the	failure:

Application	environment	and	configuration

105

$	iex	--sname	bar	-S	mix

$	elixir	--sname	foo	-S	mix	test	--only	distributed

The	interesting	thing	about	the	application	environment	is	that	it	can	be	configured	not	only
for	the	current	application,	but	for	all	applications.	Such	configuration	is	done	by	the
	config/config.exs		file.	For	example,	we	can	configure	IEx	default	prompt	to	another	value.
Just	open		apps/kv/config/config.exs		and	add	the	following	to	the	end:

config	:iex,	default_prompt:	">>>"

Start	IEx	with		iex	-S	mix		and	you	can	see	that	the	IEx	prompt	has	changed.

This	means	we	can	also	configure	our		:routing_table		directly	in	the
	apps/kv/config/config.exs		file:

#	Replace	computer-name	with	your	local	machine	nodes.

config	:kv,	:routing_table,

							[{?a..?m,	:"foo@computer-name"},

								{?n..?z,	:"bar@computer-name"}]

Restart	the	nodes	and	run	distributed	tests	again.	Now	they	should	all	pass.

Since	Elixir	v1.2,	all	umbrella	applications	share	their	configurations,	thanks	to	this	line	in
	config/config.exs		in	the	umbrella	root	that	loads	the	configuration	of	all	children:

import_config	"../apps/*/config/config.exs"

The		mix	run		command	also	accepts	a		--config		flag,	which	allows	configuration	files	to	be
given	on	demand.	This	could	be	used	to	start	different	nodes,	each	with	its	own	specific
configuration	(for	example,	different	routing	tables).

Overall,	the	built-in	ability	to	configure	applications	and	the	fact	that	we	have	built	our
software	as	an	umbrella	application	gives	us	plenty	of	options	when	deploying	the	software.
We	can:

deploy	the	umbrella	application	to	a	node	that	will	work	as	both	TCP	server	and	key-
value	storage

deploy	the		:kv_server		application	to	work	only	as	a	TCP	server	as	long	as	the	routing
table	points	only	to	other	nodes

deploy	only	the		:kv		application	when	we	want	a	node	to	work	only	as	storage	(no	TCP
access)

Application	environment	and	configuration

106

As	we	add	more	applications	in	the	future,	we	can	continue	controlling	our	deploy	with	the
same	level	of	granularity,	cherry-picking	which	applications	with	which	configuration	are
going	to	production.

You	can	also	consider	building	multiple	releases	with	a	tool	like	exrm,	which	will	package	the
chosen	applications	and	configuration,	including	the	current	Erlang	and	Elixir	installations,	so
we	can	deploy	the	application	even	if	the	runtime	is	not	pre-installed	on	the	target	system.

Finally,	we	have	learned	some	new	things	in	this	chapter,	and	they	could	be	applied	to	the
	:kv_server		application	as	well.	We	are	going	to	leave	the	next	steps	as	an	exercise:

change	the		:kv_server		application	to	read	the	port	from	its	application	environment
instead	of	using	the	hardcoded	value	of	4040

change	and	configure	the		:kv_server		application	to	use	the	routing	functionality
instead	of	dispatching	directly	to	the	local		KV.Registry	.	For		:kv_server		tests,	you	can
make	the	routing	table	simply	point	to	the	current	node	itself

Application	environment	and	configuration

107

https://github.com/bitwalker/exrm

Summing	up
In	this	chapter	we	have	built	a	simple	router	as	a	way	to	explore	the	distributed	features	of
Elixir	and	the	Erlang	VM,	and	learned	how	to	configure	its	routing	table.	This	is	the	last
chapter	in	our	Mix	and	OTP	guide.

Throughout	the	guide,	we	have	built	a	very	simple	distributed	key-value	store	as	an
opportunity	to	explore	many	constructs	like	generic	servers,	supervisors,	tasks,	agents,
applications	and	more.	Not	only	that,	we	have	written	tests	for	the	whole	application,	got
familiar	with	ExUnit,	and	learned	how	to	use	the	Mix	build	tool	to	accomplish	a	wide	range	of
tasks.

If	you	are	looking	for	a	distributed	key-value	store	to	use	in	production,	you	should	definitely
look	into	Riak,	which	also	runs	in	the	Erlang	VM.	In	Riak,	the	buckets	are	replicated,	to	avoid
data	loss,	and	instead	of	a	router,	they	use	consistent	hashing	to	map	a	bucket	to	a	node.	A
consistent	hashing	algorithm	helps	reduce	the	amount	of	data	that	needs	to	be	migrated
when	new	nodes	to	store	buckets	are	added	to	your	infrastructure.

There	are	many	more	lessons	to	learn	and	we	hope	you	had	fun	so	far!

Summing	up

108

http://basho.com/riak/
https://en.wikipedia.org/wiki/Consistent_hashing

	Mix and OTP
	Introduction to Mix
	Our first project
	Project compilation
	Running tests
	Environments
	Exploring
	The trouble with state

	Agent
	Agents
	ExUnit callbacks
	Other agent actions
	Client/Server in agents

	GenServer
	Our first GenServer
	Testing a GenServer
	The need for monitoring
	call, cast or info?
	Monitors or links?

	Supervisor and Application
	Our first supervisor
	Understanding applications
	Simple one for one supervisors
	Supervision trees
	Observer
	Shared state in tests

	ETS
	ETS as a cache
	Race conditions?

	Dependencies and umbrella projects
	External dependencies
	Internal dependencies
	Umbrella projects
	In umbrella dependencies
	Summing up
	Echo server

	Task and gen_tcp
	Tasks
	Task supervisor

	Docs, tests and with
	Doctests
	with
	Running commands

	Distributed tasks and configuration
	Our first distributed code
	async/await
	Distributed tasks
	Routing layer
	Test filters and tags
	Application environment and configuration
	Summing up

