
1.1

1.2

1.2.1

1.2.2

1.2.3

1.3

1.3.1

1.3.2

1.3.3

1.3.4

1.3.5

1.3.6

1.4

1.4.1

1.4.2

1.4.3

1.4.4

Table	of	Contents
Meta-Programming	in	Elixir

Quote	and	unquote

Quoting

Unquoting

Escaping

Macros

Foreword

Our	first	macro

Macros	hygiene

The	environment

Private	macros

Write	macros	responsibly

Domain	Specific	Languages

Foreword

Building	our	own	test	case

The	test	macro

Storing	information	with	attributes

1

Meta-Programming	in	Elixir
This	file	serves	as	your	book's	preface,	a	great	place	to	describe	your	book's	content	and
ideas.

Meta-Programming	in	Elixir

2

Quote	and	unquote
An	Elixir	program	can	be	represented	by	its	own	data	structures.	In	this	chapter,	we	will	learn
what	those	structures	look	like	and	how	to	compose	them.	The	concepts	learned	in	this
chapter	are	the	building	blocks	for	macros,	which	we	are	going	to	take	a	deeper	look	at	in
the	next	chapter.

Quote	and	unquote

3

Quoting
The	building	block	of	an	Elixir	program	is	a	tuple	with	three	elements.	For	example,	the
function	call		sum(1,	2,	3)		is	represented	internally	as:

{:sum,	[],	[1,	2,	3]}

You	can	get	the	representation	of	any	expression	by	using	the		quote		macro:

iex>	quote	do:	sum(1,	2,	3)

{:sum,	[],	[1,	2,	3]}

The	first	element	is	the	function	name,	the	second	is	a	keyword	list	containing	metadata	and
the	third	is	the	arguments	list.

Operators	are	also	represented	as	such	tuples:

iex>	quote	do:	1	+	2

{:+,	[context:	Elixir,	import:	Kernel],	[1,	2]}

Even	a	map	is	represented	as	a	call	to		%{}	:

iex>	quote	do:	%{1	=>	2}

{:%{},	[],	[{1,	2}]}

Variables	are	also	represented	using	such	triplets,	except	the	last	element	is	an	atom,
instead	of	a	list:

iex>	quote	do:	x

{:x,	[],	Elixir}

When	quoting	more	complex	expressions,	we	can	see	that	the	code	is	represented	in	such
tuples,	which	are	often	nested	inside	each	other	in	a	structure	resembling	a	tree.	Many
languages	would	call	such	representations	an	Abstract	Syntax	Tree	(AST).	Elixir	calls	them
quoted	expressions:

iex>	quote	do:	sum(1,	2	+	3,	4)

{:sum,	[],	[1,	{:+,	[context:	Elixir,	import:	Kernel],	[2,	3]},	4]}

Quoting

4

Sometimes	when	working	with	quoted	expressions,	it	may	be	useful	to	get	the	textual	code
representation	back.	This	can	be	done	with		Macro.to_string/1	:

iex>	Macro.to_string(quote	do:	sum(1,	2	+	3,	4))

"sum(1,	2	+	3,	4)"

In	general,	the	tuples	above	are	structured	according	to	the	following	format:

{atom	|	tuple,	list,	list	|	atom}

The	first	element	is	an	atom	or	another	tuple	in	the	same	representation;
The	second	element	is	a	keyword	list	containing	metadata,	like	numbers	and	contexts;
The	third	element	is	either	a	list	of	arguments	for	the	function	call	or	an	atom.	When	this
element	is	an	atom,	it	means	the	tuple	represents	a	variable.

Besides	the	tuple	defined	above,	there	are	five	Elixir	literals	that,	when	quoted,	return
themselves	(and	not	a	tuple).	They	are:

:sum									#=>	Atoms

1.0										#=>	Numbers

[1,	2]							#=>	Lists

"strings"				#=>	Strings

{key,	value}	#=>	Tuples	with	two	elements

Most	Elixir	code	has	a	straight-forward	translation	to	its	underlying	quoted	expression.	We
recommend	you	try	out	different	code	samples	and	see	what	the	results	are.	For	example,
what	does		String.upcase("foo")		expand	to?	We	have	also	learned	that		if(true,
do:	:this,	else:	:that)		is	the	same	as		if	true	do	:this	else	:that	end	.	How	does	this
affirmation	hold	with	quoted	expressions?

Quoting

5

Unquoting
Quote	is	about	retrieving	the	inner	representation	of	some	particular	chunk	of	code.
However,	sometimes	it	may	be	necessary	to	inject	some	other	particular	chunk	of	code
inside	the	representation	we	want	to	retrieve.

For	example,	imagine	you	have	a	variable		number		which	contains	the	number	you	want	to
inject	inside	a	quoted	expression.

iex>	number	=	13

iex>	Macro.to_string(quote	do:	11	+	number)

"11	+	number"

That's	not	what	we	wanted,	since	the	value	of	the		number		variable	has	not	been	injected
and		number		has	been	quoted	in	the	expression.	In	order	to	inject	the	value	of	the		number	
variable,		unquote		has	to	be	used	inside	the	quoted	representation:

iex>	number	=	13

iex>	Macro.to_string(quote	do:	11	+	unquote(number))

"11	+	13"

	unquote		can	even	be	used	to	inject	function	names:

iex>	fun	=	:hello

iex>	Macro.to_string(quote	do:	unquote(fun)(:world))

"hello(:world)"

In	some	cases,	it	may	be	necessary	to	inject	many	values	inside	a	list.	For	example,	imagine
you	have	a	list	containing		[1,	2,	6]		and	we	want	to	inject		[3,	4,	5]		into	it.	Using
	unquote		won't	yield	the	desired	result:

iex>	inner	=	[3,	4,	5]

iex>	Macro.to_string(quote	do:	[1,	2,	unquote(inner),	6])

"[1,	2,	[3,	4,	5],	6]"

That's	when		unquote_splicing		becomes	handy:

iex>	inner	=	[3,	4,	5]

iex>	Macro.to_string(quote	do:	[1,	2,	unquote_splicing(inner),	6])

"[1,	2,	3,	4,	5,	6]"

Unquoting

6

Unquoting	is	very	useful	when	working	with	macros.	When	writing	macros,	developers	are
able	to	receive	code	chunks	and	inject	them	inside	other	code	chunks,	which	can	be	used	to
transform	code	or	write	code	that	generates	code	during	compilation.

Unquoting

7

Escaping
As	we	saw	at	the	beginning	of	this	chapter,	only	some	values	are	valid	quoted	expressions
in	Elixir.	For	example,	a	map	is	not	a	valid	quoted	expression.	Neither	is	a	tuple	with	four
elements.	However,	such	values	can	be	expressed	as	a	quoted	expression:

iex>	quote	do:	%{1	=>	2}

{:%{},	[],	[{1,	2}]}

In	some	cases,	you	may	need	to	inject	such	values	into	quoted	expressions.	To	do	that,	we
need	to	first	escape	those	values	into	quoted	expressions	with	the	help	of		Macro.escape/1	:

iex>	map	=	%{hello:	:world}

iex>	Macro.escape(map)

{:%{},	[],	[hello:	:world]}

Macros	receive	quoted	expressions	and	must	return	quoted	expressions.	However,
sometimes	during	the	execution	of	a	macro,	you	may	need	to	work	with	values	and	making	a
distinction	between	values	and	quoted	expressions	will	be	required.

In	other	words,	it	is	important	to	make	a	distinction	between	a	regular	Elixir	value	(like	a	list,
a	map,	a	process,	a	reference,	etc)	and	a	quoted	expression.	Some	values,	such	as
integers,	atoms	and	strings,	have	a	quoted	expression	equal	to	the	value	itself.	Other
values,	like	maps,	need	to	be	explicitly	converted.	Finally,	values	like	functions	and
references	cannot	be	converted	to	a	quoted	expression	at	all.

You	can	read	more	about		quote		and		unquote		in	the		Kernel.SpecialForms		module.
Documentation	for		Macro.escape/1		and	other	functions	related	to	quoted	expressions	can
be	found	in	the		Macro		module.

In	this	introduction	we	have	laid	the	groundwork	to	finally	write	our	first	macro,	so	let's	move
to	the	next	chapter.

Escaping

8

Macros

Macros

9

Foreword
Even	though	Elixir	attempts	its	best	to	provide	a	safe	environment	for	macros,	the	major
responsibility	of	writing	clean	code	with	macros	falls	on	developers.	Macros	are	harder	to
write	than	ordinary	Elixir	functions	and	it's	considered	to	be	bad	style	to	use	them	when
they're	not	necessary.	So	write	macros	responsibly.

Elixir	already	provides	mechanisms	to	write	your	every	day	code	in	a	simple	and	readable
fashion	by	using	its	data	structures	and	functions.	Macros	should	only	be	used	as	a	last
resort.	Remember	that	explicit	is	better	than	implicit.	Clear	code	is	better	than	concise
code.

Foreword

10

Our	first	macro
Macros	in	Elixir	are	defined	via		defmacro/2	.

For	this	chapter,	we	will	be	using	files	instead	of	running	code	samples	in	IEx.	That's
because	the	code	samples	will	span	multiple	lines	of	code	and	typing	them	all	in	IEx
can	be	counter-productive.	You	should	be	able	to	run	the	code	samples	by	saving	them
into	a		macros.exs		file	and	running	it	with		elixir	macros.exs		or		iex	macros.exs	.

In	order	to	better	understand	how	macros	work,	let's	create	a	new	module	where	we	are
going	to	implement		unless	,	which	does	the	opposite	of		if	,	as	a	macro	and	as	a	function:

defmodule	Unless	do

		def	fun_unless(clause,	expression)	do

				if(!clause,	do:	expression)

		end

		defmacro	macro_unless(clause,	expression)	do

				quote	do

						if(!unquote(clause),	do:	unquote(expression))

				end

		end

end

The	function	receives	the	arguments	and	passes	them	to		if	.	However,	as	we	learned	in
the	previous	chapter,	the	macro	will	receive	quoted	expressions,	inject	them	into	the	quote,
and	finally	return	another	quoted	expression.

Let's	start		iex		with	the	module	above:

$	iex	macros.exs

And	play	with	those	definitions:

iex>	require	Unless

iex>	Unless.macro_unless	true,	IO.puts	"this	should	never	be	printed"

nil

iex>	Unless.fun_unless	true,	IO.puts	"this	should	never	be	printed"

"this	should	never	be	printed"

nil

Our	first	macro

11

Note	that	in	our	macro	implementation,	the	sentence	was	not	printed,	although	it	was	printed
in	our	function	implementation.	That's	because	the	arguments	to	a	function	call	are
evaluated	before	calling	the	function.	However,	macros	do	not	evaluate	their	arguments.
Instead,	they	receive	the	arguments	as	quoted	expressions	which	are	then	transformed	into
other	quoted	expressions.	In	this	case,	we	have	rewritten	our		unless		macro	to	become	an
	if		behind	the	scenes.

In	other	words,	when	invoked	as:

Unless.macro_unless	true,	IO.puts	"this	should	never	be	printed"

Our		macro_unless		macro	received	the	following:

macro_unless(true,	{{:.,	[],	[{:aliases,	[],	[:IO]},	:puts]},	[],	["this	should	never	

be	printed"]})

And	it	then	returned	a	quoted	expression	as	follows:

{:if,	[],	[

		{:!,	[],	[true]},

		{{:.,	[],	[IO,	:puts],	[],	["this	should	never	be	printed"]}}]}

We	can	actually	verify	that	this	is	the	case	by	using		Macro.expand_once/2	:

iex>	expr	=	quote	do:	Unless.macro_unless(true,	IO.puts	"this	should	never	be	printed"

)

iex>	res		=	Macro.expand_once(expr,	__ENV__)

iex>	IO.puts	Macro.to_string(res)

if(!true)	do

		IO.puts("this	should	never	be	printed")

end

:ok

	Macro.expand_once/2		receives	a	quoted	expression	and	expands	it	according	to	the	current
environment.	In	this	case,	it	expanded/invoked	the		Unless.macro_unless/2		macro	and
returned	its	result.	We	then	proceeded	to	convert	the	returned	quoted	expression	to	a	string
and	print	it	(we	will	talk	about		__ENV__		later	in	this	chapter).

That's	what	macros	are	all	about.	They	are	about	receiving	quoted	expressions	and
transforming	them	into	something	else.	In	fact,		unless/2		in	Elixir	is	implemented	as	a
macro:

Our	first	macro

12

defmacro	unless(clause,	options)	do

		quote	do

				if(!unquote(clause),	do:	unquote(options))

		end

end

Constructs	such	as		unless/2	,		defmacro/2	,		def/2	,		defprotocol/2	,	and	many	others	used
throughout	this	getting	started	guide	are	implemented	in	pure	Elixir,	often	as	a	macros.	This
means	that	the	constructs	being	used	to	build	the	language	can	be	used	by	developers	to
extend	the	language	to	the	domains	they	are	working	on.

We	can	define	any	function	and	macro	we	want,	including	ones	that	override	the	built-in
definitions	provided	by	Elixir.	The	only	exceptions	are	Elixir	special	forms	which	are	not
implemented	in	Elixir	and	therefore	cannot	be	overridden,	the	full	list	of	special	forms	is
available	in		Kernel.SpecialForms	.

Our	first	macro

13

Macros	hygiene
Elixir	macros	have	late	resolution.	This	guarantees	that	a	variable	defined	inside	a	quote
won't	conflict	with	a	variable	defined	in	the	context	where	that	macro	is	expanded.	For
example:

defmodule	Hygiene	do

		defmacro	no_interference	do

				quote	do:	a	=	1

		end

end

defmodule	HygieneTest	do

		def	go	do

				require	Hygiene

				a	=	13

				Hygiene.no_interference

				a

		end

end

HygieneTest.go

#	=>	13

In	the	example	above,	even	though	the	macro	injects		a	=	1	,	it	does	not	affect	the	variable
	a		defined	by	the		go		function.	If	a	macro	wants	to	explicitly	affect	the	context,	it	can	use
	var!	:

defmodule	Hygiene	do

		defmacro	interference	do

				quote	do:	var!(a)	=	1

		end

end

defmodule	HygieneTest	do

		def	go	do

				require	Hygiene

				a	=	13

				Hygiene.interference

				a

		end

end

HygieneTest.go

#	=>	1

Macros	hygiene

14

Variable	hygiene	only	works	because	Elixir	annotates	variables	with	their	context.	For
example,	a	variable		x		defined	on	line	3	of	a	module	would	be	represented	as:

{:x,	[line:	3],	nil}

However,	a	quoted	variable	is	represented	as:

defmodule	Sample	do

		def	quoted	do

				quote	do:	x

		end

end

Sample.quoted	#=>	{:x,	[line:	3],	Sample}

Notice	that	the	third	element	in	the	quoted	variable	is	the	atom		Sample	,	instead	of		nil	,
which	marks	the	variable	as	coming	from	the		Sample		module.	Therefore,	Elixir	considers
these	two	variables	as	coming	from	different	contexts	and	handles	them	accordingly.

Elixir	provides	similar	mechanisms	for	imports	and	aliases	too.	This	guarantees	that	a	macro
will	behave	as	specified	by	its	source	module	rather	than	conflicting	with	the	target	module
where	the	macro	is	expanded.	Hygiene	can	be	bypassed	under	specific	situations	by	using
macros	like		var!/2		and		alias!/2	,	although	one	must	be	careful	when	using	those	as	they
directly	change	the	user	environment.

Sometimes	variable	names	might	be	dynamically	created.	In	such	cases,		Macro.var/2		can
be	used	to	define	new	variables:

defmodule	Sample	do

		defmacro	initialize_to_char_count(variables)	do

				Enum.map	variables,	fn(name)	->

						var	=	Macro.var(name,	nil)

						length	=	name	|>	Atom.to_string	|>	String.length

						quote	do

								unquote(var)	=	unquote(length)

						end

				end

		end

		def	run	do

				initialize_to_char_count	[:red,	:green,	:yellow]

				[red,	green,	yellow]

		end

end

>	Sample.run	#=>	[3,	5,	6]

Macros	hygiene

15

Take	note	of	the	second	argument	to		Macro.var/2	.	This	is	the	context	being	used	and	will
determine	hygiene	as	described	in	the	next	section.

Macros	hygiene

16

The	environment
When	calling		Macro.expand_once/2		earlier	in	this	chapter,	we	used	the	special	form
	__ENV__	.

	__ENV__		returns	an	instance	of	the		Macro.Env		struct	which	contains	useful	information
about	the	compilation	environment,	including	the	current	module,	file	and	line,	all	variables
defined	in	the	current	scope,	as	well	as	imports,	requires	and	so	on:

iex>	__ENV__.module

nil

iex>	__ENV__.file

"iex"

iex>	__ENV__.requires

[IEx.Helpers,	Kernel,	Kernel.Typespec]

iex>	require	Integer

nil

iex>	__ENV__.requires

[IEx.Helpers,	Integer,	Kernel,	Kernel.Typespec]

Many	of	the	functions	in	the		Macro		module	expect	an	environment.	You	can	read	more
about	these	functions	in	the	docs	for	the		Macro		module	and	learn	more	about	the
compilation	environment	in	the	docs	for		Macro.Env	.

The	environment

17

Private	macros
Elixir	also	supports	private	macros	via		defmacrop	.	As	private	functions,	these	macros	are
only	available	inside	the	module	that	defines	them,	and	only	at	compilation	time.

It	is	important	that	a	macro	is	defined	before	its	usage.	Failing	to	define	a	macro	before	its
invocation	will	raise	an	error	at	runtime,	since	the	macro	won't	be	expanded	and	will	be
translated	to	a	function	call:

iex>	defmodule	Sample	do

...>		def	four,	do:	two	+	two

...>		defmacrop	two,	do:	2

...>	end

**	(CompileError)	iex:2:	function	two/0	undefined

Private	macros

18

Write	macros	responsibly
Macros	are	a	powerful	construct	and	Elixir	provides	many	mechanisms	to	ensure	they	are
used	responsibly.

Macros	are	hygienic:	by	default,	variables	defined	inside	a	macro	are	not	going	to	affect
the	user	code.	Furthermore,	function	calls	and	aliases	available	in	the	macro	context
are	not	going	to	leak	into	the	user	context.

Macros	are	lexical:	it	is	impossible	to	inject	code	or	macros	globally.	In	order	to	use	a
macro,	you	need	to	explicitly		require		or		import		the	module	that	defines	the	macro.

Macros	are	explicit:	it	is	impossible	to	run	a	macro	without	explicitly	invoking	it.	For
example,	some	languages	allow	developers	to	completely	rewrite	functions	behind	the
scenes,	often	via	parse	transforms	or	via	some	reflection	mechanisms.	In	Elixir,	a	macro
must	be	explicitly	invoked	in	the	caller	during	compilation	time.

Macros'	language	is	clear:	many	languages	provide	syntax	shortcuts	for		quote		and
	unquote	.	In	Elixir,	we	preferred	to	have	them	explicitly	spelled	out,	in	order	to	clearly
delimit	the	boundaries	of	a	macro	definition	and	its	quoted	expressions.

Even	with	such	guarantees,	the	developer	plays	a	big	role	when	writing	macros	responsibly.
If	you	are	confident	you	need	to	resort	to	macros,	remember	that	macros	are	not	your	API.
Keep	your	macro	definitions	short,	including	their	quoted	contents.	For	example,	instead	of
writing	a	macro	like	this:

defmodule	MyModule	do

		defmacro	my_macro(a,	b,	c)	do

				quote	do

						do_this(unquote(a))

						...

						do_that(unquote(b))

						...

						and_that(unquote(c))

				end

		end

end

write:

Write	macros	responsibly

19

defmodule	MyModule	do

		defmacro	my_macro(a,	b,	c)	do

				quote	do

						#	Keep	what	you	need	to	do	here	to	a	minimum

						#	and	move	everything	else	to	a	function

						do_this_that_and_that(unquote(a),	unquote(b),	unquote(c))

				end

		end

		def	do_this_that_and_that(a,	b,	c)	do

				do_this(a)

				...

				do_that(b)

				...

				and_that(c)

		end

end

This	makes	your	code	clearer	and	easier	to	test	and	maintain,	as	you	can	invoke	and	test
	do_this_that_and_that/3		directly.	It	also	helps	you	design	an	actual	API	for	developers	that
do	not	want	to	rely	on	macros.

With	those	lessons,	we	finish	our	introduction	to	macros.	The	next	chapter	is	a	brief
discussion	on	DSLs	that	shows	how	we	can	mix	macros	and	module	attributes	to	annotate
and	extend	modules	and	functions.

Write	macros	responsibly

20

Domain	Specific	Languages

Domain	Specific	Languages

21

Foreword
Domain	Specific	Languages	(DSL)	allow	developers	to	tailor	their	application	to	a	particular
domain.	You	don't	need	macros	in	order	to	have	a	DSL:	every	data	structure	and	every
function	you	define	in	your	module	is	part	of	your	Domain	Specific	Language.

For	example,	imagine	we	want	to	implement	a	Validator	module	which	provides	a	data
validation	domain	specific	language.	We	could	implement	it	using	data	structures,	functions
or	macros.	Let's	see	how	those	different	DSLs	would	look	like:

#	1\.	data	structures

import	Validator

validate	user,	name:	[length:	1..100],

															email:	[matches:	~r/@/]

#	2\.	functions

import	Validator

user

|>	validate_length(:name,	1..100)

|>	validate_matches(:email,	~r/@/)

#	3\.	macros	+	modules

defmodule	MyValidator	do

		use	Validator

		validate_length	:name,	1..100

		validate_matches	:email,	~r/@/

end

MyValidator.validate(user)

Of	all	the	approaches	above,	the	first	is	definitely	the	most	flexible.	If	our	domain	rules	can
be	encoded	with	data	structures,	they	are	by	far	the	easiest	to	compose	and	implement,	as
Elixir's	standard	library	is	filled	with	functions	for	manipulating	different	data	types.

The	second	approach	uses	function	calls	which	better	suits	more	complex	APIs	(for
example,	if	you	need	to	pass	many	options)	and	reads	nicely	in	Elixir	thanks	to	the	pipe
operator.

The	third	approach,	uses	macros,	and	is	by	far	the	most	complex.	It	will	take	more	lines	of
code	to	implement,	it	is	hard	and	expensive	to	test	(compared	to	testing	simple	functions),
and	it	limits	how	the	user	may	use	the	library	since	all	validations	need	to	be	defined	inside	a
module.

Foreword

22

https://en.wikipedia.org/wiki/Domain-specific_language

To	drive	the	point	home,	imagine	you	want	to	validate	a	certain	attribute	only	if	a	given
condition	is	met.	We	could	easily	achieve	it	with	the	first	solution,	by	manipulating	the	data
structure	accordingly,	or	with	the	second	solution	by	using	conditionals	(if/else)	before
invoking	the	function.	However	it	is	impossible	to	do	so	with	the	macros	approach	unless	its
DSL	is	augmented.

In	other	words:

data	>	functions	>	macros

That	said,	there	are	still	cases	where	using	macros	and	modules	to	build	domain	specific
languages	is	useful.	Since	we	have	explored	data	structures	and	function	definitions	in	the
Getting	Started	guide,	this	chapter	will	explore	how	to	use	macros	and	module	attributes	to
tackle	more	complex	DSLs.

Foreword

23

Building	our	own	test	case
The	goal	in	this	chapter	is	to	build	a	module	named		TestCase		that	allows	us	to	write	the
following:

defmodule	MyTest	do

		use	TestCase

		test	"arithmetic	operations"	do

				4	=	2	+	2

		end

		test	"list	operations"	do

				[1,	2,	3]	=	[1,	2]	++	[3]

		end

end

MyTest.run

In	the	example	above,	by	using		TestCase	,	we	can	write	tests	using	the		test		macro,	which
defines	a	function	named		run		to	automatically	run	all	tests	for	us.	Our	prototype	will	simply
rely	on	the	match	operator	(=)	as	a	mechanism	to	do	assertions.

Building	our	own	test	case

24

The		test		macro
Let's	start	by	creating	a	module	that	simply	defines	and	imports	the		test		macro	when
used:

defmodule	TestCase	do

		#	Callback	invoked	by	`use`.

		#

		#	For	now	it	simply	returns	a	quoted	expression	that

		#	imports	the	module	itself	into	the	user	code.

		@doc	false

		defmacro	__using__(_opts)	do

				quote	do

						import	TestCase

				end

		end

		@doc	"""

		Defines	a	test	case	with	the	given	description.

		##	Examples

						test	"arithmetic	operations"	do

								4	=	2	+	2

						end

"""

		defmacro	test(description,	do:	block)	do

				function_name	=	String.to_atom("test	"	<>	description)

				quote	do

						def	unquote(function_name)(),	do:	unquote(block)

				end

		end

end

Assuming	we	defined		TestCase		in	a	file	named		tests.exs	,	we	can	open	it	up	by	running
	iex	tests.exs		and	define	our	first	tests:

iex>	defmodule	MyTest	do

...>			use	TestCase

...>

...>			test	"hello"	do

...>					"hello"	=	"world"

...>			end

...>	end

The	test	macro

25

For	now	we	don't	have	a	mechanism	to	run	tests,	but	we	know	that	a	function	named	"test
hello"	was	defined	behind	the	scenes.	When	we	invoke	it,	it	should	fail:

iex>	MyTest."test	hello"()

**	(MatchError)	no	match	of	right	hand	side	value:	"world"

The	test	macro

26

Storing	information	with	attributes
In	order	to	finish	our		TestCase		implementation,	we	need	to	be	able	to	access	all	defined	test
cases.	One	way	of	doing	this	is	by	retrieving	the	tests	at	runtime	via
	__MODULE__.__info__(:functions)	,	which	returns	a	list	of	all	functions	in	a	given	module.
However,	considering	that	we	may	want	to	store	more	information	about	each	test	besides
the	test	name,	a	more	flexible	approach	is	required.

When	discussing	module	attributes	in	earlier	chapters,	we	mentioned	how	they	can	be	used
as	temporary	storage.	That's	exactly	the	property	we	will	apply	in	this	section.

In	the		__using__/1		implementation,	we	will	initialize	a	module	attribute	named		@tests		to
an	empty	list,	then	store	the	name	of	each	defined	test	in	this	attribute	so	the	tests	can	be
invoked	from	the		run		function.

Here	is	the	updated	code	for	the		TestCase		module:

Storing	information	with	attributes

27

defmodule	TestCase	do

		@doc	false

		defmacro	__using__(_opts)	do

				quote	do

						import	TestCase

						#	Initialize	@tests	to	an	empty	list

						@tests	[]

						#	Invoke	TestCase.__before_compile__/1	before	the	module	is	compiled

						@before_compile	TestCase

				end

		end

		@doc	"""

		Defines	a	test	case	with	the	given	description.

		##	Examples

						test	"arithmetic	operations"	do

								4	=	2	+	2

						end

"""

		defmacro	test(description,	do:	block)	do

				function_name	=	String.to_atom("test	"	<>	description)

				quote	do

						#	Prepend	the	newly	defined	test	to	the	list	of	tests

						@tests	[unquote(function_name)	|	@tests]

						def	unquote(function_name)(),	do:	unquote(block)

				end

		end

		#	This	will	be	invoked	right	before	the	target	module	is	compiled

		#	giving	us	the	perfect	opportunity	to	inject	the	`run/0`	function

		@doc	false

		defmacro	__before_compile__(env)	do

				quote	do

						def	run	do

								Enum.each	@tests,	fn	name	->

										IO.puts	"Running	#{name}"

										apply(__MODULE__,	name,	[])

								end

						end

				end

		end

end

By	starting	a	new	IEx	session,	we	can	now	define	our	tests	and	run	them:

Storing	information	with	attributes

28

iex>	defmodule	MyTest	do

...>			use	TestCase

...>

...>			test	"hello"	do

...>					"hello"	=	"world"

...>			end

...>	end

iex>	MyTest.run

Running	test	hello

**	(MatchError)	no	match	of	right	hand	side	value:	"world"

Although	we	have	overlooked	some	details,	this	is	the	main	idea	behind	creating	domain
specific	modules	in	Elixir.	Macros	enable	us	to	return	quoted	expressions	that	are	executed
in	the	caller,	which	we	can	then	use	to	transform	code	and	store	relevant	information	in	the
target	module	via	module	attributes.	Finally,	callbacks	such	as		@before_compile		allow	us	to
inject	code	into	the	module	when	its	definition	is	complete.

Besides		@before_compile	,	there	are	other	useful	module	attributes	like		@on_definition		and
	@after_compile	,	which	you	can	read	more	about	in	the	docs	for	the		Module		module.	You
can	also	find	useful	information	about	macros	and	the	compilation	environment	in	the
documentation	for	the		Macro		module	and		Macro.Env	.

Storing	information	with	attributes

29

	Meta-Programming in Elixir
	Quote and unquote
	Quoting
	Unquoting
	Escaping

	Macros
	Foreword
	Our first macro
	Macros hygiene
	The environment
	Private macros
	Write macros responsibly

	Domain Specific Languages
	Foreword
	Building our own test case
	The test macro
	Storing information with attributes

