--- title: "Composite curves and bootstrap C.I.'s using locfit()
(smooth-curve.R)" output: html_document: css: SI-md-08.css fig_caption: yes highlight: haddock number_sections: yes theme: united toc: yes toc_float: false collapsed: no --- ```{r smooth-curve, echo=FALSE} options(width = 105) knitr::opts_chunk$set(dev='png', dpi=300, cache=TRUE) pdf.options(useDingbats = TRUE) ``` # Introduction # This script (`smooth-curve.R`) fits composite curves, with bootstrapping by site confidence intervals, using the `locfit()` function. This version implements a fixed window (half) width approach (as opposed to the "span", or a constant-proportion, variable-width window). As is the case with other analysis scripts, the script has two parts, a set-up portion that changes from analysis to analysis, and a computation part that does not change. This version reads "presampled" data. # Set up # The variables `queryname`, `basename` and `binname` are used to compose the path and filenames for the presampled data. ```{r pathnames} # composite curve via the locfit package # bootstrap-by-site confidence intervals # names queryname <- "v3i" basename <- "zt21k" binname <- "bw20" # paths for input and output .csv files -- modify as appropriate datapath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i_Rscripts/" sitelistpath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i_RScripts/v3i_sitelists/" sitelist <- "v3i_nsa_globe" outpath <- "e:/Projects/GPWG/GPWGv3/data/v3i_Rscripts/v3i_curves/" # presampled/binned files csvpath <- "/Projects/GPWG/GPWGv3/GCDv3Data/v3i_Rscripts/v3i_presamp_csv/" csvname <- paste("_presamp_influx_",basename,"_",binname,".csv", sep="") ``` Load the `locfit` library and set parameters. The window width `hw` is, following convention, the half-window width (of the tricube weight function). The number of bootstrap resampling replications is given by `nreps`. ```{r locfitLibrary} library(locfit) # locfit (half) window-width parameter hw <- 500 # bandwidth (smoothing parameter) # number of bootstrap samples/replications nreps <- 200 ``` Set the target ages for fitted values. ```{r targage} # target ages for fitted values targbeg <- -60 targend <- 22000 targstep <- 20 ``` Set array sizes for saving bootstrap results. ```{r otherSetup} # array sizes maxrecs <- 2000 maxreps <- 1000 ``` The composite curve and individual bootstrap curves can take a long time to plot. The output can be redirected to a .pdf file by setting `plotout` to `pdf`. (Set to `screen` to plot the usual way.) ```{r pdf} # plot output plotout <- "screen" # "screen" # "pdf" ``` # Calculation preliminaries# ## Initial steps ## Set various output paths and filenames. ```{r pathnames2} # no changes below here # site list file sitelistfile <- paste(sitelistpath, sitelist, ".csv", sep="") sitelistfile # curve (output) path and file curvecsvpath <- paste(datapath,queryname,"_curves/",sep="") # if output folder does not exist, create it dir.create(file.path(datapath, paste(queryname,"_curves/",sep="")), showWarnings=FALSE) curvefile <- paste(sitelist,"_locfit_",basename,"_",binname,"_",as.character(hw),"_", as.character(nreps), ".csv", sep="") print(curvecsvpath) print(curvefile) ``` Code block to implement writing .pdf to file: ```{r pdf setup} # .pdf plot of bootstrap iterations if (plotout == "pdf") { pdffile <- paste(sitelist,"_locfit_",basename,"_",binname,"_",as.character(hw),"_", as.character(nreps),".pdf", sep="") print(pdffile) } ``` Read the list of sites to be processed. Note that this is the site list may contain sites that after transforming and presampling may have no useful data. Those sites are ignored when the data are read in. ```{r readsites} # read the list of sites sites <- read.csv(sitelistfile) head(sites) ns <- length(sites[,1]) #length(sites$ID_SITE) ns ``` Define arrays for data, fitted values and statistics. ```{r arrayDefinition} # arrays for data and fitted values age <- matrix(NA, ncol=ns, nrow=maxrecs) influx <- matrix(NA, ncol=ns, nrow=maxrecs) nsamples <- rep(0, maxrecs) targage <- seq(targbeg,targend,targstep) targage.df <- data.frame(x=targage) lowage <- targage - hw; highage <- targage + hw ntarg <- length(targage) yfit <- matrix(NA, nrow=length(targage.df$x), ncol=maxreps) # arrays for sample number and effective window span tracking ndec <- matrix(0, ncol=ntarg, nrow=ns) ndec_tot <- rep(0, ntarg) xspan <- rep(0, ntarg) ninwin <- matrix(0, ncol=ntarg, nrow=ns) ninwin_tot <- rep(0, ntarg) ``` ## Read data ## Read and store data. Note that sites without data, even if in the site list, are skipped using the `file.exists()` function. ```{r readData, results='hide'} # read and store the presample (binned) files as matrices of ages and influx values ii <- 0 for (i in 1:ns) { #i <- 1 sitenum <- sites[i,1] # sites$ID_SITE[i] print(sitenum) siteidchar <- as.character(sitenum) if (sitenum >= 1) siteid <- paste("000", siteidchar, sep="") if (sitenum >= 10) siteid <- paste("00", siteidchar, sep="") if (sitenum >= 100) siteid <- paste("0", siteidchar, sep="") if (sitenum >= 1000) siteid <- paste( siteidchar, sep="") inputfile <- paste(csvpath, siteid, csvname, sep="") print(inputfile) if (file.exists(inputfile)) { indata <- read.csv(inputfile) nsamp <- length(indata$age) # if (nsamp > 0) { ii <- ii+1 age[1:nsamp,ii] <- indata$age # influx[1:nsamp,ii] <- indata$zt # nsamples[ii] <- nsamp } } } nsites <- ii ``` Number of sites with data. ```{r nsites} # number of sites with data nsites ``` As the presample files are read, individual files will be listed: ```{r printExample, echo=FALSE} cat(" [1] 1 \n [1] \"/Projects/GPWG/GPWGv3/GCDv3Data/v3plus/v3plus_presamp_csv/0001_presamp_influx_zt-lme_bw10.csv\" \n ... ") ``` Trim the input data to an appropriate range given the target ages, and censor (set to `NA`) any tranformed influx values greater than 10. ```{r trim} # trim samples to age range influx[age >= targend+hw] <- NA age[age >= targend+hw] <- NA # censor abs(influx) values > 10 influx[abs(influx) >= 10] <- NA age[abs(influx) >= 10] <- NA ``` ## Find number of sites and samples contributing to fitted values ## The number of sites with samples (`ndec_tot`) and the number of samples (`ninwin_tot`) that contribute to each fitted value are calculated, along with the effective window width or "span". This code is clunky, but parallels that in the Fortran versions. ```{r ninwin} # count number of sites that contributed to each fitted value ptm <- proc.time() for (i in 1:ntarg) { agemax <- -1e32; agemin <- 1e32 for (j in 1:nsites) { for (k in 1:nsamples[j]) { if (!is.na(age[k,j])) { ii <- (age[k,j]-targage[1])/targstep + 1 #print (c(i,j,k,ii)) if (ii > 0 && ii <= ntarg) {ndec[j,ii] = 1} if (age[k,j] >= targage[i]-hw && age[k,j] <= targage[i]+hw) { ninwin[j,i] = 1 if (agemax < age[k,j]) {agemax <- age[k,j]} if (agemin > age[k,j]) {agemin <- age[k,j]} } } } } ndec_tot[i] <- sum(ndec[,i]) ninwin_tot[i] <- sum(ninwin[,i]) xspan[i] <- agemax - agemin } proc.time() - ptm #head(cbind(targage,ndec_tot,xspan,ninwin_tot)) ``` # Curve-fitting and bootstrapping # First, the overall composite curve, i.e. without bootstrapping, determined and saved for plotting over the individual bootstrap curves later. Second, the `nreps` individual bootstrap samples are selected, and a composit curve fitted to each and saved. ## Composite curve ## The steps in getting this curve include: 1. Reshaping the data matrices (`age` and `influx`) into vectors 2. Running `locfit()`, and 3. Getting fitted values at the target ages The composite curve using all data is calculated as follows: ```{r locfit} ptm <- proc.time() # 1. reshape matrices into vectors x <- as.vector(age) y <- as.vector(influx) lfdata <- data.frame(x,y) lfdata <- na.omit(lfdata) x <- lfdata$x; y <- lfdata$y # 2. locfit # initial fit, unresampled (i.e. all) data loc01 <- locfit(y ~ lp(x, deg=1, h=hw), maxk=800, family="qrgauss") summary(loc01) # 3. get fitted values pred01 <- predict(loc01, newdata=targage.df, se.fit=TRUE) loc01_fit <- data.frame(targage.df$x, pred01$fit) fitname <- paste("locfit_",as.character(hw), sep="") colnames(loc01_fit) <- c("age", fitname) head(loc01_fit) proc.time() - ptm ``` ## Bootstrap-by-site confidence intervals ## The bootstrap confidence intervals are obtained by sampling with replacement sites (as opposed to individual samples), fitting a composite curve using `locfit()`, and saving these. The 95-percent confidence intervals are then determined for each target age using the `quantile()` function. ```{r boostrapping, results='hide'} # bootstrap samples ptm <- proc.time() # Step 1 -- Set up to plot individual replications if (plotout == "pdf") {pdf(file=paste(curvecsvpath,pdffile,sep=""))} plot(x, y, xlab="Age (BP 1950)", ylab=fitname, xlim=c(22000,-100), xaxp = c(22000, 0, 22), ylim=c(-1.5,0.5), type="n") # Step 2 -- Do the bootstrap iterations, and plot each composite curve set.seed(10) # do this to get the same sequence of random samples for each run for (i in 1:nreps) { print(i) randsitenum <- sample(seq(1:nsites), nsites, replace=TRUE) # print(head(randsitenum)) x <- as.vector(age[,randsitenum]) y <- as.vector(influx[,randsitenum]) lfdata <- data.frame(x,y) lfdata <- na.omit(lfdata) x <- lfdata$x; y <- lfdata$y locboot <- locfit(y ~ lp(x, deg=1, h=hw), maxk=800, maxit=20, family="qrgauss") predboot <- predict(locboot, newdata=targage.df, se.fit=TRUE) yfit[,i] <- predboot$fit # note plotting lines is slowww lines(targage.df$x, yfit[,i], lwd=2, col=rgb(0.5,0.5,0.5,0.10)) if (i %% 10 == 0) {print(i)} } # Step 3 -- Plot the unresampled (initial) fit fitname <- paste("locfit_",as.character(hw), sep="") colnames(loc01_fit) <- c("age", fitname) lines(loc01_fit[,1], loc01_fit[,2], lwd=2, col="red") # Step 4 -- Find and add bootstrap CIs yfit95 <- apply(yfit, 1, function(x) quantile(x,prob=0.975, na.rm=T)) yfit05 <- apply(yfit, 1, function(x) quantile(x,prob=0.025, na.rm=T)) lines(targage.df$x, yfit95, lwd=1, col="red") lines(targage.df$x, yfit05, lwd=1, col="red") if (plotout == "pdf") {dev.off()} ``` ## Output ## The fitted curves are written out in the usual way. ```{r output} curveout <- data.frame(cbind(targage.df$x, pred01$fit, yfit95, yfit05, ndec_tot, xspan, ninwin_tot)) colnames(curveout) <- c("age", "locfit", "cu95", "cl95", "nsites", "window", "ninwin") outputfile <- paste(curvecsvpath, curvefile, sep="") write.table(curveout, outputfile, col.names=TRUE, row.names=FALSE, sep=",") proc.time() - ptm ``` After fitting, it would be good to check for `locfit()` warnings (i.e. `warnings()`).