
Deep Reinforcement Learning for Autonomous Systems

Piero Macaluso - s252894
Candidate

Politecnico di Torino

Prof. Pietro Michiardi
Supervisor

EURECOM

Prof. Elena Baralis
Supervisor

Politecnico di Torino

This document represents a summary of the master the-
sis project. The source code of this work is publicly avail-
able at https://github.com/pieromacaluso/
Deep-RL-Autonomous-Systems

1. Introduction
Because of its potential to drastically change mobility

and transport, autonomous systems and self-driving vehi-
cles are attracting much attention from both the research
community and industry. Recent work has demonstrated
that it is possible to rely on a comprehensive understanding
of the immediate environment while following simple high-
level directions, to obtain a more scalable approach that can
make autonomous driving a ubiquitous technology. How-
ever, to date, the majority of the methods concentrate on
deterministic control optimisation algorithms to select the
right action, while the usage of deep learning and machine
learning is entirely dedicated to object detection and recog-
nition.

Recently, we have witnessed a remarkable increase in
interest in Reinforcement Learning (RL). It is a machine
learning field focused on solving Markov Decision Pro-
cesses (MDP), where an agent learns to make decisions
by mapping situations and actions according to the infor-
mation it gathers from the surrounding environment and
from the reward it receives, trying to maximise it. As re-
searchers discovered, it can be surprisingly useful to solve
tasks in simulated environments like games and computer
games, and RL showed encouraging performance in tasks
with robotic manipulators. Furthermore, the great fervour
produced by the widespread exploitation of deep learning
opened the doors to function approximation with convolu-
tional neural networks, developing what is nowadays known
as deep reinforcement learning.

1.1. Objective

In this thesis, we argue that the generality of reinforce-
ment learning makes it a useful framework where to apply
autonomous driving to inject artificial intelligence not only
in the detection component but also in the decision-making

one. The focus of the majority of reinforcement learning
projects is on a simulated environment. However, a more
challenging approach of reinforcement learning consists of
the application of this type of algorithms in the real world.

After an initial phase where we studied the state-of-the-
art literature about reinforcement learning and analysed the
set of possible alternatives about technologies to use, we
started our project from the ideas in [2], where the authors
were able to train a self-driving vehicle by using Deep De-
terministic Policy Gradient (DDPG) [3] by tuning hyper-
parameters in simulation. Our approach was different: we
researched an algorithm suitable for real-world experiments
and capable of operating correctly without an expensive
hyper-parameter tuning made in simulators. We found in
Soft Actor-Critic (SAC) [1] the algorithm we needed.

Therefore, our thesis consisted of two main contribu-
tions:

1. Designing of the control system to let all components
and technologies involved interact.

2. Setting up the experimental framework with SAC al-
gorithm and carrying out an experiment to analyse the
strengths and weaknesses of this approach.

2. Design of the control system
We based our project on Cozmo, a little toy robot pro-

duced by Anki, whose developers offered a granular and
fully-featured Python SDK with many interfaces to allow
direct control of the robot. We found it to be suitable for our
experimental needs: it mounts a grayscale camera with 60◦

field of view (FoV) and has two tracks to steer and drive.
We aimed to apply deep reinforcement learning algorithms,
so we decided to use PyTorch as deep learning framework
and the standardised approach provided by OpenAI Gym
to build up the reinforcement learning environment for the
experiments.

Our idea was to build a system where the human holds
complete control over the experiment progress: he can start
the episode and suspend it when the robot reaches a fatal
state to reposition it in the closest stable situation and restart

1

https://github.com/pieromacaluso/Deep-RL-Autonomous-Systems
https://github.com/pieromacaluso/Deep-RL-Autonomous-Systems


Figure 1. Outline of the control system that shows the most crucial
technologies and components involved.

the loop. In this scenario, the human has total responsibility
for the robot training: he is the one who decides whether
an action is dangerous or not by disengaging reinforcement
learning algorithms decision.

To obtain this configuration, we designed a simple and
intuitive user interface that prompts the user when a new
experiment starts. This interface provides a live stream from
Cozmo on-board camera and a set of keys with the related
function. It works through Javascript to communicate to
a Flask server that interfaces directly to Cozmo SDK and
the OpenAI Gym environment to provide information for
the user (e.g. images, learning information) and the robot
(e.g. commands). We used TensorBoard to gather data for
analysis and representations. The outline of the system we
obtained is available in figure 1.

CozmoDriver-v0 is the Cozmo environment we de-
signed. It represents the result of continuous development
and testing to solve all the problems and particularities that
we have found along the way. We implemented all the re-
quirements and needs dictated by the type of experiment,
putting in place all the compromises to manage the avail-
able RAM and make experiments manageable by reducing
the learning time between one episode and the next one.
One of the most crucial features we implemented is the res-
cue system, useful in a context where experiments last tens
of hours and unexpected errors can occur. It consists of two
central parts. The first one is a volatile backup system: it
stores the system state before each episode to allow the user
to restore faulty ones. The second one is a checkpoint sys-
tem to save the state of the experiment and allow the user to
restore it in the following days.

We spent some time to search for the most reliable way to
build a transportable track where to train Cozmo efficiently
without influencing it through the presence of reflections,
but providing a path as close as possible to reality. We also
designed it by using grey cotton fabric as a baseline and a
white paper tape of width equal to 2.5cm to draw the lane.

Before starting the experiment, we formalised the prob-
lem as an MDP obtaining the following setup:

State Space The current state observation consists of two
64× 64 grayscale images which represent the situation be-
fore and after the action respectively. We decided to resize
images provided by Cozmo SDK for memory reason due to
the experience replay memory needed for off-policy algo-
rithms.

Action Space We used an array of two real values to rep-
resent how the robot can interact with the surrounding envi-
ronment: the first value represents the desired speed with a
range between 0 and 1, while the second one describes the
vehicle steer with a range between -1 and 1. Both values are
the result of a simplification useful in the learning phase. In
practice, the system designed converts these values to cor-
rectly interact with the robot. The maximum speed reach-
able is 150mm/s.

Reward Function The reward function defines which is
the purpose of the task to solve. After an analysis of the
literature available, we decided to formalise this function
as the total length of track crossed by the robot after each
action taken. Despite its simple formulation, this choice
revealed to be effective. Furthermore, this choice leads to
match reward with length covered, useful fact to support the
developer in quantifying agent improvements and have bet-
ter feedback. The episode concludes when the robot reaches
an irrecoverable situation: for this reason, the reward of the
last action of the episode is equal to zero.

3. Experiments
The path that led to the final implementation of the algo-

rithm allowed us to detect some specific requirements and to
overcome them with appropriate countermeasures. We de-
cided to firstly implement a simplified environment to test
functionalities and reinforcement learning algorithms we
aimed to use in Cozmo environment. We used the inverted
pendulum swing-up problem, a classic problem in the con-
trol literature and available in OpenAI Gym. The original
implementation of this environment consisted of observa-
tions with values related to the current angle and speed of
the pendulum. For this reason, we decided to build a wrap-
per for the original environment to receive observations as
raw pixels, since the goal was to apply the same consider-
ations and the same convolutional neural networks that we
would use in the Cozmo environment.

The results of the experiments carried out using hyper-
parameters taken from the available literature showed that
SAC algorithm has a better performance than the DDPG
one, both in terms of stability and number of episodes to
achieve a working policy. Therefore, we decided to im-
plement the SAC algorithm to carry out experiments in the
Cozmo environment.

2



Figure 2. SAC CozmoDriver-v0 Test Reward Plot. The graph re-
ports mean, standard deviation range and min-max range of the
average reward obtained from 10 test episodes every 50 episodes.

We opted for a neural network with three convolutional
layers with 16 filters of 3×3 dimension, a stride of 2, zero
padding and two fully-connected layers with 256 features.
We applied batch normalisation after each convolutional
layer and used the Rectified Linear Unit function (ReLU)
as non-linearity.

We managed to complete a whole set of 3000 episodes
exploiting the SAC algorithm to solve the autonomous driv-
ing task with Cozmo. Taking into account waiting times
between episodes and charging times, we managed to com-
plete one experiment in almost one week, after about 1.3×
105 epochs of learning.

The agent reached the most significant results in the test-
ing phase presented in figure 2 where we outlined minimum
and maximum values obtained in every set of ten episodes
together with the mean and the standard deviation. Follow-
ing this approach, we noticed a performance increase with a
maximum mean of almost 1 metre. Furthermore, the maxi-
mum value reached among all tests episodes was equal to
almost 3.5 metres which equals more than one complete
tour of the track. It is noticeable that the results are not sta-
ble as we expected from the experiments with the inverted
pendulum environment: the reward values do not improve
uniformly with increasing epochs. However, carrying out
the experiments episode by episode, we noticed a marked
improvement in the performance obtained in the tests. The
robot learned to approach turns and to stay on the lane of a
straight road.

4. Conclusions
The plot reports a visible improvement in the maximum

length of track travelled before the disengagement of the
user. Despite these improvements, the agent was not able
to learn how to drive securely and stably, as we can notice
from the unstable growth of the mean reward. These facts
made us reflect on the critic points of our experiment setup
that may have had a role in the instability of the results ob-
tained.

We localised two major problems which, in our opinion,
have had a particular influence on the results obtained. The
first factor was the amount of RAM available in the devel-
opment machine. This limitation forced us to decrease the
size of the replay memory and a consequent early deletion
of less recent episodes. Analysing the plots, we noticed that
this fact translated in the increase of the temperature param-
eter: this symptom underlines the need for the algorithm to
explore more the solution space. The second major prob-
lem was the limitation of the camera sensor on the robot,
particularly its viewing angle. The features offered by the
Anki Cozmo camera proved to be inadequate to observe the
track we designed. We noticed this fact after many episodes
when the robot started to improve its performance: it began
to adopt a wave behaviour on the straights, interpreting the
vision of a single road line as a curve.

4.1. Future Work

Our proposals about future improvements to the project
stem from the weakness in our approach. It could be inter-
esting to execute these algorithms on a device with a bigger
RAM, but also to design this approach with a Variational
Auto-Encoder (VAE) to reduce the dimensionality of the
information retrieved during experiments.

It may be useful to enhance sensors installed in the self-
driving robot. In addition to the possibility to build up a
custom Donkey Car, we believe that one valuable alterna-
tive to Anki Cozmo could be Anki Vector, which mounts
a 720p camera with 120◦ Ultra Wide FoV. It could be in-
teresting to perform reinforcement learning algorithms with
the usage of the renewed front camera together with the in-
frared laser scanner on-board to investigate approaches to
data fusion in reinforcement learning.

Another intriguing research path consists of an investi-
gation about the application of model-based reinforcement
learning algorithms to autonomous driving. A more in-
depth review of the literature to better understand the feasi-
bility of this approach, focusing on its strengths and weak-
nesses compared to model-free ones, can be the right choice
to make the next step in this research field.

References
[1] T. Haarnoja, A. Zhou, K. Hartikainen, G. Tucker, S. Ha, J. Tan, V. Ku-

mar, H. Zhu, A. Gupta, P. Abbeel, et al. Soft actor-critic algorithms
and applications. arXiv preprint arXiv:1812.05905, 2018.

[2] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J.-M. Allen, V.-D.
Lam, A. Bewley, and A. Shah. Learning to drive in a day. In 2019
International Conference on Robotics and Automation (ICRA), pages
8248–8254. IEEE, 2019.

[3] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Sil-
ver, and D. Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

3


