
A Study of Reinforcement Learning Report SAC
Prof. Pietro Michiardi - Eurecom Piero Macaluso
Prof. Elena Baralis - Politecnico di Torino Version: 1.0 from April, 26 2019

Contents

1 Introduction 3

2 Soft Actor-Critic 3
2.1 Application Field . 3
2.2 Key Points . 3

2.2.1 Reinforcement Learning Notation . 3
2.2.2 Entropy-Regularized Reinforcement Learning 3
2.2.3 Learning Equations . 4
2.2.4 Replay Buffers . 5
2.2.5 Target Networks . 7
2.2.6 Exploration vs. Exploitation . 7

2.3 Steps made . 7
2.3.1 Hyper Parameters . 8

3 OpenAI Gym Environments 10
3.1 Pendulum-v0 . 10

3.1.1 Description . 10
3.1.2 Hyper-Parameters Used . 10

4 Comparing Results 11
4.1 Durations . 11
4.2 Pendulum-v0 . 12

4.2.1 DDPG with Uniform Replay Memory . 12
4.2.2 SAC . 13
4.2.3 SAC with Autotune . 14

5 Comments 15

6 Next Steps 15

References 16

1

Revision History

Revision Date Author(s) Description
1.0 April, 26 2019 PM - Created.

- Added SAC description and implementation.
- Added Environments Description
- Added Uniform/Prioritized Replay
implementation and simulation.

2

1 Introduction

After the analysis of Deep Deterministic Policy Gradient (DDPG) [1], I decided to explore
other algorithms. Soft Actor-Critic (SAC) [2] [3] is one of the algorithms that intrigued me
because of the promises of its discoverers: higher and more stable performance than DDPG,
stochastic framework and less parameter to tune.

As will be clear later, the algorithm fully met the expectations.
The aim of this report is to show a background of the algorithm, the performances obtained,

a comparison with the performance of DDPG and possible future developments.

2 Soft Actor-Critic

2.1 Application Field

SAC combines the off-policy actor-critic setup with a stochastic policy (actor), devising a
bridge between stochastic policy optimization and DDPG-style approaches.

As DDPG, SAC can be applied to situations characterized by the presence of a continuous
action spaces and it is a Model-Free, Off-Policy and Actor-Critic algorithm.

SAC algorithm is able to overcome some of the problems of DDPG. The latter can achieve
great performance, but the interaction between the deterministic actor network and the Q-
function makes it difficult to stabilize and brittle with respect to hyper-parameters and other
kinds of tuning. The learned Q-function begins to dramatically overestimate Q-values, which
then leads to the policy breaking, because it exploits the errors in the Q-function.

For this reason, SAC exploits Clipped Double-Q Learning used also by Twin Delayed
DDPG (TD3). It learns two Q-functions instead of one, and uses the smaller of the two
Q-values to form the targets in the Bellman error loss functions.

Another feature of SAC is entropy regularization. The policy is trained to maximize a
trade-off between expected return and entropy, a measure of randomness in the policy. This
is strongly related to the exploration-exploitation trade-off: increasing entropy results in more
exploration, which can accelerate learning later on, but it can also prevent the policy from
prematurely converging to a bad local optimum.

2.2 Key Points

2.2.1 Reinforcement Learning Notation

The Reinforcement Learning Setup is the standard one. The problem can be defined as policy
search in a Markov decision process (MDP), defined by a tuple (S,A, p, r). The state space S
and action space A are continuous and the state transition probability p : S × S ×A → [0,∞)
represents the probability density of the next state st+1 ∈ S given the current state st ∈ S and
action at ∈ A. The environment emits a reward r : S × A → [rmin, rmax] on each transition.
ρπ(st) and ρπ(st, at) denote the state and state-action marginals of the trajectory (τ) distribution
induced by a policy π(at|st).

2.2.2 Entropy-Regularized Reinforcement Learning

Entropy is the average rate at which information is produced by a stochastic source of data. It
is, in simple terms, a quantity which describes how random a random variable is. The motivation
behind the use of entropy is that when the data source produces a low-probability value (rare),
the event carries more information than when the source data produces a high-probability
value.

3

Let x be a random variable with probability mass or density function P . The entropy H of
x is computed from its distribution P according to

H(P) = Ex∼P [− logP (x)] (1)

.
In entropy-regularized reinforcement learning the standard objective is generalized

by augmenting it with entropy. The agent gets a bonus reward at each time step proportional
to the entropy of the policy at that timestep. Assuming an infinite-horizon discounted setting,
this changes the RL problem to:

π∗ = arg max
π

Eτ∼π

[∞∑
t=0

γt
(
R(st, at, st+1) + αH(π(·|st))

)]
(2)

where α > 0 is the temperature parameter that determines the relative importance of the
entropy term controlling the stochasticity of the optimal policy. It is clear that the standard
maximum expected return can be retrieved in the limit as α→ 0.

From eq. (2) we can derive state-value function V π(s) and action-value function
Qπ(s, a):

V π(s) = Eτ∼π

[∞∑
t=0

γt
(
R(st, at, st+1) + αH(π(·|st))

)∣∣∣∣s0 = s

]
(3)

Qπ(s, a) = Eτ∼π

[∞∑
t=0

γtR(st, at, st+1) + α
∞∑
t=1

γtH(π(·|st))
∣∣∣∣s0 = s, a0 = a

]
(4)

From these equations is possible to derive the connection between state-value and action-
value function given by

V π(s) = Ea∼π[Qπ(s, a)] + αH(π(·|s)) (5)

and the Bellman equation given by

Qπ(s, a) = Es′∼P,a′∼π[R(s, a, s′) + γ(Qπ(s′, a′) + αH(π(·|s′)))] (6)
= Es′∼P [R(s, a, s′) + γV π(s′)] (7)

2.2.3 Learning Equations

SAC algorithm learns a policy πθ, two Q-functions Qφ1 , Qφ2 .
The state-value function is emplicitly parametrized through the soft Q-function parameters

and the connection is given by:

V π(s) = Ea∼π[Qπ(s, a)] + αH (π(·|s)) (8)
= Ea∼π[Qπ(s, a)− α log π(a|s)] (9)
≈ Qπ(s, ã)− α log π(ã|s), ã ∼ π(·|s). (10)

In [2] a function approximator for this function was introduced, but later [3] the authors
found it to be unnecessary.

4

Learning Q The Q-functions are learned by Mean Squared Bellman Error (MSBE) minimization,
using a target value network to form the Bellman backups. They both use the same target and
have loss functions:

L(φi,D) = E(st,at,rt,st+1,dt)∼D

(Qφi(st, at)− (rt + γ(1− dt)Vφ̄i(st+1)
))2 . (11)

where
Vφ̄(st+1) = min

i=1,2
Qφ̄i(st+1, at+1)− α log πθ(at+1|st+1), at+1 ∼ πθ(·|st+1) (12)

The target value network, like the target networks in DDPG, is obtained by polyak averaging
the value network parameters over the course of training.
Learning the Policy The policy should act to maximize the expected future return plus
expected future entropy, for each state. That is, it should maximize V π(s), which can be
expanded out (as before) into

Ea∼π[Qπ(s, a)− α log π(a|s)] (13)

The optimization of the policy makes use of the reparameterization trick, in which a sample
from πθ(·|s) is drawn by computing a deterministic function of state, policy parameters, and
independent noise. To illustrate: following the authors of the SAC paper, we use a squashed
Gaussian policy, which means that samples are obtained according to

ãθ(s, ξ) = tanh (µθ(s) + σθ(s)� ξ) , ξ ∼ N (0, I). (14)

It is possible to rewrite the expectation over actions (pain point: the distribution depends on
the policy parameters) into an expectation over noise (the distribution now has no dependence
on parameters) thanks to the reparameterization trick:

Ea∼πθ [Q
πθ(s, a)− α log πθ(a|s)] = Eξ∼N [Qπθ(s, ãθ(s, ξ))− α log πθ(ãθ(s, ξ)|s)] (15)

To get the policy loss, the final step is to substituteQπθ with one of our function approximators.
As suggested from the authors of [3], mini=1,2Qφi(st, ãθ(s, ξ)) is used. The policy is thus
optimized according to

max
θ

Es∼D,ξ∼N [α log πθ(ãθ(s, ξ)|s)− min
i=1,2

Qφi(st, ãθ(s, ξ))], (16)

which is almost the same as the DDPG and TD3 policy optimization, except for the stochasticity
and entropy term.

The implementation of these updates can be found in algorithm 1 on the next page.

2.2.4 Replay Buffers

Most optimization algorithms assume that the samples are independently and identically
distributed (i.i.d), but data produced sequentially exploring the environment can not satisfy
this assumption. To solve this problem, a Replay Buffer can be used: it is a set D of N
recent experiences (st, at, rt, st+1, dt) from which the algorithm will randomly sample a subset
of M � N experiences (mini-batch) at each iteration.

The replay buffer should be large enough to contain a wide range of experiences in order to
have stable algorithm behavior, but it may not always be good to keep everything. Using only
the very-most recent data leads to overfitting, while using too much experience may slow down
the learning process.

5

Algorithm 1: Update Phase SAC
108 with torch.no_grad():
109 next_state_action, next_state_log_pi, _ =

self.policy.sample(next_state_batch)
110 qf1_next_target, qf2_next_target = self.critic_target(next_state_batch,

next_state_action)
111 min_qf_next_target = torch.min(qf1_next_target, qf2_next_target) -

self.alpha * next_state_log_pi
112 next_q_value = reward_batch + mask_batch * self.gamma * min_qf_next_target
113

114 qf1, qf2 = self.critic(state_batch, action_batch)
115 qf1_loss = F.mse_loss(qf1, next_q_value)
116 qf2_loss = F.mse_loss(qf2, next_q_value)
117

118 pi, log_pi, _ = self.policy.sample(state_batch)
119

120 qf1_pi, qf2_pi = self.critic(state_batch, pi)
121 min_qf_pi = torch.min(qf1_pi, qf2_pi)
122

123

124 policy_loss = ((self.alpha * log_pi) - min_qf_pi).mean()
125

126 self.critic_optim.zero_grad()
127 qf1_loss.backward()
128 self.critic_optim.step()
129

130 self.critic_optim.zero_grad()
131 qf2_loss.backward()
132 self.critic_optim.step()
133

134 self.policy_optim.zero_grad()
135 policy_loss.backward()
136 self.policy_optim.step()
137

138 if self.autotune_entropy:
139 alpha_loss = -(self.log_alpha * (log_pi +

self.target_entropy).detach()).mean()
140

141 self.alpha_optim.zero_grad()
142 alpha_loss.backward()
143 self.alpha_optim.step()
144

145 self.alpha = self.log_alpha.exp()
146 alpha_tlogs = self.alpha.clone() # For TensorboardX logs
147 else:
148 alpha_loss = torch.tensor(0.).to(self.device)
149 alpha_tlogs = torch.tensor(self.alpha) # For TensorboardX logs
150

151 if updates % self.target_update == 0:
152 soft_update(self.critic_target, self.critic, self.tau)

6

2.2.5 Target Networks

State st

Actor Network µ(s|θµ)

Action at

State st Action at

Critic Local Q(s, a|θQ)

Q-value qt

Figure 1: Actor and Critic Networks

In SAC we have 5 neural networks: the local stochastic Policy Network, the 2 local
Q-Networks, the 2 target Q-Network.

Initially Policy (Actor) and Q-Networks (Critics) have randomly initialized weights. Then
the local Actor (the current policy) starts to propose actions to the Agent, given the current
state, starting to populate the Replay Buffer of experiences.

When the Replay Buffer is big enough, the algorithm starts to sample randomly a mini-
batch of experiences for each timestep t. This mini-batch is used to update the local Critics
(eq. (11) on page 5) and to update the actor policy (eq. (16) on page 5).

We can imagine the target networks as the labels of supervised learning.
Also the target networks are updated in this learning step. A mere copy of the local weights

is not an efficient solution, because it is prone to divergence. For this reason, a ”soft” target
updates is used. It is given by

θ′ ← τθ′ ← τθ + (1− τ)θ′

with t� 1.
The pseudo-code of this procedure is shown in algorithm 1 on page 9

2.2.6 Exploration vs. Exploitation

SAC algorithm trains a stochastic policy using entropy regularization, and explores in an
on-policy way. α is the entropy regularization coefficient which is the one that explicitly
controls the exploration-exploitation tradeoff. Higher α corresponds to more exploration, while
lower α corresponds to more exploitation.

This is one of the most important parameter in the algorithm and it may vary from
environment to environment. For this reason, it could require a careful tuning in order to
find the one which leads to the stablest and highest-reward learning.

During the tests, the stochasticity is removed by using the mean action instead of a sample
from the distribution. This tends to improve performance over the original stochastic policy,
allowing us to see how well the policy exploits what it has learned.

2.3 Steps made

The initial step was trying to implement the algorithm in [3] using OpenAI Gym environment
Pendulum-v0.

7

First, we used Neural Networks to compare the results with DDPG of the previous report
and finally we decided to apply a Convolutional Neural Network (CNN) to states represented
by a set of RGB images of the same environment.

2.3.1 Hyper Parameters

The aim of this section is to describe the Hyper Parameters of DDPG.

Alpha (alpha) it is the entropy regulation parameter.

Replay (batch size, replay min size, replay max size) batch size is the dimension of
the mini-batch sampled by the memory. The learning process starts when the replay
memory contains at least replay min size transitions and it starts to overwrite old
transitions when it reaches replay max size.

Episode (n episode, episode max len) the number of episode for each run is n episode,
while the maximum length of an episode is episode max len.

Convolutional Neural Networks (weight decay, update method, lr) set of parameter for
each network. The first parameter is always set to 0 and never used. The second one is
always set to Adaptive Moment Estimation (ADAM), while the third is the learning rate
and it is usually set to 1e-3 or 1e-4.

Update (discount, soft target tau, n updates per step) discount is γ, soft target tau
is τ , while n updates per step is the number of times that the algorithm has to extract
a mini-batch and perform the update of the networks for each timestep.

Test (n tests, every n episode) n tests is the number of episode to test in the testing
phase, while every n episode indicates how often the testing phase starts.

8

Algorithm 1: Soft Actor-Critic
Input: Initialize policy parameter θ, Q-function parameters φ1, φ2

1 Initialize target network weights φ̄1 ← φ1, φ̄2 ← φ2
2 Initialize an empty replay buffer D
3 repeat
4 Observe state st and select action at ∼ πθ(·|st)
5 Execute at in the environment
6 Observe next state st+1, reward rt and done signal dt
7 Store (st, at, rt, st+1, dt) in replay buffer D
8 If st+1 is terminal, reset the environment state.
9 if size of D > warm up threshold then

10 for j in range(#updates per step) do
11 Randomly sample a batch of transitions, B = (st, at, rt, st+1, dt) from D
12 Compute targets for Q functions:

yq(rt, st+1, dt) = rt + γ(1− dt)Vφ̄(st+1)

where

Vφ̄(st+1) = min
i=1,2

Qφ̄i(st+1, at+1)− α log πθ(at+1|st+1), at+1 ∼ πθ(·|st+1)

13 Update Q-functions by one step of gradient descent using

JQ(φi) = E(st,at,rt,st+1,dt)∼B

[1
2(Qφi(st, at)− yq(rt, st+1, dt))2

]
for i = 1, 2

14 Update policy by one step of gradient ascent using

Jπ(θ) = Est∼B,ξ∼N (0,I)

[
α log πθ(ãθ(s, ξ)|st)− min

i=1,2
Qφi(st, ãθ(s, ξ))

]
where at = ãθ(s, ξ) which is differentiable wrt θ via the reparametrization
trick.

15 Update target Q-networks with:

φ̄i ← τφi + (1− τ)φ̄i, for i = 1, 2

16 end
17 end
18 until convergence

Output: Optimized policy parameter θ and Q-function parameters φ1, φ2

9

3 OpenAI Gym Environments

3.1 Pendulum-v0

3.1.1 Description

The inverted pendulum swingup problem is a classic problem in the control literature. In this
version of the problem, the pendulum starts in a random position, and the goal is to swing it
up so it stays upright.
Observation Type: Box(3)

Index Observation Min Max

0 cos(θ) −1.0 +1.0
1 sin(θ) −1.0 +1.0
2 θ̇ −8.0 +8.0

Actions Type: Box(1)

Index Action Min Max

0 Joint effort −2.0 +2.0

Reward The reward for each timestep t is given by

rt = −(θ2
t + 0.1θ̇2 + 0.001a2

t)

where theta is normalized between −π and π. Therefore, the lowest cost is −(π2 + 0.1 ∗ 82 +
0.001 ∗ 22) = −16.2736044, and the highest cost is 0. In essence, the goal is to remain at zero
angle (vertical), with the least rotational velocity, and the least effort.
Starting State Random angle from −π to π, and random velocity between −1 and 1
Episode Termination There is no specified termination. Adding a maximum number of
steps might be a good idea. In this case 200.
Solved Requirements It is an unsolved environment, which means it does not have a
specified reward threshold at which it is considered solved.

3.1.2 Hyper-Parameters Used

Type Parameter Value Parameter Value Parameter Value

Epsilon eps start 0.9 eps end 0.2 eps decay 300
Noise mu 0.0 sigma 0.3 theta 0.15
Replay batch size 30 replay min size 2500 replay max size 106

Episode n episode 300 episode max len 200
Networks weight decay 0.0 update method ’adam’ lr 1e−4

Update discount 0.99 soft target tau 0.001 n updates per step 1
Test n tests 100 every n episode 10

10

4 Comparing Results

In order to better evaluate the performances of these algorithms, TensorboardX was used.
The mean µ, min, max and standard deviation σ were calculated with a tool and the important
areas they describe were plotted for better visualization.
Training Phase The training phase was repeated 20 times for n episode episodes and the
results were used to calculate aggregate values.
Test Phase After every n episode episodes, the test phase was triggered. In this part the
current actor network was set in evaluation mode and tested on 100 random episodes. Also
these results were used to calculate aggregate values.

In the first 10 episodes, the selection of the actions to take are sampled from a uniform
random distribution over valid actions. This is a way to improve exploration in the first steps.
After that, it returns to normal DDPG/SAC exploration.

4.1 Durations

Environment Uniform Replay Memory Prioritized Replay Memory
One Total One Total

MountainCarContinuous-v0 15 min 5 h 13 min 4.5 h
Pendulum-v0 6 min 2 h 6 min 2 h

11

4.2 Pendulum-v0

4.2.1 DDPG with Uniform Replay Memory

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 2: Mean, Standard Deviation Range and Min-Max range of the reward of each episode
over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200
−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 3: Mean, Standard Deviation Range and Min-Max range of the running reward mean of
the last 100 episodes for each episode over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 4: Mean, Standard Deviation Range and Min-Max range of reward mean of the test
phase (every 10 episodes) over 10 runs.

12

4.2.2 SAC

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 5: Mean, Standard Deviation Range and Min-Max range of the reward of each episode
over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200
−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 6: Mean, Standard Deviation Range and Min-Max range of the running reward mean of
the last 100 episodes for each episode over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 7: Mean, Standard Deviation Range and Min-Max range of reward mean of the test
phase (every 20 episodes) over 10 runs.

13

4.2.3 SAC with Autotune

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 8: Mean, Standard Deviation Range and Min-Max range of the reward of each episode
over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200
−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 9: Mean, Standard Deviation Range and Min-Max range of the running reward mean of
the last 100 episodes for each episode over 10 runs.

Episode

R
ew

ar
d

Va
lu

e

20 40 60 80 100 120 140 160 180 200

−1,500

−1,000

−500

0

Mean µ

Area [min,max]
Area [µ− σ, µ+ σ]

Figure 10: Mean, Standard Deviation Range and Min-Max range of reward mean of the test
phase (every 20 episodes) over 10 runs.

14

5 Comments

Analyzing the graphs, it is clear that the results in moving from DDPG to SAC are really
impressive as anticipated in the paper [3].

The results obtained are better than the ones of DDPG, on the other hand the execution
time increases: for this reason the number of element extracted from the mini-batch at each
episode was decreased.

The aim of SAC auto-tuning is to learn the best value of α without hard-coded values. It
reaches good results, but slightly worse than the plain SAC, but I think that this is an acceptable
compromise

I think that the problem may be caused by some bugs in the implementation of this part.

6 Next Steps

The next steps that I am planning to analyze are:

Prioritized Problems I think that the problem behind not impressive results of Prioritized
Buffer are related to some bug in the implementation of this part. I will try to find a way
to fix this.

Convolutional Neural Network I had already started to test this part, but I have no relevant
results, yet. I applied the code to CarRacing-v0 which propose a continuous environment
with a RGB vector as observation. I used a StateBuffer of size three to use the last three
states as input for the Convolutional Neural Network (9 inputs = 3 · 3 RGB channels).
I found difficulties to test whether an algorithm or a particular CNN architecture is
working because of the length of the training in this particular environment. I will try to
find a better way to test: an idea could be to apply this approach to MountainCarConinuous-
v0 or Pendulum-v0, trying to get the image as observation instead of raw data.
This is the most important part to develop because it is the base of the work with
Anki Cozmo. I will focus mainly on that in the next days.

DDPG vs others I am thinking to invest a part of the work in searching alternative algorithms
recently discovered and reading new papers about them. For instance, some of the latest
algorithm used in Autonomous Driving Reinforcement Learning are Deep Distributed
Distributional Deterministic Policy Gradients (D4PG), Twin Delayed DDPG
(TD3) and Soft Actor Critic (SAC). The last one is a sort of bridge between stochastic
policy optimization and DDPG-style approaches. They seems promising in the context of
the project and maybe they could lead to better results. I will try to explore more deeply
this part.

15

References

[1] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval
Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015.

[2] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. arXiv preprint
arXiv:1801.01290, 2018.

[3] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon Ha, Jie
Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic
algorithms and applications. arXiv preprint arXiv:1812.05905, 2018.

16

	Introduction
	Soft Actor-Critic
	Application Field
	Key Points
	Reinforcement Learning Notation
	Entropy-Regularized Reinforcement Learning
	Learning Equations
	Replay Buffers
	Target Networks
	Exploration vs. Exploitation

	Steps made
	Hyper Parameters

	OpenAI Gym Environments
	Pendulum-v0
	Description
	Hyper-Parameters Used

	Comparing Results
	Durations
	Pendulum-v0
	DDPG with Uniform Replay Memory
	SAC
	SAC with Autotune

	Comments
	Next Steps
	References

