
Bitcount is a family of styles, where the core shape of letters has been reduced to the minimal number of
pixels possible. We need at least 5 vertical pixels of x-height to draw “a” and “e”. Adding the minumum of 1
pixel as ascender and 1 pixel as descender, the mininum grid is 5 pixels wide and 7 pixel high. Here the
Bitcount Single Regular is shown.

The large number of styles in the Bitcount family come from the virtually infinite amount of variations that
are possible, even with this small amount of 35+ pixels. The styles vary is articulation of accent shapes, one
or two pixel stems, roman or slanted, normal or condensed. And all of this with a range of pixels shapes,
such as large/small circles and large/small squares. Here showing respectively Bitcount Single Regular
Circle, Bitcount Double Regular Circle and Bitcount Single Regular Square.

In order to find the best selection of styles for a specific task, this “manual” is available, illustrated with a
large number of examples.

And even Python/DrawBot programs are available for users who want to dive into it to that level of detail.
E.g. to create similar animations to the ones shown in this manual.

There are many ways to use Bitcount. To name a few from practice:

As decorative type design, e.g. by combining a number of layers, each with their own pixel shape,
color and transparancy.
Layers can be used to simulate 3-D effects – suggesting shadow and globes with highlights – by not
centering them on purpose.
As type design for usage in hardware devices (such as running led-displays) where there is very

Bitcount
Introduction

Usage



limited space, or if there is a fixed grid.
As display type in very small sizes in very low resolution or as hard-core bitmaps fonts, e.g. to build
into low-resolution devices, such as displays and printers.
As template for physical type, e.g. with lego-bricks, flower-pots or lights behind a grid of windows in a
building.

Since most of the Bitcount letters within the same variant (Grid, Mono, or Prop) have identical spacing, they
can be used in overlapping layers to create colorful decorative type.

Multiple layers of Bitcount generate an infinite amount of pixels shape combinations.

The animated examples give fast overview of possible combination, in plain or transparant colors.

Decorative designs



Description of the animation

All roman pixels shapes super-imposed. There are three basic shapes Circle, Square,
and Plus. The Circle and Square shapes have a solid and an outline variant, where the
size of the solid shape end in the middle of the outline. All shapes are available in 5
weights Light, Book, Regular, Medium and Bold. The outside of the outline fits exactly
on the inside of the outline of the bolder weight.

Since each Bitcount variant has a Roman and Italic (slanted) version, the Square and
Plus pixels have a slanted variant too, to avoid “staircase” stems. The Circle shapes
are identical to the Roman, unslanted.

This animation shows just Square and Plus pixels in random ordering. The size of the
Plus matches the outside of the corresponding weight outline.

This animation shows just Circle and Plus pixels in random ordering.

For a whole letter this would look like this:



Here is an overview of 3 random layers. Each of these combinations can be used as pixel shape for any
layer combination of Bitcount letters.



Example of Bitcount Grid Double with fixed height in 7 pixel grid display and fixed monospaced width of 6
pixels. Note the use of Bitcount Grid Double Italic to simulate the slanted delay of electronics in physical
LED-displays with running text.

3-D effects

Running LED-displays



Example of Bitcount Prop Single with height of 10 pixels, with extended ascenders and descenders (by
OpenType Features) and proportional spacing. Also here, Bitcount Prop Single Italic is used to slant the
running text.

Weight variations can be made by altering the pixel size (or intensity), instead of adding more pixels.
Although the 2-pixel contrast stem of the Double variant in this example could be interpreted as bold, it is
compensated by using very small or light pixels.

In the animated example, three layers of Bitcount variants – MonoSingle-BoldCircle (bottom), MonoSingle-
RegularCircle (middle) and MonoSingle-BookCircle (top) are used in different colors to create interesting
patterns.

Low resolution screens

Templates for physical type

Future: Bitcount Variations



 



With the future introduction of Bitcount OpenType 1.8 Variation fonts, it will be possible to animate through
the different axes of variations. In this manual more examples will be shown of this process.

There are three spacing variants in the Bitcount family: Grid, Mono and Prop. The variants Grid and Mono
are “monospaced”, all letters have the same width of 6 pixels. Since letters as “l” and “i” normally need less
spacing, the fixed width is bridged by adding serifs where necessary, althought the basics of Bitcount is
sans-serif. In the Prop variant all letters have their own widths, dependent on the space they need, but all
widths are rounded to whole pixels distances.

The internal measures of the font is defined in a way that it is easy to measure. Each pixel has a distance of
100 units of the total 1000 units of the Em-square. This means that the width of a pixel (and thus of the
spacing) if 1/10 of the font size. This way tracking can be calculated. For each extra pixel to the spacing of
letters, Adobe InDesign needs a tracking of 10.

Overview of typographic values

Spacing

Tracking



Since the Grid and Mono are monospaced variants, by definition they cannot have any kerning. All letters in
all combinations have a width of 6 pixels. That is different in the Prop variant. Letter combination have their
own kerning value, to optimize their spacing. In the design of Bitcount Prop all capital-capital combination
have two pixels spacing, where capital-lowercase have a spacing of one pixel. This difference is solved by
kerning.

As with spacing and tracking, all kerning is rounded to whole pixels. In traditional typographic spacing this
may not always be exactly right, in the matrix-grid of Bitcount, the designed spacing is the “best possible”,
given the limitations of the grid.

All letters in the Grid variant have a total height of not more than 7 pixels, one pixels for ascenders and one
pixel for descenders. As it is impossible to express articulation in the shape of accents, they are all reduced
to one or two pixels. The size of accented capitals it reduced to 5 pixels to accommodate the accent on top.
This makes the capital shape identical to the small-caps. Here showing the accent letters “AÁÃaáã” using
Grid and Mono on their grids of respectively 7 pixels and 10 pixel high.

In the Bitcount Mono and Prop variants capital, ascenders and descender heights can be extended using
one or all of the stylistic OpenType Features Extended capital, Extended ascender and Extended
descender.

Kerning

Ascenders and descenders

Grid

Mono and Prop



Extending the capitals is made as a separate OT-feature, so the user can choose to make the capitals the
same size as the ascenders (7 pixels), or use the set that is one pixels smaller (6 pixels).

The standard x-height for all Bitcount variants is 5 pixels.

The smallest proportions can be found in the Grid variant. Lowercase letters are mostly made with a grid of
5 x 5 pixels. In the standard grid of 5 x 7, that leaves room for one pixel ascender and one pixel descender.

Due to the nature of pixel letter in such low resolution, there is almost no freedom to express constrast in
letterforms. The difference between thick and thin areas come from the distance between close horizontal
adjacent pixels (darker) and the larger distance between diagonal pixels (lighter). Often this happens in
places there the contrast should be the other way around.

Within the limitations of what is possible:

Single and Double variants
OT-Feature Contrast pixel
Size and shape of pixels.

x-height and cap-height

Leading

Contrast and weight

Single and Double variants.



Bitcount provides two ways of controlling the contrast. The variants Single and Double respectively have
letters with one and two pixel stems. Although this difference can be interpreted and used as “Roman” and
“Bold”, it is not necessarily the only usage. The Double (with more expression of the tick-thin relation on the
right spot).

In Single variant there is an OT-Feature available to add a pixel where contrast is needed, especially in the
diagonal connections. Of course this feature only works if there enough space, such as “O” and “C”.

In the Double variants is the feature selected by default. There the OT-Feature No contrast pixel is
necessary to turn the contrast pixel off.

In the OT_Feature Condensed selection, the extra contrast pixel is not available, due to the restriction of
space.

OT-Feature Contrast pixel



The base package of Bitcount includes four sizes/weight for each unique pixel shape. There are five sizes
of Circles (Light, Book, Regular, Medium and Bold) and there are five corresponding sizes of Square and
Plus pixels. The Regular weight is by definintion the size of pixels that exactly fit the grid of 100 units.
Future releases of Bitcount packages will include more weights and shapes.

Due to the difference area coverage of Circles and Squares, their visual weight is not equal. This can also
be used by the designer as an expression for typographic weight difference.

Size and shape of pixels



Within the range of similar pixels shapes the weights are relative. For the sake of consistency, the weight
name refers to the size of the pixel, not the optical weight. This is best visible in the pixels where the inside
is open. Here is an example of the Line Circle pixel variant by weight.

And here is an example of the Line Square pixel variant by weight.



Completing the types of pixels shapes in the basic package of Bitcount, this is the weight range of the Plus
shape.

The line width and the size of all Plus pixels is adjust to the size of the Line pixels. This gives the option to
“cut” a cross from the other pixels, such as Line Circle and Square in multipe layers. Visualized in this
animations of layers:



The Single variants implement an OT-Feature Condensed that does display much of the glyph set as
condensed. For the monospaced Grid and Mono variants this means that one pixel is added to the right
side of each letter, to keep the same monospaced width of 6 pixels. But the optically wider spacing is not a
problem, especially when used is small sizes.

Width



For the Prop variant it means that the condensed letters are spaced one pixel more narrow than the
monospaced.

In Bitcount a separation is made between the italic (slanted) angle of the stems (defined by the selection of
the font style), and the italic shapes of letters (by selecting the OpenType Feature). This means that all 4
combination are available to the user.

Upright Circle Slanted Circle (“Italic” style)

Roman

Italic
(Feature)

An alternative “g” is available as OT-Feature, but due to the complexity of the shape at low resolution, it is
not made default for upright-roman (as it could have been in a regular type design).

Italic



Upright Circle Slanted Circle (“Italic” style)

Roman

Alternate (Feature)

The Circle pixel shapes are not altered when slanted. But the Square pixels (and others with straight sides)
are using slanted versions of the pixel shape to make the stems appear to be slanted.

Upright Square Slanted Square (“Italic” style)

Roman

Italic
(Feature)

Both OT-Feature Lowercase to small-caps and Captial to small-caps are implemented for all Bitcount
variants.

Conversion with Lowercase to small-caps looks like this for the Mono Single variant:

Glyph set

Letters with accents

Small-caps



And like this for the Prop Single variant:

Conversion with OT-Feature Capital to small-caps looks like this:

Bitcount implements seven sets of figures for the Single variant and five sets for the Double variant. In the
example image they are showing in order of:

Mono Single figures on fixed width of 6 pixels.

Figures in Single



Mono Single condensed figures on fixed width of 6 pixels (using the OT-Feature Condensed).

Mono Single figures width extended height on fixed width of 6 pixels (using the OT-Feature Extended
capitals).

Mono Single condensed figures extended height on fixed width of 6 pixels (using the OT-Feature
combination Extended capitals and Condensed).

Mono Single lowercase figures on fixed width of 6 pixels (using the OT-Feature Lowercase figures).

Mono Single lowercase figures on fixed width of 6 pixels (using the OT-Feature combination Lowercase
figures and Condensed).

Mono Single small-cap table figures on fixed width of 6 pixels (using the OT-Feature Lowercase to small-
caps).

Mono Single small-cap table figures on fixed width of 6 pixels (using the OT-Feature combination



Lowercase to small-caps and Condensed).

Prop Single with OT-Feature Fraction enabled on proportional width. The use of fractions is limited in this
low resolution of 2x4 pixels (where the only possible design option for the zero is two horizontal lines), but
for completeness it is good to have the full characters set available in fonts like this. Also the readabiltiy of
fractional figures is very much dependent on the context, the shape and size of the pixels. It is up to the
designer to decide if usage is appropriate in a given situation.

Both Prop Single and Prop Double include the OT-feature tnum (table numbers), which will force the
figures (and some related characters like valuta, period, and comma) to a fixed width of 6 pixels.

OT-features Default Table width

Extended capitals

Default

Lowercase onum

Extended capitals
Condensed

Condensed

Lowercase
Condensed

As the Double does not have a Condensed OT-feature, there is only four sets of figures.

Mono Double figures on fixed spacing width of 6 pixels.

Figures in Double



Mono Double figures width extended height on fixed spacing width of 6 pixels (using the OT-Feature
Extended capitals.

Mono Double small-cap table figures on fixed width of 6 pixels (using the OT-Feature Lowercase to small-
caps).

Prop Double with OT-Feature Fraction enabled on proportional width.

In all variant styles there are alternate slashed zero’s available as OT-Feature zero.

Default
OT Feature

Zero
OT Feature
Condensed

OT Features
Zero + Condensed

Default Single

Lowercase figures

Lowercase to
small-caps

In case the full set of pixels is need (e.g. as a background layer with LED’s that are on/off, there are several

Matrix



matrices available when the OT feature Ligaure is turned on. The availability if the matrix depends on the
variant. In the illustration respectively are shown /matrix57, /matrix58, /matrix68, /matrix610. Also the
TYPETR logo is available /typetr.

Not all OpenType Features are available in every Bitcount variant. See the Reference for more details,
specific per style.

The Bitcount project started in the late 70’s as an experiment to find the minimum amount of pixels
necessary to define a full set of ASCII characters. Mainstream as that may seem today, it wasn’t at that
time.

In the seventies, ditigal typefaces for printing where hidden deep inside commercial typesetting machines
(starting as scanned photo negatives, not even as digital outline information). Or they were stored as
bitmap in terminal screens. Resolution and speed were costly resources, so the bitmap was hardcoded into
the screen electronics, often just for one size.

It was the general convention at that time, that for Latin, at least 9 pixels where necessary to make a clear

OpenType Features

The Making of Bitcount



distinction between ascenders (7), capitals (6), lowercase (5), and descenders (2). Furthermore, all letters
needed to be monospaced, because there was no way pixels could be stored as in modern graphic
screens. The shapes where generated by hardware during the sweep of scan-lines of the television screen.
Proportional spacing would have added a lot more costly hardware.

The design of these pixel grids was exclusively the domain of engineering: Take a matrix and add pixels
until it can be recognized as an “n”. The problem with this approach is that “contrast” seems like luxury, not
worth considering (if such a thing was considered at all). The stems of such an “n” have a width of one
pixel, vertical and horizontal equally spaced. But simple mathematics shows that if the horizontal distance
between pixels is 1, the diagonal distance between points is 1.41, showing as a lighter area in the letter.
The problem is in the resulting contrast in the diagonals.

This is not a problem where bows run in to stems, but on the top-right of the “n” it is a problem, because
that is traditionally the darkest part of the letter shape.
The contrast makes the difference between “n” and “h” 3 pixels, instead of the traditional one pixel. This
compensates for the relative small ascender length of only one pixel.



Early sketches of the 5 x 7 pixel grid show that even in a small design space of 35 pixels, the number of
different options is enourmous. Note the various alternatives for the “m”, to make it fit in the impossible
width of 5 pixels. It is common understanding in design, that what first seems to be an extreme reduction of
design options, in reality still needs a design process to find the best choice. Or to create alternative
solutions that work just as well or better.


