Fast and scalable learning of generative models for chaotic dynamical systems and neural data

Leonard Bereska, Po-Chen Kuo, Manuel Brenner, Daniel Durstewitz Central Institute of Mental Health Mannheim, University of Heidelberg 28.10.2020, Neuromatch 3.0

Fast and scalable learning of generative models for chaotic dynamical systems and neural data

Leonard Bereska, Po-Chen Kuo, Manuel Brenner, Daniel Durstewitz Central Institute of Mental Health Mannheim, University of Heidelberg 28.10.2020, Neuromatch 3.0

677,3 x 381,0 mm

Ð

0

Fast and scalable learning of generative models for chaotic dynamical systems and neural data

Leonard Bereska, Po-Chen Kuo, Manuel Brenner, Daniel Durstewitz Central Institute of Mental Health Mannheim, University of Heidelberg 28.10.2020, Neuromatch 3.0

Motivation

Diverse biophysical

Manuel Brenner

Inferring Generative Models from Data

Figure from: Koppe, G., Toutounji, H., Kirsch, P., Lis, S., & Durstewitz, D. (2019). Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. PLoS Computational Biology, 15.

Piece-wise Linear Recurrent Neural Network

Complete Likelihood

$$\log p_{\theta}(\mathbf{x}, \mathbf{z}) = -\frac{1}{2} (\mathbf{z}_{1} - \boldsymbol{\mu}_{0} - \mathbf{s}_{1})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{z}_{1} - \boldsymbol{\mu}_{0} - \mathbf{s}_{1})$$
$$-\frac{1}{2} \sum_{t=2}^{T} (\mathbf{z}_{t} - \mathbf{A}\mathbf{z}_{t-1} - \mathbf{W}\boldsymbol{\phi}(\mathbf{z}_{t-1}) - \mathbf{s}_{t})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{z}_{t} - \mathbf{A}\mathbf{z}_{t-1} - \mathbf{W}\mathbf{z}_{t-1})$$
$$-\frac{1}{2} \sum_{t=1}^{T} (\mathbf{x}_{t} - \mathbf{B}\mathbf{z}_{t})^{T} \boldsymbol{\Gamma}^{-1} (\mathbf{x}_{t} - \mathbf{B}\mathbf{z}_{t})$$

⁴ For fMRI observation model refer to: Koppe, G., Toutounji, H., Kirsch, P., Lis, S., & Durstewitz, D. (2019). Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. PLoS Computational Biology, 15.

$$\in \mathbb{R}^{M}$$

$$- W\phi(z_{t-1}) + h_0 + Cs_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0)$$

 $x_t = Bz_t + \eta_t, \ \eta_t \sim \mathcal{N}(0, \Gamma)$

 $V\phi(z_{t-1}) - s_t)$

Activation Function

 $\phi(z_{t-1}) = \max(0, z_{t-1})$

Increasing Computational Capacity

- Can we reduce the dimensionality of latent space?
- Retain piece-wise linear form

• $z_t = Az_{t-1} + W\phi(z_{t-1}) + h_0 + Cs_t + \epsilon_t$, $\epsilon_t \sim \mathcal{N}(0, \Sigma)$

Neurophysiological analogy: dendritic computation or neuronal diversity

Basis Expansion New activation function in latent model

 $z_t = A z_{t-1} + W \phi(z_{t-1}) + h_0 + C s_t + \epsilon_t, \quad \epsilon_t \sim \mathcal{N}(0, \Sigma)$

 $\phi(z_{t-1}) = \max(0, z_{t-1})$

Variational Inference

Variational Lower Bound

 $p(\mathbf{x}) \geq \mathscr{L}(\theta, \phi, \mathbf{x}) = \mathbb{E}_{q_{\phi}(z|\mathbf{x})}[\log p_{\theta}(x)]$

Complete Likelihood

.

$$x = \{x_t | t = 1 \dots I \}$$

 $z = \{z_t | t = 1 \dots T\}$

$$[\mathbf{x}, \mathbf{z})] + \mathbb{E}_{q_{\phi}(z|\mathbf{x})}[\log q_{\phi}(z|\mathbf{x})]$$

Mean-Field Approximation

Benchmark Dynamical Systems

Lorenz Attractor

Lorenz-96 System

$$\frac{dx_i}{dt} = (x_{i+1} - x_{i-2})x_{i-1} - x_i + F$$

Ð

Results - Lorenz-96 System

anuel Brenne

Results - Lorenz-96 System

Summary

Ð

Basis expansion:

- Improves inference
- Encourages learning of more interesting dynamics
- Reduces dimensionality of the latent space

Acknowledgements: This work was funded by the German Science Foundation (DFG) through individual grant Du 354/10-1 to Daniel Durstewitz, and via the Excellence Cluster Structures at Heidelberg University (EXC-2181 – 390900948).

esting dynamics ent space

Summary

Basis expansion:

- Improves inference
- Encourages learning of more interesting dynamics
- Reduces dimensionality of the latent space

Acknowledgements: This work was funded by the German Science Foundation (DFG) through individual grant Du 354/10-1 to Daniel Durstewitz, and via the Excellence Cluster Structures at Heidelberg University (EXC-2181 – 390900948).

9

esting dynamics ent space

Piece-wise Linear Recurrent Neural Network

Latent Model $z_r \in \mathbb{R}^M$

Observation Model $x_t = Bz_t + \eta_t, \ \eta_t \sim \mathcal{N}(\mathbf{0}, \Gamma)$

Complete Likelihood

$$\log p_{\theta}(\mathbf{x}, \mathbf{z}) = -\frac{1}{2} (\mathbf{z}_{1} - \boldsymbol{\mu}_{0} - \mathbf{s}_{1})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{z}_{1} - \boldsymbol{\mu}_{0} - \mathbf{s}_{1})$$
$$-\frac{1}{2} \sum_{t=2}^{T} (\mathbf{z}_{t} - \mathbf{A}\mathbf{z}_{t-1} - \mathbf{W}\boldsymbol{\phi}(\mathbf{z}_{t-1}) - \mathbf{s}_{t})^{T} \boldsymbol{\Sigma}^{-1} (\mathbf{z}_{t} - \mathbf{A}\mathbf{z}_{t-1} - \mathbf{W}\mathbf{z}_{t-1})$$
$$-\frac{1}{2} \sum_{t=1}^{T} (\mathbf{x}_{t} - \mathbf{B}\mathbf{z}_{t})^{T} \boldsymbol{\Gamma}^{-1} (\mathbf{x}_{t} - \mathbf{B}\mathbf{z}_{t})$$

For fMRI observation model refer to: Koppe, G., Toutounji, H., Kirsch, P., Lis, S., & Durstewitz, D. (2019). Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. PLoS Computational Biology, 15.

 $V\phi(z_{t-1}) - s_t)$

Activation Function

 $\phi(z_{t-1}) = \max(0, z_{t-1})$

Global vs. Local Metrics Kullback-Leibler Divergence vs. Mean Squared Error

low $\tilde{KL}_{\mathbf{X}}$ =.06, high MSE=2.48

Figure from: Koppe, G., Toutounji, H., Kirsch, P., Lis, S., & Durstewitz, D. (2019).

high $\tilde{KL}_{\mathbf{X}}$ =.71, low MSE=1.40

9

Identifying nonlinear dynamical systems via generative recurrent neural networks with applications to fMRI. PLoS Computational Biology, 15.