Clarifying matrix algebra
exceptions in Python visually
with TensorSensor

Examples and implementation details

Terence Parr
University of San Francisco

) ) . UNIVERSITY OF SAN FRANCISCO
See https://github.com/parrt/tensor-sensor and https://explained.ai/



https://github.com/parrt/tensor-sensor
https://explained.ai/

JGuru’

A quick self-intro... = .o

Terence Parr
University of San Francisco

(BNTLR

“Why program by hand in 5
days what you can spend 5
years of your life automating?”

ANTLR Preview

@ foo.g4 start rule: a Parse tree  Hierarchy

a

XXt

Profiler

expr:1 SEMI:""

ex;|)r:1 OPERATOR:"" expr:1
(% Ax

line 1:2 extraneous input 'x' expecting 'x
line 1:4 token recognition error at: '#'
(D ANTLR Preview = @ Tool Output  Q Find @ Problems Terminal G} Profiler  i= TODO
=] laxt unaryExpression
2| 2.1xt :  postfixExpression
=] 3.t ‘++' unaryExpression
2] 4.axt '=-' unaryExpression
Agé unaryOperator castExpression
e ‘sizeof' unaryExpression
‘sizeof' ‘(' typeName ')’
Structure sk T | %> I '_Alignof' ' (' typeN 2 &
v OhclL '&&' Identifier| // GCC extension address of label
@ abstractDeclarator P
¥ additiveExpression
. ' unaryOperator
@ alignmentSpecifier S o i A e e
§ : & o] % + | - ] ok
@ andExpression
Preview

Input  (®) File ')ZIUsers/pamlIdeaProjec(sllestplugin/t.c'

Start rule: compilationUnit

typedef unsigned char __uint8_t;
typedef short __int16_t;

typedef unsigned short __uintl6_t;
typedef int __int32_t;

struct _opaque_pthread_cond_t { lon
struct _opaque_pthread_condattr_t {

int fscanf(FILE x , const char * ,
int fseek(FILE %, long, int);

void *xstringToNode(char xstr)
{

Cha.g Deepest lookahead k=5

vol Ambiguous upon alts {5, 6}

Save_Scrwun = pyourcun_pel;
int32_t)

(5izeof(__int32_t) * 8);
}

Invocations Time Totalk Max k Ambiguities ¥ | DFA cache miss
23 44 68 27 4 44

6 6 20 T4 2 11
- 1 Y | R v —
0 0 0 0 0 0

0 0 0 0 0 0

11 0 13 2 0 5

0 0 0 0 0 0

0 0 0 0 0 0

1% 3 15 4 0 7

0 0 0 0 0 0

0 0 0 0 0 0

11 1 11 1 0 6

3 0 3 1 0 2

10 1 11 2 0 5

oy 1 0 : [ 1 0 1

10 0 10 1 0 5

0 0 0 0 0 0

9 0 9 1 0 4

n n n n n n

| Parse tree !!ag

Input size:

Number of tokens:
Parse time (ms):
Prediction time (ms):
Lookahead burden:
DFA cache miss rate:

] Show expert columns
Ambiguity

Predicate evaluation
Deepest lookahead

Q) Event Log

495 char, 18 lines
115

337

312 = 92.58%
771/115 = 6.70
449/771 = 58.24%



And now for something completely different.

https://explained.ai/

MSE Loss Function

§<y-FO>Z [~

RN N c a t c h a t
. aofo|[1][0 ol[o][T][0
matrix elf1lof|o 1l{of|offo
. . e2(0(lof|l0 ofjoffoflo0
simulation n3lolollo| [of|z]lo]lo
http:/explained ai/mn/index htmi k4alof|o]|o oflo][lo]|o
Terence Parr £S51011011 0l10](0]1
z6[0][0]l0 olo]laflo
0 init W, U, vV
- 0 for i in range(®, len(X)): # for each word
= +
|/ U X = X[1]
0
he -1 h = torch.zeros(len(vocab), 1) ‘
for t in range(len(x)): # for each char 0F
% h = Wgh + U@onehot (x[t]) E {

h = torch.relu(h) 1

loss += cross_entropy(o, y[i])

o = V.mm(h) ]-;;
H _ e o = softmax(o) Ey
o i ]-;\‘

i update W,U,V in direction of lower loss

B2
lolviz
B globals User
]‘ GREEN | '#cfe2d4' name | 'name0'
BLUE | '#D9E6F5'| |0
- X | 1 User
5 name | 'name1’
S
x| 089 User

y | 'powersaw'

name | 'name2'

dtreeviz

23
wine
[Iclass_0
[class_1
o0 — ‘ [ class_2
278 755.0 1680

proline

S
Mlleenh. L Al

0d280/od315 of_diluted_wines
\ ﬂavanowds
/

@ @ i

TensorSensor

W @X.T
100 200

0o 5.08

UNIVERSITY OF SAN FRANCISCO


https://explained.ai/

The problem

import torch * It's easy to lose track of
P matrix/tensor dimensionality in
d = 764 matrix algebra expressions (even
nhidden = 256 . .

in statically-typed languages)
Whh = torch. (nhidden, nhidden) °
il ki e Upon error, we often get less than
£, O helpful exception messages, such
h =t h. dn(nhidden, 1 -
e as this (PyTorch) message
A R EG Tl  The offending operator and
# Following code raises an exception Operands are not |dent|f|ed, since

h = torch.tanh(Whh @ (r+h) + Uxh @ X.T + bh) — Python exceptions occur at the line
level rather than the operator level

RuntimeError: matl and mat2 shapes cannot be multiplied (764x256 and 764x200)

UNIVERSITY OF SAN FRANCISCO



We could rerun using the debugger but...

* The debugger still does not tell us which subexpression caused
the exception, due to line-level granularity of Python exceptions

* We must write down shape of all operands then line up and
compare dimensions on all subexpressions manually

» Besides
« Python debuggers seem much slower than normal execution
* Even regular execution could take hours before faulting

. _Somletimes it's hard to set a breakpoint on the right statement when it's
in a loop

« Conditional breakpoints are challenging when the values are high-
dimension matrices

UNIVERSITY OF SAN FRANCISCO



> <

What most people do (in notebooks) 73;%

» Most data scientists laboriously inject code and rerun to isolate:

//,print(Whh.shape, r.shape, h.shape, Uxh.shape, X.shape, bh.shape)

Or, they print((rxh).shape)

stop here print ((Whh@(rxh)).shape)
print((Uxh@X.T).shape) # <—— exception!
print ((Whh@(rxh)+Uxh@X.T).shape)
print ((Whh@(rxh)+Uxh@X.T+bh).shape)
h = torch.tanh(Whh @ (rxh) + Uxh @ X.T + bh)
RuntimeError Traceback (most recent call last)

<ipython-input-2-b5160030ac99> in
16 print((rxh).shape)
17 print((Whh@(rxh)).shape)
——> 18 print((Uxh@X.T).shape)
19 print((Whh@(rxh)+Uxh@X.T).shape)
20 print((Whh@(rkh)+Uxh@X.T+bh).shape)



Ny

What TensorSensor proposes

 First, augment the exception message to identify the op/opnds:

RuntimeError: matl and mat2 shapes cannot be multiplied (764x256 and 764x200)
Cause: @ on tensor operand Uxh w/shape [764, 256] and operand X.T w/shape [764, 200]

« But we can help programmers even more...
* The key is to line up dimensions, so let's show that visually!

Uxh @ X.T

256x\‘ 200
<t

764
/6

Believe it or not, this is all matplotlib
UNIVERSITY OF SAN FRANCISCO



A nice-to-have feature: viz correct code

= torch.relu(x)

! Very helpful when trying to read

H (even correct) code
4
N

2K 1 1 1m 1m

|:| H
4 X 4
AN AN (QV

a
ﬂ
b= W @b+ torch.zeros(2000,1)+( h +3).dot( h )
1

batch = X [i,:,:] y= b @b.T
764 100 1 100 1
‘% 3 o . <[] SH
X3 "

Greater than 2 and 3 dimensions UNIVERSITY OF SAN FRANCISCO



A nice-to-have feature:

Abstract syntax trees with dimensions

h_ = torch.tanh (Whh_@ (r *h) + Uxh_@X.T + bh_)

\/
Shows tensor dimensions for all |

subexpression partial results
(currently must call explicit function)

e

256x200

/

764x200

/

\/

256x1

|

256x1 256x200
256x1 /////
\ Y

+
256x200
e

256x200

\ tanh()/
256x200



Oh, and support multiple libraries

(1D vectors are yellow)

W .dot( h {////////
100 100 PyTorch TensorFlow

W @ tf.transpose( X )

RuntimeError: 1D tensors expected, but got 100 764
2D and 1D tensors
Cause: W.dot(h) tensor arg h w/shape [100]

100

764
200

InvalidArgumentError: In[0] mismatch In[1] shape:

JAX 100 vs. 764: [764,100] [764,200] 0 @ [Op:MatMull
Cause: @ on tensor operand W w/shape (764, 100) a
nd operand tf.transpose(X) w/shape (764, 200)

jnp.dot( W , x)
5k 1

X
o) w0

TypeError: Incompatible shapes for dot: got (5000, 5000)
and (5, 1).
Cause: jnp.dot(W, x) tensor arg W w/shape (5000, 5000),

arg x w/shape (5, 1) UNIVERSITY OF SAN FRANCISCO



Design goals

(knowing what to build is as important as knowing how to build)

» Should be as unobtrusive as possible with least user effort
« Users shouldn’t have to reorganize code

 Trap just matrix-related exceptions

* Avoid need for an external tool or translator

 Avoid spewing output until exception occurs

« Can we avoid CPU cost until an exception?

* |[deally, implementation would be small and straightforward
(at least to language engineers)

UNIVERSITY OF SAN FRANCISCO



TensorSensor programmer interface

* The Python with statement gives us the hooks we need

import tsensor

(From within a Jupyter notebook)
with tsensor.clarify():

h = torch.tanh(Whh @ (rxh) + Uxh @ X.T + bh)

Uxh @ X.T
256 200 No need to inject code
b 3 No need to rerun
N~ N~
RuntimeError Traceback (most recent call last)
<ipython-input-13-b9a515efa8ef> in
2
3 with tsensor.clarify():
—> 4 h = torch.tanh(Whh @ (rxh) + Uxh @ X.T + bh)

RuntimeError: matl and mat2 shapes cannot be multiplied (764x256 and 764x200)
Cause: @ on tensor operand Uxh w/shape [764, 256] and operand X.T w/shape [764, 200]



Explaining correct matrix code

import torch

* clarify() has no effect ; o+ tsensor

unless tensor code W = torch.rand(size=(2000,2000))
b = torch.rand(size=(2000,1))

triggers an exception | Z (" 0 G (eives(1 006 000,))
° But explain() gens 3 X = torch.rand(size=(2000,1))

with tsensor.explain():

visualization for each a = torch.relu(x)
statement within the b=W@b + torch.zeros(2000,1)+(h+3).dot(h)
block = torch.relu(x)

a
ﬁ ﬁ

b= W @b + torch.zeros(2000,1)+( h +3).dot( h )
1

2k 1 1 1m 1m
H U
x~ X X~
N N N

UNIVERSITY OF SAN FRANCISCO



Approaches | rejected

« Python decorators: would P
require wrapping user code in trve X
functions ry.

* Try/except blocks - My code .

L except Exception as e:
* Program rewriting is complex

and requires a separate tool tse”SO“do—e?VQr‘ythi”g(e)

o ByteCOde injeCtion . (might not be able to hide everything here, like reraising e)

 slows down entire program

» could require huge cache of
subexpression partial results

« function-level granularity

UNIVERSITY OF SAN FRANCISCO



TensorSensor implementation

UNIVERSITY OF SAN FRANCISCO



Impl. relies on “context manager” objects

« Python "with b" blocks call __enter__ (), __exit__ () on objectb
and exit method receives exception object and execution stack

« clarify() needs the exception object to augment messages and
the execution stack to obtain subexpression values, identify
offending operator

« exit__ () can automatically gen visualization in notebook or
pop-up a window if run outside a notebook

* There’s no cost unless import tsensor
excep_tlon OCCUrs Wlthm with tsensor.clarify():
the with block h = torch.tanh(Whh @ (rxh) + Uxh @ X.T + bh)

Uxh @ X.T

256 200

<t
©
N~

764




TensorSensor’s explain() mechanism

(Visualizing correct Python code on-the-fly)

« explain() object's __enter__ () method creates a tracer object
and registers it with Python via sys.settrace() [1]

* The tracer is notified upon each source line execution

« Using same mechanism as clarify() to identify operand shapes
« Even in a loop within with block, statements visualized just once
» Slows down execution (a lot) but it's still useful

[1] https://docs.python.org/3/library/sys.html#sys.settrace UNIVERSITY OF SAN FRANCISCO



https://docs.python.org/3/library/sys.html

Getting operator-level exceptions w/o
bytecode instrumentation requires a total hack

* We have: (1) the full execution stack from which we can get (2)
the offending line of source code (inspect.getframeinfo())

* To identify the individual operator and operands that triggered
an exception, use brute-force:
 reevaluate each operation in the line, piece-by-piece, in proper order,
and in the correct execution context (must pick correct stack frame)
« Wait for an operator to cause an exception, report op/opnds
» Assumes side-effect free operations

* Even if side-effecting, who cares (usually)?
The program is about to terminate

Warning: with tsensor.explain():

Prints "hi" twice: print("hi") UNIVERSITY OF SAN FRANCISCO



Reevaluation mechanism

* First, check if exception is tensor-  h- = torch.tanh (Whh_@ (r *h) + Uxh_@X.T + bh_)

related or if exec stack descends \/ \/ J/
iInto a known tensor lib \ / , :

256x1

* |f so, scan stack to find and parse | Vi
deepest user-level offending R 0
statement and build an appropriate 256 2562200
AST with operators as subtree roots

« Uses built-in Python tokenizer 256“\

« Uses handbuilt Python parser for .
subset of statements / exprs 2567200

 Avoided ANTLR to avoid < s

III [ 'n I ‘743 256x200
I t 0dUC| g a I|b depelldel ICyb\/
tanh )/

* Avoided built-in Python parser since tanh() |
reorg'ing its AST is same work as Vi (also from TensorSensor lib)
rolling my own "parrser” ]

256x200

UNIVERSITY OF SAN FRANCISCO



Reevaluation mechanism continued

h_ = torch.tanh (Whh_@ (r *h) + Uxh_@ X.T + bh_)

» Evaluate operators of AST

bottom-up in proper exec order
 Call eval() on Python source of

subexpressions using the

appropriate execution contexts,
saving results in associated nodes

* Trap and absorb exception from
eval(), record that exception and

offending AST node
« Augment original exception

message with info derived this
new exception, op, operands

\ \/

256x200

/

256x200

\ tanh()/

\/ /

256x1 764x200
l /

256x1 256x200

2 |
N

-
256x200

Y

e
256x200

UNIVERSITY OF SAN FRANCISCO



Picking the right execution context

* The goal is to identify user code not library code that
(eventually) triggers a tensor-related exception

« TensorSensor clarify() descends into any user code function
calls, stopping only when it reaches a tensor library function

« Source file prefix indicates user code boundary, such as:
../1ib/python3.8/site-packages/tensorflow/..

« Boundary frame is any whose package is in
{numpy, torch, tensorflow, jax}

UNIVERSITY OF SAN FRANCISCO



Example: Picking the

execution frame boundary a °°
t.py source Execution stack

def £(x): t.py:8 (in main)

W = tf.constant([[1, 2], [3, 4]]) t 4 (in f

b = tf.reshape(tf.constant([[9, 10]]), (2, 1)) 'py'h (m ) 57
=) return W@ x + b # line 4 /mat _ops.py: l
with tsensor.clarify(): dlSpatCh'py:201

x = tf.reshape(tf.constant([[8, 5, 7]11), (3, 1)) | Mmath_ops.py:3253

y = f(x) # line 8 gen_math_ops.py:5624

0ps.py:6843

Raises exception
UNIVERSITY OF SAN FRANCISCO



Examples of future work

* Lots of meat still on the bone

« Add tensor element type to
messages and visualizations

« we don’t want integers becoming
floats if they are used as indexes

* might need to restrict to 32 bits

* Viz errors in predefined layers;
currently highlights model(X)
not layer in nn.Sequential

y = W @ x +b This
764 2k 764 1 promotes
&5 &5 & & all to
float64 float32  float32  float64 float64

model = nn.Sequential(
nn.Linear(784, n_neurons), # 28x28 flattened image
nn.ReLU(),
nn.Linear(10, n_neurons), # 10 output classes (0-9)
nn.Softmax(dim=1)
)
X = torch.rand(n,784) # n instances of feature vectors w
with tsensor.clarify():
Y = model(X)



Optimally, we'd have static typing

« Can we capture shape as part of the type in this special case?
(dimensions are dynamic so capture variable names?)

Uxh = torch.randn(d, nhidden) <« Capture tensor(d’, >nhidden’)
X = torch.rand(n, d) «—— Capture tensor( ‘n’,’d’)

* Then, we can give good error messages statically!
Option1 h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

Incompatible types: @ on tensor operand Uxh w/shape [d, nhidden] and operand X.T w/shape [d, n]

Option 2 Uxh @ X.T

nhidden n

d d
UNIVERSITY OF SAN FRANCISCO



Summary

 Finding and implementing an unobtrusive mechanism took a lot of
experimentation (and had to learn about Python’s rich runtime)

« TensorSensor users think that visualization was the hard part, but
that was just painful not hard (I abused matplotlib horribly!)

 The tricky bit was getting fine-grained exceptions from Python

» The key idea is to reevaluate the offending line operator-by-operator and wait
for the exception to happen again

* Involves extracting the source line, parsing into an AST, then calling eval()

« Language engineering is useful far beyond building compilers and
interpreters

* Article: https://explained.ai/tensor-sensor/index.html
* Code: https://github.com/parrt/tensor-sensor

UNIVERSITY OF SAN FRANCISCO


https://explained.ai/tensor-sensor/index.html
https://github.com/parrt/tensor-sensor

