
Clarifying matrix algebra
exceptions in Python visually
with TensorSensor
Examples and implementation details

Terence Parr
University of San Francisco

See https://github.com/parrt/tensor-sensor and https://explained.ai/

https://github.com/parrt/tensor-sensor
https://explained.ai/

A quick self-intro…
Terence Parr
University of San Francisco

“Why program by hand in 5
days what you can spend 5
years of your life automating?”

And now for something completely different…

TensorSensor

https://explained.ai/

lolviz

dtreeviz

https://explained.ai/

The problem
• It's easy to lose track of

matrix/tensor dimensionality in
matrix algebra expressions (even
in statically-typed languages)

• Upon error, we often get less than
helpful exception messages, such
as this (PyTorch) message

• The offending operator and
operands are not identified, since
Python exceptions occur at the line
level rather than the operator level

We could rerun using the debugger but…
• The debugger still does not tell us which subexpression caused

the exception, due to line-level granularity of Python exceptions
• We must write down shape of all operands then line up and

compare dimensions on all subexpressions manually
• Besides

• Python debuggers seem much slower than normal execution
• Even regular execution could take hours before faulting
• Sometimes it's hard to set a breakpoint on the right statement when it's

in a loop
• Conditional breakpoints are challenging when the values are high-

dimension matrices

What most people do (in notebooks)
• Most data scientists laboriously inject code and rerun to isolate:

Or, they
stop here

😿

What TensorSensor proposes

• First, augment the exception message to identify the op/opnds:

• But we can help programmers even more…
• The key is to line up dimensions, so let’s show that visually!

🎉

Believe it or not, this is all matplotlib

A nice-to-have feature: viz correct code

Greater than 2 and 3 dimensions

Very helpful when trying to read
(even correct) code

A nice-to-have feature:
Abstract syntax trees with dimensions

Shows tensor dimensions for all
subexpression partial results
(currently must call explicit function)

Oh, and support multiple libraries

JAX

PyTorch

(1D vectors are yellow)

TensorFlow

Design goals
(knowing what to build is as important as knowing how to build)

• Should be as unobtrusive as possible with least user effort
• Users shouldn’t have to reorganize code
• Trap just matrix-related exceptions
• Avoid need for an external tool or translator
• Avoid spewing output until exception occurs
• Can we avoid CPU cost until an exception?
• Ideally, implementation would be small and straightforward

(at least to language engineers)

TensorSensor programmer interface
• The Python with statement gives us the hooks we need

(From within a Jupyter notebook)

No need to inject code
No need to rerun

Explaining correct matrix code
• clarify() has no effect

unless tensor code
triggers an exception

• But explain() gens a
visualization for each
statement within the
block

Approaches I rejected
• Python decorators: would

require wrapping user code in
functions

• Try/except blocks
• Program rewriting is complex

and requires a separate tool
• Bytecode injection:

• slows down entire program
• could require huge cache of

subexpression partial results
• function-level granularity

try:
… my code …

except Exception as e:
tsensor.do_everything(e)

(might not be able to hide everything here, like reraising e)

🤢

TensorSensor implementation

Impl. relies on “context manager” objects
• Python "with b" blocks call __enter__(), __exit__() on object b

and exit method receives exception object and execution stack
• clarify() needs the exception object to augment messages and

the execution stack to obtain subexpression values, identify
offending operator

• __exit__() can automatically gen visualization in notebook or
pop-up a window if run outside a notebook

• There’s no cost unless
exception occurs within
the with block

TensorSensor’s explain() mechanism
(Visualizing correct Python code on-the-fly)

• explain() object's __enter__() method creates a tracer object
and registers it with Python via sys.settrace() [1]

• The tracer is notified upon each source line execution
• Using same mechanism as clarify() to identify operand shapes
• Even in a loop within with block, statements visualized just once
• Slows down execution (a lot) but it's still useful

[1] https://docs.python.org/3/library/sys.html#sys.settrace

https://docs.python.org/3/library/sys.html

Getting operator-level exceptions w/o
bytecode instrumentation requires a total hack
• We have: (1) the full execution stack from which we can get (2)

the offending line of source code (inspect.getframeinfo())
• To identify the individual operator and operands that triggered

an exception, use brute-force:
• reevaluate each operation in the line, piece-by-piece, in proper order,

and in the correct execution context (must pick correct stack frame)
• Wait for an operator to cause an exception, report op/opnds
• Assumes side-effect free operations
• Even if side-effecting, who cares (usually)?

The program is about to terminate

with tsensor.explain():
print("hi")

Warning:
Prints "hi" twice:

Reevaluation mechanism
• First, check if exception is tensor-

related or if exec stack descends
into a known tensor lib

• If so, scan stack to find and parse
deepest user-level offending
statement and build an appropriate
AST with operators as subtree roots

• Uses built-in Python tokenizer
• Uses handbuilt Python parser for

subset of statements / exprs
• Avoided ANTLR to avoid

introducing a lib dependency
• Avoided built-in Python parser since

reorg'ing its AST is same work as
rolling my own "parrser"

🤣

(also from TensorSensor lib)

Reevaluation mechanism continued
• Evaluate operators of AST

bottom-up in proper exec order
• Call eval() on Python source of

subexpressions using the
appropriate execution contexts,
saving results in associated nodes

• Trap and absorb exception from
eval(), record that exception and
offending AST node

• Augment original exception
message with info derived this
new exception, op, operands

Picking the right execution context

• The goal is to identify user code not library code that
(eventually) triggers a tensor-related exception

• TensorSensor clarify() descends into any user code function
calls, stopping only when it reaches a tensor library function

• Source file prefix indicates user code boundary, such as:
…/lib/python3.8/site-packages/tensorflow/…

• Boundary frame is any whose package is in
{numpy, torch, tensorflow, jax}

Example: Picking the
execution frame boundary

def f(x):
W = tf.constant([[1, 2], [3, 4]])
b = tf.reshape(tf.constant([[9, 10]]), (2, 1))
return W @ x + b # line 4

with tsensor.clarify():
x = tf.reshape(tf.constant([[8, 5, 7]]), (3, 1))
y = f(x) # line 8

t.py:8 (in main)
t.py:4 (in f)
math_ops.py:1124
dispatch.py:201
math_ops.py:3253
gen_math_ops.py:5624
ops.py:6843

Execution stackt.py source

Raises exception

Examples of future work

• Lots of meat still on the bone
• Add tensor element type to

messages and visualizations
• we don’t want integers becoming

floats if they are used as indexes
• might need to restrict to 32 bits

• Viz errors in predefined layers;
currently highlights model(X)
not layer in nn.Sequential

float64 float64float32float32

This
promotes
all to
float64

Optimally, we’d have static typing
• Can we capture shape as part of the type in this special case?

(dimensions are dynamic so capture variable names?)

• Then, we can give good error messages statically!

Incompatible types: @ on tensor operand Uxh w/shape [d, nhidden] and operand X.T w/shape [d, n]

h	=	torch.tanh(Whh	@	(r*h)	+	Uxh	@	X.T	+	bh)
^

d

nhidden n

d

Uxh = torch.randn(d, nhidden)
X = torch.rand(n, d)

Capture tensor(‘d’,’nhidden’)
Capture tensor(‘n’,’d’)

Option 1

Option 2

Summary
• Finding and implementing an unobtrusive mechanism took a lot of

experimentation (and had to learn about Python’s rich runtime)
• TensorSensor users think that visualization was the hard part, but

that was just painful not hard (I abused matplotlib horribly!)
• The tricky bit was getting fine-grained exceptions from Python

• The key idea is to reevaluate the offending line operator-by-operator and wait
for the exception to happen again

• Involves extracting the source line, parsing into an AST, then calling eval()
• Language engineering is useful far beyond building compilers and

interpreters
• Article: https://explained.ai/tensor-sensor/index.html
• Code: https://github.com/parrt/tensor-sensor

https://explained.ai/tensor-sensor/index.html
https://github.com/parrt/tensor-sensor

