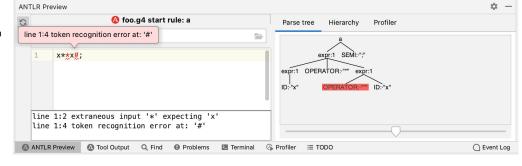
Clarifying matrix algebra exceptions in Python visually with TensorSensor

Examples and implementation details

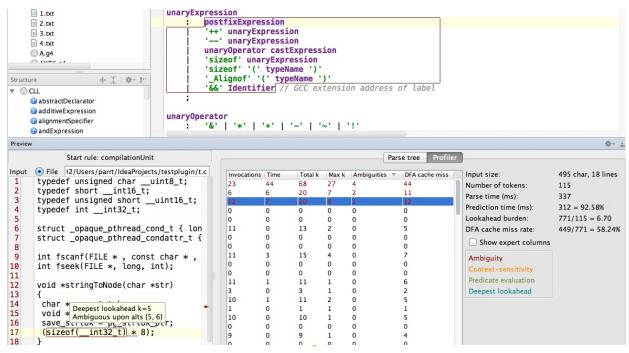
Terence Parr
University of San Francisco

A quick self-intro...

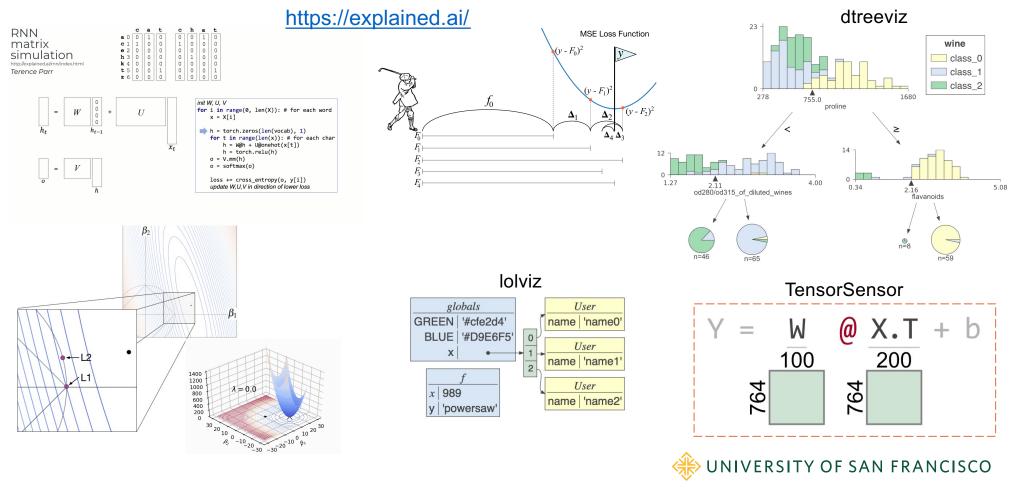
Terence Parr
University of San Francisco



"Why program by hand in 5 days what you can spend 5 years of your life automating?"



And now for something completely different...



The problem

```
import torch

n = 200
d = 764
nhidden = 256

Whh = torch.eye(nhidden, nhidden)
Uxh = torch.randn(d, nhidden)
bh = torch.zeros(nhidden, 1)
h = torch.randn(nhidden, 1)
r = torch.randn(nhidden, 1)
X = torch.rand(n,d)

# Following code raises an exception
h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)
```

- It's easy to lose track of matrix/tensor dimensionality in matrix algebra expressions (even in statically-typed languages)
- Upon error, we often get less than helpful exception messages, such as this (PyTorch) message
- The offending operator and operands are not identified, since Python exceptions occur at the line level rather than the operator level

RuntimeError: mat1 and mat2 shapes cannot be multiplied (764x256 and 764x200)

We could rerun using the debugger but...

- The debugger still does not tell us which subexpression caused the exception, due to line-level granularity of Python exceptions
- We must write down shape of all operands then line up and compare dimensions on all subexpressions manually
- Besides
 - Python debuggers seem much slower than normal execution
 - Even regular execution could take hours before faulting
 - Sometimes it's hard to set a breakpoint on the right statement when it's in a loop
 - Conditional breakpoints are challenging when the values are highdimension matrices

What most people do (in notebooks)

Most data scientists laboriously inject code and rerun to isolate:

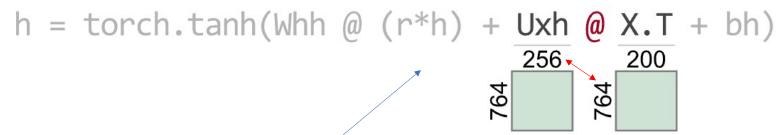
```
Or, they stop here print(Whh.shape, r.shape, h.shape, Uxh.shape, X.shape, bh.shape) print((r*h).shape) print((Whh@(r*h)).shape) print((Uxh@X.T).shape) # <-- exception! print((Whh@(r*h)+Uxh@X.T).shape) print((Whh@(r*h)+Uxh@X.T+bh).shape) h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)
```


What TensorSensor proposes

• First, augment the exception message to identify the op/opnds:

```
RuntimeError: mat1 and mat2 shapes cannot be multiplied (764x256 and 764x200)
Cause: @ on tensor operand Uxh w/shape [764, 256] and operand X.T w/shape [764, 200]
```

- But we can help programmers even more...
- The key is to line up dimensions, so let's show that visually!



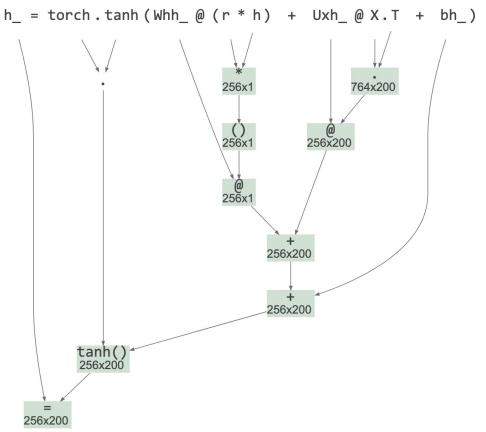
Believe it or not, this is all matplotlib

A nice-to-have feature: viz correct code

$$y = b @ b.T$$

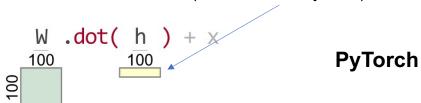
A nice-to-have feature: Abstract syntax trees with dimensions

Shows tensor dimensions for all subexpression partial results (currently must call explicit function)



Oh, and support multiple libraries

(1D vectors are yellow)



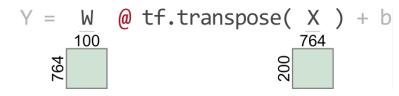
RuntimeError: 1D tensors expected, but got 2D and 1D tensors

Cause: W.dot(h) tensor arg h w/shape [100]

$$y = \text{jnp.dot}(\underbrace{W}_{5k}, \underbrace{x}_{1}) + b$$

JAX

TensorFlow



InvalidArgumentError: In[0] mismatch In[1] shape:
100 vs. 764: [764,100] [764,200] 0 0 [0p:MatMul]
Cause: @ on tensor operand W w/shape (764, 100) a
nd operand tf.transpose(X) w/shape (764, 200)

```
TypeError: Incompatible shapes for dot: got (5000, 5000)
and (5, 1).
Cause: jnp.dot(W, x) tensor arg W w/shape (5000, 5000),
arg x w/shape (5, 1)
```


Design goals

(knowing what to build is as important as knowing how to build)

- Should be as unobtrusive as possible with least user effort
- Users shouldn't have to reorganize code
- Trap just matrix-related exceptions
- Avoid need for an external tool or translator
- Avoid spewing output until exception occurs
- Can we avoid CPU cost until an exception?
- Ideally, implementation would be small and straightforward (at least to language engineers)

TensorSensor programmer interface

The Python with statement gives us the hooks we need

```
import tsensor

with tsensor.clarify():
   h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

No need to inject code No need to rerun
```

```
RuntimeError Traceback (most recent call last)
<ipython-input-13-b9a515efa8ef> in <module>
2
3 with tsensor.clarify():
----> 4 h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

RuntimeError: mat1 and mat2 shapes cannot be multiplied (764x256 and 764x200)

Cause: @ on tensor operand Uxh w/shape [764, 256] and operand X.T w/shape [764, 200]
```

Explaining correct matrix code

- clarify() has no effect unless tensor code triggers an exception
- But explain() gens a visualization for each statement within the block

```
import torch
import tsensor
W = torch.rand(size=(2000,2000))
b = torch.rand(size=(2000,1))
h = torch.rand(size=(1_000_000,))
x = torch.rand(size=(2000,1))
with tsensor.explain():
    a = torch.relu(x)
    b = W @ b + torch.zeros(2000,1)+(h+3).dot(h)
```

Approaches I rejected

- Python decorators: would require wrapping user code in functions
- Try/except blocks
- Program rewriting is complex and requires a separate tool
- Bytecode injection:
 - slows down entire program
 - could require huge cache of subexpression partial results
 - function-level granularity

```
try:
    ... my code ...
except Exception as e:
    tsensor.do_everything(e)
```

(might not be able to hide everything here, like reraising **e**)

TensorSensor implementation

Impl. relies on "context manager" objects

- Python "with b" blocks call __enter__(), __exit__() on object b and exit method receives exception object and execution stack
- clarify() needs the exception object to augment messages and the execution stack to obtain subexpression values, identify offending operator
- <u>exit</u>_() can automatically gen visualization in notebook or pop-up a window if run outside a notebook
- There's no cost unless exception occurs within the with block

```
import tsensor
with tsensor.clarify():
    h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)

### Description:
##
```

TensorSensor's explain() mechanism

(Visualizing correct Python code on-the-fly)

- explain() object's __enter__() method creates a tracer object and registers it with Python via sys.settrace() [1]
- The tracer is notified upon each source line execution
- Using same mechanism as clarify() to identify operand shapes
- Even in a loop within with block, statements visualized just once
- Slows down execution (a lot) but it's still useful

Getting operator-level exceptions w/o bytecode instrumentation requires a total hack

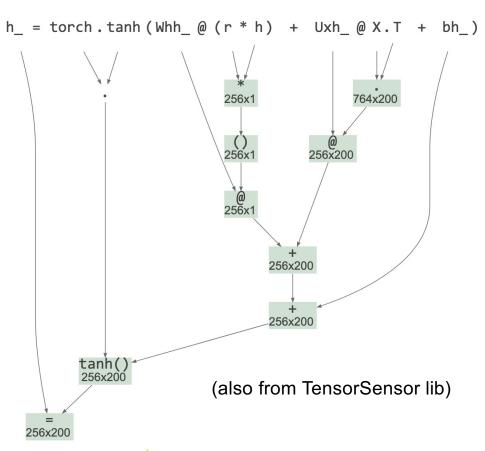
- We have: (1) the full execution stack from which we can get (2) the offending line of source code (inspect.getframeinfo())
- To identify the individual operator and operands that triggered an exception, use brute-force:
 - reevaluate each operation in the line, piece-by-piece, in proper order, and in the correct execution context (must pick correct stack frame)
- Wait for an operator to cause an exception, report op/opnds
- Assumes side-effect free operations
- Even if side-effecting, who cares (usually)?
 The program is about to terminate

```
Warning: with tsensor.explain():
Prints "hi" twice: print("hi")

**UNIVERSITY OF SAN FRANCISCO
```

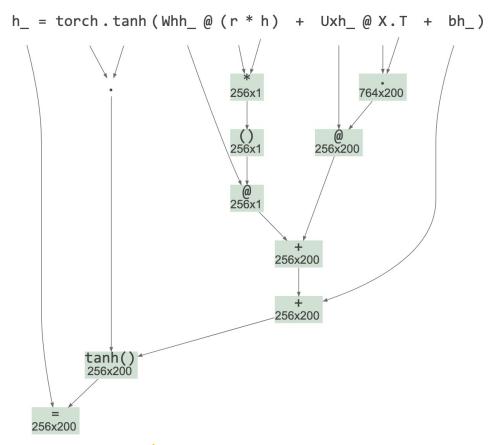
Reevaluation mechanism

- First, check if exception is tensorrelated or if exec stack descends into a known tensor lib
- If so, scan stack to find and parse deepest user-level offending statement and build an appropriate AST with operators as subtree roots
- Uses built-in Python tokenizer
- Uses handbuilt Python parser for subset of statements / exprs
- Avoided ANTLR to avoid introducing a lib dependency
- Avoided built-in Python parser since reorg'ing its AST is same work as rolling my own "parrser"



Reevaluation mechanism continued

- Evaluate operators of AST bottom-up in proper exec order
- Call eval() on Python source of subexpressions using the appropriate execution contexts, saving results in associated nodes
- Trap and absorb exception from eval(), record that exception and offending AST node
- Augment original exception message with info derived this new exception, op, operands



Picking the right execution context

- The goal is to identify user code not library code that (eventually) triggers a tensor-related exception
- TensorSensor clarify() descends into any user code function calls, stopping only when it reaches a tensor library function
- Source file prefix indicates user code boundary, such as: .../lib/python3.8/site-packages/tensorflow/...
- Boundary frame is any whose package is in {numpy, torch, tensorflow, jax}

Example: Picking the execution frame boundary

```
return \frac{W}{2} \frac{\omega}{n} \frac{x}{1} + b
```

```
t.py SOURCE

def f(x):
    W = tf.constant([[1, 2], [3, 4]])
    b = tf.reshape(tf.constant([[9, 10]]), (2, 1))
    return W @ x + b # line 4

with tsensor.clarify():
    x = tf.reshape(tf.constant([[8, 5, 7]]), (3, 1))
    y = f(x) # line 8
```

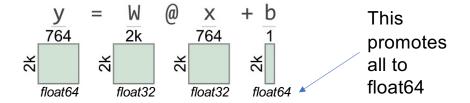
Execution stack

```
t.py:8 (in main)
t.py:4 (in f)
math_ops.py:1124
dispatch.py:201
math_ops.py:3253
gen_math_ops.py:5624
ops.py:6843
```

Raises exception

Examples of future work

- Lots of meat still on the bone
- Add tensor element type to messages and visualizations
 - we don't want integers becoming floats if they are used as indexes
 - might need to restrict to 32 bits
- Viz errors in predefined layers; currently highlights model(X) not layer in nn.Sequential



Optimally, we'd have static typing

Can we capture shape as part of the type in this special case?
 (dimensions are dynamic so capture variable names?)

```
Uxh = torch.randn(d, nhidden) ← Capture tensor('d', 'nhidden')
X = torch.rand(n, d) ← Capture tensor('n', 'd')
```

Then, we can give good error messages statically!

```
Option 1 h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)
Incompatible types: @ on tensor operand Uxh w/shape [d, nhidden] and operand X.T w/shape [d, n]
```

Option 2
$$h = torch.tanh(Whh @ (r*h) + Uxh @ X.T + bh)$$

$$d d d d$$

WUNIVERSITY OF SAN FRANCISCO

Summary

- Finding and implementing an unobtrusive mechanism took a lot of experimentation (and had to learn about Python's rich runtime)
- TensorSensor users think that visualization was the hard part, but that was just painful not hard (I abused matplotlib horribly!)
- The tricky bit was getting fine-grained exceptions from Python
 - The key idea is to reevaluate the offending line operator-by-operator and wait for the exception to happen again
 - Involves extracting the source line, parsing into an AST, then calling eval()
- Language engineering is useful far beyond building compilers and interpreters
- Article: https://explained.ai/tensor-sensor/index.html
- Code: https://github.com/parrt/tensor-sensor

