
MSDS621 Project 1

Using gradient descent to fit regularized linear models

Terence Parr
Data Science

University of San Francisco

Spring 2021

1 Goal

The goals of this project are (i) to learn how to implement gradient descent function optimization
and (ii) to lock in your understanding of regularized linear models. Gradient descent optimizers
are critical to training many important models, such as neural networks where each neuron in the
network is a linear regression model. We will implement ordinary least squares (OLS) regression,
L2 regularization for regression, logistic regression, and (optionally) L1 regularization for logistic
regression.

You will be doing your work in your repository linreg-userid cloned from github and will construct
drop-in replacements for the following scikit-learn’s models:

• LinearRegression

• Ridge (L2 regularized regression)

• LogisticRegression (nonregularized only)

2 Discussion

Training linear models involves optimizing a function, called a loss function, that describes how
well the model’s predictions match the known target values; i.e., how well the ŷ values match y for
all y(i) in the (X, y) training set. Given the model parameters (β coefficients), the loss function
gives a scalar value indicating a “goodness of fit” for the training data. The smaller the loss, the
better the fit to the training data. Optimizing the loss function means finding the model parameters
that give the minimum loss function scalar value. For the vanilla linear regression model, the loss
function is just the mean squared error (MSE):

1

L (β) = MSE(β) =
1

n

n∑
i=1

(y(i) − ŷ(i))2 =
1

n

n∑
i=1

(y(i) − (x′(i) · ~β))2

or, in vector notation:

L (β) = (y −X′β) · (y −X′β)

where vector ~β is a column vector that includes β0: (β0, β1, . . . , βp) and x′ is augmented row vec-

tor (1, x1, . . . , xp). Then, ŷ = x′~β. Without regularization, the loss function is a quadratic (by
construction), which is convex, and has an exact solution. But, we are going to solve everything
iteratively rather than symbolically as it’s necessary for logistic regression and sometimes for reg-
ularized linear regression. (I’ll drop the vector annotation from ~β now for convenience and assume
it includes β0.)

So how do we know where the optimal coefficients are in p + 1 space? We pick an initial approx-
imation to β and then use information about the loss function in the neighborhood of that β to
decide which direction shifts it towards a better loss function:

β(t+1) = β(t) + ∆β(t)

where ∆β(t) is a shift in the direction of lower loss function value. That ∆β(t) turns out to be the
opposite of the gradient vector, as shown in this 1D case:

!1Δ

Δloss

Here’s what a regression model loss function looks like for (β0, β1):

2

The gradient vector is the vector of slopes in each of p+ 1 directions and the slope always points in
the up direction, so we want to go in the negative of the gradient to go downhill. Our movement
is governed by the following recurrence relation:

β(t+1) = β(t) − η∇βL (β(t))

where η is a scalar “learning rate” that controls the magnitude of the step we take at each step t.
We’re done optimizing when we find a β where all slopes are zero/flat (when the magnitude of the
gradient vector is zero):

∇βL (β) = ~0

So, in a nutshell, to optimize a loss function we need the loss function gradient. Don’t worry
about dusting off your calculus knowledge—I’m providing all the symbolic gradients for you in this
document (and neural net packages like pytorch know how to compute derivatives automatically).
For example, here is a complete Python program for p = 1 that optimizes y = (x − 2)2 using the
derivative dy

dx = 2(x− 2):

import numpy as np

def f(b) : return (b-2)**2

def gradient(b): return 2*(b-2)

b = np.random.random() # initial guess at optimal b

for i in range(niter):

print(f"{i:02d}: beta_1={b:.2f}, f(beta_1)={f(b):.2f}, gradient {gradient(b):.2f}")
b = b - rate * gradient(b)

The program generates the following output.

3

00: beta_1=0.34, f(beta_1)=2.77, gradient -3.33

01: beta_1=1.33, f(beta_1)=0.44, gradient -1.33

02: beta_1=1.73, f(beta_1)=0.07, gradient -0.53

03: beta_1=1.89, f(beta_1)=0.01, gradient -0.21

04: beta_1=1.96, f(beta_1)=0.00, gradient -0.09

05: beta_1=1.98, f(beta_1)=0.00, gradient -0.03

06: beta_1=1.99, f(beta_1)=0.00, gradient -0.01

This program simply terminates after a certain number of iterations, but in general we have to
continue until the gradient is zero or the β’s or loss don’t move from one step to the next. An easy
and efficient termination condition is to stop when the norm of the gradient vector is
below some threshold.

Once we have suitable minimization functionality, we can use it to optimize linear and logistic
regression equations, both normal and regularized. Here are the loss function and gradient of the
loss function needed to train a logistic model using minimize()):

L (β) =
n∑
i=1

{
y(i)x′(i)β − log(1 + ex

′β)
}

∇βL (β) = −X′T (y − σ(X′ · β))

Per the appendix, we’re going to use a general minimizer function that optimizes L by chasing
−∇L and using a separate learning rate per p+ 1 dimensions:

Algorithm: adagrad minimize(X, y, ∇L , η, ε=1e-5, precision=1e-9) returns coefficients ~β

Let ~β ∼ 2N(0, 1)− 1 (random p+ 1-sized vector with elements in [-1,1))
h = ~0 (p+ 1-sized sum of squared gradient history)
X′ = (~1,X) (Add first column of 1s)
repeat
~h += ∇L ⊗∇L (track sum of squared partials, use element-wise product)
~β = ~β − η ∗ ∇L

(
√
~h+ε)

until ‖∇L (~β)‖2 < precision;

return ~β

In your implementation, you’ll need a parameter, addB0, that dictates whether or not to use
augmented vectors and matrices. We always set addB0=True except for Ridge linear regression,
which computes β0 outside of the minimization process (as just y) assuming standardized variables.

As part of this project, you have to implement two classes that mimic how sklearn’s models work:

• class RidgeRegression621

• class LogisticRegression621

4

Class LinearRegression621 is also required but provided for you to use as a template:

class LinearRegression621:

def __init__(self,

eta=0.00001, lmbda=0.0,

max_iter=1000):

self.eta = eta

self.lmbda = lmbda

self.max_iter = max_iter

def predict(self, X):

n = X.shape[0]

B0 = np.ones(shape=(n, 1))

X = np.hstack([B0, X])

return np.dot(X, self.B)

def fit(self, X, y):

self.B = minimize(X, y,

loss_gradient,

self.eta,

self.lmbda,

self.max_iter)

You can mostly cut-and-paste from that into those other two classes, RidgeRegression621 and in
LogisticRegression621. Please note that there is an extra function that computes the probability
of target class 1:

class LogisticRegression621: # REQUIRED

"Use the above class as a guide."

def predict_proba(self, X):

"""

Compute the probability that the target is 1. Basically do

the usual linear regression and then pass through a sigmoid.

"""

...

def predict(self, X):

"""

Call self.predict_proba() to get probabilities then, for each x in X,

return a 1 if P(y==1,x) > 0.5 else 0.

"""

...

def fit(self, X, y):

...

...

Confusion point: You will notice that there are multiple predict() and fit() methods in the
various classes. Despite having the same name, the methods exist in different class definitions.
You can think of class definitions in this context as separate modules that package up a set of
functions. They have different implementations, because they do different things depending on the
surrounding class, but they have the same name. For example the full name of predict() in class
LinearRegression621 is LinearRegression621.predict(), which clearly differentiates it from

5

LogisticRegression621.predict(). It’s just like we say speak! to both dogs and cats, but they
implement their response very differently. A dog barks and cats, well, they just stare back at you
and do nothing (except for my cats that are constantly making noise).

Recommendations: (1) Some students get good solutions but can’t get it to finish within the
required 10 seconds. Look for repeated computations of expensive things like the loss gradient. By
analogy, don’t call f(5) many times. Call it once and save the result. Make sure that you use
as many numpy vector operations as possible. Loops in Python can be quite slow. You can use
the Python profiler to identify which functions take the most amount of time, which often helps
to isolate speed problems. Note that the time requirements are running on your own machine,
not via github actions. (2) When it comes to debugging, you can’t just look at the code and the
math and declare it should work. You have to try a small known data set and then examine what
the coefficients should be; compare those to the output of your optimizer. Track down where the
difference comes from if any.

3 Getting started

I recommend that you play around with the 1D y = (x − 2)2 example above and make sure you
fully understand how it works. This will make it easier to expand into p + 1 space. Also walk
through the Notebook on visualizing gradient descent.

For more on gradient descent, you can look at The intuition behind gradient descent in an article
that explains gradient boosting, which you will probably look at in the second machine learning
course.

To learn more than you ever wanted to learn about gradients, check out The Matrix Calculus You
Need For Deep Learning.

To actually begin the project, create linreg.py in your repo and define just the functions you
will need to get basic linear regression working: minimize() and loss gradient(). Try to debug
your code using a single x1 vs y regression. If that works, then try with x = (x1, x2). If it fails,
then you know the problem is in how you handle multiple dimensions, rather than the core of your
optimization loop. To aid in your debugging, you can check out some of the visualization stuff I
did in the visualization notebook.

Once you have your minimizer working, add the LinearyRegression621 class and then try to get
the unit test working. Please note that the starter kit has a number of defined functions in the
classes that are used by the unit tests. Please follow that API.

This project looks complicated because of all the math notation, but all you are really doing is
converting math notation into Python numpy operations. If you don’t use numpy vector operations
(like dot product), your code will be too slow and will get a grade penalty.

6

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb
https://explained.ai/gradient-boosting/descent.html
https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html

4 Deliverables

You must implement OLS regression, L2 linear regression, and logistic regression. That amounts
to implementing the following functions in linreg.py in the root directory of your project repo
(linreg.py starter kit):

• loss gradient(X, y, B, lmbda)

∇β L (β) = −X′T (y −X′β)

• loss ridge(X, y, B, lmbda) for β1..p (β0 = y)

L (β) = (y −Xβ) · (y −Xβ) + λβ · β

• loss gradient ridge(X, y, B, lmbda) for β1..p

∇β L (β) = −XT (y −Xβ) + λβ

• sigmoid(z)
• log likelihood(X, y, B) for β0..p (return negative of max likelihood to make it a loss

function)

L (β) = −
n∑
i=1

{
y(i)x′(i)β − log(1 + ex

′(i)β)
}

• log likelihood gradient(X, y, B, lmbda)

∇βL (β) = −X′T (y − σ(X′ · β))

• minimize(X, y, loss gradient, eta, lmbda, ...)

Notice that we are passing a λ parameter for consistency to all loss and loss gradient functions.
That way the same minimize function can work with all of them. The only difference between the
various regression techniques is the loss function passed to the minimize function.

Next, you have to implement two classes that mimic how sklearn’s models work:

• class RidgeRegression621

• class LogisticRegression621

where class LinearRegression621 is provided for you in the starter kit (please add to your repo
as well).

7

https://github.com/parrt/msds621/blob/master/projects/linreg/linreg.py

5 Extensions

If you would like to see how regularization works with logistic regression, implement functions
L1 log likelihood gradient(X, y, B, lmbda) and L1 log likelihood(X, y, B, lmbda) plus
create class LassoLogistic621, all in the same linreg.py file. You can then use the test class lasso.py

script to test your L1 Lasso code. This part is optional and won’t be graded.

$ python -m pytest -v test_class_lasso.py

============================= test session starts ==============================

platform darwin -- Python 3.8.6, pytest-6.2.1, py-1.10.0, pluggy-0.13.1

cachedir: .pytest_cache

rootdir: /Users/parrt/courses/msds621-private/projects/linreg

plugins: anyio-2.0.2

collected 3 items

test_class_lasso.py::test_lasso_synthetic PASSED [33%]

test_class_lasso.py::test_lasso_wine PASSED [66%]

test_class_lasso.py::test_lasso_iris PASSED [100%]

============================== 3 passed in 3.32s ===============================

6 Evaluation

Your project will be evaluated using these predefined test rigs: test regr.py and test class.py.
File test class lasso.py is for your own use and is optional; it is testing the optional L1 lasso for
classification part of the project. Please do not modify these as I will copy fresh versions into your
repos when testing.

Here is the output I get from my solution (I ran each 50 times without failure):

$ python -m pytest -v test_regr.py

============================= test session starts ==============================

platform darwin -- Python 3.8.6, pytest-6.2.1, py-1.10.0, pluggy-0.13.1

cachedir: .pytest_cache

rootdir: /Users/parrt/courses/msds621-private/projects/linreg

plugins: anyio-2.0.2

collected 6 items

test_regr.py::test_synthetic PASSED [16%]

test_regr.py::test_ridge_synthetic PASSED [33%]

test_regr.py::test_boston PASSED [50%]

test_regr.py::test_boston_noise PASSED [66%]

test_regr.py::test_ridge_boston PASSED [83%]

test_regr.py::test_ridge_boston_noise PASSED [100%]

============================== 6 passed in 0.99s ===============================

$ python -m pytest -v test_class.py

8

https://github.com/parrt/msds621/blob/master/projects/linreg/test_regr.py
https://github.com/parrt/msds621/blob/master/projects/linreg/test_class.py
https://github.com/parrt/msds621/blob/master/projects/linreg/test_class_lasso.py

============================= test session starts ==============================

platform darwin -- Python 3.8.6, pytest-6.2.1, py-1.10.0, pluggy-0.13.1

cachedir: .pytest_cache

rootdir: /Users/parrt/courses/msds621-private/projects/linreg

plugins: anyio-2.0.2

collected 3 items

test_class.py::test_synthetic PASSED [33%]

test_class.py::test_wine PASSED [66%]

test_class.py::test_iris PASSED [100%]

============================== 3 passed in 4.75s ===============================

Because you are given complete unit tests a priori, I will be grading in a binary fashion as usual.
For full credit, you must get all 9 (nonoptional) unit tests passing. Each failed test cost to 10 points
from 100 total points. I suggest that you run your tests at Amazon, or with the github actions
described in the next section, so that you can verify your code works on a different computer,
otherwise you will be very sad with a zero grade. There is no such thing as partial credit for late
projects; late projects get zero.

If you do not use vector operations with NumPy, the project will be too slow. Your unit tests
combined must finish in less than 10 seconds to get full credit. Failure to terminate fast enough
costs you 15%.

6.1 Automatic testing using github actions

Github recently introduced a feature called actions for continuous integration, which just means
that every push to the repository at github from your laptop triggers the unit tests. All you have
to do is put the test.yml file I have prepared for you into repo subdirectory .github/workflows,
commit, and push back to github. Then go to the Actions tab of your repository and you’ll see
something like this:

9

https://docs.github.com/en/free-pro-team@latest/actions
https://github.com/parrt/msds621/blob/master/projects/linreg/test.yml

Naturally it will only work if you have your software written and added to the repository. Once
you have something basic working, this functionality is very nice because it automatically shows
you how your software is going to run on a different computer (a linux computer). This will catch
the usual errors where you have hardcoded something from your machine into the software. It also
gets you in the habit of committing software to the repository as you develop it, rather than using
the repository as a homework submission device.

If you want to get fancy, you can use the following ”badge” code in your repo README.md file:

![Test MSDS621 linreg](https://github.com/parrt/parrt-linreg/workflows/Test%20MSDS621%20linreg/badge.svg)

which looks like this on your repo homepage:

7 Submission

To submit your project, ensure that linreg.py is submitted to your repository. That file must be
in the root directory of your linreg-userid repository.

10

Appendices

Most of this should be a review from your linear regression class and from the 621 lecture on gradient
descent. I’m including as many of the derivations as I can because I couldn’t find everything collected
in one document. Also, the algebraic symbolic manipulations to move between the various equations
is not obvious. There’s a bunch of matrix calculus necessary to do the derivations; see The Matrix
Calculus You Need For Deep Learning for more.

A Linear regression

Let matrix X be our n × p explanatory matrix where each row, x(i), represents an observation

vector of p values, (x
(i)
1 , . . . , x

(i)
p) and column vector y = (y(1), . . . , y(n)) represents the response or

target variable. To make a prediction for a specific x observation, the linear model is:

ŷ = β0 + β1x1 + . . .+ βpxp = β0 +

p∑
i=1

βixi

(One could claim βi should be β̂i as they are estimates, but I will be slightly less formal than that
for simplicity.)

The formula is much simpler if we use vector math:

ŷ = β0 + x · ~β = β0 + x~β

where vector ~β is column vector (β1, . . . , βp) and x is a row vector. If we augment x to have a “1”

as the first element, calling it x′, then we can pull β0 into ~β and the equation simplifies to

ŷ = x′~β

where vector ~β is now (β0, β1, . . . , βp).

Similarly, if we augment the explanatory matrix to have a column of ones as the first column,
calling it X′, then we can make predictions for the entire explanatory matrix:

ŷ = X′~β

(From now on, I will use plain β to mean the entire vector ~β and assume that ~β includes β0.)

11

https://explained.ai/matrix-calculus/index.html
https://explained.ai/matrix-calculus/index.html

So, how good is the fit? Let’s use the “mean squared error”:

MSE(β) =
1

n

n∑
i=1

(y(i) − ŷ(i))2 =
1

n

n∑
i=1

(y(i) − (x′(i) · β))2

For optimization, we don’t care about scaling MSE by 1
n (though we have to be careful to adjust

the learning rate), giving our “loss” function:

L (β) =

n∑
i=1

(y(i) − (x′(i) · β))2

In matrix form, we get:

L (β) = (y −X′β) · (y −X′β)

Given this loss function, we know how to evaluate the quality of a β vector of coefficients. As we
wiggle the coefficients around, the loss function will go up or down. So how do we know where
the optimal coefficients are in p + 1-space? We pick an initial approximation to β and then use
information about the loss function in the neighborhood of that β to decide which direction shifts
it towards a better loss function. To go downhill, we move in the opposite direction of the (red
vector) gradient. Since we are moving through coefficient space, our movement is governed by the
following recurrence relation:

β(t+1) = β(t) − η∇βL (β(t))

where η is a scalar “learning rate” that controls the magnitude of the step we take at each time t.
We’re done when we find a β such that:

∇βL (β) = ~0

Instead of solving that equation for β symbolically, we’ll use gradient descent to minimize the
loss function. It’s important to learn about this numerical technique because there are lots and
lots of loss functions that are not simple little quadratics with symbolic solutions. When we add
regularization and move to logistic regression, we will need this gradient descent method.

The derivative of our loss function with respect to β is:

∇β L (β) = −2X′T (y −X′β)

12

which gives us a p+ 1-sized vector of partial derivatives, one for each βi including β0. That means
that the update equation is:

β(t+1) = β(t) + ηX′T (y −X′β(t))

where we have folded the 2 into η.

A.1 L2 ridge regularization for regression

Regularization is primarily a means to improve the generality of our fitted model, but it can also
be used to shrink the coefficient for useless features down towards to or actually to zero. It also
makes training less fussy about codependent features in the explanatory matrix. The idea is very
simple: let’s penalize the loss function when coefficients get too big. Here is the usual loss function
that incorporates an L2 (Ridge) regularization (Lagrange multiplier) penalty term:

L (β, λ) =

n∑
i=1

[y(i) − (β0 +

p∑
j=1

x
(i)
j βj)]

2

+ λ

p∑
j=1

β2j

where it’s best to be explicit with summations rather than use vector notation because β0 is going
to pop in and out of our equations below. (See ESLII The elements of statistical learning p63 in
Hastie et al.) The penalty term does not include the y-intercept, β0. The slope is what we care
about getting right and that slope could be paired with lots of different y-intercepts. All we care
about is the size of the coefficients.

In order to use gradient descent, we need the gradient of the loss function. Because the terms
are additive, we can compute their derivatives separately. Also, if we mean-center the x feature
vectors, we can take β0 out of our equations and estimate it with the average y value. Removing
β0 makes the notation much simpler because we don’t have to distinguish between vector β with
and without β0:

The derivation of the gradient for the non-regularized case with respect to some βk for k ≥ 1 is:

∂
∂βk

L (β, λ) =
∑n

i=1 2[y(i) −
∑p

j=1 x
(i)
j βj)]

∂
∂βk

[y(i) −
∑p

j=1 x
(i)
j βj)]

= 2
∑n

i=1[y
(i) −

∑p
j=1 x

(i)
j βj)] [−x(i)k]

= −2
∑n

i=1 x
(i)
k [y(i) −

∑p
j=1 x

(i)
j βj)]

In vector notation, that gives us (non-augmented-with-one X):

∇β L (β) = −2XT (y −Xβ) for βk≥1

13

The derivative of the penalty term (w/o β0) is:

∂

∂βk
λ

p∑
j=1

β2j = 2λβk for βk≥1

In vector notation, we get the following combined L2 regularization gradient:

∇β L (β, λ) = −2XT (y −Xβ′) + 2λβ for βk≥1

Dropping the constants again, but not the sign, we get update equation:

β(t+1) = β(t) − η(−XT (y −Xβ) + λβ)

The algorithm is almost identical as that for non-regularized regression, except that we don’t add
the column of one’s to X, don’t put β0 into β, and return the mean of y as β0. In your real
project code, there is a parameter, addB0, that dictates whether or not to use augmented vectors
and matrices. We pass a similar loss function, MSE plus the L2 penalty term, to the minimizer
and must pass the loss gradient that contains the derivative of the L2 penalty term:

∇β L (β, λ) = −XT (y −Xβ) + λβ

B Logistic regression

Linear regression makes numerical predictions, and these predictions are typically continuous values
not integers. If we want to build a classifier, however, we need some kind of model that predicts
discrete classes, such as 0 and 1 (for a two-class problem). We could use a linear regression model
but a line predicts continuous values below, in between, and above range [0,1]. A classifier should
give only two values 0 or 1.

What we can do is apply a function to the linear regression output that forces the value to a
probability (between 0 and 1) that the incoming x feature vector should be classified as class 1. In
a sense, this modified output would give its confidence that x is a 1. The following image nicely
summarizes the difference between linear and logistic regression.1

1Image credit: Logistic Regression – A Complete Tutorial With Examples in R

14

https://www.machinelearningplus.com/machine-learning/logistic-regression-tutorial-examples-r/

To make a classifier out of such a model, we can simply threshold the probability so that the
classifier predicts class 0 when the probability is < 0.5 and predicts class 1 when the probability is
≥ 0.5.

The function we apply is a sigmoid called the logistic function, hence, logistic regression:

σ(z) =
1

1 + e−z
=

ez

1 + ez

It is technically still a regressor not a classifier; it only becomes a classifier when we apply a
threshold to the resulting probability.

If we apply the sigmoid function to the output of a linear model, we get:

P (y = 1 |x′) = σ(x′β) =
1

1 + e−x′β

where P (x′) is the probability that y = 1 and x′ is the 1-augmented x feature row vector.

Here is what the sigmoid looks like in 2D where the color indicates the P (y = 1 |x′):

15

https://en.wikipedia.org/wiki/Logistic_function

B.1 Why the logistic regression equation gives log odds

Before moving on to fitting a logistic regression model, let’s move backwards from this simple
sigmoid applied to a linear model towards the “log odd” description textbooks normally start with.
The goal is to get a simple linear model, as opposed to the sigmoid, on the right-hand side and
then ask what the left-hand side describes. Well, the sigmoid generates a probability that looks
pretty complicated, but if we represent that as odds instead things start to cancel (which gets us
closer to our goal of isolating the linear equation on the right-hand side). Recall that odds = p

1−p ,
which gives us:

odds =

1
1+e−x′β

1− 1
1+e−x′β

Substituting 1+e−x′β

1+e−x′β for 1 in denominator to combine terms, we get:

odds =

1
1+e−x′β

1+e−x′β−1
1+e−x′β

odds =

1
1+e−x′β

e−x′β

1+e−x′β

odds =
1 + e−x

′β

(1 + e−x′β)(e−x′β)

odds =
1

e−x′β
= ex

′β

Now, take the log of both sides:

log(odds) = x′β

and that is why the linear regression equation gives log odds in the logistic case.

B.2 Optimizing the logistic regression equation

To estimate β for logistic regression, we need a loss function that indicates how good the fit is. We
use a “maximum likelihood” measure for a loss function. For the two-class case, the likelihood of
the sigmoid derived from some β fitting the (X,y) data set is:

16

Likelihood(β) =
n∏
i=1

{
P (x′(i);β) if y(i) = 1

1− P (x′(i);β) if y(i) = 0

Since log is monotonic and doesn’t affect optimization via the loss function, we can use it to flip
the product to a summation:

Likelihood(β) =
n∑
i=1

{
log(P (x′(i);β)) if y(i) = 1

log(1− P (x′(i);β)) if y(i) = 0

Using y(i) and (1−y(i)) terms to gate the two log terms in and out let us remove the choice operator:

Likelihood(β) =

n∑
i=1

{
y(i)log(P (x′(i);β)) + (1− y(i))log(1− P (x′(i);β))

}

Recall from above the derivation from P (x) to isolate x′β on the right-hand side, which led to the
log-odds on the left-hand side. Now we have log-probability and, if we flip the probability to odds,
we end up with ex

′(i)β inside the log which just gives us x′(i)β for the first term. Ultimately, with
more substitutions, we can reduce the maximum likelihood to equation 4.20 from ESLII p120:

Likelihood(β) =

n∑
i=1

{
y(i)x′(i)β − log(1 + ex

′(i)β)
}

That is the likelihood, which we could maximize to solve for the β coefficients. Instead, let’s
minimize the negative of the likelihood (the usual loss function L):

L (β) = −Likelihood(β)

The derivation for the gradient of the loss function w.r.t. β:

17

∇βL (β) = ∂L (β)
∂β = −

∑n
i=1{

∂
∂β y

(i)x′(i)β − ∂
∂β log(1 + ex

′(i)β)}
= −

∑n
i=1{y(i)x′(i) −

∂
∂β log(1 + ex

′(i)β)}
= −

∑n
i=1{y(i)x′(i) −

1

log(1+ex
′(i)β)

∂
∂β (1 + ex

′(i)β)}

= −
∑n

i=1{y(i)x′(i) −
1

log(1+ex
′(i)β)

∂
∂β e

x′(i)β}

= −
∑n

i=1{y(i)x′(i) −
1

log(1+ex
′(i)β)

ex
′(i)β ∂

∂βx′(i)β}

= −
∑n

i=1{y(i)x′(i) −
1

1+ex
′(i)β

x′(i)ex
′(i)β}

= −
∑n

i=1{y(i)x′(i) − x′(i) ex
′(i)β

1+ex
′(i)β
}

= −
∑n

i=1{y(i)x′(i) − x′(i)P (x′(i);β)}
= −

∑n
i=1{x′(i)(y(i) − P (x′(i);β))}

= −X′T (y − σ(X′ · β))

Now that we have ∇βL (β), we can reuse the minimization function above to obtain β coefficients
for logistic regression. (That equation is the negation of equation 4.21 from ESLII p 120 since
ESLII drops the negation because they’re setting equal to zero.) Pass in the negative of the log
likelihood as the loss function and this log likelihood gradient as the loss gradient function. Just to
be clear, we use the negative of the loss function so the minimizer maximizes the max likelihood.

B.3 L1 Lasso regularization

As a resource, see a student’s implementation of Andrew Ng’s Machine Learning Course in Python
(Regularized Logistic Regression) + Lasso Regression. I noticed a few errors maybe, btw, in this
person’s implementations.

Just as we did for linear regression, we can add regularization to logistic regression to constrain the
β coefficients. We’re going to do L1 (Lasso) regularization, which has the convenient property that
it can send useless coefficients to zero. Here is the loss function that we would need to maximize
(again dropping the 1

n as unnecessary for optimization):

L (β, λ) =

n∑
i=1

{
y(i)x′(i)β − log(1 + ex

′(i)β)
}
− λ

p∑
j=1

|βj |

But, we want to minimize so flip the signs:

L (β, λ) = −
n∑
i=1

{
y(i)x′(i)β − log(1 + ex

′(i)β)
}

+ λ

p∑
j=1

|βj |

L2 uses the squared magnitude, but L1 uses the sum of the magnitude. Note that β0 is not
included in the regularization term to avoid penalizing for the magnitude of the y-intercept. The

18

https://towardsdatascience.com/andrew-ngs-machine-learning-course-in-python-regularized-logistic-regression-lasso-regression-721f311130fb?
https://towardsdatascience.com/andrew-ngs-machine-learning-course-in-python-regularized-logistic-regression-lasso-regression-721f311130fb?

tricky bit to computing the gradient of this loss function is that we need to solve for β0’s partial
derivative differently than for the other p coefficients. To make matters worse, the computation
for β1..βp involves β0 and vice versa. ESLII p125 Equation 4.31 simply says to find the β0 and β
that maximize the penalized logistic regression equation. To solve this in practice, we compute β0’s
partial derivative separately from those for βp≥1. For β0, the partial derivative is:

∂

∂β0
L (β, λ) =

1

n

n∑
i=1

x0
(i)(y(i) − P (x′(i);β))

The 1
n scales the gradient by the size of the data set so that different sized training sets are

normalized to use the same gradient. The ESLII book does not include 1
n as it’s not necessary for

optimization purposes. I noticed that it was necessary to include this term to matchup coefficients
computed by sklearn, so let’s keep it in. Andrew Ng’s loss function and loss function gradient, which
is like what I’m doing, are shown in this stack overflow post. In vector notation, that gradient is:

∂

∂β0
L (β, λ) =

1

n
x0(y − σ(X′ · β))

but vector variable x0 is just ~1:

∂

∂β0
L (β, λ) =

1

n
~1 · (y − σ(X′ · β))

which just sums up the error term in the parentheses and divides by n. That’s otherwise known as
the average of the error term (assume β augmented with β0):

∂

∂β0
L (β, λ) = mean(y − σ(X′ · β))

For β1..βp, we need to carefully identify which parts of X′ and β we are using. To get the error
term, y−σ(X′ ·β), we use the full augmented-with-ones matrix X′ and β′. (We’ve been using β to
mean augmented with β0, so let’s be explicit here.) For the other parts of the gradient equation,
we are computing coefficients for β1..p so we’re not using the augmented matrix:

∇β1..pL (β, λ) =
1

n

{
XT (y − σ(X′ · β′))− λ sign(β)

}
(Only the inner X′ has the augmented-with-one rows.)

Then the β0 gradient and these gradients are combined to get a full ∇β. The algorithm to compute
the full gradient is:

19

https://stackoverflow.com/questions/38853370/matlab-regularized-logistic-regression-how-to-compute-gradient

Algorithm: L1NegLogLikelihood(X′,y, β′)

err = y − σ(X′ · β′) (error vector is n× 1 column vector)
∂
∂β0

= mean(err) (usual log-likelihood gradient; use current β′)

r = λ sign(β′) (regularization term p+ 1× 1 column vector)
r[0] = 0 (kill β0 position but keep as p+ 1× 1 vector)
∇ = 1

n

{
X′T err − r

}
return −


∂
∂β0
∇1
...
∇p


C Gradient-descent algorithm

The core minimization algorithm function is:

Algorithm: basic minimize(X, y, ∇L , η) returns coefficients ~β

Let ~β ∼ 2N(0, 1)− 1 (init b with random p+ 1-sized vector with elements in [-1,1))
X′ = (~1,X) (Add first column of 1s to data except for L1/L2 regression)
repeat
~β = ~β − η∇L (~β)

until ‖∇L (~β)‖2 < precision;

return ~β

We can make a lot more progress towards our goal if we add momentum to the particle traversing
the loss function surface. The basic gradient descent algorithm has trouble when it’s stuck in a
valley where one direction is shallow and the other is steep. If the particle keeps moving in the
same direction, it will start to accelerate because the vectors keep adding in that direction. It is
surprisingly easy to update the algorithm to use momentum:

Algorithm: momentum minimize(X, y, ∇L , η, γ) returns coefficients ~β

Let ~β ∼ 2N(0, 1)− 1 (random p+ 1-sized vector with elements in [-1,1))
X′ = (~1,X) (Add first column of 1s except for L1/L2 regression)
repeat

~v = γ~v + η∇L (~β) (Add a bit of previous direction to next direction)
~β = ~β − ~v

until ‖∇L (~β)‖2 < precision;

return ~β

Another thing we need to do for speed is to normalize all of the explanatory variables in X because
we have a single global learning rate, rather than a different learning rate per p + 1 dimensions.
If x1 is in the range [0,100] and x2 is in the range [0,0.001], the learning rate that is appropriate
for x2 (so we converge) is way too slow for x1. Normalization brings them all into the same range.
For each xi value, we subtract the mean and divide by the standard deviation to get standard
values. This is particularly important for L1/L2 Ridge regression because the solution relies on

20

mean-centered xi: for L1/L2, we do NOT add the ~1 vector to augment X′. Your project has an
addB0 argument (but we’re only implementing L2 regression so it’s the only use of addB0=False).

This algorithm is pretty efficient but to really go much faster we need a different learning rate per
dimension. You can learn more here:

1. An overview of gradient descent optimization algorithms

2. CS231n Convolutional Neural Networks for Visual Recognition

3. AdaDelta: An adaptive learning rate method

Adding per-dimension learning rate adjustments is easy using Adagrad. It’s the next step on the
road to even more sophisticated mechanisms that are needed for deep learning neural networks.
With Adagrad, I found that momentum doesn’t help much so we can discard it. Here’s the Adagrad
algorithm that you should use for your projects, which is useful for all variations of linear and logistic
regression:

Algorithm: adagrad minimize(X, y, ∇L , η, ε=1e-5) returns coefficients ~β

Let ~β ∼ 2N(0, 1)− 1 (random p+ 1-sized vector with elements in [-1,1))
h = ~0 (p+ 1-sized sum of squared gradient history)
X′ = (~1,X) (Add first column of 1s except for L1/L2 regression)
repeat
~h += ∇L (~β)⊗∇L (~β) (track sum of squared partials, use element-wise product)

~β = ~β − η ∗ ∇L (~β)

(
√
~h+ε)

until ‖∇L (~β)‖2 < precision;

return ~β

In your implementation, you’ll need a parameter, addB0, that dictates whether or not to use
augmented vectors and matrices. We always set addB0=True except for Ridge linear regression,
which computes β0 outside of the minimization process (as just y).

21

http://ruder.io/optimizing-gradient-descent/
http://cs231n.github.io/neural-networks-3
https://arxiv.org/pdf/1212.5701.pdf
http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf

	Goal
	Discussion
	Getting started
	Deliverables
	Extensions
	Evaluation
	Automatic testing using github actions

	Submission
	Appendices
	Linear regression
	L2 ridge regularization for regression

	Logistic regression
	Why the logistic regression equation gives log odds
	Optimizing the logistic regression equation
	L1 Lasso regularization

	Gradient-descent algorithm

