
Training decision trees
Terence Parr
MSDS program
University of San Francisco



Training overview

• Training partitions feature space into rectangular hypervolumes 
of similar 𝑋 records chosen so the associated 𝑦 are similar/pure

• Hypervolumes are specified by sequence of splits that test a 
single feature and feature value at a time

• Each split becomes a decision node in decision tree
• Records in an “atomic” hypervolume form a single leaf
• Hypervolume described by conditionals on path from root to leaf
• A specific feature can be tested multiple times in single tree



How to create a decision node

• Given (𝑋, 𝑦) for entire training set or a subregion
• Each split chosen greedily to minimize impurity in subregion 𝑦’s

• Regressor: variance or MSE
• Classifier: gini impurity or entropy

• To choose split, exhaustively try each (𝑥! variable, 𝑥! value) pair 
and pick the pair with min weighted average impurity for the two 
subregions created by that split



Fitting decision trees
subsets MSE or gini function

Overall fit: pass in full (𝑋, 𝑦) to dtreefit() and get back the decision tree

Optimization: also check if 𝑦
are all same or very close



Best split var/value

Should pick midpoint between
split value and next smallest 𝑥



The usual bestsplit() is inefficient 

• It has a nested loop; tries all combinations of 𝑝 variables and 
worst-case 𝑛 unique values in each variable at root: O(𝑛𝑝)

• Cost of computing loss on all values in subregion each iteration 
is also expensive

• For classification, can mitigate by sorting by ith var
then we know at a specific 𝑥 value, everything to
left is less and right is greater; keep track of class
counts to left/right

• Reduce computation by focusing on transitions points in 𝑥, 
effectively focusing on unique(𝑥)

x i

transition points



Improving generality and efficiency

• Select a subset of values as candidates, 𝑘; then we reduce 
O(𝑛𝑝) to O(𝑘𝑝) for 𝑘 << 𝑛 (𝑛 is often huge) (our project 𝑘=11)

• We should really pick split point between two 𝑥
values: (𝑥(#)+𝑥 #%& )/2 (if sorted)

• More likely split point is between, not on, 𝑥 values,
so midpoint is good guess as to underlying distribution

• And, of course, we can reduce tree height with 
min_samples_leaf to restrict complexity

x i

split point

transition points



Decision tree prediction via x subset

Can even pick just 1 split
randomly or in min..max
range (see “Extremely 
random trees”); any small 𝑘
value works.



Prediction
• Start at the root node with test 
𝒙 and descend through 
decision nodes to the 
appropriate leaf; predict leaf 
mean or mode

• At each decision node, test 
indicated variable's 𝒙! value 
against the split value stored in 
the decision node

𝒙



Prediction algorithm
𝑦 for samples in leaf


