RF out-of-bag samples

Validation sets for free!

Terence Parr MSDS program **University of San Francisco**

RF's have built-in out-of-bag validation set

- RFs have a major advantage over other models: OOB metrics
- Each tree is trained on ~63% of data, leaving 37% OOB
- The OOB record subsets available to each tree are different
- It's an excellent estimate of the validation error
- Stick with OOB unless time-sensitive data or, if using sklearn, default score() is not suitable
- Not having to process training and validation sets separately is a huge productivity win (assuming significant feature engineering)

Computing OOB predictions

• Get $\hat{y}^{(i)}$ by averaging estimates from trees not trained with $(x^{(i)}, y^{(i)})$

ecords

Tree₁

Tree

В

JNIVERSITY OF SAN FRANCISCO

Tree

Tree

Tree

B

- Image to right; blue is training set, OOB orange
- Trees from same labeled OOB region of $x^{(i)}$ used to get $\hat{y}^{(i)}$
- Must find all trees not trained on $x^{(i)}$
- E.g., compute $\hat{y}^{(i)}$ for **B** region using Trees 0, 1 but not 2
- No OOB error estimate is possible for unlabeled regions
- Do not compute OOB prediction errors for per tree!
- Average OOB predictions to get \hat{y} then compute metric on predicted \hat{y} vector as usual
- Each tree has lots of noise, so OOB error from one tree would be very high
- Algorithms for regression and classification shortly

OOB continued

- OOB error might slightly overestimate test set error. Why?
 - OOB samples are not predicted with all trees in forest whereas test set uses whole forest, which presumably has lower noise/variation [1]
- Some research suggests OOB overestimates error for binary classification https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0201904
- OOB metrics don't affect training, just gives metric
- OOB not to be used with time-sensitive data sets. Why not? Validation set for time-sensitive data can't be split randomly

When OOB error is lower than validation

- Maybe the validation set is drawn from a different distribution than the training set or it's a time-sensitive data set (or we didn't extract the validation set properly)
- Or, the model is overfit to the data in the training set, focusing on relationships that are not relevant to the test set
 - E.g., dropping SalesID transaction ID from training set improved our RF model as SalesID never seen in valid set but predictive in training set
- (Sometimes the validation score is a bit better or worse than the OOB score, due to random fluctuations caused by the inherent randomness of RF construction)

OOB regression scoring

- For each tree t in RF, get predictions for all of t's OOB records
- Filter out records not in any tree's OOB set (in all training sets)
- Get weighted average, \hat{y}_{oob} , of all predictions for each record across trees that did not train on that record
- Compare \hat{y}_{oob} to y to get R^2

OOB classification scoring

- For each tree t in RF, count how many y values are in the k classes for leaves associated with each OOB record of t
- Filter out records not in any tree's OOB set (in all training sets)
- Predict the majority to get \hat{y}_{oob} for each record across trees that did not train on that record
- Compare \hat{y}_{oob} to y to get accuracy

OOB regression scoring algorithm

Algorithm: $oob_score_{regr}(RF, X, y)$

Let $oob_counts[i] = 0 \forall records i = 1..|X|$ (Num obs. in all leaves reached by X[i]) Let $oob_preds[i] = 0 \forall records i = 1..|X|$ (Predictions for X[i] weighted by leaf size) for each $t \in RF$ do

 $\begin{aligned} leafsizes &= |t.leaf(X[t.oob])| & (Num \ samples \ in \ leaf \ reached \ by \ each \ X) \\ oob_preds[t.oob] += leafsizes \otimes t.predict(X[t.oob]) \\ oob_counts[t.oob] += leafsizes \end{aligned}$

end

 $oob_avg_preds = \frac{oob_preds[oob_counts>0]}{oob_counts[oob_counts>0]}$ return R^2 score for (y[oob_counts>0], oob_avg_preds)

Assumes each tree collects OOB sample indexes during fit() UNIVERSITY OF SAN FRANCISCO

OOB classification scoring algorithm

Algorithm: $oob_score_{class}(RF, X, y)$ Let $oob_counts[i] = 0 \forall records i = 1..|X|$ (Num trees w/predictions for X/i)) (Create 2D matrix tracking vote counts per class for each X/i/): Let $oob_preds[i, k] = 0 \forall records i = 1..|X|, k = 1..|unique(y)|$ foreach $t \in RF$ do leafsizes = |t.leaf(X[t.oob])| (Num samples in leaf reached by each OOB X) Treet (reeo tpred = t.predict(X[t.oob]) $oob_preds[t.oob, tpred] += leafsizes$ (count weighted class votes) (track num trees used for each OOB X) $oob_counts[t.oob] += 1$ end records В B for i such that $oob_counts|i| > 0$ do $oob_votes[i] = \arg\max_k oob_preds[i, k]$ D end **return** accuracy of $y[oob_counts > 0] = oob_votes$

free.

D