Review of linear models

Linear and logistic regression

Terence Parr

MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

Why do we study linear models?

« Simple, interpretable, super fast, can’t be beat for linear relationships

« Usually, a lower bound on power but they often form the basis of other
more powerful techniques, such as LOESS and...

« Combining multiple linear models into a lattice with a nonlinear

function as glue yields a neural network; those are insanely useful
and powerful

- Logistic regression model is a 1-neuron W\]‘
neural network with sigmoid activation X3 activation(x)

* LM can only find separating hyperplane
and classes must be contiguous, which X, W
is rarely true for more than 1 or 2 vars

UNIVERSITY OF SAN FRANCISCO

Linear regression

UNIVERSITY OF SAN FRANCISCO

What problem are we solving?

* In college, | was given a fixed $500 for food every month

| wanted to know, at current rate of pizza consumption, how fast
I'd run out of money so | plotted it and “eyeballed” zero x point

500 '
4001 .., [Car computers that show
% 300 - number of miles remaining are
= solving the same problem]
5 200 A
100 -
0

10 20 30
day of month

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Draw line, manually finding coefficients

| knew to draw line to project into future, but how can we figure
out slope of line? (y-intercept is clearly the starting amount)

* Measure cost/loss by computing average squared residual error
then just move line around until we find min loss (instead of

symbolic solution)

bad fit! bad fit! good fit!
500 - 500 500
I\l———— Equation is y =500.0 + —15.0x '\QT ---- Equation is y =500.0 + —35.0x Pove | --—- Equation is y =500.0 + —20.0x
400 A o4 . 400 - \\I 400 4 e
1[1\ N Loss is 1636.53 > \II Loss is 7290.25 "\.\ Loss is 162.46 must
~ -
£ 3007 1 ¢ 300 HJ ¢ 300 A N sell
2 o ‘ © LN
o ‘\\ b= \ — N
© 200 A \\\ -8 200 A \ \{ _8 200 4 \\\\ fblO%d
' or
100 - |
- 100 N 100 - e / days!
° 5 10 15 20 25 30 0 ; — ; ' 0 : : . —
oy 5 10 15 20 25 30 5 10 15 20 25 30
day day

UNIVERSITY OF SAN FRANCISCO

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Review of linear regression notation

« Given (X, y) where X is n x p explanatory matrix and
y is target or response vector, we seek coefficients that
describe best hyper plane through (X, y) data

» Each row x® in X maps to y and x =[x, x5, ..., x,]
p
§ = Po+Prer+...+ Byrp =Po+ Y Bixi
=1

* In vector notation, E is column vector [B4, B, ..., By]

Bo+x-6=PFo+x8

J

UNIVERSITY OF SAN FRANCISCO

Augment with “17 trick

« Adding B, is messy so augment x with 1:
x'=[1,x1, %3, ., Xp]
then B is column vector

B = [180'1811162’ "'er]

and we get the much simpler equation: 1y = x'g

UNIVERSITY OF SAN FRANCISCO

Training/fitting linear model means finding
optimal coefficients

* Finding optimal 8 amounts to finding vector 8 that minimizes the
mean-squared error, which is our /loss function:

L=, &\ (;
MSEB) =~ (" —¢")’
=

* Ignoring 1/n and substituting gj — x’g, we get: rows augmented

o | /
2B) =) "= - 8) =y -XB)- (y - X'6)

UNIVERSITY OF SAN FRANCISCO

Solutions for finding linear model G

 Loss function is a (convex) quadratic with exact, symbolic
solution and you’ve learned how to solve for coefficients directly
« Well, if n > p and no weak/nonpredictive columns (X has full rank)

« Many regularized and logistic regression loss functions have no
direct solutions, though

* You'll use an iterative solution (gradient descent) for all
regression problems in your project

UNIVERSITY OF SAN FRANCISCO

Training/testing of linear models in Python

» Boston dataset example into a notebook:

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

boston = load_boston()

Ilm = LinearRegression()
Im.fit(X_train, y_train)

X, y = boston.data, boston.target

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.2)

OLS

s = Lm.score(X_test, y_test) # RAZ2 = 0.66

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Logistic regression

UNIVERSITY OF SAN FRANCISCO

Review of logistic regression

 For classification, response y is discrete int value like {0,1}
* Need separating hyperplane between points in different classes

1D wine data set,

lasses 0,1

class0O
classl

ole S ¥y see
11.0 11.5 12.0 12.5 13.0 13:5 14.0 14.5 15.0
alcohol

class

e class0
classl

1D wine data set

11.00 115 ‘120 12.5- 13.

classes 0,1

00 THOEREN> BED 0 00
135 14.0 145 15.0

alcoh

bl

« Showing hard cutoffs here, but a smooth transition from class 0
to class 1 would be better

UNIVERSITY OF SAN FRANCISCO

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Linear model prediction of int target y

1D logistic regression ;*
o class0
0 classl 00 @ G oe
* Could use linear regression, but 110 115 120 125 130 135 140 145 150
line would exceed [0,1] range Blhiol
. . . 1D wine data set, classes 0,1
» Could clip, but discontinuous 1
* Sigmoid is a much better 4
transition fromclass Otoclass 1 © | ¢ =
and gives probability of class 1: T
11.0 115 120 125 13.0 135 14.0 145 15.0
P(y — 1|x) alcohol
.. . Logistic model prediction of int target y
 Training sends output of linear 1
model into sigmoid then finds v
coefficients that maximize a S class0
max-likelihood loss function oL 2= cemm -
11.0 115 120 125 13.0 135 140 145 15.0

alcohol

UNIVERSITY OF SAN FRANCISCO

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

2D wine data set example, 2 features

* Logistic regression yields P(y = 1|x)
« Classifier built on top of logistic prediction; P(y = 1|x) = 0.5 predict

class 1 else predict class O a0 -
 Black line is separating plane,
but output of model is smooth > 0
transition, not hard threshold, - T e s
from O to 1 E et %
£ o ® oo * e
- Green/yellow shades represent 5231e o *e 8
P(y:llx) §20_ ngfw A
« Accuracy 119/130 = 0.92 o0 @@@ g :,
(threshold, precision, recall) = 3 e o S
(0.50, 0.941, 0.901) . o " | @ cass1

11.0 11.5 12.0 125 13.0 135 140 145 15.0
alcohol

UNIVERSITY OF SAN FRANCISCO
See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

Classifier P(y = 1|x) threshold changes

P(y =1|x) = 0.05

Accuracy 94/130=0.72

(threshold,precision, recall) = (|0.05

4.0

,0.664,1.000)

X X
:
H
3.5 i ®© f
o s X 33
o0 Xty §
3.0 1 st 0 X x K %X
i e o o X X X %
o @ @) é X X !’ff
(7] ' X
< g X
3,25 o o .o.g' XX ><><<<><>< Y
g ® o @ 3
20 ..“ [. $
" ° o i ;
" *,
s o0 o° o © A
D 7 . . H
() % class O
P @® classl
1.0 -

11.0 11.5 12.0 12.5 13.0 13.5 14.0
alcohol

Plotting precision and recall for a variety of thresholds yields PR curve

(similar to ROC curve)

145 15.0

P(y =1|x) = 0.9

Accuracy 109/130=0.84

(threshold,precision, recall) = (0.90,1.000,0.704)

4.0 A g
: X
H
35 Y.
5 i
it ® X
00 i v i X
3.0 1 ® : ® X X R KX
Y e g XX X %
o X
c ® 1 @ X X X
5 - o .a' . X X X
525 Y o .‘ && XXXX
©
5 e N* e M
2.0 1 e ®™ ® o
> i o
@ Hilh
L oo o° . e
2] o o
.!: X class O
o) !: ® class1
1.0

125 13.0 135 140 145 15.0

alcohol

11.0 115 12.0

UNIVERSITY OF SAN FRANCISCO

Logistic regression notation

« Sigmoid function
1 e

14+ e~% 1+ e?
» Substituting vectorized linear egn into sigmoid:
1
/ /
X) =o0(X = y
« Using odds = p/(1-p), subst in p(x"), simplify, take log; we get:
log(odds) = x'3
« BTW, log-odds stuff is interesting but not particularly useful/relevant

UNIVERSITY OF SAN FRANCISCO

Derivations and intution, see https://github.com/parrt/msds621/raw/master/projects/linreg/linreq.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Solving for logistic model parameters: 3

« Same idea as regression: define loss function (negative of max
likelihood in this case) and solve for 8 that gives min loss value

* The likelihood of sigmoid derived from some S fitting the X,y:

o [P ity =1

=1
* Flip multiplication to summation via log (log is monotonic):
. {log(P(X’(i);ﬂ)) if y® =1

Likelihood(8) =) ° 7; .
~ |log(1 - P(x'¥;B)) if y@ =0

UNIVERSITY OF SAN FRANCISCO
Derivations and intution, see https://github.com/parrt/msds621/raw/master/projects/linreg/linreq.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Simplifying max likelihood

» Gating the two log terms in and out using y® and (1 — y®) let’s us
remove the choice operator:

n

Likelihood () = Z {y(i)log(P(x'(i); B)) + (1 — y)log(1 — P(x'®; 5))}

9=1
« Simplifies ultimately to:
Likelihood(8) = Y {y@')x’(@') B — log(1 + ex8)}
1=1

* Logistic regression requires an iterative solution due to siamoid:
solve for min of the negative of that max likelihood -Z(8) = —Likelihood(B)

UNIVERSITY OF SAN FRANCISCO
Derivations and intuition, see https://qithub.com/parrt/msds621/raw/master/projects/linreg/linreq.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Training/testing of logistic regression
models in Python

* Wine dataset example from into a notebook:

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-
reqularization.ipynb

wine = load_wine()

df_wine = pd.DataFrame(data=wine.data,columns=wine.feature_names)
df_wine['y'] = wine.target

df_wine = df_wine[df_wine['y']<2] # do 2-class problem {0,1}

X, y = df_wine.drop('y', axis=1), df_wine['y’]

1lg = LogisticRegression(solver="1lbfgs', max_iter=1000)
lg.fit(X.values, y) # uses regularization by default
lg.score(X.values, y)

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

Lab time

* Plotting decision surfaces for linear models

https://github.com/parrt/msds621/blob/master/labs/linear-models/decision-surfaces.ipynb

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/labs/linear-models/decision-surfaces.ipynb

