
Review of linear models
Linear and logistic regression

Terence Parr
MSDS program
University of San Francisco

Why do we study linear models?
• Simple, interpretable, super fast, can’t be beat for linear relationships
• Usually, a lower bound on power but they often form the basis of other

more powerful techniques, such as LOESS and…
• Combining multiple linear models into a lattice with a nonlinear

function as glue yields a neural network; those are insanely useful
and powerful

• Logistic regression model is a 1-neuron
neural network with sigmoid activation

• LM can only find separating hyperplane
and classes must be contiguous, which
is rarely true for more than 1 or 2 vars

x1
x2

xn

activation(x)
w1
w2
wn

Σ
... b

+

Linear regression

What problem are we solving?

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

• In college, I was given a fixed $500 for food every month
• I wanted to know, at current rate of pizza consumption, how fast

I’d run out of money so I plotted it and “eyeballed” zero 𝑥 point

X

[Car computers that show
number of miles remaining are
solving the same problem]

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Draw line, manually finding coefficients
• I knew to draw line to project into future, but how can we figure

out slope of line? (y-intercept is clearly the starting amount)
• Measure cost/loss by computing average squared residual error

then just move line around until we find min loss (instead of
symbolic solution)

good fit!bad fit!bad fit!

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

must
sell
blood
for 5
days!

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Review of linear regression notation

• Given (𝑋, 𝑦) where 𝑋 is 𝑛 x 𝑝 explanatory matrix and
𝑦 is target or response vector, we seek coefficients that
describe best hyper plane through (𝑋, 𝑦) data

• Each row 𝑥(") in 𝑋 maps to 𝑦(") and 𝑥(") = [𝑥$, 𝑥%, … , 𝑥&]

• In vector notation, 𝛽 is column vector [β$, β%, … , β&]

Augment with “1” trick

• Adding β' is messy so augment 𝒙 with 1:

𝒙(= [1, 𝑥$, 𝑥%, … , 𝑥&]

then β is column vector

β = [β', β$, β%, … , β&]

and we get the much simpler equation:
1 !0x1 ...

...

!1

Training/fitting linear model means finding
optimal coefficients
• Finding optimal β amounts to finding vector β that minimizes the

mean-squared error, which is our loss function:

• Ignoring 1/n and substituting , we get: rows augmented

Solutions for finding linear model β

• Loss function is a (convex) quadratic with exact, symbolic
solution and you’ve learned how to solve for coefficients directly

• Well, if n > p and no weak/nonpredictive columns (𝑋 has full rank)
• Many regularized and logistic regression loss functions have no

direct solutions, though
• You’ll use an iterative solution (gradient descent) for all

regression problems in your project

Training/testing of linear models in Python

• Boston dataset example into a notebook:
https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

boston = load_boston()
X, y = boston.data, boston.target

X_train, X_test, y_train, y_test = \
train_test_split(X, y, test_size=0.2)

lm = LinearRegression() # OLS
lm.fit(X_train, y_train)
s = lm.score(X_test, y_test) # R^2 = 0.66

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

Logistic regression

Review of logistic regression
• For classification, response 𝑦 is discrete int value like {0,1}
• Need separating hyperplane between points in different classes

• Showing hard cutoffs here, but a smooth transition from class 0
to class 1 would be better

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

1D logistic regression
• Could use linear regression, but

line would exceed [0,1] range
• Could clip, but discontinuous
• Sigmoid is a much better

transition from class 0 to class 1
and gives probability of class 1:
𝑃(𝑦 = 1|𝒙)

• Training sends output of linear
model into sigmoid then finds
coefficients that maximize a
max-likelihood loss function

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

2D wine data set example, 2 features
• Logistic regression yields 𝑃(𝑦 = 1|𝒙)
• Classifier built on top of logistic prediction; 𝑃 𝑦 = 1 𝒙 ≥ 0.5 predict

class 1 else predict class 0
• Black line is separating plane,

but output of model is smooth
transition, not hard threshold,
from 0 to 1

• Green/yellow shades represent
𝑃 𝑦 = 1 𝒙

• Accuracy 119/130 = 0.92
(threshold, precision, recall) =
(0.50, 0.941, 0.901)

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/sklearn-linear-models.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

Classifier 𝑃 𝑦 = 1 𝒙 threshold changes
𝑃 𝑦 = 1 𝒙 ≥ 0.05 𝑃 𝑦 = 1 𝒙 ≥ 0.9

Plotting precision and recall for a variety of thresholds yields PR curve
(similar to ROC curve)

Logistic regression notation
• Sigmoid function

• Substituting vectorized linear eqn into sigmoid:

• Using odds = p/(1-p), subst in 𝑝(𝐱’), simplify, take log; we get:

• BTW, log-odds stuff is interesting but not particularly useful/relevant

Derivations and intution, see https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Solving for logistic model parameters: β

• Same idea as regression: define loss function (negative of max
likelihood in this case) and solve for β that gives min loss value

• The likelihood of sigmoid derived from some β fitting the X,y:

• Flip multiplication to summation via log (log is monotonic):

Derivations and intution, see https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Simplifying max likelihood
• Gating the two log terms in and out using 𝑦(") and (1 − 𝑦(")) let’s us

remove the choice operator:

• Simplifies ultimately to:

• Logistic regression requires an iterative solution due to sigmoid;
solve for min of the negative of that max likelihood

Derivations and intuition, see https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

https://github.com/parrt/msds621/raw/master/projects/linreg/linreg.pdf

Training/testing of logistic regression
models in Python
• Wine dataset example from into a notebook:

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-
regularization.ipynb

wine = load_wine()
df_wine = pd.DataFrame(data=wine.data,columns=wine.feature_names)
df_wine['y'] = wine.target
df_wine = df_wine[df_wine['y']<2] # do 2-class problem {0,1}
X, y = df_wine.drop('y', axis=1), df_wine['y’]

lg = LogisticRegression(solver='lbfgs', max_iter=1000)
lg.fit(X.values, y) # uses regularization by default
lg.score(X.values, y)

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

Lab time

• Plotting decision surfaces for linear models
https://github.com/parrt/msds621/blob/master/labs/linear-models/decision-surfaces.ipynb

https://github.com/parrt/msds621/blob/master/labs/linear-models/decision-surfaces.ipynb

