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Motivation for regularization
• 3 main problems with least-squares (OLS) regression:

• Model with “too many” parameters (for num instances) will overfit
• Data sets w/outliers can skew line too much to fit outliers; bad generalization
• Data sets w/many features can get extreme coefficients in linear models

(see notebook “L1 regularization with normalization”)
• L1 (Lasso) regularization also has the advantage that it allows 

superfluous coefficients to shrink to zero
• Having zero coefficients helps reduce model complexity (fewer 

coefficients), improving interpretability, and usually improving generality
• Often, unregularized models work but we get extreme coefficients 🤔

(extreme negative and positive coefficients must be canceling out) 

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb


Regularization premise

• Extreme coefficients are unlikely to yield good generalization
• So, we’re simply going to constrain model coefficient magnitudes
• Same technique works for linear and logistic regression

(logistic is just a sigmoid applied to output of linear model anyway)
• Preview: add L1 or L2 norm of 𝛽 coefficient vector to loss function, 

so loss functions are now a function of known 𝑦, predicted 𝑦, AND
model parameter magnitudes



Let’s make a deal!

OLS with outlierOrdinary least squares L1 regularization with outlier
Outlier

• Let’s trade some model bias (accuracy) for improved generality
• Consider an example of a simple data set with OLS fit
• Now, send y[x==10] to 100; we get skewed line & bad R^2
• Regularization brings slope back down but with some bias



Ames housing data set (regressor)
• With dummy vars, number of columns explodes from 81 to 216
• Compare scale of coeff (huge coefficients don’t generalize)
• Regressor test R^2 is -3e20 w/o regularization and ~0.85 with L1

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb


Wine classifier less accurate w/o reg.
• Wine data set (130 records, 14 numeric vars)
• Test accur=.96 (normalized data) w/OLS
• L2 regularization 1.0 test score
• L1 regularization .96 but can drop 4 coefficients from model

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

L2 regularizedNormalized vars, OLS L1 regularized

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb


Example: classifier with many features

• Distinguish between ones and sevens (MNIST dataset)

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb

MNIST sample ones sample sevens sample

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/classifier-regularization.ipynb


Compare coefficients w/o & with L1 reg
• Test accur=96% w/OLS and L1 but log loss improves a lot
• Also L1 regularization has zeroed out 423 coefficients and still accurate!

OLS logistic L1 regularized logistic



Quick detour:
Training models by walking 
downhill and normalizing data



How (iterative) training works in 1 dimension
• Loss function (cost) is a function of 

model predictions #𝑦, known 𝑦 values
• Minimize MSE loss computed on the

training set
• Loss is a quadratic 𝑦 − #𝑦 ! so pick a 

random starting point for 𝛽" then just 
walk 𝛽" downhill until you hit flat spot

• The derivative/slope of loss function 
is 0 at the minimum loss

• The 𝛽" at loss minimum is best fit  
coefficient for training set

start here

flat spot 𝛽!=3.0



Training in 2D; loss function shape

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

• We still walk downhill, but 
different directions can have 
different slopes

• Move search "particle" in 2D to 
find coefficients associated with 
minimum loss

• Think of dropping marble on 
surface and letting it roll down 
to low point

• (We’ll have full lecture on 
gradient descent, don’t worry!)

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb


For training linear models, always 
normalize/standardize data
• First, standardization leads to faster training
• Second, regularization requires standardization, otherwise 

regularization shrinks coefficients disproportionately
• Zero center each variable and divide by the standard deviation



2D loss function shape for normalized vars

Cheese consumption vs bedsheet strangulation death data set

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

Untouched variables Normalized variables

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/regressor-regularization.ipynb


Standardization yields faster training

• Subtracting the mean ensures we have both positive and 
negative values, which leads to gradients that can have 
negative components (else all are pos or neg); Yann LeCun
says descent must zigzag to change directions, which is slower

• Loss contours for normalized vars are more spherical, leading 
to faster convergence:

• If 𝑥" is in [0, 100] and 𝑥! in [0, 0.001], then a single learning 
rate, 𝜂, that is small enough for 𝑥! (so we converge) is too slow 
for 𝑥" (AdaGrad helps here as it has a learning rate per var)

See http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf

http://yann.lecun.com/exdb/publis/pdf/lecun-98b.pdf


Must standardize for regularized training
• We have just one 𝛌 for all coefficients so

vars must be in same range or big 𝛽’s
prevent regularization of small coefficients
(big var ranges cause big 𝛽’s)

• Also 𝛽# is simply mean(𝑦) for L1/L2 linear regression if we 
standardize variables

• (We'll examine regularization next)
• Q. When do we NOT standardize variables?

It's always safe to do it, but if all we care about is OLS predictive analytics, rather 
than analysis of parameters, then it's okay not to normalize; on the other hand we 
often need regularization for generalization purposes, which requires normalization



The regularization mechanism
The goal: Don’t let optimization get too specific to training data; inhibit best fit
The cost: Sacrifice some model accuracy (underfitting) for generality



Simplest regularization
• Just terminate minimization process 

early; don’t let the coefficients fully 
reach the minimal loss location

• (Called early stopping in neural nets)
• Walk “downhill” on training set loss 

curve until either:
• You run out of AWS CPU credits
• After fixed amount of time (you’re bored)
• Loss on validation set (a moving avg 

thereof) starts going up, not down

stop here
after awhile

start here

Stop at 𝛽!=1.8



Improving early termination of training

• Stopping after fixed amount of time depends on how fast our 
“hiker” moves along loss curve and it’s hard to pick duration

• Instead, let’s just restrict magnitude of 𝛽" < 𝑡 for some 𝑡
• We agreed earlier that extreme 𝛽 coefficients would likely be 

bad for generality
• Strategy: Pick initial 𝛽"in [0,𝑡) for some max 𝑡 and go downhill 

and stop at minimum or when 𝛽" ≥ 𝑡



Minimizing loss, subject to a hard constraint

• Let 𝑡=1.5, which defines “safe zone”
• Stop at min loss point or 𝛽" = 𝑡
• The “best” coefficient is where

constraint 𝑡 and loss function meet, 
if min loss is outside safe zone

• If min loss is in safe zone, then
regularization constraint wasn’t 
needed (same as OLS)

stop when
loss touches
constraint

start here

Stop at 𝛽!=1.5
(hard constraint)

safe zone



Minimizing in 2D subject to hard constraint
• Spinning line segment [0,𝑡] around origin 360°, gives a circle
• Recall formula for circle; constrain 𝛽$ such

that 𝛽"! + 𝛽!! < 𝑡 where 𝑡 is radius squared
• The “best” coefficient is min loss function on

constraint curve (if loss min outside zone)
• If loss min inside radius, same as OLS
• Pick initial [𝛽", 𝛽!] inside safe zone,

then start walking downhill, stop at min
loss or edge of the safe zone

• This is L2 (Ridge) regularization

Unconstrained
cost minimum

safe zone

Image credit: https://www.kdnuggets.com/2016/06/regularization-logistic-regression.html

𝛽!" + 𝛽"" < 𝑡

https://www.kdnuggets.com/2016/06/regularization-logistic-regression.html


L2 regularization examples
• The L2 regularized coefficients sit on the L2 boundary circle 

where the loss function has the minimum value.
• Walk around the circle and identify the location with the 

minimum loss function value

Hard constraint
illustration from 
ESL page 71.

These are topo maps; see https://en.wikipedia.org/wiki/Topographic_map

https://en.wikipedia.org/wiki/Topographic_map


Minimizing L1 in 2D (hard constraint)

• Instead of 𝛽$!’s, we can sum |𝛽$|’s,
giving diamond-shaped safe zone

• This is L1 (Lasso) regularization

• Notice how statisticians have this backwards; L1 
constraint zone looks like a ridge not lasso, and L2 
safe zone (circle) looks like a lasso

Constrained
loss minimum

safe zone



L1 regularization examples
• The L1 regularized coefficients sit on the L1 boundary 

diamond where the loss function has the minimum value.
• Walk around the diamond and identify the location with the 

minimum loss function value

Please note how often the red dot sits at a diamond corner, with a 𝛽# = 0



Questions
• Do we want to make the model 

parameters as small as possible? E.g., 
are we trying to drive them to zero?

• When do we choose L1 vs L2 
regularization?

• Is L1 always better than L2 or vice versa?

• Is it okay to get rid of L1 parameters that 
go to zero?

We are constraining the coefficient 
magnitude rather than trying to drive 
them to 0; driving all to 0 would mean 
creating a model that always 
predicted 0

L1 when you want to reduce the 
number of features

Not that I have experienced

Sure; they don’t contribute to the 
regression (or classification)



Fitting regularized linear models (Conceptually)
• Minimize the usual MSE loss function (assume 𝛽 has 𝛽#):

• Subject to either (L2 or L1):

• Problem is “subject to” constraint is tough to implement

or



Detour: Lagrange Multipliers

• Magic of Lagrange multipliers lets us incorporate constraint into 
loss function:

same as

(𝜆 and t are related one-to-one per ESLII book
but by no relationship I can find)

for some 𝜆



How we actually fit regularized models
• Minimizing loss function subject to a constraint is more complicated 

to implement than just function minimization so…
• Invoke magic of Lagrange multipliers:

For L2: • Drop 𝑡 since 𝑡 is constant &
doesn’t affect minimizing

• This is a soft constraint and penalty
increases as 𝛽'’s move away from origin;
there’s no hard cutoff!

• Net effect is that regularization pulls min 
combined loss location closer to origin!

For L1:



Fitting 𝛽!’s and picking hyperparameter 𝜆
• 𝜆 is unknown like 𝑡 but at least we have a single loss function now
• Find 𝜆 by finding minimum loss for different 𝜆 values, pick 𝜆 that 

gets min loss on validation set (more on these sets later)

• 𝛽# is just 𝑦, assuming zero-centered data set
• Note: 𝛽# is NOT included in penalty



Hard vs soft constraints in 2D
Hard constraint Soft constraint

Constrained loss function Sum of loss and penalty functions

See https://explained.ai/regularization/index.html

https://explained.ai/regularization/index.html


1D example of loss+penalty curves
L1 𝛽! can quickly converge to 0 for large 𝜆 L2 𝛽! struggles to converge to 0 for large 𝜆

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-regularization.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-regularization.ipynb


Affect of 𝜆 on combined loss function

• MSE loss function + soft 
constraint as 𝜆 varies from 0 to 6

• Same training data so MSE loss 
surface is the same

• Only 𝜆 is changing here, 
increasing penalty for same 𝛽$
coefficients

• Combined loss function moves 
upwards and towards the origin

See https://explained.ai/regularization/index.html

https://explained.ai/regularization/index.html


How penalty term restricts 𝛽!’s
• Think of regularization as two different cost functions, 

MSE and regularization, added together
• Regularization penalty term increases loss but skews 

min loss 𝛽$ location towards origin as penalty curve is 
anchored at origin

• Soft constraint makes larger 𝛽$ very unlikely due to 
increased penalty away from origin (whereas hard 
constraint makes large coefficients > 𝑡 impossible)

• L1&L2 shift 𝛽$ ’s towards 0 because penalty approaches 
0 only at 𝛽=0

L2 

penalty term



The effect of regularization
• What happens when 𝛌 is 0? 
• What happens when we crank up 𝛌?
• L1 tends to shrink coefficients to zero; useful for feature 

selection since we can drop features with zero coefficients
• L2 tends to shrink coefficients evenly; discourages any single 
𝛽$ from getting much bigger than the others

• L2 useful when you have collinear/codependent features
• e.g., gender and ispregnant
• codependence tends to increase coefficient variance, making 

coefficients unreliable/unstable, which hurts model generality
• L2 reduces the variance of these coefficient estimates

Regularization is turned off
Loss function strives for small β



Comparing L1 and L2 
regularization



L1 regularization encourages coefficients=0
• Simulate random symmetric two-variable quadratic loss 

functions at random locations

Dots: loss 
function minimum 
locations; green: 
a zero coefficient, 
blue no zeros, 
orange a coeff
close to 0

See https://explained.ai/regularization/L1vsL2.html

L1 has many more zero parameters than L2 for symmetric loss functions

L1 L2

See https://explained.ai/regularization/index.html

https://explained.ai/regularization/L1vsL2.html
https://explained.ai/regularization/index.html


L1 regularization strongly encourages zero 
coefficients for less predictive features
• Imagine one of two features is very important and the other isn't
• Implies loss function looks like a taco shell or canoe, and at or 

close to 90 degrees to one of the axes
• Movement in one direction is much more expensive than 

movement in the other



Random asymmetric, angled loss functions
L1 still has many more zero parameters than L2 for arbitrary loss functions

L1 L2



Why L1 is more likely to zero 
coefficients than L2
• Moving away from the L1 

diamond point immediately 
increases loss

• L2 can move upwards a bit 
before moving leftward away 
from loss function minimum

• As black dot approaches 𝛽!
axis, L2 purple dot 
approaches 𝛽! axis, but L1 
gets 𝛽" = 0 even when loss 
min location far from axis Contour lines represent the

same loss function value

See https://explained.ai/regularization/index.html

https://explained.ai/regularization/index.html


Lab time

• Exploring regularization for linear regression
https://github.com/parrt/msds621/tree/master/labs/linear-models/regularization-regr.ipynb

https://github.com/parrt/msds621/tree/master/labs/linear-models
https://nbviewer.jupyter.org/github/parrt/msds621/blob/master/labs/linear-models/regularization-regr.ipynb


Regularized logistic regression



Optimizing likelihood with penalty terms

• Same mechanism: minimizing (negation of maximum 
likelihood) via Lagrangian interpretation:

Note: 𝛽! is NOT included in penalty, but is used in              term
(want to constrain slopes not y-intercept)

(Logistic regularization is not required for your project, but L1 is an option)

L2

L1



Fitting L1 logistic regression 𝛽!’s and 
picking 𝜆
• ESLII book p125 says to find L1 𝛽# and 𝛽!..% that maximize:

• We minimize the negative of that to find 𝛽 with min loss
• Means we must find 𝛽# differently than for 𝛽!..%
• As before, find 𝜆 by computing minimum loss for different 𝜆 values, 

pick 𝜆 that gets min loss on validation set
• L1 Logistic gradient is tricky to get right; see gradient descent lecture



Resources with code
• https://aimotion.blogspot.com/2011/11/machine-learning-with-python-logistic.html
• https://stackoverflow.com/questions/38853370/matlab-regularized-logistic-regression-
how-to-compute-gradient

• You may look at but not cut-paste from these examples for your 
project (and I think there are some bugs too)

https://aimotion.blogspot.com/2011/11/machine-learning-with-python-logistic.html
https://stackoverflow.com/questions/38853370/matlab-regularized-logistic-regression-how-to-compute-gradient


Key takeaways
• Regularization increases generality at cost of some bias
• Does so by restricting size of coefficients with hard constraint 

(conceptually) or soft constraint using penalty term (impl.)
• For hard constraint, min loss is inside safe zone or on zone border
• Soft constraint penalty discourages bigger parameters
• L2 discourages any 𝛽$ from getting much bigger than the others
• L1 encourages zero 𝛽$; in practice, we see L1 zero out 

unpredictive vars



Key implementation details
• Minimize                by trying multiple 𝜆 and choosing  

parameters from fitted model getting lowest validation error
• Normalize numeric variables in 𝑋 before fitting linear models
• If 0-centered 𝑥$ then 𝛽# = 𝑚𝑒𝑎𝑛(𝑦) for L1 and L2 regression
• Logistic regression has no closed form for 𝛽#
• OLS & L2 regularized linear regression have symbolic 

solutions
• L1 linear regression and L1/L2 logistic regression require 

iterative solution: usually some gradient descent variation



Interview questions (L1 vs L2)
• Both L1 and L2 increase bias (reduce ”accuracy” of fit, predictions)
• L1 useful for variable / feature selection as some 𝛽$ go to 0
• L2 much less likely to get zero coefficients
• L2 useful when you have collinear features (e.g., both tumor radius 

and tumor circumference features)
• Collinearity increases coefficient variance, making them unreliable
• And L2 reduces variance of 𝛽' estimate which counteracts effect of collinearity

• With regularization, we don’t get unbiased 𝛽$ estimates
• Expected value of 𝛽' estimate is no longer 𝛽' since we’ve constrained 𝛽'’s
• Consequence: we no longer know effect of 𝑥' on target 𝑦 via 𝛽'

• In my experiments, regularization improves regression much more 
than classification in terms of R^2 and simple accuracy; (due to 
sigmoid constraining the solutions to the loss function?)



Lab time

• Regularization for logistic regression
https://github.com/parrt/msds621/blob/master/labs/linear-models/regularization-logi.ipynb

https://github.com/parrt/msds621/blob/master/labs/linear-models/regularization-logi.ipynb

