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Bias / Variance (again)

• For a single test vector !", bias “is the squared difference 
between the true mean #(!") and the expected value of the 
estimate” [ESL book p37] (at least under MSE error)
(How far off is the expected prediction from true answer?)

• Variance is the variance of the estimates for !" from models 
trained using tweaked training data (most common terminology)

• But high variance also implies model parameters (tree structure) 
vary a lot if we tweak the training data

Expected prediction error at !"

Unbiased but high variance



RF motivation
• Decision trees can often get training errors close to zero 

because we can grow very large trees to partition the feature 
space into tiny regions with 1 or just a few observations / 
samples; trees are very accurate on the training set and have 
low bias

• The downside is that decision trees overfit like mad: decision 
trees have high variance and don’t generalize well

Leo Breiman (1996) introduced bagging 
then Random Forests (2001)

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf

https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf


Analogy: Decision tree SF house prices

• Real estate agent builds house price model in their head by 
visiting lots of houses in SF

• Increase generality by averaging, say, all houses in each 
neighborhood: averaging smooths out variation in answers 
(shortening tree or increase node size)

• The cost: less precise house predictions
• Hmm…can we think of another way to average w/o introducing 

bias?



How can we increase generality?

• Goal: keep the high accuracy, but increase the generality

• So, let’s alter our decision tree model in a way that makes 

predictions noisier but with same prediction expected value
(don’t intro any bias)

• To compensate for the noise and claw back some accuracy, 

make an ensemble of such trees; ensemble predicts average 

or majority vote of trees

• Averaging predictions reduces variance without introducing 

bias so ensemble is accurate on average
• The expected value of full strength model is same as 

expectation of altered model's prediction

Target image credit: http://ficscience.blogspot.com/2011/02/technicalities-of-technical-terms.html

http://ficscience.blogspot.com/2011/02/technicalities-of-technical-terms.html


The key trick is amnesia

• Random forests are all about adding a bit of
amnesia to the training process

• We will restrict the trees by training each on a randomly 
selected subset of the training data: bagged trees

• Further, we will have training purposely forget about some 
features as we create decision nodes: random forests



Analogy: Crowdsourcing SF house prices
• Recruit multiple real estate agents to build house price models in 

their heads by visiting lots of houses; then each agent can estimate 
prices of unvisited houses

• Agents choose and examine house subsets independently
• There will be some overlap in visited houses sets but the subsets will 

be independent and identically distributed (i.i.d.)
• An agent trained on an i.i.d. subset is not biased (they have same 

expectation) but is less accurate—a prediction for one house might 
be too low but a prediction for another house might be too high

• The variance of the ensemble average will be much tighter than the 
variance of an individual tree's prediction

• Averaging all agents’ predictions reduces variance and is unbiased



Ex: Overfit decision trees regressors
• Animation shows 1D 

feature space partitioning 
of i.i.d. sample sets

• Slightly different training 
data sets can yield very 
different decision trees

• Clearly the trees have 
gotten way too specific to 
the data set

• Notice how the training 
error is 0 but (20% hold 
out) test error is terrible!

Uh oh!

See https://github.com/parrt/msds621/blob/master/notebooks/trees/random-forests.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/trees/random-forests.ipynb


Ex: Overfit decision tree classifiers

• Here is a previous example where 
partitioning trapped a lonely blue in 
a sea of yellow

• In practice, we're given just one 
data set so let's do some sampling 
to get some i.i.d. "copies" 

• Then see how different data sets 
give different partitioning (from 
different trees)

unlikely to be general



Partitioning from bootstrapped data
• Bootstrap (!, #) to simulate 

multiple i.i.d. data sets†

• Each set gets ~63% of 
unique (!, #) data (sample 
$ records with replacement)

• Animation shows 2D 
feature space partitions 
from various bootstraps 

• Partitioning clearly varies a 
lot between bootstraps

• OOB == "out of bag"

Uh oh!
Varies

†Bootstraps are technically conditionally independent, conditioned on nature of 
original !, which could be weird by chance or by the way it was collected/obtained.

(more later)

am
ne

sia

†



Bootstrapping gives slightly different trees
DecisionTreeClassifier(max_depth=2)

Same tree construction algorithm running on slightly different bootstraps



Aside: Code for bootstrapping

# Bootstrap: sample with replacement
n = len(y)
idx = np.random.randint(0,n,size=n)
X_train = X[idx]
y_train = y[idx]

# get OOB (out-of-bag) samples
mask = np.ones(n, dtype=bool)
mask[idx] = False
X_test = X[mask]
y_test = y[mask]

See https://github.com/parrt/msds621/blob/master/notebooks/trees/random-forests.ipynb

# If data in dataframe
df = df.sample(len(df), replace=True)

NumPy

Pandas

https://github.com/parrt/msds621/blob/master/notebooks/trees/random-forests.ipynb


Bagged trees
Training trees on bootstrapped samples and aggregating predictions



Ensemble of high-variance regression trees
• Animation shows how 

averaging the prediction of an 
ensemble of overfit trees 
actually produces a reasonable 
combined prediction

• As we add trees, the average 
prediction (red line) smooths 
out to reveal the underlying 
quadratic distribution from 
which we draw noisy samples

• Note: variance of individual tree 
predictions stays high 
regardless of number of trees, 
but the variance of the 
ensemble average tightens
(the magic of C.L.T.) Repeatedly drawing new noisy training sets



Ensemble of high-var. classification trees
• Animation shows overlapping 

prediction regions from 
multiple classifier trees

• Training data for each tree is 
bootstrapped from the original 
(!, #) data

• As we add trees, the averaged  
prediction regions become 
more stable and the decision 
boundaries more complex

• "Bag" is bootstrap aggregation



Ensemble classifier on synthetic data set
• Animation shows prediction 

regions from multiple
bagged classifier trees

• Colored tiles indicate the 
probabilities of the various 
classes; e.g., yellow-orange 
color indicates uncertainty 
between those two classes

• What's prob. of class ! at tile?
• proportion of trees that predict !

Animation uses probability space visualization I added to dtreeviz



Ensemble’s effect on bias and variance
• Train ! trees on ! i.i.d. " data sets
• Central limit theorem says that if variance of an i.i.d. random variable 

is #$, the variance of the average of ! such vars is #$/!
• So, as we add trees, the variance of the ensemble prediction will 

shrink, which means better generality
• After, say, 100 trees though we’re not going to get a more general 

model, but will get better estimates of the true prediction for a single 
test record (squeezing out some more noise)

• The average of the tree predictions is the same as the expected 
prediction from any tree trained on one of the " sets (since i.d.)

• If individual trees had different expectations, adding trees would 
increase bias

See page 588 ESLII book



Ex: variance of ensemble prediction
• Animation shows tree and ensemble predictions on left for ! trees; 

variance of predictions in blue tree predictions doesn't change with the 
number of trees but red line get tighter / less noisy with more trees

• At " = 3, expected value of ensemble is 1.0; create 200 separate 
ensembles of size ! and compute variance of ensemble predictions at 
" = 3; distribution of ensemble average shown on the right

(Dashed line shows expected value)



• With real estate agent analogy, we implicitly assumed agents 
were independent thinkers, and not clones

• But, decision trees are like robot clones and, given the same bit 
of data, yield the exact same bit of tree

• Imagine worst case: bootstrapping yields ! identical sets so 
ensemble gives exactly the same prediction as any single tree

• In practice, if there is one strongly predictive var out of ", then 
all trees would be similar; initial root splits, and many others, 
would likely be same

Problem: trees are not independent thinkers



Random Forests
Ensembles of de-correlated bagged trees



Making trees independent thinkers
• Bagging overcomes most of the overfitting, but we can improve 

generality a little by further restricting the tree training process itself 
in an effort to make trees think more independently 

• Restrict the available features when searching for a decision node 
split; choose from ! randomly selected features (amnesia again!)

• Choose max features per split, ! ≤ #, such as ! = sqrt(#)
• Make sure chance of selecting predictive variables (!/#) is high 

enough to find predictive variables (See ESLII p596)
• Let validation error be your guide to choosing !
• A random forest is then just an ensemble of decision trees trained on 

bootstraps and whose feature selection strategy has a bit of amnesia



Ex: Effect of limiting feature set but using full data set

Choose from 5 randomly selected features during EACH split

2 trees trained on entire Boston set with !=5 (of 13)



If max_features too low, bad accuracy



Effect of forest size on accuracy
• Why does accuracy improve greatly 

(initially) as we add trees?
• Each tree sees only 2/3 of data so 

adding bootstrapped trees increases 
use of training data

• Variance is tightening quickly as we 
average even just a few trees

• Why does accuracy asymptotically 
approach a minimum instead of 
continual improvement?

• With enough trees, ensemble sees 
100% of the training data; it’s 
approaching the accuracy of single 
decision tree in ideal world

• We’ve squeezed out all bias and 
variance that we can with this model



Properties (see Breiman 2001)

• p4 “Random forests do not overfit as more trees are added” Why?

• New trees get averaged in so each additional tree has less individual effect

• New trees balance each other out, one might be too high, another too low

• p7 “It's relatively robust to ! outliers and " noise” Why?

• ! outliers get shunted to their own leaf since doing so reducing loss function,

particularly if squared-error is used

• Noise " variables aren’t predictive so not chosen as split vars

• p10 Bagging helps more, the more unstable the model. Why?

• Averaging is a smoothing operator, squeezing predictions to true value

• If model is low variance already, there is no point in bagging



Properties continued

• RFs are scale and range insensitive in features and target !Why?
• Comparing feature values in decision nodes, not doing math on them
• Computing mean or mode of ! to predict

• ESLII p596 “Classifiers are less sensitive to variance [than 
regressors]” Why?

• (not sure haha) I believe it has something to do with mode vs mean (mode 
is same until a threshold whereas mean is influenced by any value added, 
unless it is also the mean)



Bootstrapping vs subsampling

• Bootstrapping is sampling with replacement vs subsampling w/o 
replacement

• Friedman and Hall (2000): subsampling also works, showing 
that training trees with !/2 subsamples is similar in 
bias/variance to bagging

• Smaller training set is a big win in terms of speed

• Using even smaller fractions of ! improve generality (reduce 
variance) because trees are less correlated (they work on 
different data chunks); note that each tree would become less 
accurate as ! subsample size decreases

http://statweb.stanford.edu/~jhf/ftp/bag.pdf

!

http://statweb.stanford.edu/~jhf/ftp/bag.pdf


RF Tuning strategy

• Good news: very little tuning needed
• Goal: minimize validation error
• Start with maybe 20 trees and work upwards til validation error 

stops getting better; or just pick 100
• Sklearn uses max_features= sqrt(!) by default; try dropping this 

to log(!), or similar; ESLII suggests !/3 for regression and 
sqrt(!) for classification

• Try adjusting min samples per leaf: 1, 3, 5, 10, 25, 100
• Can also try grid search, but I never bother;

Start with num trees, then tune the others



Feature engineering beats
model tuning
• SalesID: unique record ID, and is never 

seen again in future predictions
• Is that useful for prediction? No
• Does the model think it’s useful? Yes
• Model is overfit not on noise but on 

falsely-predictive feature
• Could be that sales ID correlates with inflation 

or change in type of models sold in auction 
creates “trend” in sale prices

• A case where using LESS data improves 
the model a lot ($500 diff)

• Dropping useless features also often 
gives a small bump

W/o SalesID

With SalesID



The RF algorithmsThe RF algorithms



Fitting RFs

For regression, pass in loss = MSE or stddev
For classifier, pass in loss = gini



Fitting a single tree in RF Same as decision tree except
we pass max_features to
RFbestsplit()



Finding best split in decision node in RF

Pick, say, 11 not all possible X
values. We get better generality
and code is much faster!

Should pick midpoint between
split value and next smallest X

Only diff with decision tree



Simplest RF prediction (ESLII p588)

• But doesn’t use all information to make best prediction
• Should use weighted averages / votes



RF prediction
Weighted average of y values
among the leaves reached by
running x down each tree

Count all y votes among the leaves
reached by running x down each tree



Extremely randomized trees (Geurts et al 2006)
• The variable/value pair is highly sensitive to the training set, and 

responsible for much of the error rate
• “The optimal cut-point was shown to depend very strongly on the 

particular learning sample used…this cut-point variance appeared to 
be responsible for a significant part of the error rates of tree-based 
methods.”

• Geurts wondered if more randomness could reduce variance further
• Pick random split value in min(![:,j]) .. max(![:,j]), ignoring individual 

X_j values!
• Like RF, select " ≤ $ variables and choose var/value with lowest loss
• Fits using entire ! training set, not bootstrap and not subsample

(trying to increase accuracy of prediction/decrease noise)
• Our use of just 11 (not %) ! candidate values in the project is similar

(an effort to reduce variance and increase speed)

https://link.springer.com/article/10.1007/s10994-006-6226-1

https://link.springer.com/article/10.1007/s10994-006-6226-1


RF advantages
• Ensemble of decision trees trained on different bootstraps that 

sometimes forgetting about features during training
• Prediction is ensemble average or majority vote (weighted)
• Easy to understand, efficient, excellent accuracy, interpretable
• Very little tuning is required
• Gracefully handles label-encoded categorical variables, no 

need to normalize numerical variables
• Robust to noise in !, # and nonpredictive variables
• Built-in out of bag validation sets
• Negative: cannot extrapolate beyond support data


