
An Introduction to 
Machine Learning
The implementation and interpretation of key models

Terence Parr
MSDS program
University of San Francisco



Course topics

• Regularization of linear models (finishes off linear regression topic)
• Models (Naïve Bayes, kNN, Decision trees, Random Forests, DL)
• Model interpretation (feature importance)
• Clustering (k-means, hierarchical clustering)
• In ML Lab (sister course):

• Data clean up, feature engineering, dealing with missing data
• Model assessment (metrics, ROC/PR curves)

• A book to become familiar with:
• The Elements of Statistical Learning:

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

https://web.stanford.edu/~hastie/Papers/ESLII.pdf


Before we jump in…

• Let’s take a quick high-level overview, identify the key ideas
• What problem are we solving?
• What does it mean to train a model?
• Training data, features
• What doesn’t look like in Python?
• Model assessment
• Train, validate, test



Central problem of machine learning
• Given: 𝑋 is explanatory matrix, 𝑦 is the target or response

• Build a system that makes accurate future predictions based 
upon training data (𝑋, 𝑦) from the past

• BUT, w/o being overly-specific to this training data (don’t overfit)

observations
or

records

𝑋 𝑦

supervised

^



Regressor vs Classifier; 2 sides of same coin
• If target is numerical, model is a regressor
• If target is categorical, model is a classifier
• Regressors draw through data, classifiers draw between clusters

decision surfacescurve fit



Different models have different surfaces

We try to find a function, 𝑦 = 𝑓(𝒙), that predicts a value or class;
𝑓 is called the model and is a function of model parameters



The model is just the decision surface(s)

In a sense, a model is a condensation or compression of training data



Training (fitting) a model
• Distill training data into model parameters
• Hyperparameters control distillation,

parameters are the condensate
• Parameters:

• beta coefficients for linear model
• tree structure (split vars/vals, …) for decision tree
• kNN is extreme where data are the parameters

• Hyperparameters: num trees, learning rate, …
• A model = algorithm + parameters
• Algorithm could be linear math equation

or decision tree walker etc…
• Training is usually a lossy compression;

e.g., linear regression of 2 vars condenses 
any amount of data down to 3 floats!!

parameters

user-controlled
hyper-parameters

model

distilled from
data

model

training

X y



A good model is all about the features
• Good features are usually more important than the model
• Example: 3-word voice recognition, HMM vs Rocchio
• Focus on feature engineering not choosing the model
• Your default models:

• For structured data, use random forests or boosted trees
• For unstructured (like images), use neural networks (nets of linear models)

• Generally speaking, these models are tolerant of noise and 
superfluous features 

• Means we can throw every feature we can think of at model
• Caveat: deep learning computes its own features from raw data



Feature engineering

• Synthesize new features from existing features
• A few common synthesized features:

• frequency encoding; e.g., getting info about records from ID feature
• e.g., derive age from sale and manufacturing dates

• Or, derive from external sources; e.g., isholiday from date

Synthesized features



What training, prediction look like in code
• In scikit-learn, swapping out model is trivial:

• LinearRegression and RandomForest are objects representing 
models and hyperparameters go in as args to constructor

• We’re going to build our own versions as class projects

lm = LinearRegression()
lm.fit(X, y)

x = [[2, 1, 40.794, -74.00]]
y_pred = lm.predict(x)

rf = RandomForestRegressor()
rf.fit(X, y)

x = [[2, 1, 40.794, ...]]
y_pred = rf.predict(x)



Is our model any good?
• Define good? Good at what?
• My answer: good if model makes useful predictions on unknown, 
future feature vectors (it generalizes)

• Might not be super accurate, but if it’s better than a human can do, 
might still be useful

• We measure how close predictions are to known true responses, but 
on data not used to train model 

• If inaccurate on training data, model is biased
• If inaccurate on test set, model doesn't generalize (high variance)
• Regressors: R^2, MAE, MSE, RMSE, RMSLE
• Classifiers: accuracy, precision & recall, F1, confusion matrix, …



Train, validate, test

• One of the most important, fundamental ideas in ML
• See “The testing trilogy” in MML book[1]
• 3 sets of observations: training, validation, and test sets
• Model trains on training set; assess and tune with validation set
• NEVER peek at the test set; lock it away as first step
• Assess model w/test set as last step; it’s only true measure of generality
• Every change to model after testing with a data set tailors it to that set
• Validation strategies: k-fold CV, hold out, leave-1-out, out-of-bag (RF), …

3-fold cross-validation

[1] https://mlbook.explained.ai/bulldozer-testing.html#sec:trilogy

https://mlbook.explained.ai/bulldozer-testing.html


Simplified ML process
• Know what problem you’re solving; what is business case?
• Acquire data, do we have everything we need?
• Split into train, validation, test sets
• Sniff data, clean, deal with missing data
• Convert non-numeric features to numeric
• Repeat until satisfied

• Train a model using training set and specific hyperparameters
• Tune model (tweak hyperparameters), do feature engineering with 

validation set
• Last step: assess model performance on test set



Your model development environment

• See https://mlbook.explained.ai/tools.html
• Pandas, NumPy, matplotlib, scikit-learn (sklearn)
• Jupyter lab (or notebook)
• Install latest Anaconda for Python 3

https://mlbook.explained.ai/tools.html


Your library development environment

• You will create separate Python .py scripts and use unit tests as 
part of the projects

• I recommend PyCharm development environment (free) for 
creating python files, but you are free to use whatever you like

https://www.jetbrains.com/pycharm/download

https://www.jetbrains.com/pycharm/download


Getting started in MSDS621

• We’ll start with regularization to finish off linear models
• Then we’ll try to reinvent some common machine learning models
• As part of this class, you will build up a library of models
• Then, learn how to interpret model results
• Then an intro to deep learning with pytorch
• Etc…


