An Introduction to
Machine Learning

The implementation and interpretation of key models

Terence Parr
MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

Course topics

« Regularization of linear models (finishes off linear regression topic)
* Models (Naive Bayes, kNN, Decision trees, Random Forests, DL)
* Model interpretation (feature importance)

* Clustering (k-means, hierarchical clustering)

 In ML Lab (sister course):
« Data clean up, feature engineering, dealing with missing data
* Model assessment (metrics, ROC/PR curves)

* A book to become familiar with:

» The Elements of Statistical Learning:
https://web.stanford.edu/~hastie/Papers/ESLII.pdf

UNIVERSITY OF SAN FRANCISCO

https://web.stanford.edu/~hastie/Papers/ESLII.pdf

Before we jump In...

 Let’s take a quick high-level overview, identify the key ideas
« What problem are we solving?
« What does it mean to train a model?
 Training data, features
* What doesn’t look like in Python?
* Model assessment
 Train, validate, test

UNIVERSITY OF SAN FRANCISCO

Central problem of machine learning

« Given: X is explanatory matrix, y is the target or response

___ | r==-=-=-==°
|
|
’

bedrooms bathrooms latitude longitude ' ! price

observations | 3 1.5 407145 -73.9425 | 3000 |
or | 2 1.0 40.7947 -73.9667 | | 5465
records | 1 1.0 40.7388 -74.0018 | 2850 |
| 1 1.0 40.7539 -73.9677 | |

| 4 1.0 40.8241 -73.9493 | i

 Build a system that makes accurate future predictions based
upon training data (X, y) from the past

« BUT, w/o being overly-specific to this training data (don’t overfit)

UNIVERSITY OF SAN FRANCISCO

Regressor vs Classifier; 2 sides of same coin

* If target is numerical, model is a regressor

« If target is categorical, model is a classifier

* Regressors draw through data, classifiers draw between clusters
__~decision surfaces

curve fit
4
45 1 ° /
40
X 4
35 R 28
» @ o . - 5
O 304 be 08, 2 31 °¢ °©% &
o O@' e g (e} ") '(5\"(;;
225‘ . 5‘ ») 133 0
» (TR (ijo
20 A - o0
w ®
15 1 it it . 1
© () ®
10 A
1500 2000 2500 3000 3500 4000 4500 5000 200 400 600 800 1000 1200 1400 1600
Vehicle Weight Profline

~
\NJINT V .INJIL T 1] A | ~ Iy II\I_\I‘MISCO

Different models have different surfaces

45
40
35 o% 4
RN
M 30 b OO\
a e
2 25 * &
A
20 0 . @ @
w ©
15_ J j:’m“‘
© { .
10
1500 2000 2500 3000 3500 4000 4500 5000
Vehicle Weight

Flavanoid

800 1000 1200 1400 1600
Profline

We try to find a function, y = f(x), that predicts a value or class;
f is called the model and is a function of model parameters

UNIVERSITY OF SAN FRANCISCO

The model is just the decision surface(s)

45 57
40
4 4
35
S
o 30 8 3 4
L g
2 25 ©
L 24
20
15 1 1
10 -
1500 2000 2500 3000 3500 4000 4500 5000 200 400 600 800 1000 1200 1400 1600
Vehicle Weight Profline

In a sense, a model is a condensation or compression of training data

UNIVERSITY OF SAN FRANCISCO

Training (fitting) a model

« Distill training data into model parameters

» Hyperparameters control distillation,
parameters are the condensate

« Parameters:
 beta coefficients for linear model
* tree structure (split vars/vals, ...) for decision tree
* kKNN is extreme where data are the parameters

« Hyperparameters: num trees, learning rate, ...

* A model = algorithm + parameters

* Algorithm could be linear math equation
or decision tree walker etc...

 Training is usually a lossy compression;
e.g., linear regression of 2 vars condenses
any amount of data down to 3 floats!!

model
\ parameters
distilled from

data

training

, _é_user-controlled
4 W hyper-parameters

UNIVERSITY OF SAN FRANCISCO

A good model is all about the features

* Good features are usually more important than the model
« Example: 3-word voice recognition, HMM vs Rocchio
* Focus on feature engineering not choosing the model

* Your default models:
* For structured data, use random forests or boosted trees
» For unstructured (like images), use neural networks (nets of linear models)

» Generally speaking, these models are tolerant of noise and
superfluous features

 Means we can throw every feature we can think of at model
« Caveat: deep learning computes its own features from raw data

UNIVERSITY OF SAN FRANCISCO

Feature engineering

» Synthesize new features from existing features

« A few common synthesized features:
 frequency encoding; e.g., getting info about records from ID feature

* e.g., derive age from sale and manufacturing dates

modelid modelfreq saledate builddate age

0 101 0.25 2012-02-03 2010-01-28 736 days

1 992 010 2012-04-19 2005-09-10 2413 days
Synthesized features /

* Or, derive from external sources; e.g., isholiday from date

UNIVERSITY OF SAN FRANCISCO

What training, prediction look like in code

* In scikit-learn, swapping out model is trivial:

Ilm = LinearRegression() rf = RandomForestRegressor()
Im.fit(X, y) rf.fit(X, y)

x = [[2, 1, 40.794, -74.00]] x = [[2, 1, 40.794, ...]]
y_pred = Im.predict(x) y_pred = rf.predict(x)

 LinearRegression and RandomForest are objects representing
models and hyperparameters go in as args to constructor

» We're going to build our own versions as class projects

UNIVERSITY OF SAN FRANCISCO

Is our model any good?

 Define good? Good at what?

« My answer: good if model makes useful predictions on unknown,
future feature vectors (it generalizes)

« Might not be super accurate, but if it's better than a human can do,
might still be useful

« We measure how close predictions are to known true responses, but
on data not used to train model

« If inaccurate on training data, model is biased

« If inaccurate on test set, model doesn't generalize (high variance)
* Regressors: R*"2, MAE, MSE, RMSE, RMSLE

« Classifiers: accuracy, precision & recall, F1, confusion matrix, ...

UNIVERSITY OF SAN FRANCISCO

Train, validate, test —

train test
* One of the most important, fundamental ideas in ML 3-fold cross-validation

» See “The testing trilogy” in MML book[1]

3 sets of observations: training, validation, and test sets

» Model trains on training set; assess and tune with validation set
 NEVER peek at the test set; lock it away as first step

» Assess model w/test set as last step; it's only true measure of generality
» Every change to model after testing with a data set tailors it to that set

« Validation strategies: k-fold CV, hold out, leave-1-out, out-of-bag (RF), ...

[1] https://mIbook.explained.ai/bulldozer-testing.html#sec:trilogy UNIVERSITY OF SAN FRANCISCO

https://mlbook.explained.ai/bulldozer-testing.html

Simplified ML process

« Know what problem you’re solving; what is business case?
» Acquire data, do we have everything we need?

 Split into train, validation, test sets

 Sniff data, clean, deal with missing data

« Convert non-numeric features to numeric

« Repeat until satisfied
» Train a model using training set and specific hyperparameters

* Tune model (tweak hyperparameters), do feature engineering with
validation set

 Last step: assess model performance on test set

UNIVERSITY OF SAN FRANCISCO

Your model development environment

 See https://mlbook.explained.ai/tools.html

« Pandas, NumPy, matplotlib, scikit-learn (sklearn)

 Jupyter lab (or notebook)

* Install latest Anaconda for Python 3

[2]: import pandas as pd

df = pd.read_csv("data/rent-ideal.csv")

df.head(5) # print the first 5 rows of data

[:i2:] 2 bedrooms bathrooms latitude longitude
0 3 1.5 40.7145 -73.9425
1 2 1.0 40.7947 -73.9667
2 1 1.0 40.7388 -74.0018
3 1 1.0 407539 -73.9677
4 4 1.0 40.8241 -73.9493

price
3000
5465
2850
3275
3350

import pandas as pd

import matplotlib.pyplot as plt
fig, ax = plt.subplots()
ax.hist(df.price, bins=45)
plt.show()

4000

3500

3000 4

2500

2000

1500 -

1000 +

500 4

2000 4000 6000 8000

https://mlbook.explained.ai/tools.html

Your library development environment

 You will create separate Python .py scripts and use unit tests as
part of the projects

* | recommend PyCharm development environment (free) for
creating python files, but you are free to use whatever you like

.sectors.get(sector, []1):
. Shown .exposed(position):

@ show_block(self, position, immediate) Model
hide_secto @ show_sector(self, sector) Model
Model

Model

.shown:
.hide_block(position)

https://www.jetbrains.com/pycharm/download UNIVERSITY OF SAN FRANCISCO

https://www.jetbrains.com/pycharm/download

Getting started in MSDS621

« We'll start with regularization to finish off linear models

* Then we’ll try to reinvent some common machine learning models
 As part of this class, you will build up a library of models

* Then, learn how to interpret model results

* Then an intro to deep learning with pytorch

- Etc...

UNIVERSITY OF SAN FRANCISCO

