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We’ve been studying parametric models

• Parametric models have a finite number of parameters like 
linear model (𝛽! ’s), multinomial Naïve Bayes (P(c), P(w|c))

• Nonparametric models have an unbounded number of 
parameters (world’s worst name)

• (If number of model parameters change with different 𝑛 records, 
it’s nonparametric.  Neural nets have huge but finite number of 
parameters once net is constructed.)

• Random Forests (RF) and gradient boosting machines are 
nonparametric

🤪



General advice for choosing a model

• If you know that the relationship between 𝑋 and 𝑦 is linear, use 
a linear model; or, if you need an extreme compression of the 
training data down to a few coefficients

• If you know the relationship is nicely summarized by conditional 
probabilities, Naïve Bayes approach is a good one

• For unstructured data such as images, text, or signals, use 
deep learning neural networks (large number of parameters) 

• For structured data like database tables or Excel spreadsheets, 
use decision tree-based methods:  Random Forests (RF) or 
Gradient Boosting Machines (GBM)



Some basic structured data modeling advice
• That “choosing model” advice is solid in practice and reduces 

the number of models you need to study and understand
(e.g., you can ignore SVM, …)

• Remember: good features matter way more than the model
• Pick a decent model and then focus on feature engineering
• Know the strengths/weaknesses of your model; e.g., random 

forests don’t extrapolate outside of support region but 
parametric models tend to extrapolate

• Compare your model to a weaker model
• Sometimes a simpler model (e.g., linear model) is just as good
• Gives a good lower bound on accuracy
• Helps identify bugs in your code; e.g., when weaker model is better



Reinventing machine learning models

• Let’s imagine creating a model to predict SF rent prices
• What features, training data do we

need? What’s 𝑋 and 𝑦?
• Goal: generalize from training data
• How do people do it manually?

Find a few comparable apts and then predict average price
• That’s called a k-Nearest-Neighbor (kNN) model & is pretty good!

(more on this shortly)

Features Target

See https://mlbook.explained.ai/intro.html

https://mlbook.explained.ai/intro.html


Starting with extreme models
• Recall our goal: to build an accurate model without being overly 

specific to training data
• What if we simply memorized the training set? How could we use 

such a dictionary method to make predictions?
• The other extreme would be to compute the average rent price from 

all apt data, ignoring all features, and make that our sole prediction
• How would you describe the differences / tradeoffs between them?

• Dictionary has no bias (very accurate) but is not general (only works for 
training data)

• Average is inaccurate (biased) but is very general (applies to any apartment)
• Bias-generality tradeoff (bias-variance trade-off)

overfitting = not general

dict

mean



Dealing with uncertainty in target (prices)
• Aside from overfitting, what’s wrong with the dictionary method?
• It can’t handle multiple prices for identical apt feature vectors
• But, prices fluctuate from noise, errors, or exogenous features 

like square footage, view, proximity to BART, etc…
• Which/what price should our decent model return for data below?
• Merge identical records, recording mean(y) for prototype



Dealing with inexact feature matches

• Dictionaries are super rigid: they can’t deal with mismatched keys
• Feature vectors not found in the training data dictionary will get a 

“key not found” error, rather than a prediction!
• How can we predict prices for inexact matches?
• Scan all apartment records, find the closest match

(hard to measure distance for cat. variables like has_parking)
• Or, find the closest k matches and predict the average price (this 

is what real estate agents do; they are called “comps”); this is 𝑘-
nearest neighbor model, so let's look in more detail



Detour: k-nearest neighbors (kNN)
• kNN is less often used in practice, but it’s part of your education to 

understand how they work and kNN can still be very effective
• Regressor: get k observations closest to unknown x using Euclidean 

distance then predict average y from those k
• Classifier: get k observations closest to unknown x using Euclidean 

distance then predict most common class from those k
• Finding closest observations for large 𝑛 can be slow
• Simple: there is no training process but must choose suitable k
• Best if we normalize data due to use of Euclidean distances
• Requires distance metric, which is problematic for categoricals

See p14 in ESLII book



Sample kNN models

Classifier image credit:
http://scott.fortmann-roe.com/docs/BiasVariance.html

predict mean
k=3

unknown apt

1D k=3 regressor 2D k=1 classifier

Note: kNN regressors can’t extrapolate

http://scott.fortmann-roe.com/docs/BiasVariance.html


From kNN to decision trees



Feature space partitioning in rectangular 
hypervolumes not distance
• To avoid inefficiency and the distance metric requirement of kNN, we 

can partition feature space into rectangular hypervolumes 
• Each hypervolume would represent a prototypical apartment with 

similar features
• Predictions come from average 𝑦 (regressor) or most common class 

(classifier) in hypervolume
• Note similarities with kNN but hypervolumes chosen by partitioning 

rather than Euclidean distance
• No distance computation means:

• No need to normalize data
• Can partition (nominal/ordinal) categorical variables by subsets as "regions"



Example partitioning rules
• The goal is to split each feature into as many ranges as 

necessary to get accuracy but w/o creating so many tight 
regions we kill generality by overfitting to training data

• Rules for partitioning might look like:
if bedrooms == 1 and bathrooms == 1.0 and \

latitude >= 40.6661 and latitude <= 40.6663 and \
longitude >= -73.9882 and longitude <= -73.9402:

price = 2143  # average of apts in that range
if bedrooms == 2 and bathrooms == 1.0 and \

latitude >= 40.6661 and latitude <= 40.6663 and \
longitude >= -73.9882 and longitude <= -73.9402:

price = 2462  # average of apts in that range

Predict by testing rules until we find a match and get a price



Partitioning rules--prediction efficiency
• Unlike a dictionary, partitioning rules automatically:

• handle multiple identical apartments with different prices
• can make predictions for previously unseen feature combinations

• The number of feature ranges or “splits” tested by the model are a kind of a 
bias-generality “knob” we can turn up or down

• Potentially it’s very slow walking through many partitioning rules, so factor / 
nest the IF-rules to avoid redundant tests

if bathrooms == 1.0:
if latitude >= 40.6661 and latitude <= 40.6663 and \

longitude >= -73.9882 and longitude <= -73.9402:
if bedrooms == 1:

price = 2143
elif bedrooms == 2:

price = 2462
if …



Encoding partitioning rules as a tree
• Can encode those nested rules as tree data structure
• Internal nodes perform feature comparisons, leaves make predictions
• Leaves contain prices for all apts fitting

criteria on path from root down to that leaf
• Leaves represent feature-hypervolumes
• These are called decision trees
• By testing same feature many times, can

carve up feature space arbitrarily tightly
• Training finds feature & value to test in

each decision node (and when to stop
splitting feature space)



From decision trees to 
random forests



The problem with decision trees

• Decision trees overfit like crazy to the training data
• By default, they split feature space until each leaf has a single 

observation (apartment in this case); that is precise like dictionary 
but does not generalize very well

• We can control overfitting partially by
requiring a min number of observations
for leaf or restricting tree height

• A single-node decision tree degenerates to
our extreme model that predicts the mean



Randomness is your friend

• To prevent overfitting, we can weaken a decision tree by 
showing it a random subset of the training data (bagging)

• Bagging uses bootstrapping: from 𝑛 records, randomly select 𝑛
w/replacement

• To go further, degrade training so that it always forgets that 
some features exist when making splitting decisions

• Such individual decision trees are weaker and less accurate 
than regular decision trees but…



Random Forest (RF) regressors
• To compensate for weaker learners, we

can create lots of them
• Take the average of their predictions to get

overall prediction
• This is called ensemble learning and is an

excellent technique to increase accuracy
without a tendency to overfit

• RFs are crowd-sourcers; analogous to group of real estate agents 
looking for comparable apartments, and cooperating to estimate 
apartment price

• During training, agents independently select and visit apts
• Randomize to avoid visiting, say, only 1-bedroom apts
• Agents find different apt subsets with some overlap



RF classifiers

• RFs can predict classes too but take a majority vote among the 
decision tree classifiers, rather than predicting average 𝑦 value

• Each decision tree classifier leaf predicts the most common 
category from observations in that leaf

• Example classifier: predicting website
interest in apartments (low, medium, hi)

• (full lecture on RFs soon)



Key takeaways
• Parametric vs nonparametric models (fixed vs arbitrary parameters)
• Default model choice for structured data: RF or GBM
• Feature engineering much more important than the model
• Bias-generality tradeoff
• kNN: Find 𝑘 nearest feature vectors and then predict average 𝑦

(regressor) or most common 𝑦 (classifier); tesselates feature space
• Decision tree: partitions feature space into rectangular 
hypervolumes; predict average/most common 𝑦 in volume

• Random Forest: collection of decision trees trained on subset of 
training data and sometimes ignoring features; avg or majority vote 
among trees


