Intro to non-parametric
machine learning models

Terence Parr
MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

We’'ve been studying parametric models

« Parametric models have a finite number of parameters like
linear model (B;’s), multinomial Naive Bayes (P(c), P(w|c))

< Nonparametric models have an unbounded number of
parameters (world’s worst name)

* (If number of model parameters change with different n records,
it's nonparametric. Neural nets have huge but finite number of
parameters once net is constructed.)

« Random Forests (RF) and gradient boosting machines are
nonparametric

UNIVERSITY OF SAN FRANCISCO

General advice for choosing a model

* If you know that the relationship between X and y is linear, use
a linear model; or, if you need an extreme compression of the
training data down to a few coefficients

* If you know the relationship is nicely summarized by conditional
probabilities, Naive Bayes approach is a good one

* For unstructured data such as images, text, or signals, use
deep learning neural networks (large number of parameters)

 For structured data like database tables or Excel spreadsheets,
use decision tree-based methods: Random Forests (RF) or

Gradient Boosting Machines (GBM)

UNIVERSITY OF SAN FRANCISCO

Some basic structured data modeling advice

« That “choosing model” advice is solid in practice and reduces
the number of models you need to study and understand
(e.g., you can ignore SVM, ...)

« Remember: good features matter way more than the model
* Pick a decent model and then focus on feature engineering

« Know the strengths/weaknesses of your model; e.g., random
forests don’t extrapolate outside of support region but
parametric models tend to extrapolate

« Compare your model to a weaker model
« Sometimes a simpler model (e.g., linear model) is just as good
» Gives a good lower bound on accuracy
» Helps identify bugs in your code; e.g., when weaker model is better

UNIVERSITY OF SAN FRANCISCO

Reinventing machine learning models

 Let’'s imagine creating a model to predict SF rent prices

L. Features Target

* What featu res, tralnlng data do we | bedrooms bathrooms latitude longitude ! | price |
need? What's X and y’? : 3 1.5 407145 -73.9425!! 3000 !

| 2 1.0 407947 -73.9667 | | 5465 !

o . : i ! 1 1.0 40.7388 -74.0018 ;! 2850 |
Goal: generalize from training data 1 1o dorsme 730677 5275 |

4 1.0 40.8241 -73.9493 ! | 3350 !

« How do people do it manually? . S — 0. 0Bl Tese Jhecel
Find a few comparable apts and then predict average price

* That's called a k-Nearest-Neighbor (kKNN) model & is pretty good!
(more on this shortly)

. . UNIVERSITY OF SAN FRANCISCO
See https://mlbook.explained.ai/intro.html

https://mlbook.explained.ai/intro.html

Starting with extreme models

 Recall our goal: to build an accurate model without being overly
specific to training data

dict « What if we simply memorized the training set? How could we use
such a dictionary method to make predictions?

mean « The other extreme would be to compute the average rent price from
all apt data, ignoring all features, and make that our sole prediction

« How would you describe the differences / tradeoffs between them?

« Dictionary has no bias (very accurate) but is not general (only works for
training data)

» Average is inaccurate (biased) but is very general (applies to any apartment)
 Bias-generality tradeoff (bias-variance trade-off)

overfitting = not general UNIVERSITY OF SAN FRANCISCO

Dealing with uncertainty in target (prices)

 Aside from overfitting, what’s wrong with the dictionary method?
* [t can’t handle multiple prices for identical apt feature vectors

 But, prices fluctuate from noise, errors, or exogenous features
like square footage, view, proximity to BART, etc...

* Which/what price should our decent model return for data below?
* Merge identical records, recording mean(y) for prototype

bedrooms bathrooms Ilatitude Ilongitude price

1470 0 1.0000 40.7073 -73.9664 | 2650
36509 0 1.0000 40.7073 -73.9664 | 2850
39241 0 1.0000 40.7073 -73.9664 | 2950
46405 0 1.0000 40.7073 -73.9664 | 2850

UNIVERSITY OF SAN FRANCISCO

Dealing with inexact feature matches

 Dictionaries are super rigid: they can’t deal with mismatched keys

« Feature vectors not found in the training data dictionary will get a
“key not found” error, rather than a prediction!

 How can we predict prices for inexact matches?

« Scan all apartment records, find the closest match
(hard to measure distance for cat. variables like has_parking)

* Or, find the closest k matches and predict the average price (this
is what real estate agents do; they are called “comps”); this is k-
nearest neighbor model, so let's look in more detail

UNIVERSITY OF SAN FRANCISCO

Detour: k-nearest neighbors (kKNN)

* KNN is less often used in practice, but it's part of your education to
understand how they work and kNN can still be very effective

» Regressor: get k observations closest to unknown x using Euclidean
distance then predict average y from those k

« Classifier: get k observations closest to unknown x using Euclidean
distance then predict most common class from those k

 Finding closest observations for large n can be slow

« Simple: there is no training process but must choose suitable k
 Best if we normalize data due to use of Euclidean distances

« Requires distance metric, which is problematic for categoricals

See p14 in ESLII book UNIVERSITY OF SAN FRANCISCO

price

Sample KNN models

1D k=3 regressor
8000 A
6000 A
k=3 ’
4000 A ——— predict mean
. unknown apt
2000 { e

sgfoot

500 1000 1500 /2000

Note: KNN regressors can’t extrapolate

2D k=1 classifier

Classifier image credit:

http://scott.fortmann-roe.com/docs/BiasVariance.html

UNIVERSITY OF SAN FRANCISCO

http://scott.fortmann-roe.com/docs/BiasVariance.html

From KNN to decision trees

UNIVERSITY OF SAN FRANCISCO

Feature space partitioning in rectangular
hypervolumes not distance

 To avoid inefficiency and the distance metric requirement of kNN, we
can partition feature space into rectangular hypervolumes

« Each hypervolume would represent a prototypical apartment with
similar features

* Predictions come from average y (regressor) or most common class
(classifier) in hypervolume

* Note similarities with KNN but hypervolumes chosen by partitioning
rather than Euclidean distance

* No distance computation means:

* No need to normalize data
« Can partition (nominal/ordinal) categorical variables by subsets as "regions"

UNIVERSITY OF SAN FRANCISCO

Example partitioning rules

* The goal is to split each feature into as many ranges as
necessary to get accuracy but w/o creating so many tight
regions we kill generality by overfitting to training data

» Rules for partitioning might look like:

if bedrooms == 1 and bathrooms == 1.0 and \
latitude >= 40.6661 and latitude <= 40.6663 and \
longitude >= -73.9882 and longitude <= -73.9402:
price = 2143 # average of apts in that range
if bedrooms == 2 and bathrooms == 1.0 and \
latitude >= 40.6661 and latitude <= 40.6663 and \
longitude >= -73.9882 and longitude <= -73.9402:
price = 2462 # average of apts in that range

Predict by testing rules until we find a match and get a price
UNIVERSITY OF SAN FRANCISCO

Partitioning rules--prediction efficiency

» Unlike a dictionary, partitioning rules automatically:

» handle multiple identical apartments with different prices
« can make predictions for previously unseen feature combinations

* The number of feature ranges or “splits” tested by the model are a kind of a

bias-generality “knob” we can turn up or down

» Potentially it's very slow walking through many partitioning rules, so factor /

nest the IF-rules to avoid redundant tests

if bathrooms == 1.0:
if latitude >= 40.6661 and latitude <= 40.6663 and \
longitude >= -73.9882 and longitude <= -73.9402:
if bedrooms ==
price = 2143
elif bedrooms ==
price = 2462
if ..

UNIVERSITY OF SAN FRANCISCO

Encoding partitioning rules as a tree

« Can encode those nested rules as tree data structure
* Internal nodes perform feature comparisons, leaves make predictions

 Leaves contain prices for all apts fitting bathrooms
criteria on path from root down to that leaf Z K
 Leaves represent feature-hypervolumes 40.6661<=1ati tude<=40. 6663
. . i true
» These are called decision trees
. . -73.9882<=1ongitude<=-73.9402
- By testing same feature many times, can 7SS e
carve up feature space arbitrarily tightly -
edrooms
» Training finds feature & value to test in / X
each decision node (and when to stop N AP S
splitting feature space) 00,2350 20,200

1800

UNIVERSITY OF SAN FRANCISCO

From decision trees to
random forests

UNIVERSITY OF SAN FRANCISCO

The problem with decision trees

 Decision trees overfit like crazy to the training data

« By default, they split feature space until each leaf has a single
observation (apartment in this case); that is precise like dictionary
but does not generalize very well

* We can control overfitting partially by e
requiring a min number of observations .
for leaf or restricting tree height 2]

* A single-node decision tree degenerates to °- ; - -
our extreme model that predicts the mean x

UNIVERSITY OF SAN FRANCISCO

Randomness is your friend

 To prevent overfitting, we can weaken a decision tree by
showing it a random subset of the training data (bagging)

« Bagging uses bootstrapping: from n records, randomly select n
w/replacement

 To go further, degrade training so that it always forgets that
some features exist when making splitting decisions

 Such individual decision trees are weaker and less accurate
than regular decision trees but...

UNIVERSITY OF SAN FRANCISCO

Random Forest (RF) regressors

Ensemble of overfit models

6_
* To compensate for weaker learners, we
can create lots of them 4-

 Take the average of their predictions to get
overall prediction o

 This is called ensemble learning and is an o-
excellent technique to increase accuracy 0 1 2 3 4
without a tendency to overfit

« RFs are crowd-sourcers; analogous to group of real estate agents
looking for comparable apartments, and cooperating to estimate
apartment price

 During training, agents independently select and visit apts
« Randomize to avoid visiting, say, only 1-bedroom apts
« Agents find different apt subsets with some overlap
UNIVERSITY OF SAN FRANCISCO

RF classifiers

« RFs can predict classes too but take a majority vote among the
decision tree classifiers, rather than predicting average y value

« Each decision tree classifier leaf predicts the most common

category from observations in that leaf bathrooms
e . : /N2
« Example classifier: predicting website \
interest in apartments (low, medium, hi) 2@00<=/pr‘ice<=25®0
true
* (full lecture on RFs soon)
bedrooms
N
med,med hi,med,

hi,hi
UNIVERSITY OF SAN FRANCISCO

Key takeaways

« Parametric vs nonparametric models (fixed vs arbitrary parameters)
 Default model choice for structured data: RF or GBM

* Feature engineering much more important than the model
 Bias-generality tradeoff

« KNN: Find k nearest feature vectors and then predict average y
(regressor) or most common y (classifier); tesselates feature space

 Decision tree: partitions feature space into rectangular
hypervolumes; predict average/most common y in volume

« Random Forest: collection of decision trees trained on subset of
training data and sometimes ignoring features; avg or majority vote
among trees

UNIVERSITY OF SAN FRANCISCO

