Naïve Bayes classifiers

Terence Parr
MSDS program
University of San Francisco

Common problem: detect spam tweets

- Q . Is the following tweet spam or ham (not spam)?
- Without knowledge of content, what's the best we can do?

SPAM at big package store
UNIVERSITY OF SAN FRANCISCO

Common problem: detect spam tweets

- Q. Is the following tweet spam or ham (not spam)?
- Without knowledge of content, what's the best we can do?
- Use prior knowledge about relative likelihoods of spam/ham
- If a priori, we know 75% of tweets are spam, always guess spam
- (Note: this is solving same problem as, say, article topic classification)

Our base model

- If 75% of tweets are spam, always guessing spam gives us a baseline of 75% accuracy (which we hope to surpass)
- Accuracy has formal definition: \% correctly-identified tweets
- A superior model must do better than 75% accuracy
- What if a priori spam rate was 99% ? Model has 99% accuracy
- That hints that accuracy can be very misleading by itself and for imbalanced datasets[1]
- How can we do better than just the a priori probabilities?

Better model using knowledge of content

- If we can see tweet words, we have more to go on; e.g.,

Viagra sale Buy catfood

- Given "Viagra sale", how do you know it's spam? Because we know:

$$
P(\text { spam | Viagra } \cap \text { sale })>P(\text { ham | Viagra } \cap \text { sale })
$$

- We know that (partially) because "Viagra sale" is much more likely to appear in spam emails than in ham emails:

$$
\begin{aligned}
& \mathrm{P}(\text { Viagra } \cap \text { sale } \\
& \mathrm{P}(\text { Viagra } \cap \text { sam }) \text { is high } \\
& \text { ham })
\end{aligned} \text { is low }
$$

- Likewise, we know "Buy catfood" is unlikely to occur in spam email

Model based upon tweet likelihoods

－Predict spam if：
$P($ Viagra \cap sale \mid spam $)>P($ Viagra \cap sale \mid ham $)$
－Predict ham if：
$P($ Viagra \cap sale $\|$ spam $)<P($ Viagra \cap sale $\|$ ham $)$
－This model works great but makes an assumption by not taking into consideration what knowledge？The a priori probabilities； assumes equal priors

Model combining priors and content info

- Predict spam if:
$P($ spam $) P($ Viagra \cap sale \mid spam $)>P($ ham $) P($ Viagra \cap sale \mid ham $)$
- Predict ham if:
$\mathrm{P}($ spam $) \mathrm{P}($ Viagra \cap sale \mid spam $)<\mathrm{P}($ ham $) \mathrm{P}($ Viagra \cap sale \mid ham $)$
- We are weighting the content likelihoods by prior overall spam rate
- If spam-to-ham priors are .5-to-. 5 the prior terms cancel out

Are these computations probabilities?

- Do these terms sum to 1.0 after weighting (covering all likelihood)?
- P(spam)P(Viagra \cap sale | spam) $+\mathrm{P}($ ham $) P($ Viagra \cap sale \mid ham $) \neq 1$
- Nope. Must normalize term by dividing by (unconditional) probability of ever seeing that specific word sequence:

$$
\mathrm{P}(\text { Viagra } \cap \text { sale })
$$

- Dividing by the marginal probability makes the terms fractions of the possibilities:

$$
\frac{P(\text { Viagra } \cap \text { sale } \mid \text { spam })}{P(\text { Viagra } \cap \text { sale })}
$$

- Answers "How much of unconditional does conditional cover?"

Yay! You've just reinvented Bayes Theorem

- Normalized likelihood decision rule:
$\frac{\mathrm{P}(\text { spam }) \mathrm{P}(\text { Viagra } \cap \text { sale } \mid \text { spam })}{\mathrm{P}(\text { Viagra } \cap \text { sale })} \gtrless \frac{\mathrm{P}(\text { ham }) \mathrm{P}(\text { Viagra } \cap \text { sale } \mid \text { ham })}{\mathrm{P}(\text { Viagra } \cap \text { sale })}$
- Says how to adjust a priori knowledge of spam rate with tweet content evidence

Maximum a posteriori classifier

- Choose class/category for document d with max likelihood:

$$
c^{*}=\operatorname{argmax} P(c \mid d)
$$

- Substitute Bayes' theorem:

$$
c^{*}=\underset{c}{\operatorname{argmax}} \frac{P(c) P(d \mid c)}{P(d)}
$$

Bayes' theorem

$$
P(c \mid d)=\frac{P(c) P(d \mid c)}{P(d)}
$$

- You will often see the classification decision rule called the Bayes test for minimum error.

$$
\mathrm{P}\left(c_{1} \mid d\right) \gtrless \mathrm{P}\left(c_{2} \mid d\right)
$$

Simplifying the classifier

- $P(d)$ is constant on both sides so we can drop it for classification:

$$
c^{*}=\underset{c}{\operatorname{argmax}} P(c) P(d \mid c)
$$

- If $\mathrm{P}(c)$ is same for all c OR we don't know $\mathrm{P}(c)$, we drop that too:

$$
c^{*}=\underset{c}{\arg \max } P(d \mid c)
$$

Training the classifier

- We need to estimate $P(c)$ and $P(d \mid c)$ for all c and d
- Estimating $\mathrm{P}(c)$? The number of documents in class c divided by the total number of documents; e.g., frequency of spam docs
- Estimating $\mathrm{P}(d \mid c)$? E.g., we need $\mathrm{P}($ Viagra \cap sale \mid spam $)$
- That means considering all 2-word combinations (bigrams); ngrams grow exponentially with length n !
- For 10 word tweet we need to estimate probability of a 10-gram; considering all 10 -grams is intractable

The naïve assumption

- Naïve assumption: conditional independence; Estimate $\mathrm{P}($ Viagra \cap sale | ham $)$ as $\mathrm{P}($ Viagra | ham $) \times \mathrm{P}($ sale | ham $)$

$$
P(d \mid c)=\prod_{w \in d} P(w \mid c)
$$

- So, our classifier becomes

$$
c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in d} P(w \mid c)
$$

- where w is each word in d with repeats, not V (vocabulary words)

Fixed-length word-count vectors

- Rather than arbitrary-length word vectors for each document d, it's much easier to use fixed-length vectors of size |V| with word counts:

$$
c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in d} P(w \mid c)
$$

becomes:

$$
c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in V} P(w \mid c)^{n_{w}(d)}
$$

(If w not present in document, exponent goes to 0 , which drops out $\mathrm{P}(w \mid c)$ for that w)

Estimating $\mathrm{P}(w \mid c)$

- Use the number of times w appears in all documents from class c divided by the total number of words (including repeats) in all documents from class c :

$$
P(w \mid c)=\frac{w o r d c o u n t}{}(w, c) \frac{1}{w o r d c o u n t}(c) \quad
$$

- Or, use num docs with w divided by number of docs (which could be better with really short docs like tweets)

What if w never used in docs of class c ? Laplace smoothing

- If $\mathrm{P}(w \mid c)=0$ then the entire product goes to zero. Ooops!

$$
c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in V} P(w \mid c)^{n_{w}(d)}
$$

- To avoid, add 1 to each word count in numerator and compensate by adding $|\mathrm{V}|$ to denominator (to keep a probability)

$$
P(w \mid c)=\frac{w o r d c o u n t}{}(w, c)+1
$$

- (We have added +1 to each word count in V and there are $|\mathrm{V}|$ words in each word-count vector)

Dealing with "mispeled" or unknown words

- Laplace smoothing deals with w that is in the vocabulary V but not in class c: i.e., when $\mathrm{P}(w \mid c)=0$ such as $\mathrm{P}($ viagra|ham $)=0$
- What should wordcount(w, c) be for a word not in V when classifying new doc? Zero doesn't seem right; OTOH, if wordcount(w, c)=0 for all classes, classifier is not biased
- Instead: map all unknown w to a wildcard word in V so then wordcount(unknown,c) $=0$ is ok but $|\mathrm{V}|$ is 1 word longer
- Likely not a huge factor...
- Store count of unknown words in word vector at index 0; the wordcount(unknown,c) is same for all c so not biased
- Likelihood of any unknown word is small: 1 / (wordcount(c) + |V|+1)

Avoiding floating point underflow

- In practice, multiplying lots of probabilities in $[0,1]$ range tends to get too small to represent with finite floating-point numbers
- Take log (a monotonic function) and product becomes summation

$$
\begin{gathered}
c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in V} P(w \mid c)^{n_{w}(d)} \\
c^{*}=\underset{c}{\operatorname{argmax}}\left\{\log (P(c))+\sum_{w \in V} n_{w}(d) \times \log (P(w \mid c))\right\}
\end{gathered}
$$

An example

Documents as word-count vectors

- One column per vocab word, one row per document

Estimating probabilities: $\mathrm{P}(w \mid$ spam $)$

- 1st, get total word count in spam category: sum across rows or cols then sum that result
- wordcount(spam) = spam. sum(axis=1).sum()
spam

	unknown	buy	catfood	eggs	free	sale	viagra	
$\mathbf{0}$	0	0	0	0	0	2	1	3
1	0	0	0	0	4	0	3	7
					wordcount(spam) $=10$			

$$
P(w \mid c)=\frac{\operatorname{wordcount}(w, c)+1}{\operatorname{wordcount}(c)+|V|+1}
$$

Estimating probabilities: $\mathrm{P}(w \mid$ spam $)$

- 2 nd, get total count for each word in spam docs, wordcount(w,spam)
spam

$$
P(w \mid c)=\frac{\operatorname{wordcount}(w, c)+1}{\operatorname{wordcount}(c)+|V|+1}
$$

Estimating probabilities: $\mathrm{P}(w \mid$ spam $)$

- $3^{\text {rd }}$, compute $\mathrm{P}(w \mid$ spam $)$ w/smoothing \& unknown word adjustment - wordcount(w,spam) $+1=$ unknown buy catfood eggs free sale viagra $\begin{array}{lllllll}1 & 1 & 1 & 1 & 5 & 3 & 5\end{array}$
- wordcount(spam) $+|V|+1=10+6+1=17$

$P(w \mid$ spam $) \rightarrow$	unknown	buy	catfood	eggs	free	sale	viagra
0.058824	0.058824	0.058824	0.058824	0.294118	0.176471	0.294118	

$$
P(w \mid c)=\frac{\operatorname{wordcount}(w, c)+1}{\operatorname{wordcount}(c)+|V|+1}
$$

Estimate $\mathrm{P}(c \mid w)$ w/o $\mathrm{P}(d)$ normalization

- Dot product of X matrix with \log of $\mathrm{P}(w \mid c)$ vector, add $\log (P(c))$ | $\log (0.5)+1^{*} \log (0.294118)$ | $+2^{*} \log (0.176471)$ |
| ---: | :--- |
| d1 $=$ "sale viagra sale" | -5.386125 |

d2 = "free viagra free viagra free viagra free" -9.259575 -18.647793 d3 = "buy catfood and buy eggs" -12.026001 -6.388596
d4 = "buy eggs" -6.359574 -3.338139
$c^{*}=\underset{c}{\operatorname{argmax}}\left\{\log (P(c))+\sum_{w \in V} n_{w}(d) \times \log (P(w \mid c))\right\}$

Key takeaways

- Naïve bayes is classifier applied to text classification; e.g., spam/ham, topic labeling, etc...
- Less often used these days with rise of deep learning
- Fixed-length "bag of words" vectors are the feature vector per doc
- Bayes theorem gives formula for $P(c \mid d)$
- Naïve assumption is conditional independence $\longrightarrow P(d \mid c)=\prod_{w \in d} P(w \mid c)$
- Training estimates $\mathrm{P}(c), \mathrm{P}(w \mid c)$ for each w and c
- $\mathrm{P}(c)$ is ratio of docs in c to overall number of docs
- $\mathrm{P}(w \mid c)$ is ratio of word count of w in c to total word count in c
- Classifier: $c^{*}=\underset{c}{\operatorname{argmax}} P(c) \prod_{w \in V} P(w \mid c)^{n_{w}(d)}$

Implementation takeaways

- Avoid vanishing floating-point values from product; take log:

$$
c^{*}=\underset{c}{\operatorname{argmax}}\left\{\log (P(c))+\sum_{w \in V} n_{w}(d) \times \log (P(w \mid c))\right\}
$$

- Avoid $\mathrm{P}(w \mid c)=0$ via Laplace smoothing
- add 1 to all word counts
- adjust $\mathrm{P}(w \mid c)$ denominator with $|\mathrm{V}|$ since every doc now has every word
- this is for missing words where w not in c but in V
- Treat test doc words w not in V, unknown words, as likelihood: $1 /($ wordcount(c) $+|V|+1)$

Lab time

- Exploring Naïve Bayes
https://github.com/parrt/msds621/blob/master/labs/bayes/naive-bayes.ipynb

