
Naïve Bayes classifiers
Terence Parr
MSDS program
University of San Francisco

Common problem: detect spam tweets

• Q. Is the following tweet spam or ham
(not spam)?

• Without knowledge of content, what’s the
best we can do?

SPAM at big package store

Common problem: detect spam tweets
• Q. Is the following tweet spam or ham (not spam)?

• Without knowledge of content, what’s the best we can do?
• Use prior knowledge about relative likelihoods of spam/ham
• If a priori, we know 75% of tweets are spam, always guess spam
• (Note: this is solving same problem as, say, article topic

classification)

Our base model

• If 75% of tweets are spam, always guessing spam gives us a
baseline of 75% accuracy (which we hope to surpass)

• Accuracy has formal definition: % correctly-identified tweets
• A superior model must do better than 75% accuracy
• What if a priori spam rate was 99%? Model has 99% accuracy
• That hints that accuracy can be very misleading by itself and for

imbalanced datasets[1]
• How can we do better than just the a priori probabilities?

[1] The Relationship Between Precision-Recall and ROC Curves
https://www.biostat.wisc.edu/~page/rocpr.pdf

https://www.biostat.wisc.edu/~page/rocpr.pdf

Better model using knowledge of content
• If we can see tweet words, we have more to go on; e.g.,

• Given “Viagra sale”, how do you know it’s spam? Because we know:
P(spam | Viagra ∩ sale) > P(ham | Viagra ∩ sale)

• We know that (partially) because “Viagra sale” is much more likely to
appear in spam emails than in ham emails:

P(Viagra ∩ sale | spam) is high
P(Viagra ∩ sale | ham) is low

• Likewise, we know “Buy catfood” is unlikely to occur in spam email

Viagra sale Buy catfood

Model based upon tweet likelihoods

• Predict spam if:

P(Viagra ∩ sale | spam) P(Viagra ∩ sale | ham)

• Predict ham if:

P(Viagra ∩ sale | spam) P(Viagra ∩ sale | ham)

• This model works great but makes an assumption by not taking
into consideration what knowledge? The a priori probabilities;

assumes equal priors

>

<

Model combining priors and content info

• Predict spam if:

P(spam)P(Viagra ∩ sale | spam) P(ham)P(Viagra ∩ sale | ham)

• Predict ham if:

P(spam)P(Viagra ∩ sale | spam) P(ham)P(Viagra ∩ sale | ham)

• We are weighting the content likelihoods by prior overall spam rate
• If spam-to-ham priors are .5-to-.5 the prior terms cancel out

>

<

Are these computations probabilities?
• Do these terms sum to 1.0 after weighting (covering all likelihood)?

• P(spam)P(Viagra ∩ sale | spam) + P(ham)P(Viagra ∩ sale | ham) ≠ 1
• Nope. Must normalize term by dividing by (unconditional)

probability of ever seeing that specific word sequence:

P(Viagra ∩ sale)

• Dividing by the marginal probability makes the terms fractions of
the possibilities:

• Answers “How much of unconditional does conditional cover?”

P(Viagra ∩ sale | spam)
P(Viagra ∩ sale)

Imagine
P(spam) =
P(ham) = 0.5
and .7 for
conditional
probabilities,
sum is 0.7!=1

Yay! You’ve just reinvented Bayes Theorem

• Normalized likelihood decision rule:

• Says how to adjust a priori knowledge of spam rate with tweet
content evidence

><
P(spam)P(Viagra ∩ sale | spam)

P(Viagra ∩ sale)
P(ham)P(Viagra ∩ sale | ham)

P(Viagra ∩ sale)

Maximum a posteriori classifier
• Choose class/category for document d with max likelihood:

• Substitute Bayes’ theorem:

• You will often see the classification decision rule called the
Bayes test for minimum error:

P(𝑐! | d) ≷ P(𝑐" | d)

Bayes’ theorem

Simplifying the classifier

• P(d) is constant on both sides so we can drop it for classification:

• If P(c) is same for all c OR we don't know P(c), we drop that too:

Training the classifier

• We need to estimate P(c) and P(d | c) for all c and d
• Estimating P(c)? The number of documents in class c divided by

the total number of documents; e.g., frequency of spam docs
• Estimating P(d | c)? E.g., we need P(Viagra ∩ sale | spam)
• That means considering all 2-word combinations (bigrams); n-

grams grow exponentially with length n!
• For 10 word tweet we need to estimate probability of a 10-gram;

considering all 10-grams is intractable

The naïve assumption
• Naïve assumption: conditional independence; Estimate

P(Viagra ∩ sale | ham) as P(Viagra | ham) x P(sale | ham)

• So, our classifier becomes

• where w is each word in d with repeats, not V (vocabulary words)

Fixed-length word-count vectors
• Rather than arbitrary-length word vectors for each document d, it’s

much easier to use fixed-length vectors of size |V| with word counts:

becomes:

(If w not present in document, exponent goes to 0, which drops out P(w|c) for that w)

Estimating P(w | c)
• Use the number of times w appears in all documents from

class c divided by the total number of words (including
repeats) in all documents from class c:

• Or, use num docs with 𝑤 divided by number of docs
(which could be better with really short docs like tweets)

What if w never used in docs of class c?
Laplace smoothing
• If P(w | c) = 0 then the entire product goes to zero. Ooops!

• To avoid, add 1 to each word count in numerator and
compensate by adding |V| to denominator (to keep a probability)

• (We have added +1 to each word count in V and
there are |V| words in each word-count vector)

Dealing with “mispeled” or unknown words
• Laplace smoothing deals with w that is in the vocabulary V but not in

class c: i.e., when P(w | c) = 0 such as P(viagra|ham)=0
• What should wordcount(w,c) be for a word not in V when classifying

new doc? Zero doesn’t seem right; OTOH, if wordcount(w,c)=0 for all
classes, classifier is not biased

• Instead: map all unknown w to a wildcard word in V so then
wordcount(unknown,c)=0 is ok but |V| is 1 word longer

• Likely not a huge factor…
• Store count of unknown words in

word vector at index 0;
the wordcount(unknown,c) is same for all c so not biased

• Likelihood of any unknown word is small: 1 / (wordcount(c) + |V| + 1)

Avoiding floating point underflow
• In practice, multiplying lots of probabilities in [0,1] range tends to

get too small to represent with finite floating-point numbers
• Take log (a monotonic function) and product becomes summation

An example

Documents as word-count vectors
• One column per vocab word, one row per document

d1 = "sale viagra sale"
d2 = "free viagra free viagra free viagra free"
d3 = "buy catfood, buy eggs"
d4 = "buy eggs"

spam or ham
column for
unknown
words

Note:
|V|=6
+1 for unknown

Priors:
P(spam) = 2/4
P(ham) = 2/4

X matrix

D
oc

um
en

t

Estimating probabilities: P(w | spam)

• 1st, get total word count in spam category: sum across rows or
cols then sum that result

• wordcount(spam) =
spam

spam.sum(axis=1).sum()

3

7

10wordcount(spam) =

Estimating probabilities: P(w | spam)

• 2nd, get total count for each word in spam docs, wordcount(w,spam)
spam

0 0 0 4 2 4
10 10 10 10 10 10

Estimating probabilities: P(w | spam)

• 3rd, compute P(w|spam) w/smoothing & unknown word adjustment
• wordcount(w,spam) + 1 =

• wordcount(spam)+|V|+1 = 10+6+1=17

P(w | spam) →

Estimate P(c|w) w/o P(d) normalization
• Dot product of X matrix with log of P(w|c) vector, add log(P(c))

d1 = "sale viagra sale”

d2 = "free viagra free viagra free viagra free"

d3 = "buy catfood and buy eggs"

d4 = "buy eggs"

log(0.5) + 1*log(0.294118) + 2*log(0.176471)

Key takeaways
• Naïve bayes is classifier applied to text classification; e.g.,

spam/ham, topic labeling, etc…
• Less often used these days with rise of deep learning
• Fixed-length "bag of words" vectors are the feature vector per doc
• Bayes theorem gives formula for P(c|d)
• Naïve assumption is conditional independence
• Training estimates P(c), P(w|c) for each w and c
• P(c) is ratio of docs in c to overall number of docs
• P(w|c) is ratio of word count of w in c to total word count in c
• Classifier:

Implementation takeaways

• Avoid vanishing floating-point values from product; take log:

• Avoid P(w|c)=0 via Laplace smoothing
• add 1 to all word counts
• adjust P(w|c) denominator with |V| since every doc now has every word
• this is for missing words where w not in c but in V

• Treat test doc words w not in V, unknown words, as likelihood:
1 / (wordcount(c) + |V| + 1)

Lab time

• Exploring Naïve Bayes
https://github.com/parrt/msds621/blob/master/labs/bayes/naive-bayes.ipynb

https://github.com/parrt/msds621/blob/master/labs/bayes/naive-bayes.ipynb

