
Model assessment
How good is my model and how do I properly test it?

Terence Parr
MSDS program
University of San Francisco



Terminology: Loss function vs metric
• Loss function: minimized to train a model (if appropriate)

E.g., gradient descent uses loss to train regularized linear models
• Metric: evaluate accuracy of predictions compared to known results 

(the business perspective, usually done on validation/test set)
• Both are functions of 𝑦 and "𝑦, but loss is also possibly func of model 

parameters (e.g., linear model regularization loss tests parameters)
• Examples:

• Train: MSE loss & Test: MSE metric
• Train: MSE loss & Test: MAE metric
• Train: Gini impurity & Test: misclassification or FP/FN metric

• If metric is applied to validation or test set, informs on generality and 
quality of your model

See also stackoverflow post by Chstiros Tsatsoulis: https://goo.gl/T5AmrT

https://goo.gl/T5AmrT


Accuracy, generality, & training-test sets
• A model can be inaccurate/noisy but not biased; to me, bias

means systematically always under-predicting or always
over-predicting

• We measure accuracy (bias oftened used as shorthand) and 
generality by comparing predictions to known results, usually with 
the same metric

• But, how can we measure two things with the same metric?
• We compare metrics computed on two data sets pulled from the 

same distribution (hopefully): training and validation/test sets
• Summary: goal is high accuracy on the test set because it implies 

generality (and also high accuracy / low bias)
• So, let's look at how to break up our data into different sets



Train, validate, test
• This might be the most important slide of entire class!
• We always need 3 data sets with known answers:

• training (used to train model)
• validation (as shorthand you’ll hear me / others call this test set)
• testing (put in a vault and don’t peek!!)

• Validation set: used to evaluate, tune models and features
• Any changes you make to model tailor it to this specific validation set

• Test set: used exactly once after you think you have best model
• The only true measure of model’s generality, how it’ll perform in production
• Never use test set to tune model

• Production: recombine all sets back into a big training set again, 
retrain model but don’t change it according to test set metrics



How to extract validation, test sets
• Extract random subsets; perhaps 

70%/15%/15%; can shuffle then chop
• Or, grab 15% test set (and hide it away) & 

use RF OOB or cross-fold on remainder for 
train/valid

• For RF, we can start with out-of-bag score
• Ensure validation set has same properties 

as test set (e.g., size, time, …):
• if 10k samples in test, make 10k sample 

validation set
• if test set is latest 2 months, validation must be 

latest 2 months of remaining data

train va
lid tes
t

train/valid
(cross-fold, OOB)

tes
t



• Get X, y from dataframe, then use train_test_split() to split:

• Train model with training data, test with other set:

Mechanics of splitting, testing validation set

X = df.drop('price', axis=1)
y = df['price']
X_train, X_test, y_train, y_test = \

train_test_split(X, y, 0.20)

rf = RandomForestRegressor()
rf.fit(X_train, y_train)
r2 = rf.score(X_test, y_test)

y_pred = rf.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)

Or:



Key question: is your data time-sensitive?
• Time series sometimes obvious: temperature, stock prices, sales, 

inflation, city population, …
• You can try to detrend the data to flatten average 𝑦 etc…
• Almost all data sets are time sensitive in some way (boo!)
• Some data sets are skewed over time even if no date column; e.g., new 

users to facebook are different over time
• Try to find things that are less time dependent; e.g., air conditioning 

sales appear to fluctuate over time but these sales are driven more by 
associated temperature and humidity than date

• Create lagging windows; e.g., average sales per day over the last week
• Try to convert absolute dates (and date-related variables) to relative 

variables, such as age computed from salesdate - manufacturingdate



Splitting time-sensitive data sets

• If your data set is time-sensitive, 
do not shuffle: sort by date then 
use newest rows as valid/test sets

• This means OOB cannot be used 
for time-sensitive data sets as it 
randomly selects test records

df = df.sort_values('saledate')
n_train = len(df)-n_valid
df_train = df[:n_train]
df_valid = df[n_train:]



Testing strategies

train valid

trainvalid

train va
lid tes
t

train/valid
(cross-fold, OOB)

tes
t

train va
lid

Always split out test set Validation cross-fold or leave-one-out

Or,



Metrics interpretation
• Basic idea: for each test record, compute error using 𝑦 and "𝑦; 

the metric is then usually the average of these errors
• Perspective: Is 99% vs 99.5% accuracy difference 2x (from 

100%) or 0.5%? What about 80% vs 90%? 10% diff but also 2x
• As we approach 100%, getting better is tougher and tougher
• Is 90% accuracy or R^2=0.8 good? Maybe. What are lower 

bounds from a simpler or trivial mode? 
• Classifiers must beat a priori probabilities

• If 90% of email are spam, your model must beat 90% accuracy
• Regressors should beat “mean model” and linear model
• Can crappy model outperform a human? Can still be useful



Training loss/metric isn't that useful
• Training score not really 

useful by itself because, 
for example, we can get 
good fit for random data 
X → y with 1000 x 4 data, 
R^2=.85

• Actually, if training score 
is low, model is too weak

• Or, dataset is missing 
exogenous vars like “we 
had a sale that day” or 
“closed on holidays”

• If training score is low, 
test score will also be low

WOW!



What if training score is good but 
validation is very bad?
• Overfit model?
• Bad validation set?

(didn’t extract random or time-sorted set or just given bad set?)
• Time-sensitive data set diverging? (try detrending data)
• Not properly applying feature transforms from training to 

validation set?
• Bug?



0
0
0

Train
(X,y)

Test
(X,y)

0
1

1
1
1

X’ y’

Comparing training / validation sets
• Process to see if valid (or test) set is distinguishable from train set

1. Combine both 𝑋 and 𝑦 from train & valid sets into single data set
2. Create new target column called istest (𝑦’ in illustration)
3. Train a model on the combined set (𝑋’, 𝑦’)
4. Assess (training) metric on this new training set

• If train/valid are drawn from same distribution, should get
bad metric since there’s no way to distinguish between them

• But if you get a good metric, that implies that
train/valid sets are drawn from very different distributions

• Idea: Maybe use repeated trials using random {0,1} for 𝑦′ as null 
distribution then see if training score on real 000111 is better than that 
average score; if so, training and validation sets are different

Awesome but not
well-known trick



If train/test are easily distinguishable…
• You might find that ID or date var is different in train vs valid set
• Drop that feature and see how the validation score changes
• Or if 𝑦 steadily climbs, and all 𝑦’s are bigger in the validation set, a 

simple inequality distinguishes training and test set 
• Look at the feature importances of original and istest models. 

Features that are important in both are the problem
• If it's not important in original model, we don't care about it: it's not 

predictive of target
• If not important in istest model, it's not causing confusion between sets
• Imagine vehicle age is predictive for training set and to distinguish 

train/test; what if age=0 for all in test set? It’s difference between used 
(train) and new cars (test)



Leakage: What if your model is too good? 
• Be suspicious if you get an excellent metric; yes, you are 

awesome, but near-perfect scores are often sign of bug or leakage
• Kaggle example: Uni Melbourne (predict grants)

• Jeremy Howard (who won) told me that one of the data fields leaked 
information about whether grant was awarded or not

• An explanatory variable was only filled in but only if grant was awarded
• A missing value almost perfectly predicted “no grant award”
• I built basic model and got validation accuracy 87% (red flag)

• Rent price example: price per bedroom is a good feature and I got 
very high R^2; oops, I just incorporated (leaked) 𝑦 price into 𝑋

https://www.kaggle.com/c/unimelb

https://www.kaggle.com/c/unimelb


Stability of metric values
• Getting a single validation metric is usually not enough because 

scores can vary from run to run because of outliers and 
anomalies (even with k-fold)

• Also good to collect and compare a variety of metrics
• Consider score fluctuations in NYC rent data (before cleaning)

See https://github.com/parrt/msds621/blob/master/notebooks/assessment/metrics.ipynb

train valid

trainvalid

Here are results from 5 train/test splits

Noise/outliers can cause mismatch 
between train/valid sets; 𝑘-fold, random 
subsets will see high variability

https://github.com/parrt/msds621/blob/master/notebooks/assessment/metrics.ipynb


Summary
• Start machine learning modeling by splitting data into training, 

validation, and test sets; lock away the test set as only true 
measure of generality tested after you have your final model

• Good training metric is necessary but not sufficient; we want a 
good validation/test metric to show generality of model

• Can use cross validation or just single split during development 
(OOB also with random forests)

• Validation/test sets must have same distribution as training set
• We use loss to train, metrics to validate/test
• Next, we look at measuring regressor and classifier error


