Gradient Descent

Minimizing loss functions to find "optimal" model parameters
Terence Parr
MSDS program
University of San Francisco

Minimizing the loss function: How we train (many) models

- Training: we need a way to find β such that: $\underset{\beta}{\arg \min } \mathscr{L}(\beta)$
- Could try grid search

```
for m in np.linspace(......, num=100):
    for b in np.linspace(...,.., num=100):
    y_ =m* X + b
    loss = np.mean((y_ - y)**2) # MSE
    if loss < best[0]:
        best = (loss,m,b)
```

- Or, could try random β vectors and choose the β with lowest loss (doesn't scale beyond a few dimensions)

Minimizing the loss: using loss information

- Let's start with a random β and then tweak β with some $\Delta \beta$ in the downhill loss direction until any tweak would increase loss

$$
\beta^{(t+1)}=\beta^{(t)}+\Delta \beta^{(t)}
$$

- We can use information about the loss function in neighborhood of current β to decide which direction shifts towards smaller loss
- When loss would go up or not change, we're done

How do we pick a direction to move (1D)?

- Use information (gradient) from loss function in vicinity of current β_{1}

- Derivative/slope of $\operatorname{loss}\left(\beta_{1}\right)$ is $2\left(\beta_{1}-2\right)$, which points β_{1} in direction of increased loss (up)
- What is derivative of loss at $\beta_{1}=1 ? \beta_{1}=3 ? \beta_{1}=2$?
- Direction of lower loss is opposite/negative of derivative
- Derivative also has magnitude, which is bigger when slope is steeper
- How to move: $\beta_{1}=\beta_{1}-$ slope

Taking steps in right direction (1D β case)

- Direction for β of min loss is opposite of derivative so let's step β by negative of derivative and scale it with a learning rate η :

$$
\beta^{(t+1)}=\beta^{(t)}-\eta \frac{d}{d \beta} \mathscr{L}\left(\beta^{(t)}\right)
$$

$$
\begin{aligned}
& \mathrm{b}=\text { random value } \\
& \text { while not_converged: } \\
& \quad \mathrm{b}=\mathrm{b}-\text { rate * }^{*} \text { gradient(b) }
\end{aligned}
$$

- β always converges on min loss if learning rate is small enough

Python gradient descent implementation

- First define a simple loss function and its gradient:

$$
\begin{aligned}
& \text { def } f(b) \text { : return }(b-2) * * 2 \\
& \text { def gradient }(b): \text { return } 2 *(b-2)
\end{aligned}
$$

- Then, pick a random starting point and pick a learning rate

$$
\begin{aligned}
& b=n p . \text { random.uni form }(0,4) \\
& \text { rate }=.2
\end{aligned}
$$

- Loop for a while or until L2 norm of gradient(b) == 0

$$
\begin{gathered}
\text { for } t \text { in range (10): \# for awhile } \\
b=b-\text { rate }^{*} \text { gradient }(b)
\end{gathered}
$$

Sample 1D gradient descent run

```
for t in range(7):
    b = b - 0.2 * gradient(b)
    beta_1 loss
        0}00.055312 3.781813 
        1 0.833187 1.361453
        2 1.299912 0.490123
        3 1.579947 0.176444
        4 1.747968 0.063520
        5}1.8487810.02286
        6 1.909269 0.008232
    7 1.945561 0.002964
\[
b=b-0.2 * \text { gradient }(b)
\]
```

Notice β_{1} accelerates and then slows down. Why?

1D function minimization in action

UNIVERSITY OF SAN FRANCISCO

What if we crank up learning rate?

- β_{1} oscillates across valley
- Picking learning rate is trial and error for our purposes but small like $\eta=.00001$ is a reasonable guess to start out
- If too small, we don't make much progress towards min loss point

UNIVERSITY OF SAN FRANCISCO

What if learning rate is really too high?

- We get nowhere:

	beta_1	loss
$\mathbf{0}$	0.495633	2.263119
$\mathbf{1}$	3.504367	2.263119
$\mathbf{2}$	0.495633	2.263119
$\mathbf{3}$	3.504367	2.263119
$\mathbf{4}$	0.495633	2.263119

- It can even diverge, exploding β_{1}

UNIVERSITY OF SAN FRANCISCO

What happens in 2D for $\beta=\left[\beta_{1}, \beta_{2}\right]$? $+\beta_{2}$

- Imagine you're stuck on a mountain in the dark and need to get to the bottom
- Take steps to left, right, forward, backward or at an angle to minimize the "elevation function"
- Check slope in each direction separately, then combine Backward
them into vector to obtain the best step direction

- Each direction's slope is a partial derivative and, combined, are called the gradient vector

Loss function: 1-var regr. w/2 coeff $\left(\beta_{0}, \beta_{1}\right)$

- Shallow in β_{0} dir
- Steep in β_{1} dir
- This plot show loss for non-standardized variables so a unit change in β_{0} doesn't change loss nearly as much for β_{1}
- Notice this is $\left(\beta_{0}, \beta_{1}\right)$ space, not feature space!

Notation and finite difference approximation

- "Rise over run" is the derivative/slope of $f(x)$ at x :

$$
\frac{d}{d x} f(x)=\frac{\partial}{\partial x} f(x) \approx \frac{f(x+h)-f(x)}{h}
$$

- Gradient of p-dim \boldsymbol{x} vector has p partial derivative entries

$$
\nabla f(\mathbf{x})=\left[\begin{array}{l}
\frac{\partial}{x_{1}} f(\mathbf{x}) \\
\frac{\partial}{x_{2}} f(\mathbf{x})
\end{array}\right] \approx\left[\begin{array}{l}
\frac{f\left(\left[x_{1}+h, x_{2}\right]\right)-f(\mathbf{x})}{h} \\
\frac{f\left(\left[x_{1}, x_{2}+h\right]\right)-f(\mathbf{x})}{h}
\end{array}\right]
$$

- The partial derivative is just the slope in 1 dir, holding others constant

General gradient descent

- Partial derivative is rate of change in one direction: $\frac{\partial}{\partial \beta_{i}} \mathscr{L}(\beta)$
- Combining partial derivatives into vector gives the gradient: ∇_{β}
- Gradient points in direction of increased loss, so must go in negative gradient vector direction to decrease loss as before:

$$
\beta^{(t+1)}=\beta^{(t)}-\eta \nabla_{\beta} \mathscr{L}\left(\beta^{(t)}\right) \quad \text { where } \eta \text { is a learning rate }
$$

- Gradient vectors have magnitude and direction
- E.g., gradient of [-1,2] means take step to left, but bigger step forward
- Take that single step: $\beta=\beta-\eta^{*}[-1,2]$
- In each direction, the partial derivative of loss function is 0 when flat
- When norm of gradient vector $=0$, we're at min loss; choose that β

Update equation needs loss gradient:

$$
\beta^{(t+1)}=\beta^{(t)}-\eta \nabla_{\beta} \mathscr{L}\left(\beta^{(t)}\right)
$$

Gradient of $\mathscr{L}(\beta)=\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right) \cdot\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right)$ for regression is

$$
\nabla_{\beta} \mathscr{L}(\beta)=-2 \mathbf{X}^{\prime T}\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right)
$$

So update equation becomes (adding learning rate η):

$$
\beta^{(t+1)}=\beta^{(t)}+\eta \mathbf{X}^{\prime T}\left(\mathbf{y}-\mathbf{X}^{\prime} \beta^{(t)}\right)
$$

η scales the step we take each at each step (fold 2 into η)

Simplest gradient descent algorithm

Let's add momentum

No momentum

Reinforce movement in same direction
High momentum

UNIVERSITY OF SAN FRANCISCO

Vanilla vs momentum animated

- Momentum rolls through a local miminum, but vanilla gets stuck

UNIVERSITY OF SAN FRANCISCO

Adding momentum to particle update

- Reinforce movement in same direction: add fraction of previous dir

Algorithm: momentum_minimize $(\mathbf{X}, \mathbf{y}, \nabla \mathscr{L}, \eta, \gamma)$ returns coefficients $\vec{\beta}$ Let $\vec{\beta} \sim 2 N(0,1)-1 \quad($ random $p+1$-sized vector with elements in $[-1,1))$ $\mathbf{X}^{\prime}=(\overrightarrow{\mathbf{1}}, \mathbf{X}) \quad($ Add first column of 1 s except for L1/L2 regression)
repeat
$\vec{v}=\gamma \vec{v}+\eta \nabla \mathscr{L}(\vec{\beta})$
(Add a bit of previous direction to next direction)
$\vec{\beta}=\vec{\beta}-\vec{v}$
until $\|\nabla \mathscr{L}(\vec{\beta})\|_{2}<$ precision;
return $\vec{\beta}$
γ is a new hyper parameter

Dealing with saddle points or shallow valleys: Vanilla vs AdaGrad animated

- Different step size per dimension helps a lot
-We still can use an overall learning rate to magnify the step size per dimension

Adagrad gradient descent

- Single learning rate for all dimensions is brutally slow for some topographies
- Imagine long shallow valley with steep walls or a saddle point
- η small enough for steep walls is way too slow for other, shallow dimension
- Sum squared gradient history \vec{h}; eventually slows down learning, possibly too early

```
Algorithm: adagrad_minimize \((\mathbf{X}, \mathbf{y}, \nabla \mathscr{L}, \eta, \epsilon=1 \mathrm{e}-5)\) returns coefficients \(\vec{\beta}\)
Let \(\vec{\beta} \sim 2 N(0,1)-1 \quad\) (random \(p+1\)-sized vector with elements in \([-1,1)\) )
\(h=\overrightarrow{0} \quad(p+1\)-sized sum of squared gradient history \()\)
\(\mathbf{X}^{\prime}=(\overrightarrow{\mathbf{1}}, \mathbf{X}) \quad(\) Add first column of 1 s except for L1/L2 regression \()\)
repeat
    \(\vec{h}+=\nabla \mathscr{L}(\vec{\beta}) \otimes \nabla \mathscr{L}(\vec{\beta}) \quad\) (track sum of squared partials, use element-wise product)
    \(\vec{\beta}=\vec{\beta}-\eta * \frac{\nabla \mathscr{L}(\vec{\beta})}{(\sqrt{\vec{h}}+\epsilon)} \leftrightarrows \quad\) ( \(\epsilon\) avoids divide by 0 ) ; low h(istory) for \(\beta_{i}\) increases its learning rate
until \(\|\nabla \mathscr{L}(\vec{\beta})\|_{2}<\) precision;
return \(\vec{\beta}\)
```


Loss, gradient functions for minimization

- Linear regression

$$
\begin{aligned}
& \mathscr{L}(\beta)=\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right) \cdot\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right) \\
& \nabla_{\beta} \mathscr{L}(\beta)=-2 \mathbf{X}^{\prime T}\left(\mathbf{y}-\mathbf{X}^{\prime} \beta\right)
\end{aligned}
$$

- Logistic regression

$$
\begin{aligned}
& \mathscr{L}(\beta)=\sum_{i=1}^{n}\left\{y^{(i)} \mathbf{x}^{\prime(i)} \beta-\log \left(1+e^{\mathbf{x}^{\prime} \beta}\right)\right\} \\
& \nabla_{\beta} \mathscr{L}(\beta)=-\mathbf{X}^{\prime T}\left(\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta\right)\right)
\end{aligned}
$$

L1, L2 regression loss, gradient functions

- L2 (Ridge); 0-center x_{i} then $\beta_{0}=$ mean($\left.\mathbf{y}\right)$, find $\beta_{1 . . p}$ via:
$\mathscr{L}(\beta)=(\mathbf{y}-\mathbf{X} \beta) \cdot(\mathbf{y}-\mathbf{X} \beta)+\lambda \beta \cdot \beta$
$\nabla_{\beta} \mathscr{L}(\beta)=-2 \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta)+2 \lambda \beta \quad$ (Can drop the 2, folding into learning rate)
- L1 (Lasso); 0-center x_{i} then $\beta_{0}=$ mean($\left.\mathbf{y}\right)$, find $\beta_{1 . . p}$ via:
$\mathscr{L}(\beta)=(\mathbf{y}-\mathbf{X} \beta) \cdot(\mathbf{y}-\mathbf{X} \beta)+\lambda \sum_{j=1}^{p}\left|\beta_{j}\right|$
$\nabla_{\beta} \mathscr{L}(\beta)=-2 \mathbf{X}^{T}(\mathbf{y}-\mathbf{X} \beta)+\lambda \operatorname{sign}(\beta)$

L1 logistic loss, gradient functions

- Must compute β_{0} differently; partial β_{0} is a function of β_{0}

$$
\frac{\partial}{\partial \beta_{0}} \mathscr{L}(\beta, \lambda)=\operatorname{mean}\left(\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta\right)\right)
$$

- Other β_{i} are functions of β_{0} but not within the penalty term

$$
\nabla_{\beta_{1 . . p}} \mathscr{L}(\beta, \lambda)=\frac{1}{n}\left\{\mathbf{X}^{T}\left(\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta^{\prime}\right)\right)-\lambda \operatorname{sign}(\beta)\right\}
$$

- Combine to get full gradient vector

L1 Logistic gradient is tricky to get right

(See derivation of L 1 gradients in appendix of project description)
Algorithm: L1NegLogLikelihood ($\mathbf{X}^{\prime}, \mathbf{y}, \beta^{\prime}$)
err $=\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta^{\prime}\right) \quad$ (error vector is $n \times 1$ column vector)
$\frac{\partial}{\partial \beta_{0}}=\operatorname{mean}($ err $)$
$r=\lambda \operatorname{sign}\left(\beta^{\prime}\right)$
$r[0]=0$
$\nabla=\frac{1}{n}\left\{\mathbf{X}^{\prime T}\right.$ err $\left.-r\right\}$
return $-\left[\begin{array}{c}\frac{\partial}{\partial \beta_{0}} \\ \nabla_{1} \\ \vdots \\ \nabla_{p}\end{array}\right]$
(usual log-likelihood gradient; use current β^{\prime}) (regularization term $p+1 \times 1$ column vector)
(kill β_{0} position but keep as $p+1 \times 1$ vector)

$$
\begin{aligned}
\frac{\partial}{\partial \beta_{0}} \mathscr{L}(\beta, \lambda) & =\operatorname{mean}\left(\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta^{\prime}\right)\right) \quad \text { gradients } \\
\nabla_{\beta_{1 . p}} \mathscr{L}(\beta, \lambda) & =\frac{1}{n}\left\{\mathbf{X}^{T}\left(\mathbf{y}-\sigma\left(\mathbf{X}^{\prime} \cdot \beta^{\prime}\right)\right)-\lambda \operatorname{sign}(\beta)\right\}
\end{aligned}
$$

Key takeaways

- Move β towards lower loss; consider each β_{i} direction separately
- Slope (change in loss $/ \beta_{i}$) in direction β_{i} is partial derivative: $\frac{\partial}{\partial \beta_{i}} \mathscr{L}(\beta)$
- Gradient is p or $p+1$ dimensional vector of partial derivatives
- Gradients point "upwards" towards higher cost/loss
- Coefficients β should therefore step by negative of gradient
- Gradient is the 0 vector at the minimum loss; i.e., flat
- Can stop optimizing when gradient norm is close to 0 or after fixed number of iterations

More key takeaways

- Coefficient update equation:

$$
\beta^{(t+1)}=\beta^{(t)}-\eta \nabla_{\beta} \mathscr{L}\left(\beta^{(t)}\right) \text { where } \eta \text { is a learning rate }
$$

- If η is "small enough," $\beta^{(t+1)}$ will converge to a solution vector (maybe slowly)
- If too big, will bounce back and forth across valleys or diverge
- Adagrad
- Single learning rate too slow; need a rate per dimension
- Increases update step size for dimensions with shallow slopes historically

$$
\vec{b}=\vec{b}-\eta * \frac{\nabla \mathscr{L}}{(\sqrt{\vec{h}}+\epsilon)}
$$

- Slows down across all dimensions over time as history sum h gets bigger
- L1, L2 linear regression doesn't optimize β_{0}, it's just mean(\mathbf{y}), if we 0-center x_{i}
- L1, L2 logistic regression optimizes $\beta_{0 . \mathrm{p}}$ but optimizes β_{0} differently than $\beta_{1 . . p}$

Lab time

- Exploring regularization for linear regression
https://github.com/parrt/msds621/tree/master/labs/linear-models/gradient-descent.ipynb

