Gradient Descent

Minimizing loss functions to find "optimal" model parameters

Terence Parr

MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

Minimizing the loss function:
How we train (many) models

- Training: we need a way to find 8 such that: arg min 02”(5)
p

- Could try grid search | for m in np.linspace(..,..,num=100):
for linear models to for b in np.linspace(..,..,num=100) :
find slope m and y-=m*X+b
N . loss = np.mean((y_ - y)**2) # MSE
y-intercept b: 1f loss < best[0]:
best = (loss,m,b)

* Or, could try random (vectors and choose the 8 with lowest loss
(doesn't scale beyond a few dimensions)

UNIVERSITY OF SAN FRANCISCO

Minimizing the loss: using loss information

« Let's start with a random 8 and then tweak 8 with some Aj3
In the downhill loss direction until any tweak would increase loss

B+ — gt 1 Ap®)
« We can use information about the loss function in neighborhood of

current B to decide which direction shifts towards smaller loss
* When loss would go up or not change, we're done

UNIVERSITY OF SAN FRANCISCO

4.0 A

3.5 1

3.0 A

How do we pick a direction to move (1D)?

» Use information (gradient) from loss function in vicinity of current B,

Aloss
Aﬂl
positive

loss(B1) = (B1 — 2)?

Aﬁ]

_Dloss negative

1

1.5 2.5 3.0 3.5 4.0

Derivative/slope of loss(;) is
2(B1-2), which points 3; in
direction of increased loss (up)
What is derivative of loss at
B1=17 ;=37 ;=27

Direction of lower loss is
opposite/negative of derivative
Derivative also has magnitude,
which is bigger when slope is
steeper

How to move: B; = 3; — slope

UNIVERSITY OF SAN FRANCISCO

Taking steps in right direction (1D 8 case)

* Direction for B of min loss is opposite of derivative so let’s step
3 by negative of derivative and scale it with a learning rate n:

d
(t+1) — p(t) ~ 7 (1)

b = random value
while not_converged:
b =b - rate * gradient(b)

B always converges on min loss if learning rate is small enough

UNIVERSITY OF SAN FRANCISCO

Python gradient descent implementation

* First define a simple loss function and its gradient:

def f(b) : return (b-2)**2
def gradient(b): return 2*(b-2)

* Then, pick a random starting point and pick a learning rate

b = np.random.uniform(@,4)
rate = .2

* Loop for a while or until L2 norm of gradient(b) ==

for t in range(10): # for awhile
b =Db - rate * gradient(b)

UNIVERSITY OF SAN FRANCISCO

See https://qgithub.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

Sample 1D gradient descent run
for t 1n range(7):

Notice B; accelerates and then slows down. Why?
b=Db-0.2 * gradient(b) io.
beta_1 loss 35 4 \ Initial B,
0 0.055312 3.781813 304 o Learning rate = 0.2
1 0.833187 1.361453 ~ 251
2 1299912 0.490123 Tizo—
3 1579947 0.176444 = 15- .
4 1747968 0.063520 1.0 \\\\ Initial B,
5 1.848781 0.022867 0-51 £ 3 e
6 1.909269 0.008232 0L . :
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
7 1.945561 0.002964 B
See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

1D function minimization in action

4.0 -
s Y lteration 0: By = 0.1000
0]\ oss(B1) = (By — 2)?=3.6100
25
T 20
@
15 -
10 -
05 -
0.0 -
0.0 05 10 15 20 25 30 35 4.0
B1

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

What if we crank up learning rate”?

* B, oscillates across valley

 Picking learning rate is
trial and error for our
purposes but small like

n=.00001 is a reasonable _*°]

guess to start out

* |[f too small, we don't
make much progress
towards min loss point

o~
—
(o]

3.5

2.5

4.0 A \
3.0 A

Initial B,
K‘"“"m--’t‘@f?}[@ rate = 0.97

0.0

2.0 2.5 3.0 3.5 4.0

B1

0.5 1.0 1.5

UNIVERSITY OF SAN FRANCISCO

What if learning rate is really too high?

* We get nowhere:

0
1

2
3
4

* |t can even diverge,

beta 1
0.495633
3.504367
0.495633
3.504367
0.495633

loss
2.263119
2.263119
2.263119
2.263119
2.263119

exploding B,

(B1 —2)?

4.0 -

3.5 1

3.0

2.5 1

2.0 -

1.5 -

1.0 -

0.5 A

0.0

\

Initial B;Learning rate = 1.0 /

0.0

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
B1
UNIVERSITY OF SAN FRANCISCO

What happens in 2D for B =[G4, £5]?

Fora rd

* Imagine you're stuck on a mountain in the dark
and need to get to the bottom

» Take steps to left, right, forward, backward or
at an angle to minimize the “elevation function”

» Check slope in each direction separately, then combine Bacard
them into vector to obtain the best step direction b

« Each direction’s slope is a partial derivative and, combined, are
called the gradient vector

UNIVERSITY OF SAN FRANCISCO

Loss function: 1-var regr. w/2 coeff (By, B1)

o Lowo © Shallowin g, dir

tooo00 ® Steep N ,31 dir

oo * This plot show loss for
non-standardized
variables so a unit
740000 . ,
g change in B, doesn’t
o ——— [0000 change loss nearly as

Lo much for B,
106 » Notice this is (B,, 81)

108

L10 space, not feature space!

112
114 Q4
116 <b

_2960—2980 118
—3000_300 120 UNIVERSITY OF SAN FRANCISCO

Bo

10000

~2900
=2920_3940

Notation and finite difference approxirrlﬁation

 “Rise over run” is the derivative/slope of f(x) at x:

d 0 f(x+h)— f(x)
Az (z) = 9 (z) ~ h
« Gradient of p-dim x vector has p partial derivative entries Bac_ard
"0 r(x)] [LUzathza))—f(x)° 2
— (X
VIx) = E;EX; ~ | ferarthD 10
| 2 i i h i

* The partial derivative is just the slope in 1 dir, holding others constant

.)) . UNIVERSITY OF SAN FRANCISCO
See https://explained.ai/matrix-calculus/index.html

https://explained.ai/matrix-calculus/index.html

General gradient descent ;

 Partial derivative is rate of change in one direction: aﬁi"%(ﬂ)
« Combining partial derivatives into vector gives the gradient: \/ 3

 Gradient points in direction of increased loss, so must go in negative
gradient vector direction to decrease loss as before:

6(’54—1) — ﬁ(t) — nvﬁg(ﬁ(ﬂ) where n is a learning rate

« Gradient vectors have magnitude and direction

* E.g., gradient of [-1,2] means take step to left, but bigger step forward
 Take that single step: 8 =8—-n*[-1, 2]

* In each direction, the partial derivative of loss function is 0 when flat

* When norm of gradient vector = 0, we’re at min loss; choose that 8
UNIVERSITY OF SAN FRANCISCO

Update equation needs loss gradient:
B+ — glt) _ nvﬁg(ﬁ(t))
Gradientof Z(B) = (y — X'B) - (y — X'p3) for regression is
Vs Z(B) = —2X" (y - X'P)
So update equation becomes (adding learning rate n):
B(t+1) _ B(t) + T]X/T(y o X/B(t))

n scales the step we take each at each step (fold 2 into n)

UNIVERSITY OF SAN FRANCISCO

Simplest gradient descent algorithm

Algorithm: basic_minimize(X, y, V.Z, n) returns coefficients 5
Let S ~2N(0,1)—1 (init b with random p + 1-sized vector with elements in [-1,1))

X/ — (i, X) (Add first column of 1s to data except for L1/L2 regression)
repeat
B =F—-nve(B) (Recall Vs 2(8) = —2X7(y — X'8)
until ||V$(E)||2 < precision;
return E

Optimum

Image credit https://distill.pub/2017/momentum UNIVERSITY OF SAN FRANCISCO

https://distill.pub/2017/momentum

Let's add @ e ran
momentum

Optimum

No momentum Solution

:/ \) Starting Point

Optimum

Reinforce movement in same direction
High momentum

Image credit https:/distill.pub/2017/momentum UNIVERSITY OF SAN FRANCISCO

https://distill.pub/2017/momentum/

Animation credit: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325¢c

Vanilla vs momentum animated

 Momentum rolls through T — T
a local miminum, but
vanilla gets stuck

UNIVERSITY OF SAN FRANCISCO

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adding momentum to particle update

« Reinforce movement in same direction: add fraction of previous dir

Algorithm: momentum_minimize(X, y, V.Z, n, v) returns coefficients E

Let £ ~2N(0,1)—1 (random p + 1-sized vector with elements in [-1,1))
X' = (1,X) (Add first column of 1s except for L1/L2 regression)
repeat

U=V +nVZ (B’) (Add a bit of previous direction to next direction)
F=F-v

-

until ||V.Z(58)||2 < precision;
return E

UNIVERSITY OF SAN FRANCISCO

Animation credit: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325¢c

Dealing with saddle points or shallow valleys:
Vanilla vs AdaGrad animated

/(\ _Step-by-Step
/ ‘

] | / Gradient Arrows

| Adjusted Gradient Arrows
| Momentum Arrows

| Sum of Gradient Squared
Path

-

* Different step size
per dimension
helps a lot

» We still can use an
overall learning rate
to magnify the step
size per dimension

Gradient Descent

Learning Rate: 1e -2

e Adagrad

Learning Rate: 1e -1

UNIVERSITY OF SAN FRANCISCO

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adagrad gradient descent

» Single learning rate for all dimensions is brutally slow for some topographies
* Imagine long shallow valley with steep walls or a saddle point
» n small enough for steep walls is way too slow for other, shallow dimension

« Sum squared gradient history h: eventually slows down learning, possibly too early

Algorithm: adagrad_minimize(X, y, V.Z, n, e=1e-5) returns coefficients E
Let B ~2N(0,1)—1 (random p + 1-sized vector with elements in [-1,1))

h=0 (p + 1-sized sum of squared gradient history)
X' = (1, X) (Add first column of 1s except for L1/L2 regression)
repeat

-

h+=VZLB)@VLB) (track sum of squared partials, use element-wise product)

5 5 n vZLB) |,
(Vi+e) (¢ avoids divide by 0)
until |VZ(6)||2 < precision;

return 3

See http://cs231n.qgithub.io/neural-networks-3/#ada UNIVERSITY OF SAN FRANCISCO

http://cs231n.github.io/neural-networks-3/

Loss, gradient functions for minimization

 Linear regression
Z(B)=(y—X'B) (y - X'B)
Vﬁ 02”(5) — —2X’T(y — Xlﬁ) (Can drop the 2, folding into learning rate)

* Logistic regression
n

2(8) =Y {yOx DB~ log(1 + <)}

V5. 2(8) = ~X"(y — o(X'- B)

UNIVERSITY OF SAN FRANCISCO

L1, L2 regression loss, gradient functions

* L2 (Ridge); 0-center x; then B, = mean(y), find B, , via:

ZL(B) =y —-XB)-(y=XB)+A3-0
Vﬁ 0%(5) — —QXT(y — Xﬁ) —I— 2)\5 (Can drop the 2, folding into learning rate)

* L1 (Lasso); O-center x; then B, = mean(y), find B, , via:

LB)=(y—-XB) - (y—-XB)+A> |8;

j=1
Vs Z(B) = —2X"(y — XB) + Asign(p)

UNIVERSITY OF SAN FRANCISCO

L1 logistic loss, gradient functions

« Must compute (3, differently; partial 8, is a function of 8,

O /
8—5({%(5’ A) = mean(y — o(X" - 3))

« Other B; are functions of 8, but not within the penalty term

\
Vo, Z(BN) = (Xr(y — ol }

—o(X"-8)) — Asign(B)

« Combine to get full gradient vector

UNIVERSITY OF SAN FRANCISCO

L1 Logistic gradient is tricky to get right

(See derivation of L1 gradients in appendix of project description)

Algorithm: L1NegLogLikelihood(X',y, ")

err =y —o(X' -3

0

8_50 = Tmean

(err)

r = Asign(f’)

r[0] =0

V=1 {X’Terr —7“}
- 5 -
B0

T n

return —

Vi

Vp

(error vector is n x 1 column vector)
usual log-likelihood gradient; use current)

(
(regularization term p+ 1 x 1 column vector)
(kill By position but keep as p+ 1 x 1 vector)

gradients

0 -
6—&)$(ﬂ’ A) = mean(y —o(X' - 3))

Vi, Z(B,0) = {XT(y ~ o(X' §) - Asign(8)}

UNIVERSITY OF SAN FRANCISCO

Key takeaways

* Move S towards lower loss; consider each B; direction separately
0_2(8)

(

 Slope (change in loss/3;) in direction (B; is partial derivative:
« Gradient is p or p+1 dimensional vector of partial derivatives
» Gradients point “upwards” towards higher cost/loss

 Coefficients f should therefore step by negative of gradient
» Gradient is the 0 vector at the minimum loss; i.e., flat

« Can stop optimizing when gradient norm is close to 0 or after fixed
number of iterations

UNIVERSITY OF SAN FRANCISCO

More key takeaways

» Coefficient update equation:

5(t+1) — ﬁ(t) — nvﬁg(ﬂ(t)> where n is a learning rate

- If n is “small enough,” g4+

* |f too big, will bounce back and forth across valleys or diverge

will converge to a solution vector (maybe slowly)

« Adagrad SR v
 Single learning rate too slow; need a rate per dimension b="b— n * \/:
* Increases update step size for dimensions with shallow slopes historically (V hte)
» Slows down across all dimensions over time as history sum h gets bigger

* L1, L2 linear regression doesn’t optimize 3, it's just mean(y), if we 0-center x;
* L1, L2 logistic regression optimizes B, ,, but optimizes g, differently than g, ,,

UNIVERSITY OF SAN FRANCISCO

Lab time

« Exploring regularization for linear regression

https://github.com/parrt/msds621/tree/master/labs/linear-models/gradient-descent.ipynb

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/msds621/tree/master/labs
https://nbviewer.jupyter.org/github/parrt/msds621/blob/master/labs/linear-models/gradient-descent.ipynb

