
Gradient Descent
Minimizing loss functions to find "optimal" model parameters

Terence Parr
MSDS program
University of San Francisco

Minimizing the loss function:
How we train (many) models
• Training: we need a way to find β such that:

• Could try grid search
for linear models to
find slope m and
y-intercept b:

• Or, could try random β vectors and choose the β with lowest loss
(doesn't scale beyond a few dimensions)

for m in np.linspace(…,…,num=100):
for b in np.linspace(…,…,num=100):

y_ = m * X + b
loss = np.mean((y_ - y)**2) # MSE
if loss < best[0]:

best = (loss,m,b)

Minimizing the loss: using loss information

• Let's start with a random β and then tweak β with some
in the downhill loss direction until any tweak would increase loss

• We can use information about the loss function in neighborhood of
current β to decide which direction shifts towards smaller loss

• When loss would go up or not change, we’re done

How do we pick a direction to move (1D)?
• Use information (gradient) from loss function in vicinity of current β!

• Derivative/slope of loss(β!) is
2(β!-2), which points β! in
direction of increased loss (up)

• What is derivative of loss at
β!=1? β!=3? β!=2?

• Direction of lower loss is
opposite/negative of derivative

• Derivative also has magnitude,
which is bigger when slope is
steeper

• How to move: β! = β! − 𝑠𝑙𝑜𝑝𝑒
!1Δ

Δloss

!1Δ

Δl
os

s

!1Δ
Δloss negative

!1Δ
Δloss

positive

Taking steps in right direction (1D β case)

• Direction for β of min loss is opposite of derivative so let’s step
β by negative of derivative and scale it with a learning rate η:

• β always converges on min loss if learning rate is small enough

b = random value
while not_converged:

b = b - rate * gradient(b)

Python gradient descent implementation

• First define a simple loss function and its gradient:

• Then, pick a random starting point and pick a learning rate

• Loop for a while or until L2 norm of gradient(b) == 0
for t in range(10): # for awhile

b = b - rate * gradient(b)

def f(b) : return (b-2)**2
def gradient(b): return 2*(b-2)

b = np.random.uniform(0,4)
rate = .2

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

Sample 1D gradient descent run
for t in range(7):

b = b – 0.2 * gradient(b)
Notice β! accelerates and then slows down. Why?

See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

1D function minimization in action
See https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/linear-models/viz-gradient-descent.ipynb

What if we crank up learning rate?

• β! oscillates across valley
• Picking learning rate is

trial and error for our
purposes but small like
η=.00001 is a reasonable
guess to start out

• If too small, we don’t
make much progress
towards min loss point

What if learning rate is really too high?

• We get nowhere:

• It can even diverge,
exploding β!

What happens in 2D for β = [β!, β"]?

• Imagine you’re stuck on a mountain in the dark
and need to get to the bottom

• Take steps to left, right, forward, backward or
at an angle to minimize the “elevation function”

• Check slope in each direction separately, then combine
them into vector to obtain the best step direction

• Each direction’s slope is a partial derivative and, combined, are
called the gradient vector

Forward

Backward

RightLeft
β1

+

+-

- β2

β1

β2

Loss function: 1-var regr. w/2 coeff (β#, β!)
• Shallow in β" dir
• Steep in β! dir
• This plot show loss for

non-standardized
variables so a unit
change in β" doesn’t
change loss nearly as
much for β!

• Notice this is (β", β!)
space, not feature space!

Notation and finite difference approximation
• “Rise over run” is the derivative/slope of 𝑓(𝑥) at 𝑥:

• Gradient of 𝑝-dim 𝒙 vector has 𝑝 partial derivative entries

• The partial derivative is just the slope in 1 dir, holding others constant

Forward

Backward

RightLeft
β1

+

+-

- β2

β1

β2

See https://explained.ai/matrix-calculus/index.html

https://explained.ai/matrix-calculus/index.html

• Partial derivative is rate of change in one direction:
• Combining partial derivatives into vector gives the gradient:
• Gradient points in direction of increased loss, so must go in negative

gradient vector direction to decrease loss as before:

• Gradient vectors have magnitude and direction
• E.g., gradient of [-1,2] means take step to left, but bigger step forward
• Take that single step: β = β – η* [-1, 2]
• In each direction, the partial derivative of loss function is 0 when flat
• When norm of gradient vector = 0, we’re at min loss; choose that β

General gradient descent

where η is a learning rate

Update equation needs loss gradient:

Gradient of for regression is

So update equation becomes (adding learning rate η):

η scales the step we take each at each step (fold 2 into η)

Simplest gradient descent algorithm

new direction (Recall)

Image credit https://distill.pub/2017/momentum

https://distill.pub/2017/momentum

Let's add
momentum

No momentum

High momentum

Image credit https://distill.pub/2017/momentum

Reinforce movement in same direction

https://distill.pub/2017/momentum/

Vanilla vs momentum animated

• Momentum rolls through
a local miminum, but
vanilla gets stuck

Animation credit: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adding momentum to particle update
• Reinforce movement in same direction: add fraction of previous dir

new directionold direction

𝛾 is a new hyper parameter

Dealing with saddle points or shallow valleys:
Vanilla vs AdaGrad animated

• Different step size
per dimension
helps a lot

• We still can use an
overall learning rate
to magnify the step
size per dimension

Animation credit: https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

https://towardsdatascience.com/a-visual-explanation-of-gradient-descent-methods-momentum-adagrad-rmsprop-adam-f898b102325c

Adagrad gradient descent
• Single learning rate for all dimensions is brutally slow for some topographies
• Imagine long shallow valley with steep walls or a saddle point
• η small enough for steep walls is way too slow for other, shallow dimension
• Sum squared gradient history ℎ; eventually slows down learning, possibly too early

adjust w/update per 𝛽!; low h(istory) for 𝛽! increases its learning rate
(𝜖 avoids divide by 0)

See http://cs231n.github.io/neural-networks-3/#ada

http://cs231n.github.io/neural-networks-3/

Loss, gradient functions for minimization

• Linear regression

• Logistic regression

(Can drop the 2, folding into learning rate)

• L2 (Ridge); 0-center 𝑥# then β" = mean(y), find β!..% via:

• L1 (Lasso); 0-center 𝑥# then β" = mean(y), find β!..% via:

L1, L2 regression loss, gradient functions

(Can drop the 2, folding into learning rate)

L1 logistic loss, gradient functions
• Must compute β" differently; partial β" is a function of β"

• Other β# are functions of β" but not within the penalty term

• Combine to get full gradient vector

L1 Logistic gradient is tricky to get right

gradients

(See derivation of L1 gradients in appendix of project description)

Key takeaways
• Move 𝛽 towards lower loss; consider each 𝛽# direction separately
• Slope (change in loss/β#) in direction β# is partial derivative:
• Gradient is p or p+1 dimensional vector of partial derivatives
• Gradients point “upwards” towards higher cost/loss
• Coefficients 𝛽 should therefore step by negative of gradient
• Gradient is the 0 vector at the minimum loss; i.e., flat
• Can stop optimizing when gradient norm is close to 0 or after fixed

number of iterations

• Coefficient update equation:

• If η is “small enough,” β(#$!) will converge to a solution vector (maybe slowly)
• If too big, will bounce back and forth across valleys or diverge

• Adagrad
• Single learning rate too slow; need a rate per dimension
• Increases update step size for dimensions with shallow slopes historically
• Slows down across all dimensions over time as history sum ℎ gets bigger

• L1, L2 linear regression doesn’t optimize β&, it’s just mean(y), if we 0-center 𝑥'
• L1, L2 logistic regression optimizes β&..) but optimizes β& differently than β!..)

More key takeaways

where η is a learning rate

Lab time

• Exploring regularization for linear regression
https://github.com/parrt/msds621/tree/master/labs/linear-models/gradient-descent.ipynb

https://github.com/parrt/msds621/tree/master/labs
https://nbviewer.jupyter.org/github/parrt/msds621/blob/master/labs/linear-models/gradient-descent.ipynb

