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What does the model say about the data?
• A good model is useful, but we usually want to interpret model
• Feature importance tells us about the business or application; 

e.g., what matters to people renting apartments or buying used 
bulldozers or identifying cancer or getting a bank loan?

• Importance scores themselves don’t usually mean anything, and 
they are often normalized 0..1 anyway

• Only relative rank/magnitude matters for understanding, say, 
customer behavior or for feature selection to drop irrelevant 
features



Formal definition of feature importance?
• Not sure there is an agreed-upon definition
• Feature importance gives (usually just) a relative ranking of the 

predictive strength among the features of the model; useful for 
simplifying models and possibly improving generality

• We'd also like a model-independent feature impact that identifies the 
effect of features on 𝑦 without peering through lens of a model: “the 
amount of 𝑦 variation attributed specifically to feature 𝑥!” See [1]

• We want importance/impact to isolate impact of individual features
• Nonetheless, we'll focus on feature importance as proxy for impact

[1] https://arxiv.org/abs/2006.04750 for detailed discussion

Coining new 
term to 
distinguish 
from feature 
importance

https://arxiv.org/abs/2006.04750


Rent example

• Number of bedrooms appears to 
be the most important, meaning 
that it is the most predictive of 
rent price

• That tells us something about the 
market for New York City rent

• Combined, however, the location 
matters more by far; note:
longitude and latitude are 
codependent features

See https://mlbook.explained.ai/first-taste.html

https://mlbook.explained.ai/first-taste.html


Bulldozer example

• YearMade, lower
capacity spec,
size matter most

• Note age appears unimportant but 
date-related features are highly 
correlated; other features can cover 
for codependent features; still looks 
predictive to me:

See https://mlbook.explained.ai/bulldozer-feateng.html

https://mlbook.explained.ai/bulldozer-feateng.html


Bulldozer one-hot example
• One-hot’ing categorical features 

temporarily and then examining feature 
importance can identify which category 
levels are important vs just the variable

• E.g., one-hot Enclosure and we see 
that “EROPS AC” (air conditioned cab) 
is most important Enclosure, which is 
valuable marketing / business info 
(other levels are way down in the noise)

• Could be useful for improving model but 
definitely useful for business 
intelligence



Breast cancer classification example
• Distinguishing between malignant 

versus benign masses: radius 
error is strongly predictive

• That is “standard error for the 
mean of distances from center to 
points on the perimeter” which 
could give an indication of mass 
edge irregularity

• Worst texture is “largest mean 
value for standard deviation of 
gray-scale values”

See https://mlbook.explained.ai/first-taste.html

Image credit: https://pubmed.ncbi.nlm.nih.gov/27563488/

https://mlbook.explained.ai/first-taste.html
https://pubmed.ncbi.nlm.nih.gov/27563488/


Common application: Tuning the model
• Dropping unimportant features simplifies the model; fewer features 

make it easier to interpret/explain model behavior
• Often increases accuracy and generality because the model is not 

taking irrelevant features into consideration (e.g., noise vars)
• Simplifying models is a form of regularization
• Fewer features increases training and prediction speed
• Drop the lowest importance feature and retrain the model, redo 

validation metric; if validation metric worse, then we have dropped 
one too many features

• Codependencies between features is why we recompute feature 
importances after dropping each feature; at minimum, rank of 
features can change dramatically after dropping a feature



Beware!

• Can’t trust feature importances from high bias or high variance
models

• Importance says how important a feature is to a specific model
• Sum of importances not usually meaningful; doesn’t tell you 

how much of the overall prediction your model has covered
• When possible compute importances with validation not training 

set; we care about features predictive for generalization
• Even with good model, importances are a clue not gospel



Importance is typically model-specific!

• Same method applied to same data can yield different 
importances; here's SHAP on Boston but different models



Implementation of importance



Importance directly from the data: 
Spearman's rank correlation
• Simplest technique for regression is to rank 𝑥! features by their 

Spearman's rank correlation [1] with target 𝑦
(doesn't assume linear relationship)

• The feature with largest coefficient is most important
• Measures single-feature importance and works well for 

independent features, but not good for codependent features
• Groups of features with similar relationships to the response 

variable receive the same or similar ranks, even though just one 
should be considered important

• Seems inappropriate for categorical variables

[1] https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient


Importance directly from the data: PCA

• Principle component analysis (PCA) operates on just the 𝑋
explanatory matrix; limited to linear relationships and "most 
variance" is not always the same as "most important"

• PCA transforms data into a new space characterized by 
eigenvectors of X and identifies features that explain the most 
variance in the new space

• If the first principal component covers a large percentage of the 
variance, the “loads” associated with that component can 
indicate importance of features in the original 𝑋 space

• Seems inappropriate for categorical variables

Copied from https://arxiv.org/abs/2006.04750

https://arxiv.org/abs/2006.04750


Importance directly from the data: mRMR
• To deal with codependencies, rank not just by relevance but also 

by redundance; mRMR: minimal-redundancy maximal-relevance

• Redundance is the amount of information shared between 
codependent features

• 𝐼(𝑥" , 𝑥!) is some measure of mutual information between 𝑥" and 
𝑥!, 𝑆 is the growing set of selected features, and 𝑥" is the 
candidate feature; can use Spearman's for 𝐼(𝑥" , 𝑥!)

• Only considers single-feature relationships with 𝑦, limited to 
classification, what is 𝐼(𝑥" , 𝑥!) for categorical variables?



Importance via linear models

• For suitably prepared data without missing variables and other 
appropriate assumptions, linear model coefficients give the 
amount of 𝑦 variance explained for each 𝑥! variable

• But, linear models are often too weak in practice for modeling, 
which renders coefficient interpretation highly suspect

• More on difficulties of interpreting regression coefficients by 
Breiman https://projecteuclid.org/euclid.ss/1009213726

https://projecteuclid.org/euclid.ss/1009213726


So how do we really get feature importance?
• RF specific and scikit-learn default: gini/MSE drop (I'd avoid)
• Drop-column importance
• Permutation importance
from sklearn.inspection import permutation_importance

• scikit-learn added after we exposed the weakness of gini drop
https://explained.ai/rf-importance/index.html and see rfpimp [1]

• SHAP (https://github.com/slundberg/shap) likely most accurate 
so far (w/amazing library) but I find it unbearably slow

[1] https://github.com/parrt/random-forest-importances/blob/master/README.md

https://explained.ai/rf-importance/index.html
https://github.com/slundberg/shap
https://github.com/parrt/random-forest-importances/blob/master/README.md


Random Forest loss function drop

• Random Forests have a built-in mechanism called 
“gini drop” (for regression, it's “MSE drop”)

• The idea is to track how much the loss function 
drops from a decision node to its children (for that 
split variable)

• The average loss function drop for a specific 𝑥!
across decision nodes for 𝑥! and across all trees 
gives the feature importance

• Unfortunately, this gives biased feature 
importances



Random Forest gini/MSE drop issues
• Exhaustively testing every unique 𝑥! value when finding 

decision node splits increases likelihood of finding a 𝑥! value 
that, purely by chance, happens to predict 𝑦 well

• That increases the likelihood that variable 𝑥! will appear more 
often in the trees, which leads to inflated/biased importance

• It’s likely that extremely random trees, that pick a random split 
value between min(𝑥!) and max(𝑥!) would not suffer from this 
bias; I haven’t tried this theory out, but it makes sense

• Breiman: “adding up the gini decreases for each individual 
variable over all trees in the forest gives a fast variable 
importance that is often very consistent with the permutation 
importance measure.”

Read more https://explained.ai/rf-importance/index.html

https://explained.ai/rf-importance/index.html


Trouble in paradise (regression)
• Don’t trust default (“gini drop”) 

importances for RF in sklearn
• Here we see the unlikely idea 

that New Yorkers care most 
about bathrooms and much 
more than location or bedrooms

• New Yorkers can be weird, but 
they can’t be this fixated on 
bathrooms

• Random noise column is last 
(which it should be)

Read more https://explained.ai/rf-importance/index.html

https://explained.ai/rf-importance/index.html


Trouble in paradise
(classification: predicting interest in apt web page)

• Same data but classifying 
interest in apartments but 
price is now feature not target

• Random noise column is now 
somehow more important than 
bedrooms and bathrooms?

• Somethin ain’t right
• For more on “gini drop”, see:
https://stackoverflow.com/questions/15
810339/how-are-feature-importances-
in-randomforestclassifier-determined

Hmm… what can we do instead?

https://stackoverflow.com/questions/15810339/how-are-feature-importances-in-randomforestclassifier-determined


Drop-column importance

• Brute force mechanism to examine importance of
any feature or combination of features

• Procedure:
1. Compute validation metric for model trained on all features
2. Drop column 𝑥! from training set
3. Retrain model
4. Compute validation metric set
5. Importance score is the change in metric

• Answers the question of how loss of a feature affects overall 
model performance (which might not be actual importance)

train

xj



Compare drop-column to gini/MSE drop

What does negative importance mean?  Means dropping improves metric!

default sklearn ”gini drop” default sklearn ”gini drop”
Regressor Classifier



Drop-column implementation
def dropcol_importances(model,

X_train, y_train, X_valid, y_valid):
model.fit(X_train, y_train)
baseline = metric(y_valid, model.predict(X_valid))
imp = []
for col in X_train.columns:

X_train_ = X_train.drop(col, axis=1)
X_valid_ = X_valid.drop(col, axis=1)
model_ = clone(model)
model_.fit(X_train_, y_train)
m = metric(y_valid, model_.predict(X_valid_))
imp.append(baseline - m)

return imp



Drop-column pros/cons

• Easy to understand
• Simple to implement
• Very direct means of measuring importance
• Works for any machine learning model
• BUT, very expensive because it means retraining the model 𝑝

times for 𝑝 features; try on a subset of the data for speed
• Codependent features often result in 0 or very low importance



Permutation importance

• Similar to drop column, but permute 𝑥! instead of
dropping it from the model

• Keeps same 𝑥! distribution but breaks relationships
• Procedure:

1. Compute validation metric for model trained on all features
2. Permute column 𝑥! in validation set
3. Compute validation metric set
4. Importance score is the change in metric

validation

xj

sh
uffl

e



Compare permutation to gini/MSE drop
default sklearn ”gini drop” default sklearn ”gini drop”

Regressor Classifier

Importance via permutation Importance via permutation



Permutation implementation
def permutation_importances(model, X_valid, y_valid):

baseline = metric(y_valid, model.predict(X_valid))
imp = []
for col in X_valid.columns:

save = X_valid[col].copy()
X_valid[col] = np.random.permutation(X_valid[col])
m = metric(y_valid, model.predict(X_valid))
X_valid[col] = save
imp.append(baseline - m)

return imp



Permutation importance pros/cons
• Easy to understand
• Simple to implement
• Works for any machine learning model
• No need to retrain the model so much more efficient than drop 

column importance
• Can create nonsensical records through permutation, such as 

pregnant male, which makes the results suspect
• Codependent features often share importance, such as longitude 

and latitude
• Strobl et al “permutation importance over-estimates the importance 

of correlated predictor variables”
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307


Compare drop column to permutation
Regressor Classifier

drop-column drop-column

permutation permutation

(very similar)(fairly different due to codependence; permutation tends 
to share importance scores for codependent features)



Interpreting importance results



Codependent features

• Drop column and permutation importance consider each feature 
individually, though my rfpimp package lets you consider multiple 
features together

• If all features are totally independent, then computing feature 
importance individually is no problem

• If, however, two or more features are codependent (correlated in 
some way but not necessarily with a strictly linear relationship) 
computing feature importance individually can give unexpected results

• Drop-column tends to show low importance scores and permutation 
tends to share importance scores for codependent features



Effect of duplicated columns on drop 
column importance
• Compare feature importances for original regressor model and 

another with duplicated longitude
• Shocking to see BOTH longitude and duplicated longitude both 

go to zero importance but we measure as drop in accuracy
• Dropping one doesn’t affect accuracy; other column covers for it



Effect of duplicated columns on 
permutation importance
• Consider RFs; during training, node splitting should choose 

equally important variables roughly 50-50
• Permuting a duplicated column should still allow prediction to be 

half supported by the other identical column
• That’s what we see in practice for duplicated columns; has the 

effect of pulling down the perceived importance of the original



Spearman’s feature heat map
• Spearman's correlation is same 

as converting two variables to 
rank values and running 
standard correlation

• Highly-correlated features should 
be dropped/permuted together in 
feature importance metrics to 
decrease confusion; E.g., as 
bedrooms, beds_baths, and 
beds_per_price



Ex: Breast cancer correlation matrix
• Features are super correlated, 

yielding useless feature 
importances

Larger correlation image https://explained.ai/rf-importance/images/cancer_corr.svg

Permutation Drop column

https://explained.ai/rf-importance/images/cancer_corr.svg


Feature codependence
(stronger measure than spearman's)
• To identify if 𝑥! is codependent with other features, train 

model using 𝑥! as the target variable and all other 
features as explanatory variables (multicollinearity)

• R^2 prediction error indicates how easy it is to predict 
feature 𝑥! using the other features

• Feature importances of 𝑥! targeted model identify which 
features are strongly-codependents of 𝑥!

• The higher the score, the more codependent feature 𝑥!
is with other features; can drop all but one in highly-
codependent feature group to simplify model

• E.g., mean radius is important to predict mean 
perimeter and mean area; can probably drop those two

• E.g., could tell you which virus mutations develop 
together

Bigger image https://explained.ai/rf-importance/images/cancer_dep.svg

https://en.wikipedia.org/wiki/Multicollinearity
https://explained.ai/rf-importance/images/cancer_dep.svg


Interpreting individual record 
results



Viz how a test vector reaches leaf
Sample run ”down” regression tree



Path from root to leaf has useful info!

• Which features tested?
• Partitioning of feature space:

• Explain prediction using vars/values:
Predict 162.68 because s5 > -0.0038 and bmi < 0.0148



Explain regression prediction as
sum of contributions along path
• Using change in sample mean from each node
• Start with mean(y), value of root node
• Compute sample mean deltas

Prediction: 14.40 ≈ 22.60 (trainset mean) +          
14.82(gain from RM) -
5.12(loss from RM) -
17.9(loss from NOX)

Image/example from http://blog.datadive.net/interpreting-random-forests/

http://blog.datadive.net/interpreting-random-forests/


Test vector feature importances
(regressor example)
• Revisit earlier slide; magnitude and frequency of variable 

contribution acts like the importance
• Could also use MSE drop similar to gini drop, but drop/gain in 

prediction value seems more likely to be accurate

Prediction: 14.40 ≈ 22.60 (trainset mean) +          
14.82(gain from RM) -
5.12(loss from RM) -
17.9(loss from NOX) important



Test vector feature importances
(classifier example)

• First approximation: count the number of times 
each variable referenced along the path from 
root to the leaf

• Improve by weighting vars by average drop in 
gini (mimicking ginidrop importance), but for a 
single record

• _TOTINDA drop = .303 - .23 = 0.073
• ARTHDIS2 drop = .23 - .191 = 0.039
• CVDINFR4 drop = .191 - .174 = 0.017
• DOCTDIAB gain = .174 - .375 = -.201

data set https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system

important

negatively
important

https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system


Summary
• Use permutation importance, but check drop-column too
• Use only on stable, accurate model
• We only get relative importances, not proportion of total variance
• A 0 drop-column importance doesn’t mean useless; might also be a 

codependent feature
• Add a noise column; can ignore any vars at or below
• RF specific: can interpret single test record as drop in value or 

MSE/gini on path from root to leaf
• Compute metric changes on validation not training set
• Feature importances are clues not gospel
• Useful for simplifying model
• Can tell us something about the business application / market


