
Feature importance
Which features are the most predictive or have most impact?

Terence Parr
MSDS program
University of San Francisco

What does the model say about the data?
• A good model is useful, but we usually want to interpret model
• Feature importance tells us about the business or application;

e.g., what matters to people renting apartments or buying used
bulldozers or identifying cancer or getting a bank loan?

• Importance scores themselves don’t usually mean anything, and
they are often normalized 0..1 anyway

• Only relative rank/magnitude matters for understanding, say,
customer behavior or for feature selection to drop irrelevant
features

Formal definition of feature importance?
• Not sure there is an agreed-upon definition
• Feature importance gives (usually just) a relative ranking of the

predictive strength among the features of the model; useful for
simplifying models and possibly improving generality

• We'd also like a model-independent feature impact that identifies the
effect of features on 𝑦 without peering through lens of a model: “the
amount of 𝑦 variation attributed specifically to feature 𝑥!” See [1]

• We want importance/impact to isolate impact of individual features
• Nonetheless, we'll focus on feature importance as proxy for impact

[1] https://arxiv.org/abs/2006.04750 for detailed discussion

Coining new
term to
distinguish
from feature
importance

https://arxiv.org/abs/2006.04750

Rent example

• Number of bedrooms appears to
be the most important, meaning
that it is the most predictive of
rent price

• That tells us something about the
market for New York City rent

• Combined, however, the location
matters more by far; note:
longitude and latitude are
codependent features

See https://mlbook.explained.ai/first-taste.html

https://mlbook.explained.ai/first-taste.html

Bulldozer example

• YearMade, lower
capacity spec,
size matter most

• Note age appears unimportant but
date-related features are highly
correlated; other features can cover
for codependent features; still looks
predictive to me:

See https://mlbook.explained.ai/bulldozer-feateng.html

https://mlbook.explained.ai/bulldozer-feateng.html

Bulldozer one-hot example
• One-hot’ing categorical features

temporarily and then examining feature
importance can identify which category
levels are important vs just the variable

• E.g., one-hot Enclosure and we see
that “EROPS AC” (air conditioned cab)
is most important Enclosure, which is
valuable marketing / business info
(other levels are way down in the noise)

• Could be useful for improving model but
definitely useful for business
intelligence

Breast cancer classification example
• Distinguishing between malignant

versus benign masses: radius
error is strongly predictive

• That is “standard error for the
mean of distances from center to
points on the perimeter” which
could give an indication of mass
edge irregularity

• Worst texture is “largest mean
value for standard deviation of
gray-scale values”

See https://mlbook.explained.ai/first-taste.html

Image credit: https://pubmed.ncbi.nlm.nih.gov/27563488/

https://mlbook.explained.ai/first-taste.html
https://pubmed.ncbi.nlm.nih.gov/27563488/

Common application: Tuning the model
• Dropping unimportant features simplifies the model; fewer features

make it easier to interpret/explain model behavior
• Often increases accuracy and generality because the model is not

taking irrelevant features into consideration (e.g., noise vars)
• Simplifying models is a form of regularization
• Fewer features increases training and prediction speed
• Drop the lowest importance feature and retrain the model, redo

validation metric; if validation metric worse, then we have dropped
one too many features

• Codependencies between features is why we recompute feature
importances after dropping each feature; at minimum, rank of
features can change dramatically after dropping a feature

Beware!

• Can’t trust feature importances from high bias or high variance
models

• Importance says how important a feature is to a specific model
• Sum of importances not usually meaningful; doesn’t tell you

how much of the overall prediction your model has covered
• When possible compute importances with validation not training

set; we care about features predictive for generalization
• Even with good model, importances are a clue not gospel

Importance is typically model-specific!

• Same method applied to same data can yield different
importances; here's SHAP on Boston but different models

Implementation of importance

Importance directly from the data:
Spearman's rank correlation
• Simplest technique for regression is to rank 𝑥! features by their

Spearman's rank correlation [1] with target 𝑦
(doesn't assume linear relationship)

• The feature with largest coefficient is most important
• Measures single-feature importance and works well for

independent features, but not good for codependent features
• Groups of features with similar relationships to the response

variable receive the same or similar ranks, even though just one
should be considered important

• Seems inappropriate for categorical variables

[1] https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

https://en.wikipedia.org/wiki/Spearman%27s_rank_correlation_coefficient

Importance directly from the data: PCA

• Principle component analysis (PCA) operates on just the 𝑋
explanatory matrix; limited to linear relationships and "most
variance" is not always the same as "most important"

• PCA transforms data into a new space characterized by
eigenvectors of X and identifies features that explain the most
variance in the new space

• If the first principal component covers a large percentage of the
variance, the “loads” associated with that component can
indicate importance of features in the original 𝑋 space

• Seems inappropriate for categorical variables

Copied from https://arxiv.org/abs/2006.04750

https://arxiv.org/abs/2006.04750

Importance directly from the data: mRMR
• To deal with codependencies, rank not just by relevance but also

by redundance; mRMR: minimal-redundancy maximal-relevance

• Redundance is the amount of information shared between
codependent features

• 𝐼(𝑥" , 𝑥!) is some measure of mutual information between 𝑥" and
𝑥!, 𝑆 is the growing set of selected features, and 𝑥" is the
candidate feature; can use Spearman's for 𝐼(𝑥" , 𝑥!)

• Only considers single-feature relationships with 𝑦, limited to
classification, what is 𝐼(𝑥" , 𝑥!) for categorical variables?

Importance via linear models

• For suitably prepared data without missing variables and other
appropriate assumptions, linear model coefficients give the
amount of 𝑦 variance explained for each 𝑥! variable

• But, linear models are often too weak in practice for modeling,
which renders coefficient interpretation highly suspect

• More on difficulties of interpreting regression coefficients by
Breiman https://projecteuclid.org/euclid.ss/1009213726

https://projecteuclid.org/euclid.ss/1009213726

So how do we really get feature importance?
• RF specific and scikit-learn default: gini/MSE drop (I'd avoid)
• Drop-column importance
• Permutation importance
from sklearn.inspection import permutation_importance

• scikit-learn added after we exposed the weakness of gini drop
https://explained.ai/rf-importance/index.html and see rfpimp [1]

• SHAP (https://github.com/slundberg/shap) likely most accurate
so far (w/amazing library) but I find it unbearably slow

[1] https://github.com/parrt/random-forest-importances/blob/master/README.md

https://explained.ai/rf-importance/index.html
https://github.com/slundberg/shap
https://github.com/parrt/random-forest-importances/blob/master/README.md

Random Forest loss function drop

• Random Forests have a built-in mechanism called
“gini drop” (for regression, it's “MSE drop”)

• The idea is to track how much the loss function
drops from a decision node to its children (for that
split variable)

• The average loss function drop for a specific 𝑥!
across decision nodes for 𝑥! and across all trees
gives the feature importance

• Unfortunately, this gives biased feature
importances

Random Forest gini/MSE drop issues
• Exhaustively testing every unique 𝑥! value when finding

decision node splits increases likelihood of finding a 𝑥! value
that, purely by chance, happens to predict 𝑦 well

• That increases the likelihood that variable 𝑥! will appear more
often in the trees, which leads to inflated/biased importance

• It’s likely that extremely random trees, that pick a random split
value between min(𝑥!) and max(𝑥!) would not suffer from this
bias; I haven’t tried this theory out, but it makes sense

• Breiman: “adding up the gini decreases for each individual
variable over all trees in the forest gives a fast variable
importance that is often very consistent with the permutation
importance measure.”

Read more https://explained.ai/rf-importance/index.html

https://explained.ai/rf-importance/index.html

Trouble in paradise (regression)
• Don’t trust default (“gini drop”)

importances for RF in sklearn
• Here we see the unlikely idea

that New Yorkers care most
about bathrooms and much
more than location or bedrooms

• New Yorkers can be weird, but
they can’t be this fixated on
bathrooms

• Random noise column is last
(which it should be)

Read more https://explained.ai/rf-importance/index.html

https://explained.ai/rf-importance/index.html

Trouble in paradise
(classification: predicting interest in apt web page)

• Same data but classifying
interest in apartments but
price is now feature not target

• Random noise column is now
somehow more important than
bedrooms and bathrooms?

• Somethin ain’t right
• For more on “gini drop”, see:
https://stackoverflow.com/questions/15
810339/how-are-feature-importances-
in-randomforestclassifier-determined

Hmm… what can we do instead?

https://stackoverflow.com/questions/15810339/how-are-feature-importances-in-randomforestclassifier-determined

Drop-column importance

• Brute force mechanism to examine importance of
any feature or combination of features

• Procedure:
1. Compute validation metric for model trained on all features
2. Drop column 𝑥! from training set
3. Retrain model
4. Compute validation metric set
5. Importance score is the change in metric

• Answers the question of how loss of a feature affects overall
model performance (which might not be actual importance)

train

xj

Compare drop-column to gini/MSE drop

What does negative importance mean? Means dropping improves metric!

default sklearn ”gini drop” default sklearn ”gini drop”
Regressor Classifier

Drop-column implementation
def dropcol_importances(model,

X_train, y_train, X_valid, y_valid):
model.fit(X_train, y_train)
baseline = metric(y_valid, model.predict(X_valid))
imp = []
for col in X_train.columns:

X_train_ = X_train.drop(col, axis=1)
X_valid_ = X_valid.drop(col, axis=1)
model_ = clone(model)
model_.fit(X_train_, y_train)
m = metric(y_valid, model_.predict(X_valid_))
imp.append(baseline - m)

return imp

Drop-column pros/cons

• Easy to understand
• Simple to implement
• Very direct means of measuring importance
• Works for any machine learning model
• BUT, very expensive because it means retraining the model 𝑝

times for 𝑝 features; try on a subset of the data for speed
• Codependent features often result in 0 or very low importance

Permutation importance

• Similar to drop column, but permute 𝑥! instead of
dropping it from the model

• Keeps same 𝑥! distribution but breaks relationships
• Procedure:

1. Compute validation metric for model trained on all features
2. Permute column 𝑥! in validation set
3. Compute validation metric set
4. Importance score is the change in metric

validation

xj

sh
uffl

e

Compare permutation to gini/MSE drop
default sklearn ”gini drop” default sklearn ”gini drop”

Regressor Classifier

Importance via permutation Importance via permutation

Permutation implementation
def permutation_importances(model, X_valid, y_valid):

baseline = metric(y_valid, model.predict(X_valid))
imp = []
for col in X_valid.columns:

save = X_valid[col].copy()
X_valid[col] = np.random.permutation(X_valid[col])
m = metric(y_valid, model.predict(X_valid))
X_valid[col] = save
imp.append(baseline - m)

return imp

Permutation importance pros/cons
• Easy to understand
• Simple to implement
• Works for any machine learning model
• No need to retrain the model so much more efficient than drop

column importance
• Can create nonsensical records through permutation, such as

pregnant male, which makes the results suspect
• Codependent features often share importance, such as longitude

and latitude
• Strobl et al “permutation importance over-estimates the importance

of correlated predictor variables”
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307

https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-9-307

Compare drop column to permutation
Regressor Classifier

drop-column drop-column

permutation permutation

(very similar)(fairly different due to codependence; permutation tends
to share importance scores for codependent features)

Interpreting importance results

Codependent features

• Drop column and permutation importance consider each feature
individually, though my rfpimp package lets you consider multiple
features together

• If all features are totally independent, then computing feature
importance individually is no problem

• If, however, two or more features are codependent (correlated in
some way but not necessarily with a strictly linear relationship)
computing feature importance individually can give unexpected results

• Drop-column tends to show low importance scores and permutation
tends to share importance scores for codependent features

Effect of duplicated columns on drop
column importance
• Compare feature importances for original regressor model and

another with duplicated longitude
• Shocking to see BOTH longitude and duplicated longitude both

go to zero importance but we measure as drop in accuracy
• Dropping one doesn’t affect accuracy; other column covers for it

Effect of duplicated columns on
permutation importance
• Consider RFs; during training, node splitting should choose

equally important variables roughly 50-50
• Permuting a duplicated column should still allow prediction to be

half supported by the other identical column
• That’s what we see in practice for duplicated columns; has the

effect of pulling down the perceived importance of the original

Spearman’s feature heat map
• Spearman's correlation is same

as converting two variables to
rank values and running
standard correlation

• Highly-correlated features should
be dropped/permuted together in
feature importance metrics to
decrease confusion; E.g., as
bedrooms, beds_baths, and
beds_per_price

Ex: Breast cancer correlation matrix
• Features are super correlated,

yielding useless feature
importances

Larger correlation image https://explained.ai/rf-importance/images/cancer_corr.svg

Permutation Drop column

https://explained.ai/rf-importance/images/cancer_corr.svg

Feature codependence
(stronger measure than spearman's)
• To identify if 𝑥! is codependent with other features, train

model using 𝑥! as the target variable and all other
features as explanatory variables (multicollinearity)

• R^2 prediction error indicates how easy it is to predict
feature 𝑥! using the other features

• Feature importances of 𝑥! targeted model identify which
features are strongly-codependents of 𝑥!

• The higher the score, the more codependent feature 𝑥!
is with other features; can drop all but one in highly-
codependent feature group to simplify model

• E.g., mean radius is important to predict mean
perimeter and mean area; can probably drop those two

• E.g., could tell you which virus mutations develop
together

Bigger image https://explained.ai/rf-importance/images/cancer_dep.svg

https://en.wikipedia.org/wiki/Multicollinearity
https://explained.ai/rf-importance/images/cancer_dep.svg

Interpreting individual record
results

Viz how a test vector reaches leaf
Sample run ”down” regression tree

Path from root to leaf has useful info!

• Which features tested?
• Partitioning of feature space:

• Explain prediction using vars/values:
Predict 162.68 because s5 > -0.0038 and bmi < 0.0148

Explain regression prediction as
sum of contributions along path
• Using change in sample mean from each node
• Start with mean(y), value of root node
• Compute sample mean deltas

Prediction: 14.40 ≈ 22.60 (trainset mean) +
14.82(gain from RM) -
5.12(loss from RM) -
17.9(loss from NOX)

Image/example from http://blog.datadive.net/interpreting-random-forests/

http://blog.datadive.net/interpreting-random-forests/

Test vector feature importances
(regressor example)
• Revisit earlier slide; magnitude and frequency of variable

contribution acts like the importance
• Could also use MSE drop similar to gini drop, but drop/gain in

prediction value seems more likely to be accurate

Prediction: 14.40 ≈ 22.60 (trainset mean) +
14.82(gain from RM) -
5.12(loss from RM) -
17.9(loss from NOX) important

Test vector feature importances
(classifier example)

• First approximation: count the number of times
each variable referenced along the path from
root to the leaf

• Improve by weighting vars by average drop in
gini (mimicking ginidrop importance), but for a
single record

• _TOTINDA drop = .303 - .23 = 0.073
• ARTHDIS2 drop = .23 - .191 = 0.039
• CVDINFR4 drop = .191 - .174 = 0.017
• DOCTDIAB gain = .174 - .375 = -.201

data set https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system

important

negatively
important

https://www.kaggle.com/cdc/behavioral-risk-factor-surveillance-system

Summary
• Use permutation importance, but check drop-column too
• Use only on stable, accurate model
• We only get relative importances, not proportion of total variance
• A 0 drop-column importance doesn’t mean useless; might also be a

codependent feature
• Add a noise column; can ignore any vars at or below
• RF specific: can interpret single test record as drop in value or

MSE/gini on path from root to leaf
• Compute metric changes on validation not training set
• Feature importances are clues not gospel
• Useful for simplifying model
• Can tell us something about the business application / market

