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Overview

• Huge topic and, after basic cleaning, this is where you’ll spend 
the most time

• Good features are much more important than the model, 
assuming you pick good one like RF or gradient boosting

“At the end of the day, some machine learning projects succeed 
and some fail. What makes the difference? Easily the most 
important factor is the features used.” -- Pedro Domingos
From “a few useful things to Know about machine Learning”



Deriving numeric columns

• Goal is to help model: either smaller trees or more accurate or both
• Rent: Longer feature list, description, num photos could be predictive

• Create interaction terms; ever have to wait for siblings to take a 
shower? Maybe there is some predictive power in the ratio of 
bedrooms to bathrooms; maybe beds+baths?

df["num_desc_words"] = df["description"].apply(lambda x: len(x.split()))
df["num_features"]   = df["features"].apply(lambda x: len(x.split(",")))
df["num_photos"]     = df["photos"].apply(lambda x: len(x.split(",")))

df["beds_to_baths"] = df["bedrooms"]/(df["bathrooms"]+1) # avoid div by 0



More numeric feature ideas

• Loan or credit card application classifier example; count 
previous credit card attempts or average previous loan amount
(or could derive boolean “has applied previously”)

• For detecting ATM fraud, create column for average previous 
withdrawal amount; min or max withdrawal could be useful too

• Rank encoding: convert raw numbers to their rank. It could be 
the order is more important than value, which could distract the 
model. It also squashes outliers



Synthesizing new vars from strings
• Before label encoding, try to derive features from string features
• E.g., Apt data: count words in description or number of features 

or derive column indicating apt has a doorman, garage, …



Simple string computations

• First normalize

• Then, identify key words or subphrases

df['description'] = df['description'].fillna('')
df['description'] = df['description'].str.lower()
df['features'] = df['features'].fillna('')
df['features'] = df['features'].str.lower()

df[‘doorman’] = df['features'].str.contains(‘doorman’)
…

Replace missing with blank



Splitting more complicated strings

• Bulldozers with higher operating capacity get higher prices, 
according to marginal plot

Image credit: https://www.freepik.com/free-vector/tractor-excavator-bulldozer-set_1311014.htm

https://www.freepik.com/free-vector/tractor-excavator-bulldozer-set_1311014.htm


Splitting product class description string

• We can make the information more explicit by splitting the 
description into four pieces (and put into 4 new columns):

• Description is a categorical variable, chosen from a finite set of 
categories such as “Skip Steer Loader”

• Lower and upper are numerical features
• Units is a category, such as “Horsepower”



Mechanics for splitting strings

• First split into description and spec on ‘-’ char
• Then use regex to extract lower, upper, units

For details see https://mlbook.explained.ai/bulldozer-feateng.html

df_split = df_raw.fiProductClassDesc.str.split(' - ',expand=True)
df['fiProductClassDesc'] = df_split.values[:,0]
df['fiProductClassSpec'] = df_split[:,1] # temporary column
…
pattern = r'([0-9.\+]*)(?: to ([0-9.\+]*)|\+) ([a-zA-Z ]*)’
df_split = df['fiProductClassSpec'].str.extract(pattern, expand=True)

https://mlbook.explained.ai/bulldozer-feateng.html


Injecting external data

• Sometimes we can inject data from outside our provided data 
set to increase model performance

• E.g., if sales for a store is 0, maybe that day was a national 
holiday or there was a hurricane; was there a pandemic?

• E.g., GPS location is important for rent price, but maybe 
proximity to cool neighborhood is stronger / more precise?

• E.g., home sales could be affected by many factors external to 
data set; what is the current consumer confidence index? How 
many IPOs recently in San Francisco? What is unemployment 
rate? Emigration rate for area?



Injecting external neighborhood info

• Rent data set has longitude and latitude coordinates, but a 
more obvious price predictor would be a categorical variable 
identifying the neighborhood, though, a numeric feature might 
be more useful

• Use proximity to desirable neighborhoods as a numeric feature
(I love living within a few blocks of 50 different restaurants)

• Forbes magazine has an article with neighborhood names; 
using a mapping website, we can estimate GPS for them

• Compute so-called Manhattan distance (also called L1 
distance) from each apartment to each neighborhood center



Injecting L1 proximity mechanics

• Iterate over neighborhoods and use vector math to compute 
new column per neighborhood

• BTW, dropping longitude and latitude and retraining a model 
shows a similar OOB score but shallower trees in my tests

hoods = {
"hells" : [40.7622, -73.9924],
"astoria" : [40.7796684, -73.9215888], … }

for hood,loc in hoods.items():
# compute L1 manhattan distance
df[hood] = np.abs(df.latitude - loc[0]) + \

np.abs(df.longitude - loc[1])



Log in, exp out for regression
(Could be considered a part of data cleaning)

• Apt rent: consider distribution of 
prices clipped to less than $20,000 
and zoomed in

• There’s a very long right tail, which 
skews RF predictions based upon 
mean of leaf y’s and also training 
based upon MSE

• Many target 𝑦, such as prices, are 
best compared as ratios and long 
tail makes MAE/MSE subtraction 
even more wonky



Transforming the target variable
• Goal: a tighter, more uniform target space 
• Optimally, the distribution of prices would be a 

narrow “bell curve” distribution without tail
• Even restricted to $1k..$10k it’s still skewed
• BUT, check out what log does to distribution of 

ALL prices, not just < $20k! (shrinks large values 
a lot and smaller values a little)

• Max price drops from millions to 10 without 
having to think or clip prices

• RF on unclipped prices gets R^2~=0, but RF 
trained on log(unclipped price) gets R^2~=0.87

• Recall subtraction in log dollars 
domain is a ratio in dollar domain

• Training with MSE therefore 
compares squared ratio of y to !𝑦



Effect on target space
• Revisit small region of New York City with outliers
• RF on raw prices predicts $358,575
• RF on log(price) predicts 9.92 (in log $)
• Transform predicted price back to $ space with exp => $20,395
• Average in the log price space is less sensitive to outliers

y_pred_log = rf.predict(X_test)
y_pred = np.exp(y_pred_log)



Reminder: rectify training and test sets
• Transformations must be applied to features consistently across data 

subsets (train, validation, test)
• Transformations of validation/test sets can only use data derived 

from training set
• To follow those rules, we have to remember all transformations done 

to the training set for later application to the validation and test sets.
• That means tracking the median of all numeric columns, all category-

to-code mappings, frequency encodings, and one-hot’d categories
• Special care is required to ensure that one-hot encoded variables 

use the same name and number of columns in the training and 
testing sets.



Summary of techniques
• Counting

• Count number of photos or words in a description
• for transaction-like data with multiple entries referring to same entity, count number of  

previous loan applications
• Frequency encoding an option for nominals (replace ManagerID with # apts managed)

• Interaction terms; price per square foot, bedrooms to bathrooms, …
• Compute min,max,avg of key numerical columns (ATM withdrawal amounts)
• Rank encoding; convert raw numbers to their rank
• Extract important words from strings like "doorman” into Boolean columns
• Extract numeric values from strings, such as “101 Howard”
• Inject external data, such as holiday days or best neighborhoods in SF
• Log transform the target for regressors


