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Deep learning regressors



What's a neural network?
• Ignore the neural network metaphor, but know the terminology
• A combination of linear and nonlinear transformations

• Linear: 𝑧 !"#$% = 𝑊 !"#$% 𝒙𝑻 + 𝒃 !"#$%

• Nonlinear: 𝒂 !"#$% = 𝝈 𝑧 !"#$% ; called activation function
• Networks have multiple layers; a layer is a stack of neurons

• Transforms raw 𝒙 vector into better and better features, final 
linear layer can then make excellent prediction

layer 1 layer 2 layer 3 ŷ



DL Building blocks

• "𝑦 = 𝑤!𝑥! + 𝑤"𝑥" + …+ 𝑤#𝑥# + 𝑏 = 𝒘𝒙𝑻 + 𝑏 for 𝑛 x 𝑚 dim 𝑋
• Linear/logistic regression equivalents (one 𝒙 instance):

Underfitting a bit here
(need more of a quadratic)

Regressor

Two-class
Classifier

linear sigmoid ReLU (rectified linear unit)

Regressorm

1

1
1
ŷ

ŷ
Assume we magically know 𝒘 and 𝑏

(For simplicity, I'm using proper 𝒘𝒙𝑻 in math but omitting transpose in diagrams)

𝑚 = 1 case



Try adding layers to get more power

• But, sequence of linear models is just a linear model

(𝑤′ is scalar since 𝒘𝒙𝑻 + 𝑏 is scalar)

• PyTorch code model = nn.Sequential(
nn.Linear(m, 1), # m features
nn.Linear(1, 1)

) Still just a line

ŷ

𝑚 = 1 case



Must introduce nonlinearity
model = nn.Sequential(

nn.Linear(m, 1),
nn.ReLU(),
nn.Linear(1, 1)

)

ReLU idea here: Draw two lines
then clip at intersection

ŷ ŷ



Stack linear models (neurons) for more power
• Stack gives layer: 𝑊 matrix and 𝒃
• 𝒂 ! = 𝑟𝑒𝑙𝑢 𝑊 ! 𝒙𝑻 + 𝒃 !

• 𝑦̂ = 𝒂 " = 𝑊 ["]𝒂 ! + 𝒃["]

model = nn.Sequential(
nn.Linear(m, 5),
nn.ReLU(),
nn.Linear(5, 1)

)

All those 𝒘 and 𝑏 are different 𝑊 ! means 𝑊 for layer 1

ŷ



Math for dataset 1D: weight→MPG

model = nn.Sequential(
nn.Linear(1, 5),
nn.ReLU(),
nn.Linear(5, 2),
nn.ReLU(),
nn.Linear(2, 1)

)
(courtesy of TensorSensor)

W [1] W [2] W [3]

a[1] a[2] a[3]
ŷ

(leaving out 𝑏's)

https://explained.ai/tensor-sensor/index.html

𝑚 = 1 case

https://explained.ai/tensor-sensor/index.html


Too much strength can lead to overfitting

• Models with too many parameters will overfit easily,
if we train a long time

• We'll look at regularization later

model = nn.Sequential(
nn.Linear(1, 1000),
nn.ReLU(),
nn.Linear(1000, 1)

)



Classifiers



Binary classifiers
• Add sigmoid to regressor and we get 

a two-class classifier
• Prediction "𝑦 is probability of class 1
• One-layer (hidden) network with 

sigmoid activation function is just a 
logistic regression model

• Provides hyper-plane decision 
surfaces

# 2 input vars: proline, alcohol
model = nn.Sequential(

nn.Linear(2, 1), 
nn.Sigmoid(),

)

ŷ

𝑚 = 2 case

Probability surface plot courtesy of https://github.com/parrt/dtreeviz

https://github.com/parrt/dtreeviz


Stack neurons and add layer

• We get a nonlinear decision surface

model = nn.Sequential(
nn.Linear(2, 3),
nn.Sigmoid(),
nn.Linear(3, 1),
nn.Sigmoid()

)

ŷ

All those 𝒘 and 𝑏 are different

See https://github.com/parrt/msds621/blob/master/notebooks/deep-learning/4.binary-classifier-wine.ipynb

https://github.com/parrt/msds621/blob/master/notebooks/deep-learning/4.binary-classifier-wine.ipynb


More neurons:
more complex decision surface

model = nn.Sequential(
nn.Linear(2, 10),
nn.Sigmoid(),
nn.Linear(10, 1),
nn.Sigmoid()

)

Likely overfit

ŷ

Not only more complex than hyperplane but non-contiguous regions!



Even ReLUs can get "curvy" surfaces

model = nn.Sequential(
nn.Linear(2, 10),
nn.ReLU(),
nn.Linear(10, 10),
nn.ReLU(),
nn.Linear(10, 1),
nn.Sigmoid()

)

(Last activation function still must be sigmoid for classifier)



y

𝑘-class classifiers
• 2-class problems: final 1 

neuron linear layer + 
sigmoid layer

• 𝒌-class problems: final 
𝑘-neuron linear layer + 
softmax

𝑦" is probability
of class 𝑖

𝑦 is probability
of class 1

k

k

k

ŷ



𝑘-class classifiers

• Instead of one neuron in last layer, we use 𝑘 for 𝑘 classes
• Last layer has vector output: 𝒛 '()*+ = 𝑊 '()*+ 𝒙𝑻 + 𝒃 '()*+

• Instead of sigmoid, we use softmax function
• Vector of 𝑘 probabilities as activation: :𝒚 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 𝒛 '()*+

• Normalized probabilities of 𝑘 classes



Sample softmax computation

• For layer output vector 𝒛: 



Training deep learning 
networks



What does training mean?

• Making prediction means running feature vector through network
• That is, computing a value using the model parameters:
)𝑦 = 3𝑥 + 2 is a different model than )𝑦 = .5𝑥 + 10

• Training: find optimal (or good enough) model parameters as 
measured by a loss (cost) function

• Loss function measures the difference between model 
predictions and known targets

• We have huge search space (of parameters) and it is 
challenging to find parameters that give low loss



Refresher: Loss functions

• Regression: typically mean squared error (MSE); should have 
smooth derivative, though mean absolute error works despite 
discontinuity (it's derivative is a V shape)

• Classification: log loss (also called cross entropy)
• Penalizes very confident misclassifications strongly 
• Function of true 𝑦 and estimated probabilities, )𝑦, not predicted class
• Perfect score is 0 log loss, imperfection gives unbounded scores
• PyTorch log loss: loss = cross_entropy(y_softmax, y_true)
• Predictions: y_pred = argmax(y_softmax)



Log loss
• Let p be predicted probability that y=1
• loss = penalty(p) if 𝑦=1 else penalty(1– p)
• Let penalty(p) = -log(p)

• Two-class log loss:

So log loss is average penalty; penalty is very high
for confidence in wrong answer

penalty(p)



Refresher:
Minimize loss with
Gradient descent
• We use information about 

the loss function in the 
neighborhood of current 
parameters (here called β,)  
to decide which direction 
shifts towards smaller loss

• Tweak parameters in that 
direction, amplified by a 
learning rate

• Go in opposite dir of slope
!1Δ

Δloss

while not_converged:
β = β - rate * gradient(β)



If learning rate is too high?

• We oscillate across 
valleys

• It can even diverge,
exploding

• If too small, we don’t
make progress to min



Training process
1. Prepare data

• normalize numeric variables
• onehot vars for categoricals
• conjure up values for missing values

2. Split out at least a validation set from training set
3. Choose network architecture, appropriate loss function
4. Choose hyper-parameters, such as dropout rate
5. Choose a learning rate, number of epochs (passes through data)
6. Run training loop (until validation error goes up or num epochs)
7. Goto 3, 4, or 5 to tweak; iterate until good enough



Training loop

for epoch in range(nepochs):
y_train_pred = model(X_train)
loss = MSE(y_train_pred, y_train)
update model parameters in direction of lower loss

for epoch in range(nepochs):
y_train_pred = model(X_train) # assume softmax final layer
loss = cross_entropy(y_train_pred, y_train)
update model parameters in direction of lower loss

Regression

Classification

Vectorized forward network pass
(send in all instances at once)



Common train vs validation loss behavior
• DL networks have so many 

parameters, we can often get 
training error down to zero!

• But, we care about generalization
• Unfortunately, validation error often 

tracks away from training error as 
the number of epochs increases

• This model is clearly overfitting
• Need to use regularization to 

improve validation loss



Regularization techniques
• Get more training data; can try augmentation techniques

(more data is likely to represent population distribution better)
• Reduce number of model parameters (i.e., simplify it)

(reduce power/ability to fit the noise)
• Add drop out layers (randomly kill some neurons)
• Weight decay (L2 regularization on model parameters,

restrict model parameter search space)
• Early stopping, when validation error starts to go up

(generally we choose model that yields the best validation error)
• Batch normalization has some small regularization effect

(Force layer activation distributions to be 0-mean, variance 1)
• Stochastic gradient descent tends to land on better generalizations



Aside: What is vectorization?

• Use vectors not loops
• For torch/numpy arrays, we can 

use vector math instead of a loop:

c = a + b

• Gives an opportunity to execute 
vector addition in parallel

for i in range(len(a)):
c[i] = a[i] + b[i]



Vectorization in training loop
• Running one instance through network is how we think about it
• In practice, we send a subset or all 𝑋 instances through the 

network in one go and compare all :𝒚 predictions to all 𝒚
• Instead of looping through instances, we pass 𝑋 through to use 

matrix-matrix multiplies instead of matrix-vector multiplies
for epoch in range(nepochs):

for i in range(n):
x = X[i]
y[i] = model(x)
…

for epoch in range(nepochs):
Y = model(X)
…

Assume n=100, m=3, n_neurons=1 in 1x3 weight matrix W

Get 100
answers



Summary
• Vanilla deep learning models are layers of linear regression models glued 

together with nonlinear functions such as sigmoid/ReLUs
• Regressor: final layer transforms previous layer to single output
• Classifier: add sigmoid to last regressor layer (2-class) or add softmax to 

last layer of 𝑘 neurons (𝑘-class)
• Training a model means finding optimal (or good enough) model 

parameters as measured by a loss (cost or error) function; hyper 
parameters describe architecture and learning rate, amount of 
regularization, etc.

• We train using (stochastic) gradient descent; tuning model and hyper 
parameters is more or less trial and error L but experience helps a lot


