Fundamentals of
deep learning

Crash course in using PyTorch to train models

Terence Parr

MSDS program
University of San Francisco

UNIVERSITY OF SAN FRANCISCO

Deep learning regressors

UNIVERSITY OF SAN FRANCISCO

What's a neural network?

* [gnore the neural network metaphor, but know the terminology

A combination of linear and nonlinear transformations
e Linear: Z[layer] — W[layer]xT + b[layer]

- Nonlinear: al'@é7l = g(zl!aver]); called activation function
* Networks have multiple layers; a layer is a stack of neurons

© E E E E E -

X[[] — layert =I layer 2 =j

N\

layer3 [— y

\/

\/

 Transforms raw x vector into better and better features, final
linear layer can then make excellent prediction

UNIVERSITY OF SAN FRANCISCO

DL Building blocks

wx + b

linear

J

_/

sigmoid

ReLU (rectified linear unit)

* P = wix; + Woxy + o+ WX, + b =wxl +bfornxmdimX
* Linear/logistic regression equivalents (one x instance):

1

m
Regressor 1

X—|WX+b—5p

Two-class

Classifier (]
X— WX+ b

-

]

—)

Assume we magically know w and b

(For simplicity, I'm using proper wx in math but omitting transpose in diagrams)

m = 1 case

Regressor

-1

0 1 2
Weight (Standardized)

Underfitting a bit here
(need more of a quadratic)

UNIVERSITY OF SAN FRANCISCO

Try adding layers to get more power

« But, sequence of linear models is just a linear model

A

§=w'(wx! +b)+b =wwx! +wb+¥

(w' is scalar since wx! + b is scalar)

H

X —

wx + b

« PyTorch code

\/

wXxX + b

D/\

)

nn.Linear(1, 1)

)

model = nn.Sequential(
nn.Linear(m, 1), # m features

n_.T 17
=w x +b
m = 1 case
40 -
N
o 30
s
20 =0
\\\\
10 1

-1 0 1 2
Weight (Standardized)

Still just a line

UNIVERSITY OF SAN FRANCISCO

model = nn.Sequential(
nn.Linear(m, 1),

Must introduce nonlinearity nReLU()

H

X —

Wx—l—b[jj‘D

\/

40 -

MPG

20 A

10 A

wx + b

Y

-1 0 1
Weight (Standardized)

2

nn.Linear(1, 1)

)
O m .

WX + b —| =Wx+b—»y

40 -

">

o 30
s

20 - <.

10 1

-1 0 1 2

Weight (Standardized)

RelLU idea here: Draw two lines
then clip at intersection

UNIVERSITY OF SAN FRANCISCO

Stack linear models (neurons) for more power

« Stack gives layer: W matrix and b

e alll = relu(WtxT + pli1)
e § = al?) = Wwi2lglt 4 pl2

-

X—>

i

:

WX+ bl —_ =wx—|—b£»j>

WX + b

wX + b model = nn.Sequential(
nn.Linear(m, 5),

wx + b nn.ReLU(),

WX + b nn.Linear(5, 1)

All those w and b are different

)

Wl means W for layer 1

MPG

40 -

-1 0 1 2
Weight (Standardized)

UNIVERSITY OF SAN FRANCISCO

Math for dataset 1D: weight-=MPG

i E '% el i3]
] = = O
X— WX+b— +—WX+b— —WX+b—7P
alll al?! al!
wXxX + b wX + b
wX + b
wX + b
wx + b m = 1 case
40 -

model = nn.Sequential(
nn.Linear(1, 5),

nn.ReLU(), g 307

nn.Linear(5, 2),

nn.ReLU(), 207

nn.Linear(2, 1)

) 10 -

-1 0

1

Weight (Standardized)

(leaving out b's)

al = F.relu(Wl @ x)
1 1

o o [

a2 = F.relu(W2 @ al)
ﬁ 0
a3 = W3 @ a2
1 2 1

~[] == (\l|:|

(courtesy of TensorSensor)
https://explained.ai/tensor-sensor/index.html

UNIVERSITY OF SAN FRANCISCO

https://explained.ai/tensor-sensor/index.html

Too much strength can lead to overfitting

* Models with too many parameters will overfit easily,

if we train a long time

« We'll look at regularization later ;.

model = nn.Sequential(

. O 30 A
nn.Linear(1, 1000), S
nn.ReLU(),
nn.Linear(1000, 1) 20

)
10 4

-1

0 1 2
Weight (Standardized)

UNIVERSITY OF SAN FRANCISCO

Classifiers

UNIVERSITY OF SAN FRANCISCO

Binary classifiers

« Add sigmoid to regressor and we get
a two-class classifier

 Prediction y is probability of class 1

* One-layer (hidden) network with
sigmoid activation function is just a
logistic regression model

* Provides hyper-plane decision
surfaces # 2 input vars: proline, alcohol
model = nn.Sequential(
nn.Linear(2, 1),
nn.Sigmoid(),

)

Probability surface plot courtesy of https://github.com/parrt/dtreeviz

alcoho

—2

[] O .
X— WX+ b— j — 9
Wine classification m = 2 case
"9
)
.
e © KX o
@ ..
”, - ;g,
@J 8 @ o ‘e
@ o
@ @ @ class 0
[) @ class1l
T5 o s oo o5 1o 5 20 15

proline

UNIVERSITY OF SAN FRANCISCO

https://github.com/parrt/dtreeviz

See https://github.com/parrt/msds621/blob/master/notebooks/deep-learning/4.binary-classifier-wine.ipynb

Stack neurons and add layer

* We get a nonlinear decision surface

Wine classification

-8 g <
B]] X X B
- - - A .. X >?< X
X—|wWx+0b —I - WX + b —f—>y 1- © i ><X>><<>>5<XXXX X
wx + b il D
© §.I><
3 § o :: : .Xxx. ,>><<><><><><
wxT m \b. 0 XS .o'""'-
-141 o 2..£‘. ’ ®
[8] .. ::'
model = nn.Sequential(—2- : i 2:::(1)
nn.Linear(2, 3), 15 10 05 00 05 10 15 20 25
nnS|gm0|d(), proline
nn.Linear(3, 1),
nn.Sigmoid()

)

UNIVERSITY OF SAN FRANCISCO
All those w and b are different

https://github.com/parrt/msds621/blob/master/notebooks/deep-learning/4.binary-classifier-wine.ipynb

More neurons:
more complex decision surface

Not only more complex than hyperplane but non-contiguous regions!

UNIVERSITY OF SAN FRANCISCO

WX b ., WX b s A Wine classification
x—»B +b=/ = +b—= /=79 N XX
WX + b]] X x)% X X><X>< X
L L '--. X
wx+b 0 4 e e e D
- _— - i B
wXx +b| [_ 3 o 8 TR o
- || _ . % 0 e o0 .X '>><<x
wx+b| — — model = nn.Sequential(&, ® $. .0
nn.Linear(2, 10), I S S
b .) [} P @ ®
WX + nn.Sigmoid(), oo ::. :
Linear(10, 1), g % class 0
WX b nn =2 class
- nn.Sigmoid() B : : : : : ‘. I .1
WX _|_ b) -1.5 -1.0 -0.5 0.0 pr(')c;ﬁne 1.0 15 20 25
WX + b Likely overfit
WX + b

Even RelLUs can get "curvy"” surfaces

Wine classification

2- 3
model = nn.Sequential(i
nn.Linear(2, 10), 14 ® il
nn.ReLU(), _ Ty
nn.Linear(10, 10), £ 0 » . o
nn.ReLU(), © &@cﬁ 8@@ ;
nn.Linear(10, 1), 1 ;2}’% F T G(;
nn.Sigmoid() o oe®, !
) | o %0 class 0
-2 ® % ® class1

-15 -10 -05 00 05 10 15 20 25
proline

(Last activation function still must be sigmoid for classifier)

UNIVERSITY OF SAN FRANCISCO

k-class classifiers

y is probability

* 2-class problems: final 1 XE,
neuron linear layer +
sigmoid layer

wX + b

@ of class 1
[] []

AWX +b— [—y

wx + b

wX + b

y; is probability
of class i

9 BB

» k-class problems: final X —
k-neuron linear layer +
softmax

wX + b HWX +b— [,

wX + b wX + b

wXx + b wx +b|/k
wXx + b

UNIVERSITY OF SAN FRANCISCO

k-class classifiers

* Instead of one neuron in last layer, we use k for k classes

- Last layer has vector output; zllaver] = yllayerlyT | pllayer]
* Instead of sigmoid, we use softmax function

- Vector of k probabilities as activation: § = softmax(z!!@ver!)
* Normalized probabilities of k classes

e*t

E§=1 e

softmax(z); =

UNIVERSITY OF SAN FRANCISCO

Sample softmax computation

» For layer output vector z: softmax(z); =

Z = np.array([0.1, 1, 5])
np.exp(z)

array([1.10517092, 2.71828183, 148.4131591])

np.exp(z) / np.sum(np.exp(z))

array([0.00725956, 0.01785564, ©0.9748848])

UNIVERSITY OF SAN FRANCISCO

Training deep learning
networks

UNIVERSITY OF SAN FRANCISCO

What does training mean?

« Making prediction means running feature vector through network

* That is, computing a value using the model parameters:
y = 3x + 2 is a different model than y = .5x + 10

* Training: find optimal (or good enough) model parameters as
measured by a loss (cost) function

e Loss function measures the difference between model
predictions and known targets

* We have huge search space (of parameters) and it is
challenging to find parameters that give low loss

UNIVERSITY OF SAN FRANCISCO

Refresher: Loss functions

* Regression: typically mean squared error (MSE); should have
smooth derivative, though mean absolute error works despite
discontinuity (it's derivative is a V shape)

 Classification: log loss (also called cross entropy)
« Penalizes very confident misclassifications strongly
* Function of true y and estimated probabilities, y, not predicted class
» Perfect score is 0 log loss, imperfection gives unbounded scores
* PyTorch log loss: 1oss = cross_entropy(y_softmax, y true)
* Predictions: y _pred = argmax(y_softmax)

UNIVERSITY OF SAN FRANCISCO

Log loss penalty(p)

4 — y = -log(x)
 Let p be predicted probability that y=1 z y = log(x)
* loss = penalty(p) if y=1 else penalty(1- p) 1H\\
- Let penalty(p) = -log(p) 01 D
_1<
—
_3<
4] | :
 Two-class IOg loss: Oi\godel cc?r.\zfidenceoi.r‘: correc(z.f:lass (p(;fbabilityl).0

1 n
loss = _E g yilog(p) + (1 — yi)log(l - pz')
i=1

So log loss is average penalty; penalty is very high
for confidence in wrong answer UNIVERSITY OF SAN FRANCISCO

R.efres.her: . while not_converged:-
Minimize loss with B = B - rate * gradient(B)

Gradient descent

* We use information about 4.0-
the loss function in the 35+
neighborhood of current 30 oss(B1) = (By — 2)2
parameters (here called ;)
to decide which direction
shifts towards smaller loss -

 Tweak parameters in that Lo-
direction, amplified by a 05 -
learning rate toe

0.0 - AB,

2.5 1

DN
™N
| 2.0
—
S

* Go in opposite dir of slope 00 05 10 15 20 25 30 35 40
1

UNIVERSITY OF SAN FRANCISCO

If learning rate is too high?

. 4.0
* We oscillate across
valleys >
. 3.0 A
* [t can even diverge,
exploding o 22
, | 2.0 -
e [f too small, we don’t &
. 1 -
make progress to min °
1.0 A
0.5
0.0 A

\ Initial B1

Q/____;_-_---____L_@gtp_ing rate = 0.97

00 05 1.0 15 20 25 30 35 4.0
B

UNIVERSITY OF SAN FRANCISCO

Training process

1. Prepare data
* normalize numeric variables
« onehot vars for categoricals
« conjure up values for missing values

Split out at least a validation set from training set

Choose network architecture, appropriate loss function

Choose hyper-parameters, such as dropout rate

Choose a learning rate, number of epochs (passes through data)
Run training loop (until validation error goes up or num epochs)
Goto 3, 4, or 5 to tweak; iterate until good enough

NOoOOROODN

UNIVERSITY OF SAN FRANCISCO

Training loop

Regression Vectori
_ ectorized forward network pass
for epoch in range(nepochs): / (send in all instances at once)
y_train_pred = model(X train)
loss = MSE(y_train_pred, y_train)
update model parameters in direction of lower loss

Classification

for epoch in range(nepochs):
y_train_pred = model(X train) # assume softmax final layer
loss = cross_entropy(y_train_pred, y_train)
update model parameters in direction of lower loss

UNIVERSITY OF SAN FRANCISCO

Common train vs validation loss behavior

* DL networks have so many 12000
parameters, we can often get —— train_loss
training error down to zero! 10000 - val_loss
« But, we care about generalization 8000 -

« Unfortunately, validation error often

. . § 6000 A
tracks away from training erroras -
the number of epochs increases 4000 4 |
* This model is clearly overfitting 5000 \M
* Need to use regularization to
improve validation loss 0 (I) 250 560 7é0 10I00

Epochs

UNIVERSITY OF SAN FRANCISCO

Regularization techniques

« Get more training data; can try augmentation techniques
(more data is likely to represent population distribution better)

« Reduce number of model parameters (i.e., simplify it)
(reduce power/ability to fit the noise)

« Add drop out layers (randomly kill some neurons)

« Weight decay (L2 regularization on model parameters,
restrict model parameter search space)

 Early stopping, when validation error starts to go up
(generally we choose model that yields the best validation error)

« Batch normalization has some small regularization effect
(Force layer activation distributions to be 0-mean, variance 1)

 Stochastic gradient descent tends to land on better generalizations

UNIVERSITY OF SAN FRANCISCO

Aside: What is vectorization?

» Use vectors not loops for i in range(len(a)):

 For torch/numpy arrays, we can
use vector math instead of a loop:

c=a+b

« Gives an opportunity to execute

c[i] = a[i] + b[i]

3251]|a

17 4 2

vector addition in parallel

4 99 3|C

UNIVERSITY OF SAN FRANCISCO

Vectorization in training loop

* Running one instance through network is how we think about it

* In practice, we send a subset or all X instances through the
network in one go and compare all y predictions to all y

* Instead of looping through instances, we pass X through to use
matrix-matrix multiplies instead of matrix-vector multiplies

for epoch in range(nepochs):
for 1 in range(n):
X = X[1]
y[i] = model(x)

= X [i] y[i] = W @ x.T
3 3

1 1
- —
[] MH

X
3
—1

100

Assume n=100, m=3, n_neurons=1 in 1x3 weight matrix W

for epoch in range(nepochs):
Y = model(X)

Y = W @X.T

100 3 100
— 1

~[__1
o
Get 100/ —

answers

UNIVERSITY OF SAN FRANCISCO

Summary

» Vanilla deep learning models are layers of linear regression models glued
together with nonlinear functions such as sigmoid/RelLUs

» Regressor: final layer transforms previous layer to single output

 Classifier: add sigmoid to last regressor layer (2-class) or add softmax to
last layer of k neurons (k-class)

» Training a model means finding optimal (or good enough) model
parameters as measured by a loss (cost or error) function; hyper
parameters describe architecture and learning rate, amount of

regularization, etc.

« We train using (stochastic) gradient descent; tuning model and hyper
parameters is more or less trial and error ® but experience helps a lot

UNIVERSITY OF SAN FRANCISCO

